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Abstract

This paper develops a procedure for uncovering the common cyclical factors that drive a

mix of stationary and nonstationary variables. The method does not require knowing which
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1 Introduction

Principal component analysis (PCA) has become a key tool for building dynamic models of vector

time series with a large cross-sectional dimension. The traditional approach subtracts the sample

mean and divides each variable by its sample standard deviation and then finds linear combina-

tions of the standardized variables that have maximum sample variance. These principal compo-

nents are then used to build dynamic models for each individual series. For surveys of PCA and

its usefulness in economics see Bai and Ng (2008) and Stock and Watson (2016).

One difficulty with PCA is that many of the time series encountered in economics and finance

are nonstationary. For a nonstationary variable, the population mean is undefined and the sam-

ple standard deviation diverges to infinity as the number of time-series observations gets large.

Onatski and Wang (2021) detailed some of the problems that can arise from trying to apply PCA to

nonstationary data. The typical solution to this problem is for researchers to examine each series

individually by hand to determine the transformation of that series that needs to be made before

calculating principal components of the set of variables.

This approach has three shortcomings. First, while for some variables it may be fairly clear

what transformation is necessary to achieve stationarity, for others it is far from obvious. For ex-

ample, the top panel of Figure 1 plots interest rates on U.S. Treasury securities with maturities

ranging from three months to ten years from January 1982 to November 2022. There is a strong

downward trend in all these interest rates over this sample. Should series like these be treated

as stationary? If nonstationary, should we take their first differences or deviations from a time

trend before performing PCA? Many finance applications take principal components of the yields

without any transformation; see for example Piazzesi (2010) or Joslin et al. (2011). McCracken

and Ng (2016) used either first differences or spreads between interest rates as the first step before

including interest rates in PCA. Crump and Gospodinov (2022) recommended using either bond

returns or the first differences of bond returns in place of yields themselves to reduce the persis-

tence of these data. Many decisions like these, sometimes somewhat arbitrary, have to be made

before applying PCA to large data sets.

The second concern is reproducibility. In order to communicate the methodology used in a

particular study that makes use of PCA, the researcher needs to report the specific stationarity-
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Figure 1: Yields on different maturities.

Notes to Figure 1. Top panel: yields on U.S. Treasury securities for maturities 3 months through
10 years, 1982:1 to 2022:11. Bottom panel: same series plotted as monthly changes.

inducing transformation that was used for each of the dozens or hundreds of variables studied.

Another researcher who did not use the same transformations might obtain different results.

A third problem, and in our minds the most fundamental, is the appropriateness of the method-

ology itself. Suppose we somehow overcame the first problem and knew for certain the true na-

ture of the trend in each individual series. Suppose for illustration we knew correctly that the

first variable y1t is a stationary AR(1) process with autoregressive coefficient ρ = 0.99 while the

second variable y2t is a random walk. Then the currently prescribed procedure would instruct the

researcher to use the first variable as is and the second variable in the form of first differences.

But if we enter some variables in the form of levels as in the top panel of Figure 1 and others

as first-differences as in the bottom panel, we would be mixing together data with very different

properties. Would we expect that there is some linear combination of y1t and ∆y2t that can sum-

marize the common economic drivers behind the two variables? If differencing is the appropriate

transformation for a random walk, it seems we should be using some similar transformation for
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an AR(1) process whose root is close but not quite equal to unity.

In this paper we propose an approach to PCA that solves all three of these problems. We

interpret the researcher’s goal to be to extract the common factors behind the cyclical components

of each of the series studied. We follow Hamilton (2018) in defining the cyclical component of a

variable to be the component that could not have been predicted on the basis of its own values two

years earlier. Hamilton argued that this offers a good representation of what economists typically

mean by the cyclical component of a time series and has the huge practical advantage that it can

be consistently estimated using an OLS regression without having to know whether the series is

stationary or the way in which it may be nonstationary. Our proposal is to filter each series using

this regression and perform PCA on the regression residuals. Specifically, we estimate an OLS

regression of yit on {1, yi,t−h, yi,t−h−1, . . . , yi,t−h−p+1}, where i = 1, . . . , N represents the index of

the variable, h is the forecasting horizon (h = 8 for quarterly observations and h = 24 for monthly)

and p is the number of lags used for the forecast (p = 4 for quarterly and p = 12 for monthly).

We then calculate principal components of the residuals. This approach solves each of the three

problems identified above. The procedure is fully automatic, requiring no subjective judgment

calls by the researcher, and treats every variable in the same way. The transformation of yit is a

continuous function of the estimated autoregressive coefficients and implies no discontinuity in

the way that persistent stationary series are treated as the largest autoregressive root tends toward

unity.

Bai and Ng (2004) proposed that researchers should difference all the variables, whether sta-

tionary or not, and calculate principal components of the differenced data. Unit-root tests on the

residuals can then be used to determine which individual series are unit-root processes as well as

the nature of cointegration. Bai (2004) used this method to form an inference about the stochastic

trends that are common across the variables. By contrast, the goal of our approach is to uncover

the cyclical components that are common to both the stationary and nonstationary variables.

Section 2 presents our characterization of the cyclical component of an economic time series.

Section 3 presents assumptions about the factor structure for the cyclical components and uses

standard results to establish the consistency of PCA if the cyclical component was observed with-

out error. Section 4 analyzes the case when the cyclical components are not known but have to be

estimated using OLS regressions, and establishes consistency of the method in that setting. Sec-
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tions 5 and 6 illustrate the promise of this approach in empirical analyses of interest rates and of

the FRED-MD large macroeconomics data set.

2 The cyclical component of an economic time series

If the ith observed variable is a deterministic function of time plus a zero-mean stationary process,

yit = δi(t) + cit, we could describe the deterministic time trend as the limit of a forecast that would

have been made in the arbitrarily distant past:

δi(t) = lim
h→∞

lim
p→∞

E(yit|yi,t−h, yi,t−h−1, ..., yi,t−h−p+1).

By contrast, if the first difference of the ith variable is a zero-mean stationary process, Beveridge

and Nelson (1981) suggested that we think of the trend as the forecast of the variable in the arbi-

trarily distant future. They decomposed yit = δit + cit where

δit = lim
h→∞

lim
p→∞

E(yi,t+h|yit, yi,t−1, ..., yi,t−p+1).

While these concepts of trend have some appeal, they have the significant practical drawback that

both are based on the properties of forecasts at infinite horizons. They thus depend on conjectures

of what happens at infinity, conjectures that are impossible to verify on the basis of a finite sample

of observations. Hamilton (2018) suggested that we should instead define a trend in terms of

finite-horizon forecasts whose properties we can observe. He proposed the decomposition

yit = P(yit|1, yi,t−h, yi,t−h−1, ..., yi,t−h−p+1) + cit

= αi0 + αi1yi,t−h + αi2yi,t−h−1 + · · ·+ αipyi,t−h−p+1 + cit (1)

where P(y|x) denotes the population linear projection of y on x. A forecast over a horizon h corre-

sponding to two years is something we can get a reasonable idea about in a sample of typical size.

Restricting the forecast to the class of population linear projections on a finite number of lags p is

another feature that allows this characterization to be readily implemented. Hamilton argued that

the primary reason we would go wrong in making a two-year-ahead forecast of most economic
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time series is due to unforeseen cyclical changes. For example, the variable will be significantly

below our forecast if the economy goes into a recession over the next two years, and significantly

above our forecast if recovery from a downturn is more robust than expected. For this reason, he

proposed referring to cit as the cyclical component of the ith variable.

Hamilton showed that the cyclical component cit defined by (1) is stationary for a broad class

of nonstationary processes for yit and can be consistently estimated with a simple OLS regres-

sion using levels of the variable. Specifically, if either: (i) yit is stationary around a deterministic

polynomial function of time of order di ≤ p satisfying

T−1/2
[Tr]

∑
s=1

(yit − δi0 − δi1t − δi2t2 − · · · − δitdi) =⇒ ωiWi(r)

where [Tr] denotes the largest integer no greater than Tr, Wi(r) denotes standard Brownian mo-

tion, and ⇒ denotes weak convergence of associated probability measures; or alternatively if (ii)

di differences of yit are stationary for some di ≤ p satisfying

T−1/2
[Tr]

∑
s=1

(∆di yit − µi) =⇒ ωiWi(r);

then Hamilton (2018) showed that the cyclical component cit defined by the population linear

projection (1) is stationary and that the estimated coefficients α̂i from an OLS regression give a

consistent estimate of the population coefficients αi.

It’s instructive to consider some examples of what this means. If yit is a stationary moving

average process of order less than h, α̂i0 converges to the population mean of yit and α̂ij
p→ 0 for

j = 1, ..., p. In this case, we would describe the cyclical component of yit as simply the value of

the variable minus its population mean. If yit is an AR(1) process with autoregressive coefficient

ϕi, then αi1 = ϕh
i . For example, if ϕi = 0.8 for monthly data, αi1 = (0.8)24 = 0.005, and again the

cyclical component of yit would essentially just be its deviation from the population mean. As

the persistence of a stationary process increases, the regression removes the persistent component

defined as the part of yit that can be predicted two years in advance.
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For an I(1) process (di = 1), we have the accounting identity

yit = yi,t−h + ∑h−1
j=0 ∆yi,t−j. (2)

Collect a constant term along with the p − 1 most recent changes in yi as of date t − h in the vector

qi,t−h = (1, ∆yi,t−h, ∆yi,t−h−1, ..., ∆yi,t−h−p+2)
′. If ∆yit is I(0), the population linear projection of

∆yi,t−j on qi,t−h exists and is given by

P(∆yi,t−j|qi,t−h) = π′
i,j−hqi,t−h

πi,j−h =
[

E(qi,t−hq′i,t−h)
]−1

E(qi,t−h∆yi,t−j).

This allows us to define the population linear projection of the I(1) variable yit on a constant and

its p most recent levels as of date t − h as

P(yit|1, yi,t−h, yi,t−h−1, ..., yi,t−h−p+1) = yi,t−h + ∑h−1
j=0 π′

i,j−hqi,t−h

= αi0 + αi1yi,t−h + αi2yi,t−h−1 + · · ·+ αipyi,t−h+1 (3)

where for example αi1 = 1 + ∑h−1
j=0 πi,j−h,1 for πi,j−h,1 the first element of the vector πi,j−h. Thus

in this case the value of the cyclical component in the decomposition (1) is cit = ∑h−1
j=0 (∆yi,t−j −

π′
i,j−hqi,t−h), which is stationary. An OLS levels regression chooses α̂ij to minimize the sample sum

of ĉ2
it, and results in consistent estimates of the population parameters αij without needing to take

differences of the original data.

