Cultural Homophily and Collaboration in Superstar Teams

Gábor Békés* and Gianmarco I.P. Ottaviano**

* Central European University, KRTK and CEPR
** Bocconi University, Baffi-CAREFIN, IGIER, CEP and CEPR

NBER Workshop, Cambridge, MA, April 2023
Globalization - mix best global expertise in multinational teams

Key aspect of multinationality is ‘cultural diversity’:
- Benefits: talent, learning and innovation (‘capabilities’)
- Costs: communication, empathy and trust (‘collaboration’)

Is there a difference in collaboration intensity (i.e. ability to work for a common purpose) by ‘homophily’ (i.e. tendency to associate with similar others)
- even in superstar teams?

Hard nut to crack:
- Collaboration not observed directly
- Difference due to ‘homophily’ confounded
Induced vs. Choice Homophily

- Homophily = 'induced' (opportunities) + 'choice'
 - Opportunity of collaboration may correlate with background
 - This confounds choice

- Need to partial out 'induced' homophily to measure 'choice' homophily:
 - Option A: experiment with random team formation
 - Issue: Low external validity for highly skilled, lowly charged multinational workplace
 - Option B: observational data with adequate baseline
 - Issue: relevant (counterfactual) baseline
European Football as an allegory

- Teams: pro football clubs from the top European leagues
 - Superstar team = global elite, top 5% of pro players
- New data: 5 countries, 11 million passes

- Collaboration: pass rate between player pairs
 - Team (squad) composition is exogenous to players
 - Collaboration is an individual choice
- Homophily = passer and receivers who share culture (nationality, history)
When I say Football, I mean Soccer
Related literature

- Cost and benefits of diversity in multicultural teams (recent developments):
 - Team formation: Calder-Wang et al. (2021)
- Literature review from psychology to management: (Lawrence and Shah, 2020; Ertug et al., 2021)
Contribution

1. Focus on everyday workplace collaboration - high skilled, lowly charged context

2. Very large, global sample - external validity

3. Well defined measure of collaboration at individual level

4. Model of baseline, both theory and empirics

5. Large dataset - rich measures of individual characteristics
Data Collection and Definitions
Data: Overview

- 5 top leagues (France, Germany, Spain, Italy, England),
- 8 seasons (2011/12-2018/19) every teams play with every other twice
 - 20 (18) teams per league, 14,608 games in total
 - 730 passes/game

- Webscraped play-by-play (event) data linked with personal info on players
 - 154 teams, each with 25-30 strong squad, regular churning (twice a year)
 - 10.7 million passes (‘events’)
 - 7,000 players from 138 countries
Raw Data: Events

- Event data – 'play by play'
 - Structured text, events with features, qualifiers:

- Separately recorded with a timestamp
 - Pass between any two players
 - Web-scraped from a whoscored.com website
 - Events recorded by cameras+algorithms+humans.

- Pass events separated
Raw Data: Players

- Player characteristics:
 - Nationalities (possible multiple)
 - Position in team
 - Age, height
 - Player valuations – over time
 - Web-scraped from a transfermarkt.com website

- Entity resolutions / coreference (accents, middle names, nicknames):
 - Matching algorithm by motifs
Measuring Cultural Homophily

- Characterize cultural background (‘culture’) = set of cultural traits transmitted across generations:
 - Such as language, history, norms, values and attitudes learned at home

- We measure ‘culture’ with four proxies:
 - Nationality, colonial legacy, federal legacy, language only
 - Alternative: linguistic similarity
 - Not alternative: Values (WVS)

- ‘cultural homophily’ = more intense collaboration between player pairs with same culture
Same Culture Definition

- Same nationality (citizenship)
- Same colonial legacy – different nationality
 - Argentina-Spain, England-Egypt (ruler and colony)
 - Uruguay-Argentina (colony siblings)
- Same federal legacy – different nationality
 - Russia-Georgia, Croatia-Serbia
 - Scotland, Northern Ireland, Ireland
- Same language – different nationality, colonial /federal legacy
 - Switzerland and Germany
 - DR Congo and France
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Data</th>
<th>Model (ideas)</th>
<th>Measuring homophily</th>
<th>Mechanisms</th>
<th>Summary</th>
</tr>
</thead>
</table>

