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Empirical researchers using instrumental variables (IV) estimation fre-
quently report first-stage F -statistics – or in the multiple endogenous regres-
sors case, Cragg and Donald (1993) statistics – to assess instrument relevance.
These statistics are typically compared to critical values based on the bias of
two-stage least-squares (2SLS) relative to the bias of OLS, which are tabu-
lated by Stock and Yogo (2005). However, this testing procedure requires the
assumption of conditionally homoskedastic and serially uncorrelated errors,
and is generally invalid if that assumption does not hold. As discussed in
a recent survey by Andrews et al. (2019), in practice this often means that
researchers assume conditionally homoskedastic and serially uncorrelated er-
rors for the purpose of a first-stage test, but make different assumptions when
conducting inference for the second-stage parameters of interest.

In an important paper, Montiel Olea and Pflueger (2013) introduce a new
statistic – the ‘effective F-statistic’ – that accounts for heteroskedasticity and
autocorrelation in the model errors. Their test is based on a Nagar approxi-
mation of the 2SLS bias relative to a worst-case benchmark, and the limiting
distribution and associated critical values depend on the application-specific
structure of the robust asymptotic covariance matrix of the reduced-form and
first-stage parameters. A limitation, however, is that this test only applies
to models with a single endogenous regressor. Andrews et al. (2019) point
to the lack of a heteroskedasticity and autocorrelation robust (HAR) test for
models with multiple endogenous regressors as an important remaining gap in
the IV pre-testing literature. The contribution of this paper is to fill that gap
by extending the Montiel Olea and Pflueger (2013) test to allow for an arbi-
trary number of endogenous regressors, and in so doing generalize the Stock
and Yogo (2005) bias-based test to be heteroskedasticity and autocorrelation
robust. We restrict our attention to the 2SLS estimator, since it is by far the
most commonly used IV estimator in empirical practice.

Like Stock and Yogo (2005), we use a weighted quadratic loss in the
asymptotic bias of the 2SLS estimates under a local-to-zero assumption as
the criterion for the test. The bias criterion is relative to the same worst-case
benchmark as in Montiel Olea and Pflueger (2013), and also nests the cri-
terion of Stock and Yogo (2005) in conditionally homoskedastic and serially
uncorrelated models. The null hypothesis is that the minimum eigenvalue of
the concentration matrix is in the set of values for which the bias is greater
than some fraction τ of the worst-case benchmark. The latter is the 2SLS bias
that arises for instruments that have no explanatory power for the endoge-
nous regressors, and structural errors that are perfect linear combinations of
the second-stage regressors in small samples. As in Montiel Olea and Pflueger
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(2013), we characterize the boundary of the weak instrument set using a Nagar
approximation to the bias. We show analytically that this ‘Nagar bias’ has a
sharp upper bound that is inversely proportional to the minimum eigenvalue
of the concentration matrix, but depends otherwise only on the covariance ma-
trix of the reduced-form and first-stage parameters, which can be consistently
estimated using HAR or cluster-robust methods. The minimum eigenvalue
of the concentration matrix is therefore the object of the test, as it is suffi-
cient to characterize the sharp upper bound on the Nagar bias. We propose
a generalized test statistic that is an extension of the Cragg-Donald statistic
adopted by Stock and Yogo (2005), and also nests the effective F-statistic
for models with a single endogenous regressor as a special case. Our test
statistic, which is the minimum eigenvalue of a matrix consisting of traces of
partitions of a noncentral Wishart random matrix, has an intractable limit-
ing distribution. Just as Stock and Yogo (2005), we therefore make use of
a bounding limiting distribution. Specifically, we show that the second and
third cumulants of our generalized test statistic are bounded by expressions
that depend only on the robust covariance matrix of the reduced-form and
first-stage parameters and the minimum eigenvalue of the concentration ma-
trix. The right tail of a bounding limiting distribution for our test statistic
can typically be approximated simply by matching the bounding cumulants
using an Imhof (1961) distribution.1 We provide Matlab code that exploits
the specialized numerical algorithm of Wen and Yin (2013) to compute the
sharp upper bound on the Nagar bias efficiently, leading to trivial computa-
tion times in typical applications. For unusually large-dimensional models,
we also provide a simplified – but more conservative – procedure that avoids
numerical optimization entirely.

We evaluate the performance of our test in simulations for models with
various dimensions using millions of randomly generated DGPs. When the
number of instruments is at least two more than the number of endogenous
regressors, the sharp upper bound on the Nagar approximation to the bias is
a highly effective upper bound on the Monte Carlo bias in the 2SLS estimates.
This is not the case, however, in models with degree of overidentification less
than two, and we therefore propose a more conservative bound in those models
that is effective in bounding the Monte Carlo bias. In the simulations, we find
that the size of our first-stage test is very well-controlled. Despite the fact
that the critical values are based on a bounding limiting distribution for the
test statistic, we also find that the power of our test rises sharply not too far

1The Matlab code we provide always ensures that a correct bounding distribution is selected even
when this is not the case.
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below the chosen bias tolerance level, for worst-case bias levels that are well
above zero. Despite being conservative, our test is therefore useful in practice
for discriminating between weak and strong instruments.

As an empirical application of our test, we consider the Ramey and Zubairy
(2018) estimates of state-dependent government spending multipliers. Start-
ing from existing empirical specifications for estimating spending multipliers,
the authors introduce a second endogenous regressor by interacting govern-
ment spending with an indicator for the state of the business cycle or for
the monetary policy regime. This application is an example of how multiple
endogenous regressors often arise in practice, as it is common for researchers
to explore specifications with interactions between an endogenous regressor
and other variables. We find that our robust test regularly leads to different
conclusions regarding instrument strength than the Stock and Yogo (2005)
test. When results of the Montiel Olea and Pflueger (2013) test in the sepa-
rate regime subsamples are in conflict, the outcome of our generalized test for
the full sample is dominated by the more weakly identified regime. Multiple
endogenous regressors of course arise in many other contexts as well, includ-
ing in time series, cross-sectional, and panel data models. Our generalized
test should therefore be useful to empirical researchers across a broad range
of applications.

Our contribution to the literature is to generalize the bias-based tests of
Stock and Yogo (2005) and Montiel Olea and Pflueger (2013). In conditionally
homoskedastic and serially uncorrelated models, our first-stage test statistic is
the same as that in Stock and Yogo (2005), and numerical differences with the
critical values of the Stock and Yogo (2005) tables arise only because our test
uses the Nagar approximation instead of Monte Carlo integration to evaluate
the bias. In models with a single endogenous regressor, our test-statistic and
critical values are equivalent to Montiel Olea and Pflueger (2013), except
in models with two instruments, as the potential poor quality of the Nagar
approximation leads us to prefer a more conservative bound on the bias.