For an I(2) process, we could make use of the accounting identity

yit = yi,t−h + h∆yi,t−h + ∑h−1
j=0 (j + 1)∆2yi,t−j. (4)

The population linear projection of ∆2yi,t−j on its p − 2 most recent values as of date t − h again

exists, and substituting these projection coefficients into (4) again gives a definition of the levels

linear projection of the form of (3). OLS regression on levels then yields a residual that consistently

estimates the stationary cyclical component cit, which in this case is a function of the residuals from
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population linear projections of ∆2yi,t−j on (1, ∆2yi,t−h, ∆2yi,t−h−1, ..., ∆2yi,t−h−p+3)
′. Again we did

not need to know that the true di = 2 in order to estimate the regression (1). Hamilton (2018)

showed that related results hold for an I(di) process for any di ≤ p and also hold whenever yit is

stationary around a polynomial time trend of order less than or equal to p.

Our proposal is therefore to estimate the same regression for every variable yit, regardless of

whether we think it is stationary and without making any conjecture about the nature of any

nonstationarity. To allow for persistent seasonal components in yit, we recommend choosing p to

be the number of observations in a year. Our procedure estimates the following regression by OLS

for every variable,

yit = αi0 + αi1yi,t−h + αi2yi,t−h−1 + · · ·+ αipyi,t−h−p+1 + cit, (5)

with h = 8 and p = 4 for quarterly data and h = 24 and p = 12 for monthly data.1 We will describe

the residual from the estimated regression ĉit as the estimated cyclical component of variable yit

and the residual from the population linear projection cit as the true cyclical component. The value

ĉit is a consistent estimate of cit, and the true value cit is stationary as long as any nonstationarity

in yit is characterized by either a polynomial time trend of order di or an I(di) process with di ≤ p.

Our procedure is to perform PCA on the regression residuals {ĉ1t, ..., ĉNt}.

One practical decision is whether a nonlinear transformation of the raw data is necessary for

∆di yit to be stationary for some di. If taking the change in the log is the correct way to produce a

stationary series, then taking the change in the level would not produce a stationary series. We

recommend using logs for variables like output or prices which are usually described in terms of

growth rates. For such variables we use the log of the level of the variable, yit = log Yit as the

variable in the regression (5). For variables like interest rates or the unemployment rate that are

already quoted in percentage terms, we use the raw data yit = Yit in the regression.

The true cyclical component cit has mean zero and is stationary for a wide range of processes.

1If the goal is simply to extract a stationary component, this could be accomplished using regression (5) with any
finite h. If we set h = 1, we would be looking for a factor structure in one-period-ahead forecast errors, which might
be interpreted as a factor structure characterizing common shocks to the variables. Although this would be feasible,
our purpose in this paper is to calculate the common factors behind cyclical movements in the variables. If we increase
h beyond the two-year horizon, we would be basing the definition of the stationary component on forecasts that are
difficult to estimate reliably in samples of typical size. Our recommended forecasting horizon of two years is both
feasible and offers a good characterization of the cyclical component of an economic variable.
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However, the population values of αij are not known but must be estimated by regression. In

Section 3 we characterize our assumptions about the factor structure that we hypothesize describes

the true values of cit, and use standard results to establish that these population factors could be

consistently estimated if the true values of cit were observed without error. Section 4 considers the

case when we do not know the value of di for each series, do not know whether it is stationary

or characterized by a deterministic time trend or an I(di) process, and the cit are not observed. In

that section we analyze the consequences of performing PCA on the estimated OLS residuals ĉit.

3 Principal component analysis when the cyclical component is ob-

served

In the previous section we defined the true cyclical component cit to be the residual from a popu-

lation linear projection of yit on (1, yi,t−h, yi,t−h−1, ..., yi,t−h−p+1)
′, and noted that cit is stationary for

a broad class of possible processes. In this section we provide sufficient conditions under which

the true cyclical components for a collection of N different variables would have a factor struc-

ture that could be consistently estimated using PCA if we observed the true value of cit for each

variable. The set-up and results in this section closely follow Stock and Watson (2002).

3.1 Assumed factor structure of the true cyclical components

Collect the true cyclical components for the N different series at time t in an (N × 1) vector Ct =

(c1t, ..., cNt)
′. We postulate that these are characterized by a factor structure of the form

Ct
(N×1)

= Λ
(N×r)

Ft
(r×1)

+ et
(N×1)

. (6)

The number of latent factors r is much less than the number of variables N, but the r factors are

assumed to account for most of the variance of Ct in a sense made formal below. Since the factors

are unobserved, Ct = ΛH−1HFt + et would imply the identical observable model as (6). Thus

some normalizations are necessary in order to talk about consistently estimating the jth factor f jt.

In empirical estimation, practitioners typically resolve this ambiguity by estimating the jth column

of Λ by the eigenvector associated with the jth largest eigenvalue of T−1 ∑T
t=1 CtC′

t. Note that such
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a procedure implies a normalization in which the columns of Λ are orthogonal to each other and

the elements of Ft are uncorrelated with each other and ordered by the size of their variance.

We follow Stock and Watson (2002) in how to characterize these conventions as the cross-section

dimension N and time-series dimension T get large.2

Assumption 1 (factor structure).

(i) (Λ′Λ/N) → Ir.

(ii) E[FtF′
t ] = ΩFF, where ΩFF is a diagonal matrix with ωii > ω jj > 0 for i < j.

(iii) |λij| ≤ λ̄ < ∞.

(iv) T−1 ∑t FtF′
t

p→ ΩFF.

In addition to implementing the property that eigenvectors of a symmetric matrix are orthog-

onal, Assumption 1(i) requires that each factor makes a nonnegligible contribution to the average

variance of cit across i. That is, if we were to imagine adding more variables (increasing N) with

λij = 0 for all i greater than some fixed N0, then Assumption 1(i) could not hold. Likewise 1(ii)

and 1(iv) require that each factor continues to matter as the number of time-series observations T

grows. These conditions are consistent with serial dependence of the factors, but rely on the fact

that Ct is stationary.

Let γ denote an (N × 1) vector and Γ = {γ : γ′γ/N = 1}. Note that if γ were the jth col-

umn of Λ, the scalar γ′ΛFt/N would converge to f jt and (N2T)−1 ∑T
t=1 γ′ΛFtF′

t Λ′γ
p→ ω jj. The

assumption that the idiosyncratic elements et do not have a factor structure requires that there is

no value of γ for which the analogous operation applied to et would lead to anything other than

zero: sup
γ∈Γ

(N2T)−1 ∑T
t=1 γ′ete′tγ

p→ 0. Stock and Watson (2002) used the following assumptions to

guarantee the absence of a factor structure in et.

Assumption 2 (moments of the errors).

(i) lim
N→∞

supt ∑∞
s=−∞ |E[e′tet+s/N]| < ∞.

(ii) lim
N→∞

supt N−1 ∑N
i=1 ∑N

j=1 |E[eitejt]| < ∞, where eit denotes the ith element of et.

2See Bai and Ng (2013) and Stock and Watson (2016) for discussion of alternative normalizations.
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(iii) lim
N→∞

supt,s N−1 ∑N
i=1 ∑N

j=1 |cov[eiseit, ejsejt]| < ∞.

Some might be concerned that we have simply postulated that the true cyclical components

are characterized by Assumptions 1 and 2. But something very similar is done in traditional

applications that assume conditions like these characterize specified stationary transformations of

the original data. Indeed, insofar as the cyclical components have a common primitive definition

in terms of two-year-ahead forecast errors, we feel these assumptions are easier to defend in our

application than in many others.

3.2 Consequences of applying PCA to the true cyclical components

Recall that the vector of true cyclical components Ct is stationary and has population mean zero.

If Ct was observed directly, its estimated sample variance matrix would be S = T−1 ∑T
t=1 CtC′

t and

a linear combination γ′Ct for any (N × 1) vector γ would have sample variance γ′Sγ. If Ct was

observed, the first estimated principal component (denoted f̃1t = N−1λ̃
′
1Ct) would be defined as

the linear combination that has maximum sample variance subject to a normalization condition

such as γ ∈ Γ = {γ : γ′γ/N = 1}:

λ̃1 = arg sup
γ∈Γ

R̃(γ) (7)

R̃(γ) = (N2T)−1γ′ ∑T
t=1 CtC′

tγ. (8)

Note we are normalizing λ̃
′
1λ̃1/N = 1 as we did asymptotically for the columns of Λ in Assump-

tion 1(i). We also divide the sample variance of γ′Ct by N2 in anticipation of the result that R̃(λ̃1)

will converge to a fixed constant as N and T grow. The solution to (7) is obtained by setting

λ̃1 proportional to the eigenvector of S = T−1 ∑T
t=1 CtC′

t associated with the largest eigenvalue.

For example, if we calculated eigenvectors of this matrix using code that normalizes eigenvectors

to have unit length and orders eigenvalues by decreasing size, λ̃1 would be
√

N times the first

eigenvector. The largest eigenvalue of S is equal to T−1 ∑T
t=1 f̃ 2

1t, the sample variance of the first

principal component. The jth principal component N−1λ̃
′
jCt is found by maximizing R̃(γ) sub-

ject to the constraint that γ is orthogonal to λ̃1, ..., λ̃j−1. The solution for λ̃j is proportional to the

eigenvector of S associated with the jth largest eigenvalue.

Alternatively, if we observed the true factors Ft and loadings Λ, we could calculate the compo-
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nent of the variance of γ′Ct that is attributable to the r factors alone:

R∗(γ) = (N2T)−1γ′ ∑T
t=1 ΛFtF′

t Λ′γ. (9)

Stock and Watson (2002) showed that under Assumptions 1 and 2, the maximum value for (8)

(which is given by the largest eigenvalue of S) and the supremum of (9) over all γ ∈ Γ converge

in probability to the same number ω11, which is the population variance of the first factor, and

that λ̃
′
1Ct/N gives a consistent estimate of f1t up to a sign. If we were to estimate k > r principal

components, the first r would consistently estimate f jt up to a sign normalization and the last k − r

would asymptotically have zero variance. We restate their results in the following theorem.

Theorem 1. (Stock and Watson, 2002). Suppose that Assumptions 1 and 2 hold. Let R∗(γ) be the function

in (9) and let f̃1t, ..., f̃kt denote the first k estimated principal components of Ct ( f̃ jt = λ̃
′
jCt/N) with k ≥ r.

Let F̃t
(r×1)

= ( f̃1t, ..., f̃rt)′ and Λ̃
(N×r)

=

[
λ̃1 · · · λ̃r

]
. Then as N and T go to infinity:

(i) sup
γ∈Γ

R∗(γ)
p→ ω11;

(ii) If λ∗
1 = arg sup

γ∈Γ
R∗(γ) and λ∗

j = arg sup
γ∈Γ,γ′λ∗

1=···=γ′λ∗
j−1=0

R∗(γ), then R∗(λ∗
j )

p→ ω jj for j = 1, ..., r;

(iii) T−1 ∑T
t=1 f̃ 2

jt = R̃(λ̃j)
p→ ω jj for j = 1, ..., r;

(iv) T−1 ∑T
t=1 f̃ 2

jt
p→ 0 for j = r + 1, ..., k;

(v) S̃Λ̃′Λ/N
p→ Ir where S̃ is a diagonal matrix whose row j column j element is +1 if λ̃

′
jλj > 0 and

−1 if λ̃
′
jλj < 0.