Model (ideas)
Model: Purpose

- Model to disentangle choice from opportunity in an internally consistent way
- Model team’s utility
- Player o’s passing decision is determined by the comparison of team utilities across all potential receivers $d = 1, \ldots, N$.
 - Taking into account player characteristics and positions
- Homophily = shifter leading to more passes between player pairs of similar culture after controlling for variables based on the model.
Simple case: \(\text{Pass rate} = f(\text{receiver value and homophily}) \)

Passers = Spanish midfielders in La Liga, \(N=24,299 \).
Model: Passer’s Decision

Player o’s passing decision is determined by the comparison of team utilities across all potential receivers $d = 1, \ldots, N$.

$$U^o + \beta \varphi^d U^d - \tilde{c}^{o,d} + z^d$$

- $U^o =$ team benefit from player o with the ball
- $U^d =$ deterministic part by player d’s characteristics
- $z^d =$ random part (‘shock’) due to match contingencies.
- $\varphi^d =$ probability of successful pass to receiver d
- $\beta =$ relative importance the team attaches to passing in general (‘style’)
- $\tilde{c}^{o,d} =$ ‘passing cost’
Model: Passing cost

- Model passing cost with two components

\[\tilde{C}^{o,d} = g^{o,d} l^{o,d} \]

- \(g^{o,d} \) = frictions related to distance between passer and receiver
- \(l^{o,d} \) = frictions unrelated to distance (e.g. mental effort) - such as same / different culture
Model: Pass rate

- Pass rate $p_{o,d}$ as the ratio number of passes from player o to teammate d over the total number of team passes.

- Passer and receiver characteristics
 - including team mates fielded with him

- Position of players and passes (distance)

- Same culture indicator = measure of homophily

- Time spent together when passer has the ball

- Data: Aggregate probabilities to relative frequency

- Half-season level (16-20 games)
Model: close to structural gravity

\[
\ln p^{o,d} = \ln \tau^{o,d} + \ln P^{o} (\Lambda^{o})^{-\kappa} + \ln P^{d} (\Lambda^{d})^{-\kappa} - \\
-\kappa \gamma \log g^{o,d} - \kappa \lambda \log l^{o,d} - \log P + \varepsilon^{o,d}
\]

- \(p^{o,d} \) = share of passes from \(o \) to \(d \) in team’s total passes
- \(P_{o}, P_{d} = N \) passes made by player \(o \) / received by player \(d \)
- \(\Lambda^{d}, \Lambda^{d} = \) multilateral resistance for passer / receiver
- \(\tau^{o,d} = \) share of passes made by \(o \) when \(d \) is also on pitch
- \(g^{o,d} = \) frictions related to distance
- \(l^{o,d} = \) frictions unrelated to distance (e.g. mental effort)
- \(P = \) total passes made by team
Poisson model with double player fixed effects

\[
E(\text{pcount}_{o,d,t} | .) = \exp(\delta \text{SameCult}_{o,d} + \text{PassF}_{o,d,t} + \ln \tau_{o,d,t} + \nu_{o,t} + \nu_{d,t})
\]

- Homophily: \(\text{SameCult}_{o,d}\) as the same culture indicator (0/1).
- Offset time spent together (\(\tau\))
 - Decision of the manager
- \(\nu_{o,t}\) FE: passer*half-season
- \(\nu_{d,t}\) FE: receiver*half-season
 - Team* half-season dummies soaked up

\[
\text{PassF}_{o,d,t} = \gamma_1 \text{PassDist}_{o,d,t} + \gamma_2 \text{Forwardness}_{o,d,t} + \eta \text{Position}_o \text{Position}_d
\]
Estimation: role of fixed effects

- In estimation, use double player (*half-season) fixed effects

- Unobserved player characteristics

- Alternatives the passer faces in terms of receivers
 - Akin to multilateral resistance term in structural gravity
Results
Core result: *choice* homophily premium: 2.4%

Consider a team in half-season. Partialling out pass frictions and receiver characteristics, a player will pass 2.4% more to a same culture peer.
Result discussion

▶ Core result: *choice* homophily premium: 2.4%
 ▶ Consider a team in half-season. Partialling out pass frictions and receiver characteristics, a player will pass 2.4% more to a same culture peer.

