Retiring Old Capital to Foster Decarbonization

James Sallee UC Berkeley and the NBER

May 18, 2023 NBER Entrepreneurship and Innovation Policy and the Economy Conference

Most anthropogenic greenhouse gas emissions involve durable capital

Source: California Air Resources Board

Many environmental policies regulate properties of this capital

- Fuel economy standards regulate vehicle efficiency
- Minimum efficiency standards regulate appliances and equipment
- Building codes set rules for construction
- Air pollution standards control power plant emissions

• Most regulations focus on **new** durable goods...

- CAFE regulates new vehicle fuel efficiency
- California's zero-emissions goals are for new cars and trucks
- DOE appliance standards are for new products

- Most regulations focus on **new** durable goods...
 - CAFE regulates new vehicle fuel efficiency
 - California's zero-emissions goals are for new cars and trucks
 - DOE appliance standards are for new products
- ...and if they do apply to **used** durables, used products receive preferential treatment
 - New Source Review grandfathers existing polluters
 - Building codes only apply to existing buildings during retrofits

- Most regulations focus on **new** durable goods...
 - CAFE regulates new vehicle fuel efficiency
 - California's zero-emissions goals are for new cars and trucks
 - DOE appliance standards are for new products
- ...and if they do apply to **used** durables, used products receive preferential treatment
 - New Source Review grandfathers existing polluters
 - Building codes only apply to existing buildings during retrofits
- The thesis of this paper is that we should pay more attention to the policies that target used capital (durables), in particular "pro-retirement" policies

- Innovation policy tends to focus on **new** durable goods, where innovation is directly embedded...
 - Environmental regulations often "force" new technology

- Innovation policy tends to focus on **new** durable goods, where innovation is directly embedded...
 - Environmental regulations often "force" new technology
- ...but used and new capital interact in critical ways
 - Used capital turnover will affect demand for new innovation
 - Innovation policies will create unintended consequences via leakage into used markets
- Pro-retirement policies can complement innovation and counteract unintended consequences

Outline

- Why: Why would pro-retirement policies targeting used durables have efficiency benefits?
- What: What are the alternative policy options for encouraging retirement?
- Which: Which are most appealing based on different criteria?
 - Efficiency
 - Equity
 - Political economy

Efficiency point 1: Most emissions come from used durables

	Average age of fleet in years (source)	Typical life expectancy in years (source)
Vehicles		
National		
Light-duty cars	13.1 (S&P)	20 (NHTSA)
Light-duty trucks	11.6 (S&P)	25 (NHTSA)
California		
Medium-duty trucks	9.66 (ARB)	11.85 (ARB)
Heavy-duty trucks	7.49 (ARB)	9.82 (ARB)

Efficiency point 1: Most emissions come from used durables

	Average age of fleet	Typical life expectancy	
	in years (source)	in years (source)	
Residential			
appliances			
National			
Furnaces	10.55 (RECS)	20 (NREL)	
Water heaters	8.11 (RECS)	13 (NREL)	
Refrigerators	7.43 (RECS)	17.4 (NREL)	
California			
Furnaces	15.09 (RASS)	20 (NREL)	
Water heaters	9.33 (RASS)	13 (NREL)	
Refrigerators	7.81 (RASS)	17.4 (NREL)	

Efficiency benefit 1: Most emissions come from used durables

	Average age of fleet in years (source)	Typical life expectancy in years (source)
Power plants		
National		
Coal	40 (S&P)	50 (S&P)
Natural gas steam	50 (S&P)	47 (S&P)
Combined cycle gas	14 (S&P)	27 (S&P)

- Capital that is sold now will create emissions for decades into the future
- ⇒ If we want to rapidly decarbonize, we will need to accelerate retirement of existing capital stock

Efficiency benefit 2: Gruenspecht effect

If new cars are too expensive, people won't be willing to scrap and replace

- Regulation can raise the cost of new capital (e.g., by forcing emissions reducing technology adoption)
- This can cause old durable goods to last longer, pollute more (the Gruenspecht effect)
- \Rightarrow Pro-retirement policies can counteract this effect

Efficiency benefit 3: free market turnover is inefficient

- Even absent a Gruenspecht effect, there is an efficiency gain to pro-retirement policy
- Free market turnover will be inefficiently slow if older products pollute more than newer ones
 - Age degradation
 - Policy
 - Secular trends in innovation

Efficiency benefit 3: free market turnover is inefficient

- Even absent a Gruenspecht effect, there is an efficiency gain to pro-retirement policy
- Free market turnover will be inefficiently slow if older products pollute more than newer ones
 - Age degradation
 - Policy
 - Secular trends in innovation