(vi) S̃F̃t − Ft
p→ 0.

4 Principal component analysis when the cyclical component must be

estimated

In this section we assume that we do not observe the true cyclical component cit of series i but

have an estimate ĉit = cit + vit. Let Ĉt = (ĉ1t, ..., ĉNt)
′ and Vt = (v1t, ..., vNt)

′. We investigate the
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properties of principal components calculated from the estimated cyclical components:

f̂ jt = N−1λ̂
′
jĈt (10)

λ̂j = arg sup
{γ∈Γ,γ′λ̂1=···=γ′λ̂j−1=0}

R̂(γ)

R̂(γ) = (N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ.

We first note a high-level sufficient condition under which PCA applied to the estimated cyclical

components Ĉt gives consistent estimates of the true factors Ft. Let vit = ĉit − cit denote the differ-

ence between the estimated and true cyclical component of series i at date t. The condition is that

vit converges in mean square to zero uniformly in i and t as T goes to infinity.

Assumption 3 (high-level conditions on vit). For ∀δ > 0, ∃Tδ : E(v2
it) < δ ∀T > Tδ and ∀i, t.

The following result establishes that if the error in estimating the cyclical component satisfies

Assumption 3, the results ( f̂ jt, λ̂j, R̂(γ)) of applying PCA to the estimated cyclical components Ĉt

give consistent estimates of the magnitudes that characterize the true cyclical components Ct.

Theorem 2. Suppose that Ct and et in equation (6) satisfy Assumptions 1 and 2. Let Ĉt = Ct + Vt for

Vt = (v1t, ..., vNt)
′ where vit satisfy Assumption 3. Let f̂1t, ..., f̂kt denote the first k estimated principal

components of Ĉt ( f̂ jt = λ̂
′
jĈt/N) with k ≥ r and let F̂t

(r×1)
= ( f̂1t, ..., f̂rt)′ and Λ̂

(N×r)
=

[
λ̂1 · · · λ̂r

]
.

Then as N and T go to infinity:

(i) T−1 ∑T
t=1 f̂ 2

jt = R̂(λ̂j)
p→ ω jj for j = 1, ..., r;

(ii) T−1 ∑T
t=1 f̂ 2

jt
p→ 0 for j = r + 1, ..., k;

(iii) ŜΛ̂′Λ/N
p→ Ir where Ŝ is a diagonal matrix whose row j column j element is +1 if λ̂

′
jλj > 0 and

−1 if λ̂
′
jλj < 0;

(iv) ŜF̂t − Ft
p→ 0.

Under what conditions can we expect Assumption 3 to hold? For z̃it = (1, yi,t−h, yi,t−h−1, ...,

yi,t−h−p+1)
′, the true cyclical component cit is the residual from a population linear projection of

yit on z̃it and ĉit is the residual from the corresponding estimated regression:
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cit = yit − α′
i0z̃it

ĉit = yit − α̂′
i z̃it

vit = ĉit − cit = (αi0 − α̂i)
′ z̃it

(αi0 − α̂i) = −
(

∑T
t=1 z̃it z̃′it

)−1 (
∑T

t=1 z̃itcit

)
(11)

v2
it = (αi0 − α̂i)

′ z̃it z̃′it(αi0 − α̂i) (12)

Consider first the case of a single stationary regressor (p = 1, di = 0) and v2
it = (αi0 − α̂i)

2y2
i,t−h.

If yit is stationary we expect that
√

T(αi0 − α̂i)
d→ N(0, Vi) and E(y2

i,t−h) < ∞, in which case v2
it

should converge to zero as T gets large. Next consider the case of a single I(1) regressor (p =

1, di = 1). Take for illustration the case of a random walk: yit = yi,t−1 + εit = εit + εi,t−1 + · · ·+ εi1

and cit = εit + εi,t−1 + · · ·+ εi,t−h+1. Then

α̂i − αi0 =
(

∑T
t=1 y2

i,t−h

)−1 (
∑T

t=1 yi,t−hcit

)
=

(
∑T

t=1 y2
i,t−h

)−1 (
∑T

t=1 yi,t−h(εi,t−h+1 + εi,t−h+2 + · · ·+ εit)
)

T(α̂i − αi0) =
[

T−2 ∑T
t=1 y2

i,t−h

]−1 [
T−1 ∑T

t=1(yi,t−hεi,t−h+1) + T−1 ∑T
t=1(yi,t−h+1 − εi,t−h+1)εi,t−h+2

+ · · ·+ T−1 ∑T
t=1(yi,t−1 − εi,t−h−1 − εi,t+h−2 − · · · εi,t−h+1)εit

]
d→

[
σ2

i

∫ 1

0
[Wi(r)]2dr

]−1 [
hσ2

i

∫ 1

0
Wi(r)dWi(r)

]

which is h times the Dickey-Fuller distribution.3 Also for t − h = [rT] for [rT] the largest integer

less than or equal to rT and r ∈ (0, 1),

T−1y2
i,[rT]

d→
T→∞

σ2
i [Wi(r)]2.

If we assume that E(T−1y2
i,t−h) is bounded for all t, then v2

it = T−1[T(αi0 − α̂i)]
2[T−1y2

i,t−h] should

3See Hamilton (1994, Proposition 17.3) for similar derviations.
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again converge to zero for each t as T → ∞.

Returning to the general case, we have from (12) and (11) that

∑T
t=1 v2

it = (αi0 − α̂i)
′
(

∑T
t=1 z̃it z̃′it

)
(αi0 − α̂i)

=
(

∑T
t=1 cit z̃′it

) (
∑T

t=1 z̃it z̃′it
)−1 (

∑T
t=1 z̃itcit

)
. (13)

This will be recognized as the OLS Wald statistic for testing the true null hypothesis H0 : αi =

αi0 multiplied by σ̂2
i = (T − k)−1 ∑T

t=1 ĉ2
it, the average squared regression residual. To find the

asymptotic distribution of ∑T
t=1 v2

it we can make use of the insight of Sims et al. (1990) that the

residuals from a regression of yit on z̃it are numerically identical to the residuals from a regression

of yit on zit = Ri z̃it for Ri any nonsingular matrix. For a particular form of nonstationarity, there is

a particular value for Ri that makes the asymptotic properties of the residuals easiest to analyze.

Note that we do not need to know the form of the nonstationarity since the observed residual

ĉit = yit − α̂′
i z̃it is numerically identical to the analyzed residual yit − β̂

′
izit and thus vit = ĉit − cit is

identical whichever way one chooses to describe the regression. For example, for di = 2 and p = 4,

we would conveniently characterize the regressors as zit = (∆2yi,t−h, ∆2yi,t−h−1, 1, ∆yi,t−h, yi,t−h)
′.

The estimated residuals from a regression of yit on zit are numerically identical to the residuals

from a regression on z̃it. We do not need to know the value of di to implement the first regression,

and therefore do not need to know the value of di to find the residuals from the second regression:

∑T
t=1 v2

it =
(

∑T
t=1 cit z̃′it

) (
∑T

t=1 z̃it z̃′it
)−1 (

∑T
t=1 z̃itcit

)
=

(
∑T

t=1 citz′it(R′
i)
−1

) (
∑T

t=1 R−1
i zitz′itR

′−1
i

)−1 (
∑T

t=1 R−1
i zitcit

)
=

(
∑T

t=1 citz′it
) (

∑T
t=1 zitz′it

)−1 (
∑T

t=1 zitcit

)
. (14)

For any given unknown true value of di, there is also an unknown true value of a diagonal scaling

matrix ΥiT that facilitates calculation of the asymptotic distribution:

∑T
t=1 v2

it =
(

∑T
t=1 citz′itΥ

−1
iT

) (
Υ−1

iT ∑T
t=1 zitz′itΥ

−1
iT

)−1 (
Υ−1

iT ∑T
t=1 zitcit

)
. (15)

Again we do not need to know the value of ΥiT in order to know that (15) characterizes the fit-
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ted residuals. The results in Hamilton (2018) establish that for a broad class of stationary and

nonstationary processes,

(
∑T

t=1 citz′itΥ
−1
iT

) (
Υ−1

iT ∑T
t=1 zitz′itΥ

−1
iT

)−1 (
Υ−1

iT ∑T
t=1 zitcit

)
d→ q′iQiq′i.

Note the existence of limiting variables qi and Qi does not depend on any assumption that the cit

are serially uncorrelated. The result that ∑T
t=1 v2

it ∼ Op(1) implies T−1 ∑T
t=1 v2

it ∼ op(1) when the

regressors are stationary or nonstationary of any unknown order di < p. For example, if di = 2,

p = 4 and ∆2yit is a mean-zero I(0) process, then

ΥiT =



T1/2 0 0 0 0

0 T1/2 0 0 0

0 0 T1/2 0 0

0 0 0 T 0

0 0 0 0 T2


(16)

Qi =



γi0 γi1 0 0 0

γi1 γi0 0 0 0

0 0 1 ωi
∫ 1

0 Wi(r)dr ωi
∫

W(2)
i (r)dr

0 0 ωi
∫ 1

0 Wi(r)dr ω2
i

∫ 1
0

[
Wi(r)

]2 dr ω2
i

∫
Wi(r)W

(2)
i (r)dr

0 0 ωi
∫

W(2)
i (r)dr ω2

i

∫
Wi(r)W

(2)
i (r)dr ω2

i

∫ [
W(2)

i (r)
]2

dr


(17)

for γij = E(∆2yit∆2yi,t−j), ω2
i = ∑∞

j=−∞ γij, Wi(r) standard Brownian motion, and W(2)
i (r) =∫ r

0 Wi(s)ds. Thus T−1 ∑T
t=1 v2

it should converge to zero for a broad class of processes.

Consider next the convergence of v2
it for each individual t. In the case of a single stationary

regressor, v2
it = (αi0 − α̂i)

2y2
i,t−1 and ∑T

t=1 v2
it = (αi0 − α̂i)

2 ∑T
t=1 y2

i,t−1 so

v2
it

T−1 ∑T
t=1 v2

it

=
y2

i,t−1

T−1 ∑T
t=1 y2

i,t−1

(18)

v2
it = (Ait/BiT)T−1 ∑T

t=1 v2
it (19)

for Ait = y2
i,t−1 and BiT = T−1 ∑T

t=1 y2
i,t−1. As T → ∞, BiT

p→ E(y2
i,t−1) meaning that if T−1 ∑T

t=1 v2
it

p→
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0, then also v2
it

p→ 0 . A sufficient condition to ensure that E(v2
it) < δ is that E(Ait/BiT)

2 < κ4 is

uniformly bounded.

For the random-walk example, expression (18) again holds identically and we can again rewrite

it in the form of (19) now defining Ait = T−1y2
i,t−1 and BiT = T−2 ∑T

t=1 y2
i,t−1. Then T−1/2yi,[Ts]

d→
T→∞

σiWi(s) and
Ait

BiT
=

T−1y2
i,[Ts]∫ 1

0 T−1y2
i,[Ts]ds

d→
[
Wi(s)

]2∫ 1
0 [Wi(s)]2ds

.