The test proposed in this paper differs from several other existing ap-
proaches to evaluating instrument strength. Stock and Yogo (2005) also pro-
pose a size-based test for conditionally homoskedastic and serially uncorre-
lated models. While developing a generalized size-based test is beyond the
scope of this paper, we explore the relationship between our test statistic
and the size distortion in second stage t-statistic inference in simulations.
Researchers sometimes report results for the robust version of the Kleibergen
and Paap (2006) test of under-identification. Our test is a test of weak instru-
ments, not of under-identification, and therefore directly addresses concerns
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about the bias of the 2SLS estimator. Relatedly, Sanderson and Windmeijer
(2016) derive a bias-based test for models with multiple regressors by consid-
ering cases in which the matrix of first-stage coefficients has a rank deficiency
local to unity, as opposed to a rank local to zero as in the asymptotic em-
bedding common in the literature. As far as we are aware, the Sanderson
and Windmeijer (2016) approach has only been developed for conditionally
homoskedastic and serially uncorrelated models. Andrews (2018) offers a dis-
tinctly different diagnostic for identification strength, which is broadly appli-
cable to GMM problems, whereby both robust and non-robust confidence sets
are computed for the parameters of interest. The relationship between the
sets, linked to the size distortion of standard inference, determines whether
identification is strong enough to proceed with non-robust methods. Finally,
a recent paper by Carrasco and Doukali (2021) introduces a first-stage test
that is robust to heteroskedasticity and many instruments. However, as the
Montiel Olea and Pflueger (2013) test, it only applies to models with a single
endogenous regressor.

When conducted in conjunction with hypothesis tests for identified pa-
rameters, pretests for weak instruments form part of a multiple hypothesis
testing problem, which can contribute to size distortions in inference on esti-
mated second-stage parameters (Andrews 2018; Keane and Neal 2022; Lee et
al. 2022). In applying our proposed test, we encourage empirical researchers
to be mindful of this issue, and also consider robust inference procedures for
second-stage parameters, particularly in cases of marginal rejections. Given
the popularity of first-stage tests in applied work, we view a test that al-
lows researchers to make consistent assumptions in both estimation stages as
an important improvement over the common practice of assuming away het-
eroskedastcity and autocorrelation in the first stage, but not in the second.

1 Model and Summary of Testing Procedure

In this section, we provide a non-technical summary of the model assumptions
and testing procedures. We also discuss in more detail how our test compares
to those of Stock and Yogo (2005) and Montiel Olea and Pflueger (2013).

Model Our proposed test applies to linear instrumental variables models
with N endogenous regressors and K ≥ N instruments,

y = Y β + u,(1)

Y = ZΠ + v,(2)
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where β ∈ RN contains the parameters of interest and Π ∈ RK×N contains the
first-stage parameters. The econometrician observes y ∈ RT , Y ∈ RT×N , and
Z ∈ RT×K , where T is the sample size. Without loss of generality, we assume
that there are no additional exogenous regressors, and that Z ′Z/T = IK .
In the presence of additional exogenous regressors, it suffices to first project
y, Y , and Z on these regressors and replace all variables with the resulting
projection errors. In addition, the formulas in this paper assume the user has
subsequently normalized Z such that its sample average is zero and its sample
covariance is the identity matrix.

Consider the reduced-form of (1), y = ZΠβ + w, where w = vβ + u, and
assume that T−

1
2 [Z ′w vec(Z ′v)′]′

d→ N (0,W), where W is the asymptotic
covariance of the reduced-form and first-stage OLS coefficients, and vec is the
vectorization operator. The weak instruments test of Stock and Yogo (2005)
requires W to be of the Kronecker form Σwv⊗IK , where [w v]′[w v]/T

p→ Σwv.
The Kronecker structure arises generally only in conditionally homoskedastic
and serially uncorrelated models. The purpose of this paper is to let W

be any positive definite matrix, thereby allowing for arbitrary distributional
assumptions about the model errors. Montiel Olea and Pflueger (2013) also
relax the Kronecker form assumption, but only consider models with N = 1.
We defer a detailed discussion of all our assumptions to Section 2, but they are
otherwise entirely analogous to Stock and Yogo (2005) and Montiel Olea and
Pflueger (2013). They include the assumption that the first-stage relationship
in (2) is ‘local to zero’, and that the instruments are therefore weak under the
null hypothesis.

Testing Procedure Our generalized test for weak instruments assesses the
null hypothesis that the largest possible bias associated with a given set of
instruments exceeds a certain tolerance level, τ , relative to a worst-case bench-
mark for the 2SLS bias over all possible instruments. This benchmark is de-
fined exactly as in Montiel Olea and Pflueger (2013), and considers a scenario
in which all first-stage parameters are zero, Π = 0 and the errors u are a
perfect linear combination of the second-stage regressors Ŷ . In conditionally
homoskedastic and serially correlated models, the bias criterion has the fa-
miliar interpretation from Stock and Yogo (2005) as the 2SLS bias relative to
the OLS bias. In general, however, the bias does not have this interpretation.

In practice, our test for weak instruments consists of the following steps:

1. Replace all variables with the residuals after projection on any additional
exogenous regressors. Standardize the instruments such that the sample
average is zero and Z ′Z/T = IK .
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2. Regress y on Z (reduced-form) and Y on Z (first-stage) and obtain
the residuals ŵt and v̂t, respectively. Compute the robust covariance
matrix of choice (e.g., heteroskedasticity-robust, heteroskedasticity-and-
autocorrelation robust, or clustered), Ŵ, for the vector (ŵt, v̂

′
t)
′⊗Zt, or,

equivalently, the reduced-form and first-stage parameters.

3. Compute the test statistic, gmin,

gmin = T−1 mineval{Φ̂−
1
2Y ′ZZ ′Y Φ̂−

1
2},(3)

where Φ̂ = (IN⊗vec(IK))′(Ŵ2⊗IK)(IN⊗vec(IK)), Ŵ2 is the estimated
covariance matrix of the first-stage coefficients (the lower NK × NK

diagonal block of Ŵ), and mineval{·} is the smallest eigenvalue.

4. Compare gmin to the application-specific critical value for a user-supplied
relative bias threshold, τ , (e.g., 0.10) and a desired significance level, α
(e.g. 0.05). If gmin exceeds the critical value, reject the null hypothesis
of weak instruments.

