Cultural Homophily and Collaboration in Superstar Teams

Gábor Békés* and Gianmarco I.P. Ottaviano**

* Central European University, KRTK and CEPR ** Bocconi University, Baffi-CAREFIN, IGIER, CEP and CEPR

NBER Workshop, Cambridge, MA, April 2023

Cultural Homophily and Collaboration in Superstar Teams

- Globalization mix best global expertise in multinational teams
- Key aspect of multinationality is 'cultural diversity':
 - Benefits: talent, learning and innovation ('capabilities')
 - Costs: communication, empathy and trust ('collaboration')
- Is there a difference in collaboration intensity (i.e. ability to work for a common purpose) by 'homophily' (i.e. tendency to associate with similar others)
 - even in superstar teams?

Hard nut to crack:

- Collaboration not observed directly
- Difference due to 'homophily' confounded

Induced vs. Choice Homophily

- Homophily = 'induced' (opportunities) + 'choice'
 - Opportunity of collaboration may correlate with background
 - This confounds choice
- Need to partial out 'induced' homophily to measure 'choice' homophily:
 - Option A: experiment with random team formation
 - Issue: Low external validity for highly skilled, lowly charged multinational workplace
 - Option B: observational data with adequate baseline
 - Issue: relevant (counterfactual) baseline

European Football as an allegory

- ► Teams: pro football clubs from the top European leagues
 - Superstar team = global elite, top 5% of pro players
- New data: 5 countries, 11 million passes
- Collaboration: pass rate between player pairs
 - Team (squad) composition is exogenous to players
 - Collaboration is an individual choice
- Homophily = passer and receivers who share culture (nationality, history)

When I say Football, I mean Soccer

Related literature

- Cost and benefits of diversity in multicultural teams (seminal): Lazear (1999) Lang (1986)
- Cost and benefits of diversity in broader environments (cities, plants): Ottaviano and Peri (2006, 2005) Buchholz (2021)
- Cost and benefits of diversity in multicultural teams (recent developments):
 - Ethnic conflict: Hjort (2014), Laurentsyeva (2019),
 - ► Team formation: Calder-Wang et al. (2021)
 - Hockey: Kahane et al. (2013), Football: Nüesch and Haas (2013), Tovar (2020)
- Homophily in scientific publications: Freeman and Huang (2015), AlShebli et al. (2018)
- ▶ Homophily in friendship networks: Currarini et al. (2009, 2010)
- Literature review from psychology to management: (Lawrence and Shah, 2020; Ertug et al., 2021)

Introduction 00000●	Data 000000	Model 000000000	Measuring homophily	Mechanisms 0000000	Summary
-					

Contribution

- 1. Focus on everyday workplace collaboration high skilled, lowly charged context
- 2. Very large, global sample external validity
- 3. Well defined measure of collaboration at individual level
- 4. Model of baseline, both theory and empirics
- 5. Large dataset rich measures of individual characteristics

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	00000	00000000	00000000	0000000	000

Data Collection and Definitions

Cultural Homophily and Collaboration in Superstar Teams 8 / 42 Gábor Békés* and Gianmarco I.P. Ottaviano**

Introduction	Data 0●0000	Model 000000000	Measuring homophily	Mechanisms 0000000	Summary

Data: Overview

- ▶ 5 top leagues (France, Germany, Spain, Italy, England),
- 8 seasons (2011/12-2018/19) every teams play with every other twice
 - 20 (18) teams per league, 14,608 games in total
 - 730 passes/game
- Webscraped play-by-play (event) data linked with personal info on players
 - 154 teams, each with 25-30 strong squad, regular churning (twice a year)
 - 10.7 million passes ('events')
 - 7,000 players from 138 countries

Raw Data: Events

Structured text, events with features, qualifiers:

Separately recorded with a timestamp

- Pass between any two players
- Web-scraped from a whoscored.com website
- Events recorded by cameras+algorithms+humans.
- Pass events separated

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	00000000	0000000	000

Raw Data: Players

Player characteristics:

- Nationalities (possible multiple)
- Position in team
- Age, height
- Player valuations over time
- Web-scraped from a transfermarkt.com website
- Entity resolutions / coreference (accents, middle names, nicknames):
 - Matching algorithm by motifs