This limiting distribution again has finite variance. We can ensure that Condition 3 holds for finite

T and each t as before by assuming that E(Ait/BiT)
2 < κ4.

For the general case,

v2
it = (αi0 − α̂i)

′ z̃it z̃′it(αi0 − α̂i)

= (αi0 − α̂i)
′R−1

i ΥiTΥ−1
iT Ri z̃it z̃′itR

′
iΥ

−1
iT ΥiT(R′

i)
−1(αi0 − α̂i)

= ᾱ′
i(Υ

−1
iT zitz′itΥ

−1
iT )ᾱi

= T−1ᾱ′
i Aitᾱi

for ᾱi = ΥiT(R′
i)
−1(αi0 − α̂i) and Ait = TΥ−1

iT zitz′itΥ
−1
iT . Likewise ∑T

t=1 v2
it = ᾱ′

iBiT ᾱi for BiT =

Υ−1
iT

(
∑T

t=1 zitz′it
)

Υ−1
iT . Thus

v2
it

T−1 ∑T
t=1 v2

it

=
ᾱ′

i Aitᾱi

ᾱ′
iBiT ᾱi

. (20)

In general, the ratio in (20) converges in distribution as T → ∞ to a variable with finite variance,

and condition 3 will hold if the ratio has finite variance for each t as well.

The stationary p = 1 example is a special case of this general formulation with zit = yi,t−h,

ΥiT =
√

T, Ait = y2
i,t−h, and BiT = T−1 ∑T

t=1 y2
i,t−h. For the random-walk example, zit = yi,t−h,

ΥiT = T, Ait = T−1y2
i,t−h, and BiT = T−2 ∑T

t=1 y2
i,t−h. For the p = 4, di = 2 example, ΥiT is given by
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(16) and BiT
d→ Qi given in (17), while the lower right (3 × 3) block of Ait is characterized by

T


T−1/2 0 0

0 T−1 0

0 0 T−2




1

∆yi,t−h

yi,t−h


[

1 ∆yi,t−h yi,t−h

]


T−1/2 0 0

0 T−1 0

0 0 T−2



=


1 T−1/2∆yi,t−h T−3/2yi,t−h

T−1/2∆yi,t−h T−1(∆yi,t−h)
2 T−2yi,t−h∆yi,t−h

T−3/2yi,t−h T−2yi,t−h∆yi,t−h T−3y2
i,t−h



d→


1 ωiWi(s) ωiW

(2)
i (s)

ωiWi(s) ω2
i [Wi(s)]2 ω2

i Wi(s)W
(2)
i (s)

ωiW
(2)
i (s) ω2

i Wi(s)W
(2)
i (s) ω2

i

[
W(2)

i (s)
]2


for [sT] = t − h and ω2

i = ∑∞
j=−∞ E(∆2yit∆2yi,t−j).

We now formally state sufficient conditions that guarantee that Assumption 3 holds.

Assumption 4 (sufficient conditions for Assumption 3).

(i) The true cyclical component cit is uniformly bounded, that is, there exists κ1 < ∞ : ∀i c2
it < κ1.

(ii) ∑T
t=1 v2

it
d→ Ui = q′iQ

−1
i qi with E(Ui) < κ2 ∀i.

(iii) The convergence is uniform in i, that is, for all κ3, ε3 > 0, ∃T3(κ3, ε3) : ∀T > T3(κ3, ε3) and ∀i,

∣∣∣Prob
(

∑T
t=1 v2

it > κ3

)
− Prob(Ui > κ3)

∣∣∣ < ε3.

(iv) Let λmax(Ait) denote the largest eigenvalue of Ait = TΥ−1
iT zitz′itΥ

−1
iT and λmin(BiT) the smallest

eigenvalue of BiT = Υ−1
iT

(
∑T

t=1 zitz′it
)

Υ−1
iT . There exists a κ4, T4 < ∞ such that E

[
λmax(Ait)/λmin(BiT)

]2

< κ4 for all T > T4 and all i and t.

Presumably it is possible to replace condition 4(i) with restrictions on the tail behavior of cit,

though we have not attempted that here. Sufficient conditions for 4(ii) are analyzed in Hamilton

(2018). The following result establishes that Assumption 4 can replace Assumption 3.

Theorem 3. Assumption 4 implies Assumption 3.
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5 Summarizing the yield curve

Our first application uses the data on U.S. Treasury yields plotted in the top panel of Figure 1.4

In many finance applications the yields are assumed to be stationary and no transformation is

performed before estimating the principal components. Nevertheless, there is a substantial down-

ward trend in interest rates over this period.

Figure 2: Factor loadings for the original data on yields

We start by reproducing the traditional finance application of PCA to the raw data on yields.

The factor loadings associated with the first three principal components are plotted in Figure 2.

The horizontal axis in Figure 2 shows the maturities in months, and the three curves display the

estimates of the first three columns of Λ in equation (6) plotted as a function of maturity. The

coefficient relating yields to the first factor (often referred to as the level factor) is roughly the same

for all maturities; the level factor is essentially the average interest rate at time t. Loadings on the

second factor (slope) are positive for long rates and negative for short rates, causing the second

factor to be positive when the yield curve slopes up and negative when it slopes down. The third

4The data are constant maturity yields from the Federal Reserve Bank of St. Louis database
https://fred.stlouisfed.org/categories/115.
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factor (curvature) has a positive weight for 1- to 6-year bonds and negative weight for bonds with

very short or very long maturity.

Figure 3: First Principal component of level and cyclical component of yields

The top panel in Figure 3 plots the first principal component of the raw data. The estimate

closely tracks the general movement of interest rates. But it is also clear that the dynamics come

from both the downward trend and the cyclical movements.

We next regressed each yield on a constant and 12 of its lagged values 2 years earlier and

performed PCA on the regression residuals. Figure 4 shows that the loadings on the three factors

are quite similar to the ones in Figure 2, meaning that the factors are still very naturally described

as the level, slope and curvature of the cyclical component of interest rates. One modest difference

in the factor loadings is that the cyclical level factor loads a little more strongly on short-term

interest rates. A more important difference is seen in the plot of the value of the first factor in the

second panel Figure 3. By construction there is no trend in the bottom panel Figure 3, in contrast

to the clear downward trend of the top panel.

For this application, all the variables share the same trend and the same cyclical tendencies, so

PCA applied to the levels results in similar broad conclusions as PCA for the cyclical components.
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Figure 4: Factor loadings for the cyclical component of yields

This will no longer be the case, however, if the analysis includes interest rates along with other

variables that exhibit different trends. In such applications it can be very helpful to isolate the

cyclical components of interest rates in order to relate these to the cyclical components of other

variables. We consider such an example in our second application.

6 Characterizing large macroeconomic data sets

The use of large macroeconomic data sets was pioneered by Stock and Watson (1999), whose goal

was to use the information of 168 different macroeconomic variables to produce better forecasts

of inflation. They found that the first principal component of macroeconomic variables that are

related to the level of real economic activity produced the best inflation forecasts over the period

1959:1 to 1997:9. Their findings led to the development of the Chicago Fed National Activity Index,

which is the first principal component of a subset of 85 different measures of economic activity.5

5The variables used to calculate the Chicago Fed National Activity Index (CFNAI) fall into four broad groups: (1)
production and income; (2) employment, unemployment, and hours; (3) personal consumption and housing; and (4)
sales, orders, and inventories
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McCracken and Ng (2016) reviewed subsequent uses of large macroeconomic sets and devel-

oped the FRED-MD database whose 2015:4 vintage covered 134 macroeconomic variables. These

variables include monthly measures divided into 8 broad categories: (1) output and income; (2)

labor market; (3) housing; (4) consumption, orders, and inventories; (5) money and credit; (6) in-

terest and exchange rates; (7) prices; and (8) stock market. This data set offers benefits of continuity

and continuous updating and is the basis for our analysis in this paper.

In previous uses of PCA on large macroeconomic data sets, each of the variables needed to be

transformed using a detrending method that was selected individually for each series. For details

of how this has been done see Federal Reserve Bank of Chicago (2021) for the CFNAI or the data

appendix to McCracken and Ng (2016) for FRED-MD. Figure 5 illustrates these transformations for

three important macroeconomic indicators. The first column plots the raw data, while the second

column plots the data as transformed by McCracken and Ng (2016) in order to ensure stationarity,

using the same data set as in their original paper. Everyone agrees that industrial production (row

1) is nonstationary, and all previous researchers have used first differences of the log of industrial

production shown in panel (1,2). While there is little doubt that this is a good way to generate a

stationary series for this variable, monthly growth rates of industrial production exhibit a lot of

high-frequency fluctuations around the dominant cyclical patterns. For the unemployment rate

(row 2), it is less clear whether the series should be regarded as stationary. McCracken and Ng

(2016) used first differences of unemployment, which behave quite differently from the level. The

purchasing managers composite index from the Institute of Supply Management (row 3) appears

to be stationary, and McCracken and Ng (2016) entered this series directly into PCA without any

transformation.

The top panel of Figure 6 plots the first principal component of the transformed series arrived

at by McCracken and Ng (2016).6 This inherits some of the high-frequency fluctuations seen in

the (1,2) and (2,2) panels of Figure 5. Indeed, McCracken and Ng (2016) regarded this series as too

volatile to reliably identify business cycles and turning points, and instead plotted in their Figure

3 the accumulation of this series. The CFNAI (shown in panel 2 of Figure 6) is very similar to the

first principal component of the FRED-MD macro data set.

6We generated this figure using the exact data and code posted at https://research.stlouisfed.org/econ/mccracken/fred-
databases/. Note that we have multiplied the series by −1 in order to give it the property that the factor declines in
recessions, and that their Figure 3 plots the accumulations (s1t = ∑t

j=1 f̃1t) whereas our graph shows f̃1t itself.
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Figure 5: Level, transformed value, and cyclical component of industrial production, unemploy-
ment, and PMI Composite, 1962:3 to 2014:12

Figure 6: First PC of FRED-MD variables as transformed by McCracken and Ng (2016), the
Chicago Fed National Activity Index, and first PC of cyclical components of FRED-MD variables,
1962:3 to 2014:12
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The third column of Figure 5 plots the cyclical components of industrial production, unem-

ployment, and PMI as estimated by the residuals of the OLS regression (5).7 PMI is almost im-

possible to predict two years in advance, and our cyclical component is almost identical to the

original series. Thus both our method and the traditional approach use this variable essentially

as is. There is some but not much predictability of the unemployment rate at the two-year hori-

zon, so for this variable our transformation much more closely resembles the original series than

it does the first-difference transformation. For industrial production, our approach takes out the

broad trend while retaining the essential cyclical behavior observed in the raw data. The three

variables in the third column, unlike those in the second column, all share a common characteri-

zation of what is happening over the business cycle. Consistent with a long tradition in business

cycle research, when plotted this way PMI appears as a leading indicator, industrial production

as a coincident indicator, and unemployment as a coincident or lagging indicator, with all three

clearly following the same cycle.