We provide a Matlab file, gweakivtest.m, to implement steps 1-4 using
the estimation data as input, with several standard options for obtaining Ŵ.
The Matlab function gweakivtest_critical_values.m calculates the criti-
cal value in step 4 for a given Ŵ, τ and α. The function can also be applied
with a different user-supplied estimator of Ŵ if preferred, allowing the re-
searcher to conduct steps 1-3 themselves.
The calculation of the critical value involves a numerical optimization step
to obtain the sharp upper bound of the Nagar bias. In the vast majority of
applications, the computation time will be trivial. However, as in Montiel
Olea and Pflueger (2013), we also provide a simplified conservative version of
the test for very large-dimensional models. The simplified version of the test
follows the same steps but replaces the sharp upper bound for the Nagar bias
with an easier-to-compute non-sharp bound. This version is therefore com-
putationally much faster in models with a very large number of endogenous
variables and instruments.

Comparison with Existing Tests In conditionally homoskedastic and
serially uncorrelated models, the test statistic gmin in (3) reduces to the Cragg
and Donald (1993) statistic of the Stock and Yogo (2005) test, and in models
with N = 1 it reduces to the effective F -statistic of Montiel Olea and Pflueger
(2013). Figure 1 illustrates the critical values for α = 0.05 and τ = 0.10

generated by our code in those special cases, as well as in more general models
with N > 1 and an arbitrary covariance matrix W. The panels in the first
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column of Figure 1 show critical values for models with N = 1, 2 and 3

endogenous regressors for the homoskedastic and serially uncorrelated model.
The figure reports the critical values based on the sharp bound on the Nagar
bias, as well as those from the more conservative simplified procedure. Each
panel in the left column also plots the critical values from the Stock and Yogo
(2005) tables for comparison, which are available for K > N + 1. The top
left panel showing the N = 1 case also reports the critical values from the
Montiel Olea and Pflueger (2013) test for K ≥ 1, as well as the analytical
critical values derived for K > 1 by Skeels and Windmeijer (2018).

In the conditionally homoskedastic and serially uncorrelated model, the
critical values only depend on the number of endogenous regressors N and the
number of instruments K. In the general model, the critical values depend
additionally on the covariance W. The critical values are therefore different
for each regression. To nevertheless give a sense of the critical values that
arise in practice, the right column in Figure 1 shows the average robust critical
values across 500 different general covariance matrices drawn randomly from
a central Wishart distribution with an identity covariance matrix. The top
panel for the model with N = 1 additionally reports the robust Montiel Olea
and Pflueger (2013) critical values.

The main takeaways from Figure 1 are as follows. For models with a sin-
gle endogenous regressor (N = 1) – either homoskedastic or with general W
– there are only negligible numerical differences between our critical values
and those of Montiel Olea and Pflueger (2013).2 The only exception is when
K = 2, since we conduct the test with a more conservative bound on the bias
whenever K ≤ N + 1. We discuss the need for a more conservative bound in
more detail later on. However, that the sharp upper bound on the Nagar bias
is generally not adequate can already be seen in the conditionally homoskedas-
tic and serially uncorrelated model with N = 1 in the top left panel of Figure
1. This panel shows that the Montiel Olea and Pflueger (2013) critical value
for K = 2 is far below the analytical critical value obtained by Skeels and
Windmeijer (2018). In the N = 1, K = 1 model, our alternative upper bound
coincides with the sharp upper bound on the Nagar bias, such that in practice
the only difference with Montiel Olea and Pflueger (2013) occurs in the K = 2

case. Across the randomly generated W’s, the critical values for the models
with general W are higher on average than the conventional rule-of-thumb
value of 10. Note, however, that these higher critical values must be applied

2When K 6= 2, these differences arise only because we use the Imhof (1961) approximation, matching
the first three cumulants of the target distribution, instead of the Patnaik (1949) approximation, matching
the first two cumulants. We consistently found these differences to be very small.
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Figure 1: Comparison of Critical Values
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(c) N = 2, Homoskedastic
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(e) N = 3, Homoskedastic
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Notes: The left column reports critical values for α = 0.05 and τ = 0.10 assuming conditional
homoskedasticity and no serial correlation for various numbers of endogenous regressors (N)
and instruments (K). The right column repeats the exercise under arbitrary heteroskedas-
ticity and/or autocorrelation. Critical values depend on W and therefore vary for each
application. The figures show averages over 500 draws of W from a central Wishart distribu-
tion with identity covariance matrix for illustrative purposes only. For comparison, we plot
applicable critical values from Montiel Olea and Pflueger (2013), Stock and Yogo (2005), and
Skeels and Windmeijer (2018).
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to gmin (or equivalently the effective F -statistic when N = 1), and not to the
regular F -statistic (for any K) or robust F -statistic (unless K = 1).

In homoskedastic models our critical values are close to those of Stock
and Yogo (2005), which remain roughly around the rule-of-thumb value of
10 regardless of N and K. The numerical differences between the critical
values in this case arise because our test is based on a Nagar approximation
to the bias rather than on Monte Carlo integration. Despite these numerical
differences, in homoskedastic models our test is a close equivalent of the Stock
and Yogo (2005) test.

For models with N > 1 and general W’s, the average critical values are
higher than the conventional rule-of-thumb threshold for homoskedastic model
of roughly 10, just as in the general model with N = 1. We emphasize again,
however, that these critical values must be applied to the gmin statistic for
non-homoskedastic models in (3), and not to the Cragg and Donald (1993)
statistic. We also reiterate that the critical values depend on W, and will
therefore be different in each application. A widely applicable rule-of-thumb
critical value such as in homoskedastic models is therefore not available in the
general setting.

For illustrative purposes, Figure 1 also plots the more conservative critical
values from our simplified procedure. We generally do not recommend using
these values, as the tighter values will typically be sufficiently easy to compute.
Figure 1 suggests that they may nevertheless be of use in applications where
K or N are much larger.

In the special case of a just-identified model with a single endogenous
regressor (N = K = 1), our test statistic gmin is also equal to the robust
F -statistic. As noted in Andrews et al. (2019), an alternative valid approach
when N = K = 1 is to evaluate the robust F -statistic against the critical
values of the size-based test of Stock and Yogo (2005) (16.38 for 5% distortion,
8.96 for a 10% distortion). Unfortunately, this option is not available for
N = K > 1.

