James Feigenbaum¹ Daniel P. Gross²

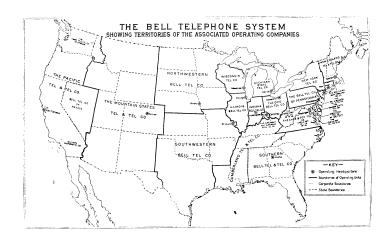
¹Boston University and NBER

²Duke University and NBER

April 2023

■ Fears of an imminent, sweeping wave of automation are again riding high (Brynjolfsson & McAfee 2014, Autor 2015)

Latest culprit: Generative Al



- Fears of an imminent, sweeping wave of automation are again riding high (Brynjolfsson & McAfee 2014, Autor 2015)
- But how imminent is it, really?

- Fears of an imminent, sweeping wave of automation are again riding high (Brynjolfsson & McAfee 2014, Autor 2015)
- But how imminent is it, really?
- In a recent paper we studied the impacts of one of the largest automation events in modern history—AT&T's mechanization of telephone operation—on workers and labor markets

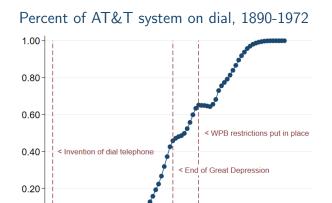
- Fears of an imminent, sweeping wave of automation are again riding high (Brynjolfsson & McAfee 2014, Autor 2015)
- But how imminent is it, really?
- In a recent paper we studied the impacts of one of the largest automation events in modern history—AT&T's mechanization of telephone operation—on workers and labor markets
- Today we'll peer inside the firm, and ask:

Why did it take a century?

- AT&T: dominant U.S. telephone company in the 20th c.
- Horizontally integrated: owned regional operating companies and long-distance lines that connected them
- Vertically integrated: Western Electric, Bell Labs

- AT&T: dominant U.S. telephone company in the 20th c.
- Horizontally integrated: owned regional operating companies and long-distance lines that connected them
- Vertically integrated: Western Electric, Bell Labs

By 1920s, America's largest employer...


- AT&T: dominant U.S. telephone company in the 20th c.
- Horizontally integrated: owned regional operating companies and long-distance lines that connected them
- Vertically integrated: Western Electric, Bell Labs

By 1920s, America's largest employer... and >50% operators

- AT&T: dominant U.S. telephone company in the 20th c.
- Horizontally integrated: owned regional operating companies and long-distance lines that connected them
- Vertically integrated: Western Electric, Bell Labs

By 1920s, America's largest employer... and >50% operators ...manually connecting >60 MM calls per day

But automation took nearly 90 years to complete

1930 1940

1950 1960

0.00

1900

1910

1920

Why did it take 90 years to automate one job?

Classic challenges to adoption are unlikely

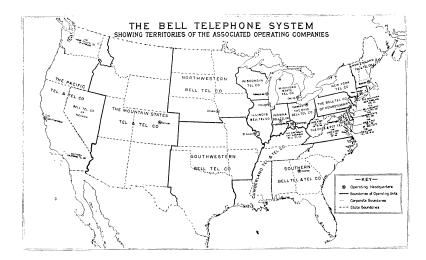
- Large, wide-ranging literature on technology adoption
 - Hold-ups include fixed costs and indivisibility, uncertainty, organizational and information frictions
- AT&T seems like it would clear the common hurdles
 - Enormous scale
 - Powerful management
 - Full information
 - Access to capital
 - Vertically integrated

We argue two points in this paper

Interdependencies & organizational challenges

- Call switching interacted with essentially every other part of AT&T's business: automating it risks incongruence
- Example highlights that when a task interacts with many others, automating that task can be a hard problem
- Merges principles of Milgrom-Roberts, Bresnahan & Bryn, Rivkin-Siggelkow, etc. into task-based production models
- We give this a label (+ model): the "integral task"

We argue two points in this paper


Interdependencies & organizational challenges

- Call switching interacted with essentially every other part of AT&T's business: automating it risks incongruence
- Example highlights that when a task interacts with many others, automating that task can be a hard problem
- Merges principles of Milgrom-Roberts, Bresnahan & Bryn, Rivkin-Siggelkow, etc. into task-based production models
- We give this a label (+ model): the "integral task"

2 Economies of scale + a long tail of small markets

Prelude: A little bit of history

Map of Bell operating companies

Telephone exchanges ("Central Offices")

- Telephone exchanges were the functional units of the network
 - Connected to subscribers and each other
 - Day-to-day work of administering telephone service
 - Thousands around the country

Telephone exchanges ("Central Offices")