The first principal component of the estimated cyclical components of the variables in the

data set is plotted in the bottom panel of Figure 6. Unlike the CFNAI, this provides a very clean

summary of historical business cycles. We would suggest that our series could be viewed as a

stationary version of the series that McCracken and Ng were looking for when they accumulated

the first principal component as calculated by their method.

6.1 Outliers

Previous users of large macro data sets devoted a lot of attention to outliers and implemented

procedures to mitigate their influence. Prior to the COVID recession of 2020, the CFNAI discarded

observations that were more than six times the interquartile range, as did Stock and Watson (1999)

in some of their analysis. McCracken and Ng (2016) discarded observations that were more than

ten times the interquartile range. This criterion identifies 79 different observations on 22 different

variables as outliers in the 1960:3 to 2014:12 data set; for details see Table B2.
7For those series that McCracken and Ng (2016) transformed using logs, first differences of logs, or second differ-

ences of logs (their transformations 4-6), we simply took the log of the variable before performing the regresssion. Thus
for example the series plotted in the upper left panel of Figure 5 is 100 times the natural logarithm of the industrial
production index. For those series that they used as is, as first differences, or second differences (their transformations
1-3), we simply used the variable as is. They employed a special transformation (7) for nonborrowed reserves. One
would have expected to take logs of a variable like this, but the variable took on negative values in 2008. For this series
their transformation was yit = ∆(xt/xt−1 − 1.0) and we used yit = xt/xt−1.
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This approach to identifying outliers requires one to know the form of the transformation

that is needed to render each variable stationary. Can one accomplish the same task without

knowing which variables are nonstationary or the form of the nonstationarity? If we knew the true

cyclical component cit we could easily identify outliers of cit relative to its interquartile range. But

outliers also exert undue influence on the estimated regression coefficients, tilting the coefficients

so as to tend to make ĉit closer to zero than the true value cit. We therefore calculated residuals

using leave-one-out regressions.8 Outliers that exceed ten times the interquartile range for h = 1-

month-ahead forecasts are reported in the middle columns of Table B2. There is quite a bit of

overlap between these outliers and those identified by conventional methods, though there are

also some differences. For example, interest rate spreads in 1980 and some price measures in

November 2008 register as outliers to the regression but not in the transformed series. Overall, the

regression identifies 98 outliers in this data set compared to 79 identified by McCracken and Ng.

If one were to use h = 1-month-ahead forecasting regressions to extract a stationary component,

then we would recommend removing or downweighting outliers as identified using leave-one-

out interquartile ranges.

However, the errors associated with a two-year-ahead forecast are quite different from 1-

month-ahead errors. For example, for a random walk, two-year-ahead errors are the accumu-

lation of 24 different one-month-ahead forecast errors. From the Central Limit Theorem these

sums exhibit much less kurtosis than individual one-month-ahead errors. We found outliers in

the two-year-ahead regressions in only 2 of the 134 series, as reported in the last columns of Table

B2. The behavior of total and nonborrowed reserves was certainly anomalous during the Federal

Reserve’s response to the Great Recession, but nothing else in this sample is a clear outlier by this

criterion. Our recommended procedure is to use 2-year-ahead regressions and make no correc-

tions for outliers. The series that we have plotted in the bottom panel of Figure 6 is the unadjusted

first principal component of the full set of OLS residuals ĉit.

Outliers are an even bigger issue when data for 2020 are included. For the 2022:4 vintage

of FRED-MD, the McCracken-Ng procedure would identify 40 of the 127 variables as all being

outliers in the single month of 2020:4. Despite dropping all of these 40 observations, the first

8That is, we calculated c̃it = yit − α̃i.t z̃it with α̃i.t =
(

∑T
s=1,s ̸=t z̃is z̃′is

)−1 (
∑T

s=1,s ̸=t z̃isyis

)
estimated separately for

each i and t and then divided c̃i.t by its observed interquartile range.
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principal component calculated using their algorithm shows an enormous decline in this month.

Indeed, in order to include the 2020 observations in the top panel of Figure 7, the scale must be

so large that it makes all the previous cyclical fluctuations barely noticeable. This measure shows

huge positive values in the subsequent two months that are also without precedent. The CFNAI

modified its procedure for dealing with anomalous observations to handle these observations. But

the CFNAI displays even more unprecedented negative and positive values in the spring of 2020,

as seen in the second panel.

Figure 7: First PC of FRED-MD variables as transformed by McCracken and Ng (2016), the
Chicago Fed National Activity Index, and first and second PC of cyclical components of FRED-MD
variables, 1962:3 to 2022:3

By contrast, only two variables are identified as outliers for 2020:4 for purposes of our ap-

proach, these being new claims for unemployment insurance and the number unemployed for

less than 5 weeks. The result of applying our procedure to the FRED-MD database up through

2022 is displayed in the third panel of Figure 7. Note that, unlike the top two panels, our series is

plotted here on the same scale as in Figure 6. We would argue that our series correctly summarizes
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cyclical movements in 2020 just as it did for earlier episodes. The magnitude of the peak-to-trough

decline in the 2020 recession was comparable to other downturns, though it was distinguished by

the remarkable speed with which it happened. The pace of recovery was also unprecedented,

though the economy nevertheless remained cyclically weak for some time. Again we calculated

the series that is displayed in the last two panels of Figure 7 without making any corrections or

special treatment for outliers.

6.2 Missing observations

Another issue with large data sets comes from discontinued, newly added, or missing variables.

McCracken and Ng (2016) adapted the Stock and Watson (2002) algorithm for unbalanced panels,

though they found in their original data set that the results are essentially identical if one simply

drops variables as needed to create a balanced panel. For our application, we have simply calcu-

lated principal components of ĉit on a balanced panel, though there is no obstacle to applying the

Stock and Watson (2002) algorithm to an unbalanced panel of ĉit.9

6.3 Uses of macroeconomic cyclical factors

A key use of PCA is to summarize the statistical information in a large cross section of indica-

tors; for illustrations see Bernanke et al. (2005), Bai and Ng (2008), Forni et al. (2009), Bai and Ng

(2010), and Stock and Watson (2016). The movement in variable i that is captured by the jth factor

alone is given by λ̂ij f̂ jt. Since ĉit is normalized to have unit variance, the fraction of the variance

of the stationary component of variable i that is explained by the jth macro factor is given by

λ̂
2
ijT−1 ∑T

t=1 f̂ 2
jt.

Table B1 reports the R2 explained by the first macroeconomic cyclical factor for each of the 120

variables used in our analysis of the 2022 vintage dataset. The first factor alone accounts for about

3/4 of the variance of typical indicators of real output or income and about half of the variance

9A balanced panel was created from the 127 variables in the 2022:4 dataset by: using only data over 1960:1-
2021:12; dropping the Michigan Survey of Consumer Sentiment (UMCSENT), trade-weighted exchange rate (TWEX-
AFEGSMTH), and new orders for consumer goods (ACOGNO) and nondefense capital goods (ANDENO), which are
the same four series dropped by McCracken and Ng to create a balanced panel from the 2015:4 dataset; dropping the
VIX (VIXCLS), which was not included in the 2015:4 dataset and whose first value is July 1962; and dropping the finan-
cial commercial paper rate (CP3M) and the commercial paper-fed funds spread (COMPAPFF) which were not reported
for April 2020. The particular variables used in our analysis of the 2022 vintage dataset are described in Table B1.
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of typical indicators of labor-market conditions. The first macro factor is far less successful at

describing financial indicators and is almost useless for capturing movements in nominal prices.

It is interesting that when we add the second macro factor, the R2 for the median price indicator

rises to 64%. The first factor thus seems mainly to capture real economic conditions and the second

characterizes nominal prices and interest rates.

The fourth panel in Figure 7 plots the second macro factor. This by construction is orthogonal

to the first, and often continues to fall even as the recovery in real economic activity is beginning.

This is consistent with the view that nominal variables may respond sluggishly to business-cycle

developments.

We next explore the use of the cyclical macro factors in forecasting. Stock and Watson (1999)

demonstrated that the first principal component of a large data set of real macroeconomic vari-

ables could be very helpful for forecasting inflation. Their finding gave rise to the Chicago Fed

National Activity Index (CFNAI), a PCA-based indicator that is still widely used today. We com-

pare the usefulness for forecasting of the CFNAI (denoted f̂ CF
t ), the first principal component

calculated using the algorithm and data set of McCracken and Ng (2016) (denoted f̂ MN
t ), the first

principal component of our cyclical components (denoted f̂ HX1
t ) calculated from the McCracken-

Ng data set using equation (10), and the second principal component f̂ HX2
t of the cyclical com-

ponents. Our approach to comparing different forecasts is very similar to that used by Stock and

Watson (1999) and McCracken and Ng (2016).

A particular model m uses a set of variables xm
t that are observed at date t to try to forecast the

value of a variable of interest yh
t+h that will not be observed until t + h:

yh
t+h = πm′xm

t + um,h
t+h. (21)

We estimated the value of πm by OLS regression on the subsample t = T0, T0 + 1, ..., T1 − h − 1

and used these coefficients to forecast yh
T1

. We then augmented the sample by one observation,

estimating the regression over t = T0, T0 + 1, ..., T1 − h and using those coefficients to forecast yh
T1+1.

We repeated this for an evaluation period T1 to T2 and calculated the average squared forecast

error over this evaluation period. We performed this analysis using three different evaluation

periods. The first evaluation period is specified by T1 = 1970:1 to T2 = 1996:12, which was the
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evaluation period in the original study by Stock and Watson (1999). The second evaluation period

is T1 = 1997:1 to T2 = 2014:12, which corresponds to the new data used by McCracken and Ng

(2016) that were not available to Stock and Watson (1999). The third evaluation period is T1 =

2015:1 to T2 = 2021:12, which is the new data available since publication of McCracken and Ng

(2016). The models we considered were a pure autoregressive model,

xAR
t = (1, y1

t , y1
t−1, ..., y1

t−5)
′,

and models that add to the autoregressive model six lags of one of the principal components

estimates. For example,

xCF
t = (xAR′

t , f̂ CF
t , f̂ CF

t−1, ..., f̂ CF
t−5)

′.

This differs a little from the forecast evaluations performed by Stock and Watson (1999) and Mc-

Cracken and Ng (2016) in that these authors used BIC to select different lag lengths for the autore-

gressive and principal components and for each subsample, whereas we set the lag length to six

for every evaluation. Also, since f̂ CF
t is only available beginning in 1967:3, we used T0 = 1967:9

as the first date for estimation of all models. For the CFNAI we used the value of the index as

it is currently reported for all historical dates.10 For the first two evaluation periods, we calcu-

lated f̂ MN
t and f̂ HX

t using the historical vintage of the FRED-MD data base available as of 2015:4.11

For the third evaluation period, we re-estimated f̂ MN
t and f̂ HX

t using the data base available as of

2022:4.