2 Testing the Null Hypothesis of Weak Instruments

This section presents the key results underlying our proposed test. Before
doing so, we establish some specific notation: ||U ||2 is the spectral norm of
U (the positive square root of the maximum eigenvalue of UU ′, also the `2-
norm if U is a vector), Pn is the set of positive definite n× n matrices, On×m

is the set of n × m orthogonal real matrices U such that UU ′ = In, Kn,m
denotes the n × m commutation matrix such that Kn,m vec(U) = vec(U ′)
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where U ∈ Rn×m. We also define the special matrix Rn,m = In ⊗ vec(Im).
The dimension of Rn,m is nm2 × n. For U ∈ Rnm×nm, the (i, j)-th element
of V = R′n,m(U ⊗ Im)Rn,m ∈ Rn×n is Tr(Uij) where Uij ∈ Rm×m is (i, j)-
th block of U and Tr(·) is the trace. For U ∈ Rnm×m, the i-th element of
V = R′n,m vec(U ′) ∈ Rn is equal to Tr(Ui) where Ui ∈ Rm×m is the i-th row
block of U . Note that R′n,mRn,m = mIN .

2.1 Weak IV Asymptotic Representation of the 2SLS Estimator

The 2SLS estimator for the model in (1)–(2) is

β̂2SLS = (Y ′PZY )−1Y ′PZy,(4)

where PZ = ZZ ′/T is the projection matrix given the normalization of the
instruments. Following Staiger and Stock (1997) and the subsequent litera-
ture, we model weak instruments by assuming the first-stage relationship is
local-to-zero,

Assumption 1. Π = C/
√
T where C ∈ RK×N is a fixed full rank matrix.

The following assumptions enable us to characterize the weak instrument
asymptotic distributions of the 2SLS estimator.

Assumption 2. The following limits hold as T →∞:

u′u/T
p→ σ2

u ∈ R+ , v′u/T
p→ σvu ∈ RN , v′v/T

p→ Σv ∈ PN ,(2.a)

T−
1
2

[
Z ′w

vec(Z ′v)

]
d→ N (0,W),(2.b)

and Ŵ
p→W,(2.c)

where W =

[
W1 W12

W′
12 W2

]
∈ P(N+1)K .

The 2SLS estimator in (4) can be written as

β̂2SLS =
(
R′N,K(sZY s

′
ZY ⊗ IK)RN,K

)−1
R′N,K vec(sZys

′
ZY ),(5)

where sZy = T−
1
2Z ′y and sZY = T−

1
2 vec(Z ′Y ). This more complicated ex-

pression reformulates the 2SLS estimator in terms of random vectors whose
asymptotic distributions are given in Assumption 2. Specifically, define the
random variables η1, η2 (K × 1 and NK × 1 respectively) as[

η1

η2

]
∼ N

((
0K

vec(C ′)

)
,S

)
(6)
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where S ∈ P(N+1)K , partitioned as W with

S1 = W1 + (β′ ⊗ IK)W2(β ⊗ IK)− (β′ ⊗ IK)W′
12 −W12(β ⊗ IK),(7)

S12 = W12 − (β′ ⊗ IK)W2 , S2 = W2,

such that S is the covariance of T−
1
2 [Z ′u vec(Z ′v)′]′ as T →∞.

Proposition 1 characterizes the distribution of the random variable β∗2SLS =

β̂2SLS − β.

Proposition 1. Under Assumptions 1 and 2, sZY
d→ η2 and sZy

d→ (β′ ⊗
IK)η2 + η1, and thus

β̂2SLS − β
d→ β∗2SLS =

(
R′N,K(η2η

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(η1η

′
2).

Proof. The proposition follows directly from the stated assumptions, the ex-
pression for β̂2SLS in (5), and the continuous mapping theorem.

Since β∗2SLS converges to a quotient of quadratic forms in normal random
variables, β̂2SLS is not a consistent estimator of β under the local-to-zero
Assumption 1. The asymptotic bias of the 2SLS estimator is the expected
value E[β∗2SLS], which has no known analytical form except for the special case
in which W has the Kronecker form and N = 1 and K > 1, see Skeels and
Windmeijer (2018). Note that when K = N – and depending on assumptions
also when K = N +1 – the expected value E[β∗2SLS] generally does not exist.3

Finally, we define the concentration matrix for models with general W and
N ≥ 1. Under Assumptions 1 & 2, Y ′PZY/T

p→ C ′C + R′N,K(S2 ⊗ IK)R′N,K
which naturally leads to the following definition.

Definition 1. The concentration matrix for (2) is

Λ = Φ−
1
2C ′CΦ−

1
2

where Φ = R′N,K(S2 ⊗ IK)RN,K.

This concentration matrix nests that of previous approaches as follows:
When W has the Kronecker form, S2 = Σv ⊗ IK and Φ = KΣv such that
Λ = K−1Σ

− 1
2

v C ′CΣ
− 1

2
v which is the concentration matrix in Stock and Yogo

(2005). For general W and N = 1, Λ = ||C||22 Tr (W2)−1, which is the
concentration parameter in Montiel Olea and Pflueger (2013).

3See, for example, Basmann (1961), Mariano (1972), Kinal (1980), Phillips (1980), or Skeels and
Windmeijer (2018)
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2.2 Definition of Weak Instruments

As in Montiel Olea and Pflueger (2013) and Stock and Yogo (2005), our
definition of weak instruments is based on a bias criterion. Specifically, we
consider instruments weak when a weighted `2 norm of the asymptotic bias
E[β∗2SLS] is large relative to a worst-case benchmark.

Definition 2. The bias criterion is

B = Tr(S1)−
1
2 ||E [β∗2SLS]′Φ

1
2 ||2.(8)

As in Stock and Yogo (2005), the `2 norm in the bias criterion aggregates
the N elements of the bias through a quadratic loss function, such that B is
weakly positive and penalises larger biases more heavily. The criterion applies
a weighting matrix, Φ, to put the elements of E [β∗2SLS] on a comparable scale.
The weighting matrix Φ is the asymptotic covariance of the first-stage param-
eter estimates and effectively standardizes the regressors in the second stage,
so that they have unit standard deviation and are orthogonal. The bias cri-
terion also scales by Tr(S1), which is the probability limit of T−1u′PZu. This
scaling expresses B as a ratio, relative to the same worst-case bias as in Mon-
tiel Olea and Pflueger (2013). The intuition for the worst-case bias is given
by the ad-hoc approximation of E[β∗2SLS] in terms of a ratio of expectations
as in Staiger and Stock (1997):