▶ Passing to a same culture receiver is equally likely as passing to a different culture player valued a 10.5% more.
 ▶ using transfer price estimations
Dissecting total homophily

![Bar chart showing the components of total homophily](chart.png)

- Choice homophily: 2.42%
- Mix by coach decisions: 1.38%
- Induced: sorting, selection: 2.36%

Total homophily: 6.16%
Core results + robustness

- Core result: *choice* homophily premium: 2.4%
- Taking into account managers decision to field players: 3.8%
- (Unconditional) Same culture players tend to pass 6.2% more compared to different culture players
Core results + robustness

- Core result: *choice* homophily premium: 2.4%
- Taking into account managers decision to field players: 3.8%
- (Unconditional) Same culture players tend to pass 6.2% more compared to different culture players

- Robust to a variety of specifications, partialling out:
 - Physical differences
 - Assortative matching
 - Experience with club
 - Prior experience in youth club, other teams
 - Nationality specific passing style
 - Functional form specifications, such as ln(count)
Homophily is not common knowledge

- Players from different countries do pass differently
 - French players trained in French "national football style"

- Style, captured by nation specific cross-position dummies not a confounder
About the nature of homophily and collaboration

- Homophily is more important for complex collaboration
 - Look at pass sequences only, homophily premium is 4.8% vs 2% for single passes.

- Homophily is present for shared nationality as well as colonial links
 - It is negative for federal legacy (ie USSR, Yugoslavia)

- Alternative measure of culture: shared language, similar language works but weaker
- Shared values (World Value Survey) no correlation at all
Dissecting culture

<table>
<thead>
<tr>
<th>Dep. var: pass count</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same nationality (0/1)</td>
<td>0.0284*** (0.0030)</td>
<td>0.0302*** (0.0031)</td>
<td>0.0315*** (0.0031)</td>
<td>0.0186*** (0.0035)</td>
</tr>
<tr>
<td>Same colonial legacy (0/1)</td>
<td>0.0284*** (0.0041)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same federal legacy (0/1)</td>
<td>-0.0223** (0.0106)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Just shared language (0/1)</td>
<td>-0.0046 (0.0070)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC: diff country, same language (0/1)</td>
<td>0.0156*** (0.0039)</td>
<td>0.0140*** (0.0040)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC: diff country, similar language (0/1)</td>
<td>0.0111** (0.0044)</td>
<td>0.0094* (0.0045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographical proximity (neighbors) (0/1)</td>
<td></td>
<td>0.0064* (0.0031)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WVS: similar values (0/1)</td>
<td></td>
<td></td>
<td>-0.0064** (0.0029)</td>
<td></td>
</tr>
</tbody>
</table>

Observations: 668,105
Pseudo R²: 0.76078, 0.76077, 0.76077, 0.76076

- passer-half season fixed effects ✓ ✓ ✓ ✓ ✓
- receiver-half season fixed effects ✓ ✓ ✓ ✓ ✓
- Cross position dummies ✓ ✓ ✓ ✓ ✓
We see more of a homophily premium
 ▶ Young players
 ▶ Passers in larger culture groups

No difference
 ▶ Receiver quality
Heterogeneity by age, group size, receiver quality

<table>
<thead>
<tr>
<th>Dep.var: Pass count</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same culture (any) (0/1)</td>
<td>0.0319***</td>
<td>0.0174***</td>
<td>0.0236***</td>
</tr>
<tr>
<td></td>
<td>(0.0045)</td>
<td>(0.0043)</td>
<td>(0.0027)</td>
</tr>
<tr>
<td>Same culture (any) (0/1) × Passer age (0/1, 1=Experienced)</td>
<td>-0.0096**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0048)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same culture (any) (0/1) × Passer group size (1/1, 1 when N≥4)</td>
<td>0.0146***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0059)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same culture (any) (0/1) × Receiver quality (0/1, 1= top 2)</td>
<td></td>
<td>0.0044</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0057)</td>
<td></td>
</tr>
<tr>
<td>Passer group size (1/1, 1 when N≥4)</td>
<td></td>
<td>-0.0444***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0075)</td>
<td></td>
</tr>
<tr>
<td>Receiver quality (0/1, 1= top 2)</td>
<td></td>
<td></td>
<td>0.0129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0081)</td>
</tr>
<tr>
<td>Observations</td>
<td>668,105</td>
<td>668,105</td>
<td>668,105</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.75930</td>
<td>0.74510</td>
<td>0.76077</td>
</tr>
<tr>
<td>passer-half_season fixed effects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>receiver-half_season fixed effects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>passer * receiver position dummies</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Investigating the mechanism
Mechanisms 1 – Cost vs bias