⇒ Pro-retirement policies can correct market inefficiencies

Interactions between innovation and the efficiency gains of pro-retirement policy

 Desire for faster innovation ⇒ stricter regulation of new durables ⇒ higher cost of new capital ⇒ larger Gruenspecht effect ⇒ larger efficiency gain from pro-retirement policy Interactions between innovation and the efficiency gains of pro-retirement policy

- Desire for faster innovation ⇒ stricter regulation of new durables ⇒ higher cost of new capital ⇒ larger Gruenspecht effect ⇒ larger efficiency gain from pro-retirement policy
- Pro-retirement policy ⇒ faster innovation (market-size effect)
 ⇒ feedback into more aggressive policy (policy-lag effect)

 Tax emissions (fuel) — example: carbon tax, gasoline tax, SO₂ cap and trade

- Tax emissions (fuel) example: carbon tax, gasoline tax, SO₂ cap and trade
- 2 Tax used capital example: pollution-based vehicle circulation tax, licensing fees

- Tax emissions (fuel) example: carbon tax, gasoline tax, SO₂ cap and trade
- 2 Tax used capital example: pollution-based vehicle circulation tax, licensing fees
- **3 Subsidize new capital** example: EV tax credit, renewables tax credits, heat pump subsidies

- Tax emissions (fuel) example: carbon tax, gasoline tax, SO₂ cap and trade
- 2 Tax used capital example: pollution-based vehicle circulation tax, licensing fees
- **3** Subsidize new capital example: EV tax credit, renewables tax credits, heat pump subsidies
- Subsidize scrappage example: Cash for Clunkers, appliance rebates, German coal plant buyouts

- Tax emissions (fuel) example: carbon tax, gasoline tax, SO₂ cap and trade
- 2 Tax used capital example: pollution-based vehicle circulation tax, licensing fees
- **3** Subsidize new capital example: EV tax credit, renewables tax credits, heat pump subsidies
- Subsidize scrappage example: Cash for Clunkers, appliance rebates, German coal plant buyouts
- **5** Mandate retirement example: regional vehicle phase outs

Efficiency difference 1: compliance flexibility

- An emissions tax (fuel tax) creates incentive for many response margins
 - Drivers adjust the number of miles they drive

Efficiency difference 1: compliance flexibility

- An emissions tax (fuel tax) creates incentive for many response margins
 - Drivers adjust the number of miles they drive
- Capital taxes allow agents to change behavior or pay fee (forego subsidy), which fosters cost effectiveness
 - Those with a high value for older technology will pay fee (forego subsidy)

Efficiency difference 1: compliance flexibility

- An emissions tax (fuel tax) creates incentive for many response margins
 - Drivers adjust the number of miles they drive
- Capital taxes allow agents to change behavior or pay fee (forego subsidy), which fosters cost effectiveness
 - Those with a high value for older technology will pay fee (forego subsidy)
- Tax emissions >> capital taxes, capital subsidies >> mandate retirement

Efficiency difference 2: product differentiation

- Where products differ in their pollution, it is important that policy captures that differentiation
 - ICE vehicles differ in their pollution, and EVs differ in their abatement

Efficiency difference 2: product differentiation

- Where products differ in their pollution, it is important that policy captures that differentiation
 - ICE vehicles differ in their pollution, and EVs differ in their abatement
- For a tax, accurate differentiation requires a measure of actual pollution (and damages) associated with a product
- For a subsidy, have to also estimate a counterfactual—this is much harder—have to measure a **reduction** in pollution

Efficiency difference 2: product differentiation

- Where products differ in their pollution, it is important that policy captures that differentiation
 - ICE vehicles differ in their pollution, and EVs differ in their abatement
- For a tax, accurate differentiation requires a measure of actual pollution (and damages) associated with a product
- For a subsidy, have to also estimate a counterfactual—this is much harder—have to measure a **reduction** in pollution
- Tax emissions >> capital taxes >> capital subsidies

	Passenger Car	Small Truck	Large Truck	Work Truck
Minimum Fuel Economy For New Vehicle	22 MPG EPA Combined	18 MPG EPA Combined	15 MPG EPA Combined	Work Truck For Work Truck Only. No mileage reqs.
To Qualify For \$3,500 Voucher	4 MPG Improvement Over Trade-In	2 MPG Improvement Over Trade-In	I MPG Improvement Over Trade-In Or Trade From Work Truck	Trade-in Must Be From MY 2001 Or Older
To Qualify For \$4,500 Voucher	IO MPG Improvement Over Trade-In	5 MPG Improvement Over Trade-In	2 MPG Improvement Over Trade-In	Not Applicable

What about equity?