E[β∗2SLS] ≈ vec(S12)′RN,KΦ−
1
2

Tr(S1)
1
2

(IN + Λ)−1Φ−
1
2 Tr(S1)

1
2(9)

Using this approximation, the bias criterion in Definition 2 reaches a maxi-
mum of unity when the error term u is a perfect linear combination of the
second stage regressors, Ŷ such that the first term in (9) is an N × 1 unit
vector, and when the instruments are completely uninformative and the con-
centration matrix Λ is zero. The bias criterion in Definition 2 nests that in
Montiel Olea and Pflueger (2013) as a special case.4 In the conditionally ho-
moskedastic and serially uncorrelated model, the bias criterion becomes the
same as that of Stock and Yogo (2005). Specifically, when W has the Kro-
necker form, Φ = KΣv and Tr(S1) = σu which are the weighting matrix and
scaling factor used in the criterion of Stock and Yogo (2005). In homoskedas-
tic models, the bias criterion has the interpretation as the 2SLS bias relative
to the OLS bias. In models where W does not have the Kronecker form, B

4When N = 1, B = E [β∗2SLS ]
√

Tr(S2)/
√

Tr(S1), which is identical to the criterion in Montiel Olea
and Pflueger (2013) after replacing E [β∗2SLS ] with a Nagar (1959) approximation.

12



does not have the same interpretation.
The weak instrument set is defined using the bias criterion in Definition 2:

Definition 3. The weak instrument set is

Bτ (W) = {C ∈ RN×K , β ∈ RN : B > τ}.

The weak instrument set is the set of values for β and the first-stage
parameters C such that bias B exceeds a tolerance level τ . This set depends
on W, which can be consistently estimated, but also on the NK parameters
in C, and the N unknown parameters in β.

2.3 Characterizing the Boundary of the Weak Instrument Set

A practical generalized test for weak instruments requires a scalar sufficient
statistic that is informative for whether C lies within the weak instrument set
for any possible value of β. Moreover, the boundary of the weak instrument
set over the remaining parameters must be relatively easy to compute since
– unlike in the conditionally homoskedastic and serially uncorrelated model –
this boundary depends on W and is therefore model-specific. To address both
of these challenges, we follow Montiel Olea and Pflueger (2013) and adopt an
analytical approximation to the bias based on Nagar (1959).

We start with the following lemma presenting a useful decomposition of
the bias criterion in Definition 2.

Lemma 1. Under Assumptions 1 & 2, the bias criterion in Definition 2 can
be decomposed as B = ||hρ||2, where

h = KE
[(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1
R′N,K

(
S(l + ψ)ψ′S−1 ⊗ IK

)]
,

ρ =
(
Φ−

1
2 ⊗ IK2

)
vec (S12) /

√
Tr(S1) ,

l = S
− 1

2
2 vec(C ′), ψ = S

− 1
2

2 (η2 − vec(C ′)) ∼ N (0, INK), and S = ((Φ/K)−
1
2 ⊗

IK)S
1
2
2 .

Proof. See Appendix A.

Lemma 1 formulates the bias as the `2 norm of the product of the N×NK2

matrix h and the NK × 1 vector ρ. The matrix h is the expected value of
a random matrix that is a function of ψ, a vector of i.i.d standard normal
variables. This expected value – when it exists – also depends on location
parameters C and on W2. The vector ρ depends on W and β.
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In general, there is no tractable analytical expression for the integral un-
derlying the expectation in h, which is required to evaluate the bias. Whereas
Stock and Yogo (2005) evaluate this integral using Monte Carlo methods, we
adopt a Nagar (1959) approximation to h, which we denote by hn. This leads
to the following definition.

Definition 4. The Nagar bias is Bn = ||hnρ||2, where hn is a Nagar (1959)
approximation of h around ψ = 0.

The Nagar approximation hn is derived analytically in Appendix B. The
Nagar bias Bn still depends on C, β, and W. Unlike the original bias criterion
in Definition 2, the bias criterion under the Nagar approximation exists even
whenK ≤ N+1 and E[β∗2SLS] does not exist. This motivates Montiel Olea and
Pflueger (2013) to expand the use of their test to models with K ≤ N + 1, for
which Stock and Yogo (2005) do not report critical values. We will proceed as
in Montiel Olea and Pflueger (2013) and also consider models withK ≤ N+1.

The following theorem provides upper bounds on the Nagar bias for a given
minimum eigenvalue of the concentration matrix, λmin.

Theorem 1. The Nagar bias has the following bounds:

(i) Bn ≤ B∗n(W, λmin) = λ−1
minB(W) , B(W) = K−

1
2 sup
L0∈ON×K

{||M1(IN⊗L0⊗

L0)M2Ψ||2},

(ii) B∗n(W, λmin) ≤ λ−1
minBs(W) , Bs(W) = min{(2(N+1)/K)

1
2 ||M2Ψ||2, ||Ψ||2},

where λmin = mineval{Λ}, Ψ = (SW− 1
2

2 [W12 : W2]′⊗IK)RN+1,K(R′N+1,K(W⊗
IK)RN+1,K)−

1
2 , M1 = R′N,N (IN3 + (KN,N ⊗ IN)), and M2 = RN,KR

′
N,K/(N +

1)− INK2.

Proof. See Appendix B.

Part (i) of the theorem characterizes a sharp upper bound on the Nagar
bias, B∗n(W, λmin), that only depends onW and λmin, the minimum eigenvalue
of the concentration matrix in Definition 1. The sharp upper bound, which
we will refer to as the ‘worst-case Nagar bias’, is the product of λ−1

min and
B(W). The latter is equal to the largest possible singular value of a matrix
that depends on the NK − (N + 1)/2 nuisance parameters in the orthogonal
matrix L0, which needs to be obtained numerically. Part (ii) of the theorem
provides an alternative – but generally non-sharp – upper bound that requires
no numerical optimization.

Theorem 1 addresses the two main practical challenges for a test of weak
instruments in models with multiple endogenous variables. First, it provides
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a straightforward mapping between the worst-case Nagar bias and a single
parameter, λmin: B∗n(W, λmin) = λ−1

minB(W). The proof of the theorem shows
that the Nagar bias under the worst-case scenario for β is non-increasing in
all eigenvalues of the concentration matrix, such that the worst-case Nagar
bias occurs when all eigenvalues of Λ equal λmin. The Nagar approximation
therefore provides an analytical justification for λmin as the object of the
test, whereas the parallel justification in Stock and Yogo (2005) is based on
simulation evidence and the many-weak instrument limit.