For our first set of evaluations we set yh
t+h to be the average inflation rate between month t and

t + h, quoted at an annual rate,

yh
t+h = (1200/h) log(CPIt+h/CPIt),

where CPIt denotes the level of the consumer price index in month t.12 The column labeled AR in

10We downloaded f̂ CF
t on September 12, 2022 from the FRED data base at https://fred.stlouisfed.org/series/CFNAI.

11Our series for f̂ MN
t for this subsample is thus almost (but not quite) identical to the series analyzed by McCracken

and Ng (2016). We have been unable to identify the source of the small discrepancies.
12Here again our evaluation design differs slightly from that in Stock and Watson (1999) and McCracken and Ng

(2016) in that those authors took the object of interest to be to forecast the change in the inflation rate as a function of
lagged changes:

yh
t+h = (1200/h) log(CPIt+h/CPIt)− 1200 log(CPIt/CPIt−1).
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Table 1: Mean squared forecast errors for different models

CPI IP
sample horizon AR MN CF HX1 HX2 AR MN CF HX1 HX2

1970-1996 h=1 7.91 0.99 1.00 1.03 0.90 76.73 0.94 0.97 0.96 1.02
h=6 4.26 0.77 0.82 0.80 0.88 38.66 0.93 0.91 0.83 0.79
h=12 5.32 0.62 0.70 0.74 1.33 27.19 1.06 1.01 1.21 0.87

1997-2014 h=1 12.26 1.04 1.03 1.02 1.09 58.90 0.83 0.85 0.98 1.00
h=6 6.08 1.23 1.23 1.23 1.11 22.61 0.94 0.93 1.05 1.12
h=12 4.21 1.22 1.22 1.28 1.17 20.11 1.01 0.96 1.06 1.11

2015-2022 h=1 6.66 1.54 1.93 1.40 1.05 727.45 0.95 1.72 1.04 0.98
h=6 3.34 1.90 2.62 2.03 1.04 126.78 1.18 2.23 1.03 0.88
h=12 2.73 1.66 2.48 1.69 1.01 55.40 1.18 2.32 0.87 0.83

Notes to Table 1. AR columns report simulated out-of-sample mean squared forecast error for
purely autoregressive model evaluated over three different out-of-sample periods. MN columns
report the MSE relative to the AR MSE when lags of the first principal component calculated using
the procedures in McCracken and Ng (2016) are added to the autoregression, with a value less than
one indicating the variable is useful for forecasting. CF columns report the relative MSE when lags
of the Chicago Fed National Activity Index are added to the autoregression, HX1 when lags of the
first principal component of the estimated cyclical components are added to the autoregression,
and HX2 when lags of the second principal component of the estimated cyclical components are
added to the autoregression.

Table 1 reports the simulated out-of-sample mean squared error of a purely autoregressive model

for each of the three evaluation samples and for forecast horizons of h = 1, 6, or 12 months.13

The top left panel reproduces the finding of Stock and Watson (1999) that an index like CFNAI

significantly improves forecasts for longer horizons over the 1970-1996 period. The alternative

measures f̂ MN
t or f̂ HX1

t offer similar improvements. The indexes offer little or no improvement

for one-month-ahead forecasts over this period, but again are similar to each other. All three in-

dexes are outperformed by simple autoregressive forecasts over either of the later two evaluation

periods. The observation that inflation has become much harder to forecast in data since 1996 has

been reported by a number of other researchers, including Atkeson and Ohanian (2001), Fisher

et al. (2002), Stock and Watson (2007), and Stock and Watson (2008).14 Interestingly, the second

13Stock and Watson (1999) reported results for h = 12 months whereas McCracken and Ng (2016) reported results
for h = 1, 6, and 12.

14The result is also revealed in the numbers reported in Table 5 of McCracken and Ng (2016) , though the authors did
not comment on it.
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cyclical factor f̂ HX2
t does better than any of the other three indexes at forecasting inflation at the

one-month horizon for the 1970-1996 sample, better than any of the other three at both the 6- and

12-month horizons for the 1997-2014 sample, and better at all three horizons for the 2015-2022

sample.

Table 1 also reports forecasts of industrial production, setting

yh
t+h = (1200/h) log(IPt+h/IPt),

for IPt the level of the industrial production index in month t. The indexes f̂ MN
t , f̂ CF

t , and f̂ HX1
t

all help forecast industrial production over near horizons in the first two evaluation periods. The

CFNAI does particularly poorly at forecasting either inflation or industrial production at any hori-

zon for 2015-2022. Both f̂ HX1
t and f̂ HX2

t do significantly better than CFNAI in every case over this

period.

We conclude that our approach offers similar benefits to conventional PCA when evaluated

in terms of simulated out-of-sample forecasts, and does much better than measures like the CF-

NAI for recent data. We share the conclusion of the earlier literature that the usefulness of any

principal-component-based measure for purposes of forecasting depends on the variable, evalua-

tion period, and horizon of the forecast.

7 Conclusion

Calculating principal components of medium-horizon forecast errors is a viable approach to iden-

tifying the common cyclical factors that drive a large collection of potentially nonstationary eco-

nomic indicators. This avoids the need to decide how to detrend each individual series and is

much more promising than approaches such as the Chicago Fed National Activity Index for han-

dling data that include the economic recession of 2020.
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A Proofs

The proof of Theorem 2 makes use of the following lemma.

Lemma 1. Let S be any symmetric positive semidefinite (N × N) matrix with diagonal elements sii, i =

1, ..., n. Then

sup
γ∈Γ

γ′Sγ

γ′γ
≤ ∑N

i=1 sii. (A-1)

Proof of Lemma 1.

Notice that the left side of (A-1) is equal to the largest eigenvalue of S. Since S is positive

semidefinite, all eigenvalues are nonnegative so the largest eigenvalue is less than or equal to the

sum of all the eigenvalues. But the sum of all the eigenvalues is equal to the trace of S, which is

defined as the sum of its diagonal elements. Thus the left side of (A-1) must be less than or equal

to the right side.

Proof of Theorem 2(i)-(ii),

Notice from Ĉt = Ct + Vt that

(N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ

= (N2T)−1γ′ ∑T
t=1 CtC′

tγ + (N2T)−1γ′ ∑T
t=1 VtV ′

t γ + 2(N2T)−1γ′ ∑T
t=1 CtV ′

t γ. (A-2)

We first show that the second and third terms on the right side of (A-2) converge in probability to

0 for all γ ∈ Γ. To show this for the second term, notice from Lemma 1 that

sup
γ∈Γ

(N2T)−1γ′ ∑T
t=1 VtV ′

t γ = sup
γ∈Γ

(NT)−1 γ′ ∑T
t=1 VtV ′

t γ

γ′γ

≤ (NT)−1 ∑N
i=1 ∑T

t=1 v2
it. (A-3)

Since Ev2
it < δ for all i and t, it follows that E

[
(NT)−1 ∑N

i=1 ∑T
t=1 v2

it

]
< δ and thus sup

γ∈Γ
(N2T)−1γ′ ∑T

t=1 VtV ′
t γ

p→ 0 by Markov’s Inequality.

For the last term in (A-2),

∣∣∣(N2T)−1γ′ ∑T
t=1 CtV ′

t γ
∣∣∣ ≤ [

(N2T)−1γ′ ∑T
t=1 CtC′

tγ
]1/2 [

(N2T)−1γ′ ∑T
t=1 VtV ′

t γ
]1/2

.
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The first term converges in probability to a number no larger than ω1/2
11 from Theorem 1, and the

second converges in probability to 0 for all γ from (A-3). Thus for all γ ∈ Γ, (N2T)−1γ′ ∑T
t=1 CtV ′

t γ
p→

0. We thus conclude from (A-2) that

(N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ − (N2T)−1γ′ ∑T
t=1 CtC′

tγ
p→ 0 (A-4)

for all γ ∈ Γ. Since

T−1 ∑T
t=1 f̂ 2

1t − T−1 ∑T
t=1 f̃ 2

it = sup
γ∈Γ

(N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ − sup
γ∈Γ

(N2T)−1γ′ ∑T
t=1 CtCtγ,

it follows that this difference converges in probability to zero, establishing result (i) of Theorem 2

for j = 1. Analogous calculations establish results (i) and (ii) for j = 2, ..., k.

Proof of Theorem 2(iii).

Notice that (N2T)−1Λ̂′ ∑T
t=1 ĈtĈ′

tΛ̂ is a diagonal matrix for all N and T by the definition of Λ̂

with diagonal elements converging in probability to ω jj by result (i):

(N2T)−1Λ̂′ ∑T
t=1 ĈtĈ′

tΛ̂
p→ ΩFF. (A-5)

Equation (A-4) then establishes that (N2T)−1Λ̂′ ∑T
t=1 CtC′

tΛ̂
p→ ΩFF. We also know from results

(R2)-(R6) in Stock and Watson (2002) that

(N2T)−1γ′ ∑T
t=1 CtC′

tγ − (N2T)−1γ′ ∑T
t=1 Λ′FtF′

t Λγ
p→ 0

for all γ ∈ Γ, meaning

(N2T)−1Λ̂′ ∑T
t=1 CtC′

tΛ̂
p→ (N2T)−1Λ̂′ ∑T

t=1 ΛFtF′
t Λ′Λ̂

= (N−1Λ̂′Λ)
(

T−1 ∑T
t=1 FtF′

t

)
(N−1Λ′Λ̂)

p→ HΩFF H′ (A-6)
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for H = plim (N−1Λ̂′Λ). Combining results (A-4)-(A-6),

ΩFF = HΩFF H′. (A-7)

Let ĥ′j denote the jth row of Λ̂′Λ/N,

ĥ′j
(1×r)

= λ̂
′
j

(1×N)

Λ
(N×r)

/N,

for λ̂
′
j the jth row of Λ̂′. Then

ĥ′jĥj =
λ̂
′
j√
N

ΛΛ′

N
λ̂j√

N
.

This is less than or equal to the largest eigenvalue of ΛΛ′/N, which converges to 1. Letting h′j =

(hj1, hj2, ..., hjr)
′ denote the jth row of H, we thus have

ĥ′jĥj
p→ h2

j1 + h2
j2 + · · · h2

jr ≤ 1.

The (1,1) element of (A-7) states

h′1ΩFFh1 = h2
11ω11 + h2

12ω22 + · · ·+ h2
1rωrr = ω11.

Since ω11 > ω22 > · · · > ωrr > 0, this requires h2
11 = 1 and h12 = · · · = h1r = 0. Thus the (1,1)

element of Λ̂′Λ/N converges in probability to ±1 and other elements of the first row converge to

zero.

The (2,2) element of (A-7) states

h2
21ω11 + h2

22ω22 + · · ·+ h2
2rωrr = ω22 (A-8)

where h21 = plim λ̂2λ1/N. Regress λ1 on λ̂1 with residual q1:

λ1 = k̂1λ̂1 + q1 (A-9)

k̂1 = (λ̂
′
1λ̂1/N)−1(λ̂

′
1λ1/N)
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q′1λ̂1 = 0

λ′
1λ1/N = k̂2

1(λ̂
′
1λ̂1/N) + q′1q1/N.