- Final incidence of a policy depends heavily on revenue
 - For a subsidy, who pays taxes to supply revenue?
 - For a tax, how is revenue used or recycled?

What about equity?

- Final incidence of a policy depends heavily on revenue
 - For a subsidy, who pays taxes to supply revenue?
 - For a tax, how is revenue used or recycled?
- Focus here on initial incidence
- There is no single answer across all policies, so this is a rough guide

Tax emissions (fuel) — usually found to be regressive (before revenue recycled!)

- Tax emissions (fuel) usually found to be regressive (before revenue recycled!)
- 2 Tax used capital probably regressive when lower-income households use older capital

- Tax emissions (fuel) usually found to be regressive (before revenue recycled!)
- 2 Tax used capital probably regressive when lower-income households use older capital
- Subsidize new capital probably regressive when higher-income households are early adopters

- Tax emissions (fuel) usually found to be regressive (before revenue recycled!)
- 2 Tax used capital probably regressive when lower-income households use older capital
- Subsidize new capital probably regressive when higher-income households are early adopters
- Subsidize scrappage probably progressive when lower-income households use older capital

- Tax emissions (fuel) usually found to be regressive (before revenue recycled!)
- 2 Tax used capital probably regressive when lower-income households use older capital
- Subsidize new capital probably regressive when higher-income households are early adopters
- Subsidize scrappage probably progressive when lower-income households use older capital
- 6 Mandate retirement probably regressive when lower-income households use older capital

Do lower-income households use older capital?

Do lower-income households use older capital?

Do small businesses use older capital?

- Who would be opposed to pro-retirement policies?
 - Anyone who opposes decarbonization
 - But this is not an objection to pro-retirement policies per se

- Who would be opposed to pro-retirement policies?
 - Anyone who opposes decarbonization
 - But this is not an objection to pro-retirement policies per se
- Among stakeholders supportive of decarbonization, would there be support for pro-retirement policies?
 - New product manufacturers should like pro-retirement policies because they promise to accelerate turnover and expand market

- Who would be opposed to pro-retirement policies?
 - Anyone who opposes decarbonization
 - But this is not an objection to pro-retirement policies per se
- Among stakeholders supportive of decarbonization, would there be support for pro-retirement policies?
 - New product manufacturers should like pro-retirement policies because they promise to accelerate turnover and expand market
- Subsidies will generally be favored above taxes because they expand the new product market more, and they funnel wealth towards a particular industry

- Who would be opposed to pro-retirement policies?
 - Anyone who opposes decarbonization
 - But this is not an objection to pro-retirement policies per se
- Among stakeholders supportive of decarbonization, would there be support for pro-retirement policies?
 - New product manufacturers should like pro-retirement policies because they promise to accelerate turnover and expand market
- Subsidies will generally be favored above taxes because they expand the new product market more, and they funnel wealth towards a particular industry
- When comparing subsidies for new capital versus subsidies for scrapping new capital, the main political economy difference is among current owners of old capital

Table: Impact and equity features of policy alternatives

	Targets	Targets	Revenue	Initial
Policy	New	Used	Impact	Incidence
Tax emissions (fuels)	Х	Х	+	Regressive
Tax used capital stock		Х	+	Regressive
Subsidize new capital	Х		-	Regressive
Subsidize scrappage		Х	-	Progressive
Mandate scrappage		Х	0	Regressive

- Scrappage subsidies stand out for being progressive, but this may vary across cases (appliances) and progressivity can be achieved with revenue recycling
- There are efficiency benefits of taxation over subsidies, but we see many more subsidies in practice suggesting the political economy benefits dominate

Context matters

- According to economic theory, if we priced all pollution externalities (with a tax or cap-and-trade system) and we had subsidies for innovation, there would be no rationale for pro-retirement policies ⇒ still prefer taxing pricing pollution directly!
- The case for scrappage subsidies or other pro-retirement policies is strongest when the policy baseline is regulation of new capital
- If instead our policy baseline is all subsidies for new capital (e.g., the IRA), then there is less case for adding subsidies for scrappage on top of that
- Instead of seeing this paper as an argument to add retirement subsidies on top of the IRA, we can see it as an exploration of the merits of the subsidy-heavy approach of the IRA

Summary

- Decarbonization requires innovation
- Carbon emissions are largely mediated through durable capital
- Policy often (though not always) focuses on new capital
- There is an important role for pro-retirement policy to address old capital
- Pro-retirement policy can have efficiency benefits and accelerate innovation through market-size effects
- Alternative forms of pro-retirement policy offer different trade-offs between efficiency, equity and political economy
- Of particular interest are policies that subsidize scrappage of older capital because they have favorable equity and political economy, though they may not always be as efficient