Second, the numerical optimization problem underlying B(W) is relatively
straightforward. The general problem of optimizing Bn over β and C subject
to mineval{Λ} = λmin is problematic because of the large dimension and the
presence of many local maxima. The proof in Appendix B shows that op-
timizing over β reduces to a straightforward maximum eigenvalue problem.
Moreover, when all eigenvalues of Λ are equal to λmin, the bias only addi-
tionally depends on L0. Optimization over L0 has smaller dimension and,
importantly, can exploit numerical algorithms specialized for orthogonal ma-
trices. In the code accompanying this paper, we use the curvilinear search
algorithm of Wen and Yin (2013) which leads to trivial computation times
even for relatively large N andK. When N and/orK are so large that the op-
timization becomes prohibitive, the non-sharp bound in part (ii) of Theorem
1 can be used instead. Finally, because the bounds are inversely proportional
to the minimum eigenvalue of the concentration matrix, the threshold value
of that minimum eigenvalue for a given bias tolerance level τ is given simply
by B(W)/τ (or Bs(W)/τ), and requires no additional root-finding operation.

The computational advantages of working with the Nagar approximation
comes at the cost of a potential loss in accuracy relative to using Monte Carlo
integration to evaluate h, as in Stock and Yogo (2005). Monte Carlo integra-
tion, however, does not lead to the same simplifications in the optimization
over the nuisance parameters, and requires an additional root-finding opera-
tion to find the threshold value of the minimum eigenvalue. Because of the
dependence on W, this threshold value must also be computed separately for
each application, and cannot be tabulated in advance as a function of only K
and N , unlike when W has the Kronecker form. In the Online Appendix, we
compare the Nagar bias to the bias computed using Monte Carlo integration
across millions of DGPs and for various values of N and K. The main finding
is that the Nagar bias is generally close to the bias obtained via numerical
integration. Importantly, the Nagar approximation is especially accurate in
the most relevant range for the bias tolerance in practice, that is in a neigh-
borhood of 0.10.
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When the degree of overidentification is less than two, K ≤ N + 1, the
accuracy of the Nagar approximation – as judged by its relationship with the
Monte Carlo bias – can deteriorate sharply for some models. An extreme
example is the conditionally homoskedastic and non-serially correlated model
with K = N + 1. When W has the Kronecker form, the sharp upper bound
on the Nagar bias simplifies to B∗n(W, λmin) = λ−1

min|K − (N + 1)|/K. For
K = N + 1, this means that the Nagar bias is always zero.5 This problematic
feature of the worst-case Nagar bias is the reason why in panel (a) of Figure 1
(the N = 1 case) the Montiel Olea and Pflueger (2013) critical value at K = 2

is sharply lower compared to the analytical value of Skeels and Windmeijer
(2018). Given these problems, which the Online Appendix shows can also
arise for general covariance W, we do not rely on the Nagar approximation
whenever the degree of overidentification is one. Instead, when K = N + 1,
we use ||Ψ||2/τ as the threshold value for the minimum eigenvalue of the
concentration matrix. We use the same bound in just-identified models with
N = K, even though the integral underlying the expectation in the definition
of h in Lemma 1 does not converge in that case. When N = K = 1, the more
conservative bound always coincides with the sharp bound on the Nagar bias,
such that the choice for the bound is irrelevant in that case.

2.4 Test Statistic and Critical Values

Given a bias tolerance level τ , a test of the null hypothesis of weak instruments
can be based on a test of whether the minimum eigenvalue of Λ is smaller or
equal to a threshold value λ∗min(τ). More formally, the null and alternative
hypotheses for the test are

H0 : λmin ∈ H(W) vs. H1 : λmin 6∈ H(W),(10)

where H(W) = {λmin ∈ R+ : λmin ≤ λ∗min(τ)},

where λ∗min(τ) = B(W)/τ (or ||Ψ||2/τ when K ≤ N + 1, and Bs(W)/τ in
the case of the simplified test). The null hypothesis is that the minimum
eigenvalue of the concentration matrix is in the set of values for which the
selected upper bound on the bias is greater than the tolerance level τ . Under
the alternative, the minimum eigenvalue is not in that set of values.

The following proposition presents our statistic to test the null hypothesis.

5The matrixM2 in the Nagar approximation loses rank when K = N+1, which translates to a Nagar
bias of zero when W has the Kronecker form.
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Proposition 2. Define the test statistic

gmin = mineval{Φ̂−
1
2 (Y ′PZY )Φ̂−

1
2},

where Φ̂ = R′N,K(Ŵ2 ⊗ IK)RN,K. Then, under Assumptions 1 and 2,

gmin
d→ mineval{R′N,K(ζ ⊗ IK)RN,K/K},

where the NK ×NK random matrix ζ = S(l+ψ)(l+ψ)′S ′ has a noncentral
Wishart distribution, ζ ∼ W(1,Σ,Ω), with 1 degree of freedom, covariance
matrix Σ = SS ′ ∈ PNK, and a matrix of noncentrality parameters Ω =

Σ−1Sll′S ′.6

Proof. The proposition follows from Slutsky’s theorem, the continuous map-
ping theorem, and Y ′PZY

d→ R′N,K

(
S

1
2
2 (l + ψ)(l + ψ)′S

1
2′
2 ⊗ IK

)
RN,K , which

implies the stated distribution of ζ.

The test statistic gmin is a generalization of the Cragg and Donald (1993)
statistic, re-scaled appropriately to account for heteroskedasticity and au-
tocorrelation. In the homoskedastic and serially uncorrelated model, Ŵ2 =

Σ̂v⊗IK , such that Φ̂ = KΣ̂v, and gmin = K−1 mineval{(Σ̂v)
− 1

2Y ′PZY (Σ̂v)
− 1

2},
which is the Cragg and Donald (1993) statistic adopted by Stock and Yogo
(2005). The test statistic gmin also nests the effective F -statistic of Mon-
tiel Olea and Pflueger (2013). When N = 1, Φ̂ = Tr(Ŵ2), such that
gmin = Y ′PZY/Tr(Ŵ2), which is the effective F -statistic.

While ζ has a noncentral Wishart distribution, critical values for the test
statistic gmin require the distribution of mineval{R′N,K(ζ ⊗ IK)RN,K}, which
is the minimum eigenvalue of the N×N matrix consisting of the traces of the
K ×K partitions of ζ. To the best of our knowledge, the distribution of this
function of ζ is unknown. Moreover, the limiting distribution of gmin depends
in general on all parameters in Σ and Ω, not just on the threshold for λmin.