Measuring Cultural Homophily

- Characterize cultural background ('culture') = set of cultural traits transmitted across generations:
 - Such as language, history, norms, values and attitudes learned at home
- ► We measure 'culture' with four proxies:
- ► Nationality, colonial legacy, federal legacy, language only
 - Alternative: linguistic similarity
 - Not alternative: Values (WVS)
- 'cultural homophily' = more intense collaboration between player pairs with same culture

Same Culture Definition

Same nationality (citizenship)

- Same colonial legacy different nationality
 - Argentina-Spain, England-Egypt (ruler and colony)
 - Uruguay-Argentina (colony siblings)
- Same federal legacy different nationality
 - Russia-Georgia, Croatia-Serbia
 - Scotland, Northern Ireland, Ireland
- Same language different nationality, colonial /federal legacy
 - Switzerland and Germany
 - DR Congo and France

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	000000000	0000000	000

Model (ideas)

Cultural Homophily and Collaboration in Superstar Teams 14/42 Gábor Békés* and Gianmarco I.P. Ottaviano**

Introduction	Data 000000	Model o●ooooooo	Measuring homophily	Mechanisms	Summary

Model: Purpose

- Model to disentangle choice from opportunity in an internally consistent way
- Model team's utility
- ▶ Player *o*'s passing decision is determined by the comparison of team utilities across all potential receivers d = 1, ..., N.

Taking into account player characteristics and positions

Homophily = shifter leading to more passes between player pairs of similar culture after controlling for variables based on the model.

Introduction	Data 000000	Model ००●०००००	Measuring homophily	Mechanisms	Summary

Simple case: Pass rate = f(receiver value and homophily)

Passers = Spanish midfielders in La Liga, N=24,299.

Model: Passer's Decision

Player *o*'s passing decision is determined by the comparison of team utilities across all potential receivers d = 1, ..., N.

$$U^{o} + \beta \varphi^{d} U^{d} - \widetilde{c}^{o,d} + z^{d}$$

- U^o = team benefit from player o with the ball
- U^d = deterministic part by player d's characteristics
- z^d random part ('shock') due to match contingencies.
- φ^d = probability of successful pass to receiver d
- β = relative importance the team attaches to passing in general ('style')
- $\tilde{c}^{o,d} = \text{`passing cost'}$

Model: Passing cost

Model passing cost with two components

$$\widetilde{c}^{o,d} = g^{o,d} l^{o,d}$$

g^{o,d} = frictions related to distance between passer and receiver
 l^{o,d} = frictions unrelated to distance (e.g. mental effort) - such as same / different culture

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
		000000000			

Model: Pass rate

- Pass rate p_{o,d} as the ratio number of passes from player o to teammate d over the total number of team passes.
- Passer and receiver characteristics
 - including team mates fielded with him
- Position of players and passes (distance)
- Same culture indicator = measure of homophily
- Time spent together when passer has the ball
- Data: Aggregate probabilities to relative frequency
- ► Half-season level (16-20 games)

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	000000000	00000000	0000000	000

Model: close to structural gravity

$$\ln p^{o,d} = \ln \tau^{o,d} + \ln P^o (\Lambda^o)^{-\kappa} + \ln P^d (\Lambda^d)^{-\kappa} - \kappa\gamma \log g^{o,d} - \kappa\lambda \log I^{o,d} - \log P + \varepsilon^{o,d}$$

p^{o,d} = share of passes from o to d in team's total passes
 P_o, P_d = N passes made by player o /received by player d
 Λ^d, Λ^d = multilateral resistance for passer / receiver
 τ^{o,d} = share of passes made by o when d is also on pitch
 g^{o,d} = frictions related to distance
 I^{o,d} = frictions unrelated to distance (e.g. mental effort)
 P = total passes made by team

Poisson model with double player fixed effects

 $E(pcount_{o,d,t}|.) = exp(\delta SameCult_{o,d} + PassF_{o,d,t} + \ln tau_{o,d,t} + v_{o,t} + v_{d,t})$

- Homophily: SameCult_{o,d} as the same culture indicator (0/1).
- Offset time spent together (τ)
 Decision of the manager
- v_{o,t} FE: passer*half-season
- ► v_{d,t} FE: receiver*half-season
 - Team* half-season dummies soaked up

 $PassF_{o,d,t} = \gamma_1 PassDist_{o,d,t} + \gamma_2 Forwardness_{o,d,t} + \eta Position_o Position_d$

Estimation: role of fixed effects

- ▶ In estimation, use double player (*half-season) fixed effects
- Unobserved player characteristics
- Alternatives the passer faces in terms of receivers
 - Akin to multilateral resistance term in structural gravity

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	•••••	0000000	000

Results

Cultural Homophily and Collaboration in Superstar Teams 23/42 Gábor Békés* and Gianmarco I.P. Ottaviano**

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
			00000000		

Result discussion

- Core result: choice homophily premium: 2.4%
 - Consider a team in half-season. Partialling out pass frictions and receiver characteristics, a player will pass 2.4% more to a same culture peer.