We saw above that k̂2
1

p→ 1, which along with λ′
1λ1/N → 1 and λ̂

′
1λ̂1/N = 1 establishes q′1q1/N

p→

0. Premultiply (A-9) by λ̂
′
2/N:

λ̂
′
2λ1/N = k̂1λ̂

′
2λ̂1/N + λ̂

′
2q1/N = λ̂

′
2q1/N.

But from Cauchy-Schwarz

(λ̂
′
2q1/N)2 ≤ (λ̂

′
2λ̂2/N)(q′1q1/N)

p→ 0.

Thus λ̂
′
2λ1/N

p→ h21 = 0 and (A-8) becomes

h2
22ω22 + h2

23ω33 + · · ·+ h2
2rωrr = ω22.

Since ω22 > ω33 > · · · > ωrr and h2
22 + h2

23 + · · · + h2
2r ≤ 1, this requires h2

22 = 1 and all other

elements of the second row of H to be zero, establishing the second row of the claim in Theorem

2(iii). Proceeding iteratively through rows 3,4,..,r establishes the rest of the result in (iii).

Proof of Theorem 2(iv).

Write

ŜF̂t − Ft = N−1ŜΛ̂′Ĉt − Ft

= N−1ŜΛ̂′(ΛFt + et + Vt)− Ft

= (N−1ŜΛ̂′Λ − Ir)Ft + N−1ŜΛ̂′et + N−1ŜΛ̂′Vt. (A-10)

The task is to show that all three terms in (A-10) have plim 0. That (N−1ŜΛ̂′Λ − Ir)Ft
p→ 0 follows

immediately from result (iii). For the second term,

N−1ŜΛ̂′et = N−1(ŜΛ̂′ − Λ′)et + N−1ŜΛ′et. (A-11)
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Consider the square of the jth element of the first term in (A-11):

 (ŝjλ̂
′
j − λ′

j)et

N

2

≤

 (ŝjλ̂
′
j − λ′

j)(ŝjλ̂j − λj)

N

 [
e′tet

N

]
. (A-12)

The first term in (A-12) is

(ŝjλ̂
′
j − λ′

j)(ŝjλ̂j − λj)

N
=

ŝ2
j λ̂

′
jλ̂j

N
−

λ′
j ŝjλ̂j

N
−

ŝjλ̂
′
jλj

N
+

λ′
jλj

N
,

which converges in probability to zero by Theorem 2(iii). The second term in (A-12) is Op(1), by

result (R1) in Stock and Watson (2002), meaning the plim of (A-12) is zero. The second term in

(A-11) also converges in probability to zero as in Stock and Watson (2002) Result (R15). Hence

N−1ŜΛ̂′et
p→ 0.

For the third term in (A-10), N−1ŜΛ̂′Vt, note that the jth element is N−1ŝjλ̂
′
jVt whose square is

N−2λ̂
′
jVtV ′

t λ̂j ≤ N−1 ∑N
i=1 v2

it
p→ 0 (A-13)

with the inequality following from Lemma 1 and the convergence in probability from Assumption

3 and Markov’s Inequality.

Proof of Theorem 3.

We first demonstrate that Assumptions 4(i)-(iii) imply E
(

T−1 ∑T
t=1 v2

it

)
< δ for all T > Tδ.

Note from (14) UiT = ∑T
t=1 v2

it can be written as the sum of squares of the fitted values from a

regression of cit on zit, which by construction it must be smaller than the sum of squares of cit

itself:

UiT < ∑T
t=1 c2

it < Tκ1.

We therefore know

E[T−1UiT] = E[T−1UiT1{T−1UiT ≤ δ/2}] + E[T−1UiT1{δ/2 ≤ T−1UiT ≤ κ1}]

< (δ/2) + κ1Prob(T−1UiT ≥ δ/2).

The condition E[T−1 ∑T
t=1 v2

it] < δ will then follow if we can show that for any δ > 0 ∃Tδ such
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that Prob(T−1UiT ≥ δ/2) ≤ δ/(2κ1) whenever T > Tδ. Given any δ > 0, let κ3 = 4κ1κ2/δ and

ε3 = δ/(4κ1). Then from Assumption 4(iii), ∃T3(κ3, ε3) (call this T3(δ)) such that ∀T ≥ T3(δ),

Prob(UiT ≥ κ3) < Prob(Ui ≥ κ3) + ε3 = Prob(Ui ≥ κ3) + δ/(4κ1).

From Markov’s Inequality and the definition of κ3 this means

Prob
(

UiT ≥ 4κ1κ2

δ

)
<

E(Ui)

κ3
+

δ

4κ1

≤ κ2

(4κ1κ2/δ)
+

δ

4κ1

=
δ

2κ1
(A-14)

with the second inequality coming from Assumption 4(ii). Let Tδ = max{T3(δ), 8κ1κ2/δ2}. For all

T ≥ Tδ we know from this definition of Tδ that

Prob(T−1UiT > δ/2) ≤ Prob(T−1
δ UiT > δ/2)

= Prob(UiT > δTδ/2)

≤ Prob(UiT > 4κ1κ2/δ). (A-15)

Putting (A-14) together with (A-15) establishes that for all T > Tδ, Prob(T−1UiT ≥ δ/2) ≤ δ/(2κ1)

which was to be shown.

We next show that E
(

T−1 ∑T
t=1 v2

it

)
< δ along with Assumption 4(iv) imply that Assumption

3 holds. Notice that

v2
it = T−1ᾱ′

i Aitᾱi ≤ T−1(ᾱ′
iᾱi)λ

max(Ait)

∑T
t=1 v2

it = ᾱ′
iBiT ᾱi ≥ (ᾱ′

iᾱi)λ
min(BiT)

v2
it

T−1 ∑T
t=1 v2

it

≤ λmax(Ait)

λmin(BiT)
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E(v2
it) ≤ E

[
λmax(Ait)

λmin(BiT)
T−1 ∑T

t=1 v2
it

]

≤

E

[
λmax(Ait)

λmin(BiT)

]2
1/2 (

E
[

T−1 ∑T
t=1 v2

it

]2
)1/2

(A-16)

by Cauchy-Schwarz. The first term in (A-16) is less than
√

κ4 by Assumption 4(iv). For the

second term, T−1 ∑T
t=1 v2

it < κ1 so E
[

T−1 ∑T
t=1 v2

it

]2
< κ1E

[
T−1 ∑T

t=1 v2
it

]
. For any δ > 0, let

δ4 = δ/(κ1
√

κ4). There exists a T4 such that E(T−1 ∑T
t=1 v2

it) < δ4 for T > T4 and all i, mean-

ing E(v2
it) < δ. Since this is uniform in i, it follows that E

[
N−1 ∑N

1=1 v2
it

]
< δ, which was to be

shown.
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B Data appendix.

Table B1: R2 for each variable explained by first and second principal components, 1962:3 to 2022:1

Group 1. Output and income
Index FRED Description PC1 PC1&2
1 RPI Real Personal Income 0.47 0.51
2 W875RX1 Real personal income ex transfer receipts 0.74 0.76
6 INDPRO IP Index 0.85 0.85
7 IPFPNSS IP: Final Products and Nonindustrial Supplies 0.87 0.87
8 IPFINAL IP: Final Products (Market Group) 0.82 0.82
9 IPCONGD IP: Consumer Goods 0.67 0.83
10 IPDCONGD IP: Durable Consumer Goods 0.65 0.82
11 IPNCONGD IP: Nondurable Consumer Goods 0.48 0.54
12 IPBUSEQ IP: Business Equipment 0.67 0.73
13 IPMAT IP: Materials 0.74 0.74
14 IPDMAT IP: Durable Materials 0.75 0.76
15 IPNMAT IP: Nondurable Materials 0.70 0.70
16 IPMANSICS IP: Manufacturing (SIC) 0.86 0.87
17 IPB51222S IP: Residential Utilities 0.02 0.03
18 IPFUELS IP: Fuels 0.04 0.06
19 CUMFNS Capacity Utilization: Manufacturing 0.74 0.74

Median 0.72 0.75



Table B1 (continued)

Group 2. Labor market
Index FRED Description PC1 PC1&2
20 HWI Help-Wanted Index for United States 0.52 0.52
21 HWIURATIO Ratio of Help Wanted/No. Unemployed 0.54 0.54
22 CLF16OV Civilian Labor Force 0.17 0.25
23 CE16OV Civilian Employment 0.71 0.73
24 UNRATE Civilian Unemployment Rate 0.73 0.73
25 UEMPMEAN Average Duration of Unemployment (Weeks) 0.30 0.32
26 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 0.43 0.47
27 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 0.68 0.68
28 UEMP15OV Civilians Unemployed - 15 Weeks and Over 0.67 0.68
29 UEMP15T26 Civilians Unemployed for 15-26 Weeks 0.67 0.67
30 UEMP27OV Civilians Unemployed for 27 Weeks and Over 0.58 0.60
31 CLAIMSx Initial Claims 0.46 0.47
32 PAYEMS All Employees: Total nonfarm 0.79 0.81
33 USGOOD All Employees: Goods-Producing Industries 0.80 0.85
34 CES1021000001 All Employees: Mining and Logging: Mining 0.00 0.42
35 USCONS All Employees: Construction 0.70 0.70
36 MANEMP All Employees: Manufacturing 0.71 0.73
37 DMANEMP All Employees: Durable goods 0.73 0.77
38 NDMANEMP All Employees: Nondurable goods 0.51 0.51
39 SRVPRD All Employees: Service-Providing Industries 0.65 0.67
40 USTPU All Employees: Trade, Transportation and Utilities 0.75 0.78
41 USWTRADE All Employees: Wholesale Trade 0.62 0.76
42 USTRADE All Employees: Retail Trade 0.66 0.66
43 USFIRE All Employees: Financial Activities 0.35 0.35
44 USGOVT All Employees: Government 0.06 0.06
45 CES0600000007 Avg Weekly Hours : Goods-Producing 0.45 0.50
46 AWOTMAN Avg Weekly Overtime Hours : Manufacturing 0.55 0.63
47 AWHMAN Avg Weekly Hours : Manufacturing 0.46 0.54
115 CES0600000008 Avg Hourly Earnings : Goods-Producing 0.00 0.36
116 CES2000000008 Avg Hourly Earnings : Construction 0.04 0.29
117 CES3000000008 Avg Hourly Earnings : Manufacturing 0.01 0.28