To address both these challenges, we obtain critical values from a bound-
ing limiting distribution of gmin. Specifically, we first derive upper bounds for
the second and third cumulants that only depend on λmin and W2. Next, we
consider the class of approximating distributions proposed by Imhof (1961),
which match the first three cumulants of an unknown target distribution. We
select the Imhof distribution with the largest critical value at significance level
α subject to the constraints that the first cumulant matches that of the target
distribution, and that the second and third cumulants respect the analytical

6We adopt the notational convention of Muirhead (1982) for the noncentral Wishart distribution.
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upper bounds on the cumulants of the limiting distribution of gmin. The re-
sulting critical value is guaranteed to be conservative relative to the unknown
critical value from the true limiting distribution of gmin.

The first step in our procedure is to derive upper bounds on the cumulants
that are free of nuisance parameters. We first discuss the N = 1 case, where
we can rely in part on existing results in the literature. WhenN = 1, R′N,K(ζ⊗
IK)RN,K = Tr(ζ) is a scalar. The trace of a noncentral Wishart ζ is a linear
combination of noncentral χ2 variables. While there is no tractable formula
for its probability distribution that we are aware of, Mathai (1980) provides
an analytical expression for the n-th order cumulant of Tr(ζ),

κn = 2n−1(n− 1)!
(

Tr(Σn) + nTr(ΣnΩ)
)
.(11)

The mean is κ1 = K(1 + λmin), since Tr(Σ) = K and Tr(ΣΩ) = K Tr(Λ) =

KΛ = Kλmin when N = 1. For n > 1, the cumulants are bounded by

κn ≤ 2n−1(n− 1)!
(

Tr(Σn) + nKλmin maxeval{Σ}n−1
)
,(12)

which follows from the fact that for U, V ∈ P, |Tr(UV )| ≤ maxeval{U}Tr(V ),
see Fact 8.12.29 in Bernstein (2009), and the fact that Tr(ΣnΩ) ≥ 0. The
bounds in (12) only depend on λmin and on Σ, which only depends on W2

and can therefore be consistently estimated.
The general case withN ≥ 1 is more involved, as gmin is now asymptotically

distributed as the minimum eigenvalue of a matrix containing the traces of the
K×K subpartitions of ζ. Analogously to Stock and Yogo (2005), we consider
the distribution of γ′R′N,K(ζ ⊗ IK)RN,Kγ ≥ mineval{R′N,K(ζ ⊗ IK)RN,K} as
a bounding distribution, where γ is the eigenvector associated with the mini-
mum eigenvalue of Λ = R′N,K(ΣΩ ⊗ IK)RN,K/K and γ′γ = 1. The following
theorem extends the earlier results to γ′R′N,K(ζ ⊗ IK)RN,Kγ.

Theorem 2. For ζ ∼ W(1,Σ,Ω),

(i) The n-th cumulant of γ′R′N,K(ζ ⊗ IK)RN,Kγ is

κn = 2n−1(n− 1)!
(

Tr
(
((γγ′ ⊗ IK)Σ)n

)
+ nTr

(
((γγ′ ⊗ IK)Σ)nΩ

))
.

(ii) The n-th cumulant κn with n > 1 is bounded by

κn ≤2n−1(n− 1)!
(

maxeval{R′N,K(Σn ⊗ IK)RN,K}

+ nKλmin maxeval{Σ}n−1
)
.
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Proof. See Appendix C.

Part (i) of the theorem generalizes Mathai (1980) to provide analytical
expressions for the random scalar γ′R′N,K(ζ ⊗ IK)RN,Kγ. Part (ii) provides
upper bounds on the cumulants that only depend on λmin and the consistently
estimable Σ, such that they can be used to construct a bounding pivotal
distribution. The bounds also nest those derived above for the N = 1 case.

For the mean, n = 1, the expression in part (i) of the theorem again
simplifies to κ1 = K(1 + λmin), which depends only on λmin. The mean can
therefore be targeted exactly, such that only the second and third cumulant of
the approximating bounding distribution potentially differ from those of the
true distribution. In the conditionally homoskedastic and serially uncorrelated
model, Σ = S = INK , and the bounds in (ii) simplify to

2n−1(n− 1)!
(
K + nKλmin

)
.(13)

These are the cumulants of a noncentral chi-squared distribution with K

degrees of freedom and noncentrality parameter Kλmin, which is the exact
bounding distribution for the Stock and Yogo (2005) test.

Next we define the Imhof (1961) approximating distribution matching the
first three cumulants κn, n = 1, 2, 3 of the target distribution.

Definition 5. The Imhof (1961) distribution is

Pr(χ2
ν < (x− κ1)4ω + ν), ν = 8κ2ω

2, ω = κ2/κ3,

where χ2
ν has a central chi-squared distribution with ν degrees of freedom.

The following proposition is of practical use in our testing procedures.

Proposition 3. The Imhof (1961) approximation in Definition 5 is conser-
vative in the right tail when replacing the second and third cumulants by the
upper bounds in Theorem 2.

Proof. See Appendix D.

The proposition implies that, for a sufficiently low significance level α, it
suffices to set the second and third cumulants to the upper bounds in Theorem
2 to find the most conservative critical value among all Imhof distributions
with cumulants that respect the bounds. In simulations, we found that for a
conventional choice of α = 0.05, setting the cumulants to their upper bounds
virtually always yields the most conservative critical value. Our code, how-
ever, always checks whether the Kuhn-Tucker conditions of the associated
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maximization problem are satisfied at the upper bounds. If this is not the
case, which may happen for example for α = 0.10, the code solves for the most
conservative critical value numerically, which is a relatively straightforward
optimization problem.

As in Stock and Yogo (2005), the use of a bounding limiting distribution
means the critical values are conservative in the sense that the null hypoth-
esis is incorrectly rejected with probability less than or equal to α. Figure 1
showed that our critical values are essentially the same as those of Montiel
Olea and Pflueger (2013) when N = 1, except when K = 2 where we choose
not to rely on the sharp upper bound on the Nagar bias, as explained earlier.
Our critical values are also close to those in the Stock and Yogo (2005) tables
in the conditionally homoskedastic and serially uncorrelated model. The nu-
merical differences with the Stock and Yogo (2005) values are almost entirely
due to the Nagar approximation, since the differences between the Imhof ap-
proximation with the exact cumulants in (13) and the noncentral chi-squared
bounding distribution are very small (Solomon and Stephens 1977; Bodenham
and Adams 2015). The simulation study below will show that, despite the
use of a bounding distribution, our test is not prohibitively conservative.