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	00000000	0000000	000

Result discussion

- ► Core result: *choice* homophily premium: 2.4%
 - Consider a team in half-season. Partialling out pass frictions and receiver characteristics, a player will pass 2.4% more to a same culture peer.
- Passing to a same culture receiver is equally likely as passing to a different culture player valued a 10.5% more.
 - using transfer price estimations

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
			0000000		

Dissecting total homophily

Cultural Homophily and Collaboration in Superstar Teams 25 / 42 Gábor Békés* and Gianmarco I.P. Ottaviano**

Core results + robustness

- Core result: *choice* homophily premium: 2.4%
- ► Taking into account managers decision to field players: 3.8%
- (Unconditional) Same culture players tend to pass 6.2% more compared to different culture players

Core results + robustness

- Core result: *choice* homophily premium: 2.4%
- ► Taking into account managers decision to field players: 3.8%
- (Unconditional) Same culture players tend to pass 6.2% more compared to different culture players
- Robust to a variety of specifications, partialling out
 - Physical differences
 - Assortative matching
 - Experience with club
 - Prior experience in youth club, other teams
 - Nationality specific passing style
 - Functional form specifications, such as ln(count)

Homophily is not common knowledge

- Players from different countries do pass differently
 - French players trained in French "national football style"

 Style, captured by nation specific cross-position dummies not a confounder

About the nature of homophily and collaboration

Homophily is more important for complex collaboration

- Look at pass sequences only, homophily premium is 4.8% vs 2% for single passes.
- Homophily is present for shared nationality as well as colonial links
 - It is negative for federal legacy (ie USSR, Yugoslavia)
- Alternative measure of culture: shared language, similar language works but weaker
- Shared values (World Value Survey) no correlation at all

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	000000000	0000000	000

Dissecting culture

Dep. var: pass count	(1)	(2)	(3)	(4)
Same nationality (0/1)	0.0284***	0.0302***	0.0315***	0.0186***
Same colonial legacy (0/1)	(0.0030) 0.0284*** (0.0041)	(0.0031)	(0.0031)	(0.0035)
Same federal legacy (0/1)	-0.0223** (0.0106)			
Just shared language (0/1)	-0.0046 (0.0070)			
LC: diff country, same language $(0/1)$. ,	0.0156***	0.0140^{***}	
LC: diff country, similar language (0/1)		0.0111**	0.0094*	
Geographical proximity (neighbors) $(0/1)$		(0.0044)	0.0064*	
WVS: similar values (0/1)			(0.0031)	-0.0064** (0.0029)
Observations	668,105	668,105	668,105	668,105
Pseudo R²	0.76078	0.76077	0.76077	0.76076
passer-half_season fixed effects	√	\checkmark	√	√
receiver-half_season fixed effects Cross position dummies	\checkmark	\checkmark	\checkmark	√ √

Cultural Homophily and Collaboration in Superstar Teams 29 / 42 Gábor Békés*

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	000000000	0000000	000

Heterogeneity

- ► We see more of a homophily premium
 - Young players
 - Passers in larger culture groups
- No difference
 - Receiver quality

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	00000000	0000000	000

Heterogeneity by age, group size, receiver quality

Dep.var: Pass count	(1)	(2)	(3)
Same culture (any) (0/1)	0.0319***	0.0174***	0.0236***
Same culture (any) (0/1) \times Passer age (0/1, 1=Experienced)	(0.0045) -0.0096** (0.0048)	(0.0043)	(0.0027)
Same culture (any) (0/1) \times Passer group size (1/1, 1 when N>=4)		0.0146***	
Same culture (any) (0/1) \times Receiver quality (0/1, 1= top 2)		(0.0059)	0.0044
Passer group size $(1/1, 1 \text{ when } N \ge 4)$		-0.0444***	(0.0001)
Receiver quality $(0/1, 1 = top 2)$		(0.0075)	0.0129 (0.0081)
Observations	668,105	668,105	668,105
Pseudo R ²	0.75930	0.74510	0.76077
passer-half_season fixed effects receiver-half_season fixed effects passer * receiver position dummies	\checkmark \checkmark	\checkmark \checkmark	\checkmark \checkmark