Median 0.55 0.60

Group 3. Housing
Index FRED Description PC1 PC1&2
48 HOUST Housing Starts: Total New Privately Owned 0.22 0.37
49 HOUSTNE Housing Starts, Northeast 0.25 0.40
50 HOUSTMW Housing Starts, Midwest 0.21 0.42
51 HOUSTS Housing Starts, South 0.17 0.29
52 HOUSTW Housing Starts, West 0.16 0.26
53 PERMIT New Private Housing Permits (SAAR) 0.18 0.36
54 PERMITNE New Private Housing Permits, Northeast (SAAR) 0.23 0.44
55 PERMITMW New Private Housing Permits, Midwest (SAAR) 0.20 0.48
56 PERMITS New Private Housing Permits, South (SAAR) 0.14 0.31
57 PERMITW New Private Housing Permits, West (SAAR) 0.14 0.24

Median 0.19 0.37



Table B1 (continued)

Group 4. Consumption, orders, and inventories
Index FRED Description PC1 PC1&2
3 DPCERA3M086SBEA Real personal consumption expenditures 0.61 0.77
4 CMRMTSPL Real Manu. and Trade Industries Sales 0.84 0.87
5 RETAIL Retail and Food Services Sales 0.36 0.43
58 AMDMNO New Orders for Durable Goods 0.64 0.70
59 AMDMUO Unfilled Orders for Durable Goods 0.15 0.41
60 BUSINV Total Business Inventories 0.10 0.70
61 ISRATIO Total Business: Inventories to Sales Ratio 0.25 0.26

Median 0.36 0.70

Group 5. Money and credit
Index FRED Description PC1 PC1&2
62 M1SL M1 Money Stock 0.04 0.05
63 M2SL M2 Money Stock 0.02 0.06
64 M2REAL Real M2 Money Stock 0.00 0.47
65 BOGMBASE Monetary Base 0.19 0.19
66 TOTRESNS Total Reserves of Depository Institutions 0.27 0.29
67 NONBORRES Reserves Of Depository Institutions 0.00 0.00
68 BUSLOANS Commercial and Industrial Loans 0.11 0.25
69 REALLN Real Estate Loans at All Commercial Banks 0.21 0.22
70 NONREVSL Total Nonrevolving Credit 0.29 0.29
71 CONSPI Adjusted Monetary Base 0.08 0.15
118 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 0.02 0.02
119 DTCTHFNM Total Consumer Loans and Leases Outstanding 0.16 0.19
120 INVEST Securities in Bank Credit at All Commercial Banks 0.03 0.08

Median 0.08 0.19

Group 6. Interest and exchange rates
Index FRED Description PC1 PC1&2
76 FEDFUNDS Effective Federal Funds Rate 0.20 0.75
77 TB3MS 3-Month Treasury Bill: 0.22 0.74
78 TB6MS 6-Month Treasury Bill: 0.23 0.74
79 GS1 1-Year Treasury Rate 0.20 0.72
80 GS5 5-Year Treasury Rate 0.05 0.60
81 GS10 10-Year Treasury Rate 0.01 0.55
82 AAA Moody’s Seasoned Aaa Corporate Bond Yield 0.00 0.56
83 BAA Moody’s Seasoned Baa Corporate Bond Yield 0.03 0.57
84 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 0.02 0.42
85 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 0.01 0.39
86 T1YFFM 1-Year Treasury C Minus FEDFUNDS 0.00 0.24
87 T5YFFM 5-Year Treasury C Minus FEDFUNDS 0.06 0.37
88 T10YFFM 10-Year Treasury C Minus FEDFUNDS 0.11 0.43
89 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 0.22 0.53
90 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 0.30 0.52
91 EXSZUS Switzerland / U.S. Foreign Exchange Rate 0.00 0.02
92 EXJPUS Japan / U.S. Foreign Exchange Rate 0.01 0.01
93 EXUSUK U.S. / U.K. Foreign Exchange Rate 0.05 0.12
94 EXCAUS Canada / U.S. Foreign Exchange Rate 0.00 0.05

Median 0.05 0.52



Table B1 (concluded)

Group 7. Prices
Index FRED Description PC1 PC1&2
95 WPSFD49207 PPI: Finished Goods 0.00 0.74
96 WPSFD49502 PPI: Finished Consumer Goods 0.00 0.71
97 WPSID61 PPI: Intermediate Materials 0.00 0.65
98 WPSID62 PPI: Crude Materials 0.02 0.40
99 OILPRICEx Crude Oil, spliced WTI and Cushing 0.00 0.49
100 PPICMM PPI: Metals and metal products: 0.07 0.38
101 CPIAUCSL CPI: All items 0.00 0.81
102 CPIAPPSL CPI: Apparel 0.00 0.32
103 CPITRNSL CPI: Transportation 0.00 0.52
104 CPIMEDSL CPI: Medical 0.21 0.42
105 CUSR0000SAC CPI : Commodities 0.00 0.73
106 CUSR0000SAD CPI : Durables 0.07 0.35
107 CUSR0000SAS CPI : Services 0.02 0.63
108 CPIULFSL CPI : All Items Less Food 0.01 0.75
109 CUSR0000SA0L2 CPI : All items less shelter 0.00 0.78
110 CUSR0000SA0L5 CPI : All items less medical care 0.00 0.81
111 PCEPI PCE: Chain Price Index 0.00 0.76
112 DDURRG3M086SBEA PCE: Durable Goods Price Index 0.05 0.35
113 DNDGRG3M086SBEA PCE: Nondurable Goods Price Index 0.00 0.77
114 DSERRG3M086SBEA PCE: Services Price Index 0.00 0.63

Median 0.00 0.64

Group 8. Stock market
Index FRED Description PC1 PC1&2
72 S&P 500 S&P’s Common Stock Price Index: Composite 0.29 0.33
73 S&P: indust S&P’s Common Stock Price Index: Industrials 0.25 0.28
74 S&P div yield S&P’s Composite Common Stock: Dividend Yield 0.13 0.41
75 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 0.03 0.46

Median 0.19 0.37

Overall median 0.20 0.51

Notes to Table B1. Index refers to the index number of the variable in our database. FRED refers
to variable name in the FRED database. PC1 is the fraction of the variance of the cyclical compo-
nent of that variable that is explained by the first principal component. PC1&2 is the fraction of
the variance of the cyclical component of that variable that is explained by the first and second
principal components combined.



Table B2: Outliers associated with McCracken-Ng algorithm, 1-month-ahead regressions, and 24-
month-ahead regressions

McKracken-Ng Regression (h=1) Regression (h =24)
variable id description no. dates no. dates no. dates
RPI 1 real per-

sonal
income

1 2013:1 1 2013:1 0

W875RX1 2 RPI less
transfers

1 2013:1 1 2013:1 0

IPDMAT 14 durables
industrial
production

1 1959:12 0 0

CES1021-
000001

35 employment:
mining

6 1971:10,1971:12,
1977:12,1978:4,
1981:4,1981:6

6 1971:10,1971:12
1977:12,1978:4,
1981:4,1981:6

0

MANEMP 37 employment:
manufac-
turing

0 2 1970:10,1970:12 0

DMANEMP 38 employment:
durables

0 4 1964:10,1964:11,
1970:10,1970:12

0

USGOVT 45 employment:
govern-
ment

0 2 1960:3,2010:5 0

BUSINV 68 total busi-
ness inven-
tories

1 1982:1 1 1982:1 0

M1SL 70 M1 money
stock

2 2001:10,2009:1 0 0

AMBSL 73 St. Louis
monetary
base

9 2008:9,2008:10,
2008:12-2009:3,
2010:2,2010:3,
2011:2

8 2008:9-2008:11,
2009:2,2009:3,
2009:10,2010:3,
2011:2

0

TOTRESNS 74 total re-
serves

3 2001:10,2008:9,
2008:11

4 2001:9,2001:10,
2008:9,2008:10,

22 2008:11-2010:8

NON-
BORRES

75 nonborrowed
reserves

14 2001:10,
2008:1-
2008:5, 2008:9,
2008:11-2009:5

18 2001:9,
2007:12-2009:4

22 2001:9,
2007:12-2008:4,
2008:9-2009:4,
2010;2,2010:3,
2010:5-2010:8,
2010:10,2010:12

REALLN 77 real estate
loans

3 2006:10,2006:11,
2008:11

2 2006:10,2008:10 0

NONREVSL 78 total non-
revolving
credit

4 1977:1,1977:2,
2010:12,2011:1

2 1977:1,2010:12 0



Table B2 (continued)
McKracken-Ng Regression (h=1) Regression (h =24)

variable id description no. dates no. dates no. dates
CONSPI 79 nonrevolving

consumer
credit

0 3 1977:1,2010:12,
2013:1

0

FEDFUNDS 84 fed funds
rate

8 1979:10,1980:3,
1980:5,1980:11,
1980:12,1981:2,
1981:5,1982:8

6 1979:10,1980:3,
1980:5,1980:10,
1980:11,1981:5

0

CP3M 85 3-month
commer-
cial paper
rate

7 1980:3,1980:5,
1980:11,1980:12,
1981:5,1981:11,
1982:8

4 1980:3,1980:5,
1980:10,1981:5

0

TB3MS 86 3-month
Tbill rate

5 1980:3,1980:5,
1981:5,1981:11,
1982:8

4 1980:4,1980:5,
1981:5,1981:6

0

TB6MS 87 6-month
Tbill rate

2 1980:5,1981:11 2 1980:4,1980:5 0

GS1 88 1-year
Treasury
rate

2 1980:5,1981:11 0 0

COMPAPFF 93 com paper
fed funds
spread

0 2 1981:1,1981:6 0

TB3SMFFM 94 3-month
Tbill ff
spread

0 3 1980:4,1981:2,
1981:6

0

TB6SMFFM 95 6-month
Tbill ff
spread

0 4 1980:4,1980:5,
1980:12,1981:2

0

T1YFFM 96 1-year
Tbill ff
spread

0 4 1980:4,1980:5,
1980:12,1981:2

0

T5YFFM 97 5-year
Treas ff
spread

0 2 1980:5,1981:2 0

T10YFFM 98 10-year
Treas fed
funds
spread

0 1 1980:5 0

AAAFFM 99 Aaa cor-
porate
fed funds
spread

0 3 1980:5,1980:11,
1981:2

0



Table B2 (concluded)
McKracken-Ng Regression (h=1) Regression (h =24)

variable id description no. dates no. dates no. dates
BAAFFM 100 Baa cor-

porate
fed funds
spread

0 2 1980:5,1980:11 0

PPIITM 108 PPI inter-
mediate
materials

0 1 2008:11 0

PPICRM 109 PPI crude
materials

1 2001:2 0 0

OILPRICE 110 crude oil
price

2 1974:1,1974:2 1 1974:1 0

CPITRNSL 115 CPI trans-
portation

0 1 2008:11 0

CUS-
R0000SAS

119 CPI ser-
vices

0 1 1980:7 0

DSERRG3-
M086SBEA

126 PCE con-
sumption

1 2001:10 0 0

MZMSL 131 MZM
money
stock

1 1983:1 1 1983:1 0

DTCOLN-
VHFNM

132 motor ve-
hicle loans

3 1977:12,2010:3,
2010:4

1 2010:3 0

DTCTHFNM 133 consumer
loans

2 2010:12,2011:1 2 2010:12,2011:1 0

total 79 98 44
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