▶ Till now: agnostic re what choice homophily represents
 ▶ an efficient outcome promoting team performance
 ▶ inefficient in-group favoritism detrimental to team.
▶ No silver bullet but two arguments to support efficiency
 ▶ Performance vs diversity = noisy 0, problematic measure

▶ Two suggestive evidence against favoritism
▶ Beyond homophily, when players pass to other players of
different culture, they tend to pass more to players belonging
to large culture groups
▶ No show of lower homophily premium when under pressure
Let’s focus on passes to different culture players
Divide receivers into small (<3) or large (>3) groups
Group size premium (different culture passes)
- Homophily premium here is 3.6%

<table>
<thead>
<tr>
<th></th>
<th>to small</th>
<th>to large</th>
</tr>
</thead>
<tbody>
<tr>
<td>from small</td>
<td>0</td>
<td>2.8%*</td>
</tr>
<tr>
<td>from large</td>
<td>-0.6%</td>
<td>1.8%*</td>
</tr>
</tbody>
</table>

Beyond homophily, players tend pass more to large same culture groups
- Account for future benefits
- Supports efficiency argument (not favoritism)
Mechanisms 1 – Cost vs bias 2

- Do players exhibit less homophily under pressure?
- Consider key passes – 2-3 passes before shot on goal
 - Really important passes
 - Under pressure from defenders
 - Sample is different = forwards and midfielders

- Homophily is unchanged
Mechanisms 2 – Motivation of players

- **What** makes same-culture players find it easier to work together?
- Players of the same culture being able to
 - co-operate better
 - understand each other better,
 - see each other better on the pitch

- If so, does it go away once they get to know each other?
Mechanisms 2 – Motivation of players

- Look at the evolution of homophily premium over time
 - Divide receivers into newbie vs experienced groups
 - Cutoff: median time of 7 months
 - Compare homophily premium across groups
Mechanisms 2 – Motivation of players

- Look at the evolution of homophily premium over time
 - Divide receivers into newbie vs experienced groups
 - Cutoff: median time of 7 months
 - Compare homophily premium across groups

- Homophily premium by receivers type
 - 1.7% among newbie receivers
 - 2.8% among experienced (=higher after time)

- Same culture players bond outside work – help collaborate better
Homophily over time: shared experience

<table>
<thead>
<tr>
<th>Model</th>
<th>pass_count</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same culture (any) (0/1)</td>
<td></td>
<td>0.0166***</td>
<td>0.0163***</td>
<td>0.2325</td>
<td>0.0131*</td>
<td>0.0206***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0053)</td>
<td>(0.0053)</td>
<td>(0.2156)</td>
<td>(0.0078)</td>
<td>(0.0050)</td>
</tr>
<tr>
<td>Same culture (any) (0/1) × Experience</td>
<td></td>
<td>0.0117**</td>
<td>0.0127**</td>
<td>-0.1372</td>
<td>0.0191**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0059)</td>
<td>(0.0060)</td>
<td>(0.1924)</td>
<td>(0.0088)</td>
<td></td>
</tr>
<tr>
<td>Same culture (any) (0/1) × Experience long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0073</td>
<td>(0.0059)</td>
</tr>
<tr>
<td>Observations</td>
<td>457,838</td>
<td>443,641</td>
<td>13,530</td>
<td>219,178</td>
<td>384,818</td>
<td></td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.76317</td>
<td>0.76431</td>
<td>0.83248</td>
<td>0.76578</td>
<td>0.76699</td>
<td></td>
</tr>
</tbody>
</table>

- **Early experience w other team**
 - Include
 - Exclude
 - Only
 - Early experience w other team
 - Time with team capped
 - passer-half_season fixed effects: ✓
 - receiver-half_season fixed effects: ✓
 - Cross position D: ✓
Summary

- Isolated choice homophily for shared culture
 - Even in superstar teams
 - Especially when complex tasks
 - Shared nationality + colonial history

- Spending time – higher homophily premium

- Shared culture (language) → lower transaction cost – more likely mechanism than favoritism

- Homophily is pervasive even in teams of
 - very high-skill individuals
 - with clear common objectives and aligned incentives
 - and involved in well-defined tasks
 - activities are not particularly language-intensive.
It’s hard to talk about football with war on Ukraine

Oleksandr Zinchenko, May 2022

Help via Kyiv School of Economics at kse.ua/support/donation
Thanks for the attention