- Telephone exchanges were the functional units of the network
 - Connected to subscribers and each other
 - Day-to-day work of administering telephone service
 - Thousands around the country
- Four departments (Traffic, Plant, Commercial, Accounting)
- Multiple service types (business, residential, PBX, long-distance, pay, collect)
- Many types of operators ("A", "B", tandem, long-distance, info, 911)
- Complementary tech (switching, handsets, tel. numbering, directories)

Telephone exchanges ("Central Offices")

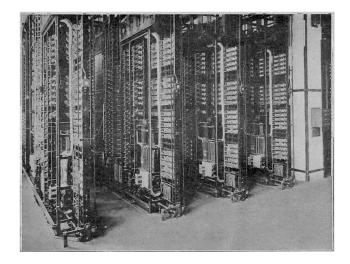
- Telephone exchanges were the functional units of the network
 - Connected to subscribers and each other
 - Day-to-day work of administering telephone service
 - Thousands around the country
- Four departments (Traffic, Plant, Commercial, Accounting)
- Multiple service types (business, residential, PBX, long-distance, pay, collect)
- Many types of operators ("A", "B", tandem, long-distance, info, 911)
- Complementary tech (switching, handsets, tel. numbering, directories)

At the center of this system: the telephone operator

Telephone operating rooms

Telephone operating rooms

Telephone operating rooms


History of dial technology

- First mechanical switching device invented in 1889
 - AT&T's early cost studies unfavorable
 - Continued focus on manual operation
 - "By 1905, the manual system had been developed to a point where it was ... fast, accurate, and dependable"

History of dial technology

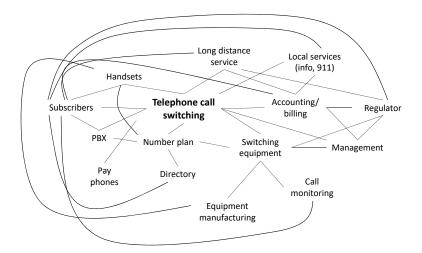
- First mechanical switching device invented in 1889
 - AT&T's early cost studies unfavorable
 - Continued focus on manual operation
 - "By 1905, the manual system had been developed to a point where it was ... fast, accurate, and dependable"
- New pressures on the business in 1910s:
 - Network growth straining equipment and operators
 - Deeper issue: massive diseconomies of scale
 - MC of manual tech ↑↑ as network grows
 - In 1917, AT&T began advising automation for large cities

Telephone operators after cutover to dial

Why is this a hard problem?

technologies to have a wide-felt impacts is practically canon

■ The idea that organizational changes are necessary for new


- In econ (e.g., Milgrom & Roberts 1990, David 1990, Bresnahan et al. 2002)
- In strategy (e.g., Henderson & Clark 1990, Siggelkow 2001, and more)
- But not all technologies—many important technologies did not
 - E.g. hybrid seed corn, vaccines and antibiotics, many more
 - Even automation: e.g. clothes washers/dryers vs. laundering

What's special about AT&T's problem?

Our emphasis: the "integral task"

- The task being automated interacts activities across the firm
 - Service offerings, plant and equipment, technology, operations, workforce composition, job structures, pricing, accounting, billing, customer relations, ...
- Shared intuition with prior work, but with a refinement
 - Not about the system, but rather the task's centrality in it (this builds on ideas from the org. design literature)

Example interdependencies in the AT&T system

Introduction Background Organizational Challenges Theory Evidence The Long Tail Concluding Remarks

Major activities and changes required to adapt this system to mechanical switching

AT&T Corporate

- -Develop + test equipment
- -Equipment mfg. at scale
- -Educate operating company managers on the tech
- -Make data-driven recommendations for adoption
- -Integrate w/ AT&T Long Lines, other markets

Regulators

- -Telephone rate changes
- -Public concerns

Central Offices

- -Install equipment
- -Re-wire exchange
- -Integrate with manual -Auto-manual boards
 - -Traditional operator
- (contingent labor)
- -New approaches to: Information services
- -Emergency services
- -Call monitoring
- -Caller assistance
- -Personnel challenges:
- -Labor management
- -Transitional labor
- -New maintenance staff, training, processes
- -New building design
- -New cost accounting

User Behavior

- -User acceptance of dial
- -User training on dial
 - -On-site training
 - -Media campaigns
- -Changes in organization (e.g., secretaries)
- -Integration w/ PBX

User Technology

- -New handsets, w/ dial
- -New numbering plans
- -New telephone directory
- -Method for mapping
- alphanumeric IDs to a fully-numeric dial

We give this structure with a simple model

- Monopolist firm engaged in task-based production
- Each unit of output requires performing a set of n activities i = 1, ..., n, each with an associated task i
- There is a distinct task, i = 0, which enters all activities