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	00000000	●000000	000

Investigating the mechanism

Cultural Homophily and Collaboration in Superstar Teams 32 / 42 Gábor Békés* and Gianmarco I.P. Ottaviano**

Mechanisms 1 - Cost vs bias

► Till now: agnostic re what choice homophily represents

- an efficient outcome promoting team performance
- inefficient in-group favoritism detrimental to team.
- ► No silver bullet but two arguments to support efficiency
 - Performance vs diversity = noisy 0, problematic measure
- Two suggestive evidence against favoritism
- Beyond homophily, when players pass to other players of different culture, they tend to pass more to players belonging to large culture groups
- ▶ No show of lower homophily premium when under pressure

Mechanisms 1 – Cost vs bias 1

- Let's focus on passes to different culture players
- ▶ Divide receivers into small (<3) or large (>3) groups
- Group size premium (different culture passes)
 - Homophily premium here is 3.6%

	to small	to large
from small	0	2.8%*
from large	-0.6%	1.8%*

- Beyond homophily, players tend pass more to large same culture groups
 - Account for future benefits
 - Supports efficiency argument (not favoritism)

Mechanisms 1 – Cost vs bias 2

- Do players exhibit less homophily under pressure?
- Consider key passes 2-3 passes before shot on goal
 - Really important passes
 - Under pressure from defenders
 - Sample is different = forwards and midfielders

Mechanisms 2 – Motivation of players

- What makes same-culture players find it easier to work together?
- Players of the same culture being able to
 - co-operate better
 - understand each other better,
 - see each other better on the pitch
- If so, does it go away once they get to know each other?

Mechanisms 2 – Motivation of players

Look at the evolution of homophily premium over time

- Divide receivers into newbie vs experienced groups
- Cutoff: median time of 7 months
- Compare homophily premium across groups

Mechanisms 2 – Motivation of players

Look at the evolution of homophily premium over time

- Divide receivers into newbie vs experienced groups
- Cutoff: median time of 7 months
- Compare homophily premium across groups
- Homophily premium by receivers type
 - ▶ 1.7% among newbie receivers
 - 2.8% among experienced (=higher after time)
- Same culture players bond outside work help collaborate better

Introduction	Data	Model	Measuring homophily	Mechanisms	Summary
000000	000000	00000000	00000000	000000	000

Homophily over time: shared experience

		F	bass_count		
	(1)	(2)	(3)	(4)	(5)
Same culture (any) (0/1)	0.0166***	0.0163***	0.2325	0.0131*	0.0206***
	(0.0053)	(0.0053)	(0.2156)	(0.0078)	(0.0050)
Same culture (any) (0/1) $ imes$ Experience	0.0117**	0.0127**	-0.1372	0.0191**	
	(0.0059)	(0.0060)	(0.1924)	(0.0088)	
Same culture (any) $(0/1) \times Experience long$					0.0073
					(0.0059)
Observations	457 838	443 641	13 530	219 178	384 818
Pseudo R ²	0.76317	0.76431	0.83248	0.76578	0.76699
Early experience w other team	Include	Exclude	Only	Include	Include
Time with team capped	No	No	No	Yes	No
passer-half_season fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
receiver-half_season fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cross position D	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Introduction	Data 000000	Model 000000000	Measuring homophily	Mechanisms 0000000	Summary ●○○

Summary

Isolated choice homophily for shared culture

- Even in superstar teams
- Especially when complex tasks
- Shared nationality + colonial history
- Spending time higher homophily premium
- Shared culture (language) -> lower transaction cost more likely mechanism than favoritism
- Homophily is pervasive even in teams of
 - very high-skill individuals
 - with clear common objectives and aligned incentives
 - and involved in well-defined tasks
 - activities are not particularly language-intensive.

It's hard to talk about football with war on Ukraine

Oleksandr Zinchenko, May 2022

Help via Kyiv School of Economics at kse.ua/support/donation

Introduction	Data 000000	Model 000000000	Measuring homophily	Mechanisms 0000000	Summary ○○●

Thanks for the attention