We give this structure with a simple model

- Monopolist firm engaged in task-based production
- Each unit of output requires performing a set of n activities i = 1, ..., n, each with an associated task i
- There is a distinct task, i = 0, which enters all activities
- Two available technologies for each task: manual/automated
- There are benefits to using common technology in complementary tasks (or conversely, costs of incongruence)

We give this structure with a simple model

- Monopolist firm engaged in task-based production
- Each unit of output requires performing a set of n activities i = 1, ..., n, each with an associated task i
- There is a distinct task, i = 0, which enters all activities
- Two available technologies for each task: manual/automated
- There are benefits to using common technology in complementary tasks (or conversely, costs of incongruence)
- Partial automation challenged by the cost of incongruence, and total automation by cost of changing the full system

You may be thinking: Show me the data

Many of these changes are hard to systematically measure

You may be thinking: Show me the data

- Many of these changes are hard to systematically measure
- What we can do: look for evidence of workforce changes
 - We treat as a sufficient statistic for wider changes

To do this, we need data. From where?

- Telephone industry (equiv. AT&T) workforce
 - Complete count census data, 1910-1940
- The local adoption of mechanical switching (RHS)
 - Records from AT&T corporate archives
 - Newspaper reports of local cutovers to dial

1 Large decline (\approx 50%) in operators

- **1** Large decline (\approx 50%) in operators
- Clerks and bookkeepers ↑ (residual tasks)

- **I** Large decline (\approx 50%) in operators
- Clerks and bookkeepers ↑ (residual tasks)
- Electrical engineers ↑

- **1** Large decline (\approx 50%) in operators
- Clerks and bookkeepers ↑ (residual tasks)
- 3 Electrical engineers ↑
- **■** Managers \uparrow , avg. span of control \downarrow

- **1** Large decline (\approx 50%) in operators
- Clerks and bookkeepers ↑ (residual tasks)
- 3 Electrical engineers ↑
- 4 Managers \uparrow , avg. span of control \downarrow
- 5 Remaining operators are older

The Long Tail

What explains delays thereafter?

■ In part: integrating automation in new environments

What explains delays thereafter?

- In part: integrating automation in new environments
- But also: The unit economics of the problem
 - Automation naturally adopted first by large units (scale)
 - In this case, the goal wasn't shifting VC down, but rather limiting rate at which MC grew, by reducing complexity
 - Benefits of technology decayed quickly in smaller markets
 - This, plus long rural tail ⇒ long lags

Cutovers and city characteristics, 1910

		AT&T cutover era				
Characteristic	pre-1920	1921-1925	1926-1930	1931-1935	1936-1940	post-1940
Population 16+ (1000s)	38.92	116.82	43.87	18.41	9.14	4.06
	(55.49)	(248.98)	(80.23)	(27.30)	(13.33)	(6.68)
Percent working	60.54	60.35	60.81	59.60	58.96	57.55
	(5.27)	(5.05)	(5.69)	(5.64)	(5.83)	(7.28)
Percent operators	0.19	0.21	0.19	0.17	0.19	0.21
	(0.10)	(0.12)	(0.14)	(0.11)	(0.11)	(0.15)
F/n/w/y percent working	41.17	40.68	40.23	44.01	36.71	35.09
	(7.79)	(12.09)	(10.32)	(11.86)	(12.31)	(12.12)
F/n/w/y percent operators	1.16	1.36	1.19	1.02	1.12	1.21
	(0.65)	(1.09)	(0.87)	(0.67)	(0.79)	(0.97)
Observations	29	62	114	67	60	2660

Notes: Observations are cities. "f/n/w/y" is shorthand for female, native-born, white/non-Hispanic, and young (age 16-25). Standard deviations in parentheses.

Concluding Remarks

How generalizable is AT&T's example?

- AT&T was distinctive: regulated monopoly
- Could either of these features have slowed innovation?
 - Rate of return regulation incentivized capital investment (which AT&T could use to justify rate increases)
 - If margins were fixed, the only way to grow profit is volume
 - Universal service was AT&T's explicit objective (and motto)
 - Controlling MC (via mechanization) better for keeping volume high than raising prices to match growing costs
 - Monopoly conferred greater scale (Macher et al. 2021)
- Abroad: mechanization in UK, AU took just as long

Modern insights

- Where else might this intuition apply?
 - Many applications of Al (Bresnahan 2021, Agrawal et al. 2022)
 - Another example: the computerization of the IRS
 - Probably the biggest digitization event in history
 - Required a "total systems approach" with "extensive changes in work flow, services to taxpayers, and location of jobs ... [and] a review of the total organization of [the IRS]" (IRS 1964)
- Happy to discuss more at the break

Thank you!

James J. Feigenbaum jamesf@bu.edu @jamesfeigenbaum Daniel P. Gross daniel.gross@duke.edu @daniel_p_gross

Concluding Remarks