2.5 Summary of gweakivtest_critical_values.m

We conclude the discussion of our test with a description of the Matlab func-
tion gweakivtest_critical_values.m. To compute the critical values, the
required inputs are (a) an estimate of the robust covariance of the reduced-
form and first-stage coefficients, Ŵ, (b) the significance level for the test α,
and (c) the bias tolerance level τ .

1. If K > N + 1, the code obtains the threshold value λ∗min(τ) = B(Ŵ)/τ

where B(Ŵ) is calculated numerically using the optimization algorithm
of Wen and Yin (2013). The algorithm is not guaranteed to find the
global optimum. Unless the user specifies otherwise, our code takes the
maximum over the optima found for 1000 starting values generated by
N columns of K × K matrices drawn from the Haar distribution, i.e.
uniformly sampled from the space of all orthogonal matrices. If the
user selects the simplified testing option, the threshold value is set to
λ∗min(τ) = Bs(Ŵ). If K ≤ N + 1, the threshold value is λ∗min(τ) = ||Ψ̂||2,
where Ψ̂ is defined as in Theorem 1 after replacing W with Ŵ.

2. Next, the code calculates the upper bounds on the second and third
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cumulants of the bounding limiting distribution of the test statistic gmin,

κ∗2 = 2
(

maxeval{(IN ⊗ vec(IK))′((Σ̂2 ⊗ IK)(IN ⊗ vec(IK))}(14)

+ 2λ∗min(τ)K maxeval{Σ̂}
)
,

κ∗3 = 8
(

maxeval{(IN ⊗ vec(IK))′((Σ̂3 ⊗ IK)(IN ⊗ vec(IK))}(15)

+ 3λ∗min(τ)K maxeval{Σ̂}2
)
,

where Σ̂ is defined as in Proposition 2 after replacing W with Ŵ.

3. The code checks whether the Kuhn-Tucker conditions in (D.35) are satis-
fied at κ1 = K(1 +λ∗min(τ)), κ̄2 = κ∗2 and κ̄3 = κ∗3. If not, the code solves
for values κ̄2 and κ̄3 that do satisfy the conditions in the constrained
optimization problem in (D.34) using the bounds as starting values.

4. For significance level α, the code computes the critical value from the
limiting distribution using the Imhof (1961) distribution in Definition 5.
This critical value is divided by K to obtain the critical value that can
be compared to the test statistic gmin.

3 Simulation Study

We present simulation results for models with six different combinations for
the number of endogenous variables and the number of instruments: N = 2,
with K = 2, 3, 4, 6, and N = 3, with K = 5, 9. For each combination of N
and K, we consider five million randomly drawn DGPs {β, C,W}. We first
draw 10,000 W matrices from a central Wishart distribution with identity
covariance matrix. For each W, we draw 10 different pairs of values for β
and directions C0, defined such that C =

√
λminC0. For each of the resulting

100,000 draws, we consider a grid of 50 minimum eigenvalues of the concen-
tration matrix, λmin, over a range from 0.25 to 100. To have good coverage
of the region where the Nagar bias is maximized for a given λmin, half of the
draws for β and C0 are in a neighborhood of the ‘worst-case’ values {βwc, Cwc

0 }
where the Nagar bias is at the upper bound for a given W. The other half
of the draws for β and C0 are from a wider region of the parameter space.7

7For β, the draws close to the worst-case Nagar bias are β = βwc + 0.1υ where υ ∼ N (0, IN ), and
the other draws comprise N independent draws from the uniform distribution on [−100, 100]. For C0,
we use the reparametrization vec(C ′0) = S

1
2
2 S−1

√
K vec(L′0D

1
2

Λ0
Q′Λ), where L0 is an orthogonal matrix as

in Theorem 1, and λminDΛ0 and QΛ contain the eigenvalues and -vectors of the concentration matrix
Λ. The orthogonal matrix QΛ is always drawn from the Haar distribution. For the draws close to
the worst-case Nagar bias, we set L0 = ((Lwc

0 + ξ)(Lwc
0 + ξ)′)

−1
(Lwc

0 + ξ) where the elements of ξ are
drawn independently from a uniform distribution on [−0.1, 0.1] and Lwc

0 is the orthogonal matrix that
maximizes B(W) in Theorem 1. The other draws of L0 are from the Haar distribution. Finally, the
nonzero diagonal elements of DΛ0 are generated as 1 + 0.1υ with υ ∼ χ2(1) for the draws close to the
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For each of the resulting five million DGPs, we generate 1000 samples for the
random vectors η1 and η2 in (6) to draw from the limiting distribution of gmin

and obtain the empirical rejection rate of the first-stage test.

3.1 Accuracy of the Nagar Approximation

We first assess whether the worst-case Nagar bias is a valid bound for the
Monte Carlo bias, B̂, for each DGP, i.e. by evaluating the bias criterion in
Definition 2 by replacing E[β∗2SLS] with the sample averages of β∗2SLS. If the
worst-case Nagar bias in part (i) of Theorem 1 is a numerically accurate upper
bound, the Monte Carlo bias for a given β, C,W should not exceed the worst-
case Nagar bias at the values of λmin and W of that DGP. For the models
with K > N + 1, we find that the worst-case Nagar bias is a highly effective
upper bound on the Monte Carlo bias B̂ at a conventional bias tolerance level
of τ = 0.10. The Monte Carlo bias exceeds 0.10 in fewer than 0.001 percent
of the DGPs for which the worst-case Nagar bias is smaller than 0.10. In the
models with N = K = 2 and N = 2, K = 3, on the other hand, the Monte
Carlo bias exceeds 0.10 in 2.64 percent and 0.50 percent, respectively, of the
DGPs with worst-case Nagar bias less than 0.10. These relatively frequent
failures of the Nagar approximation in models with K ≤ N + 1 is why we
adopt the more conservative upper bound in our testing procedure whenever
K ≤ N + 1.8 Using this more conservative bound, the test fails to detect
Monte Carlo bias above τ = 0.10 in only 0.15 percent of the DGPs when
N = K = 2, and less than 0.0001 percent of the DGPs when N = 2, K = 3.

For a more general perspective on the quality of the Nagar approximation,
the Online Appendix reports scatter plots of the Monte Carlo bias B̂ and the
Nagar approximation Bn to the true bias B as in Definition 4. These plots
show that, in the models with K > N + 1, the Nagar and Monte Carlo bias
align very closely except when the bias becomes very large, as Bn is inversely
proportional to λmin while the Monte Carlo bias is smaller than unity across
all DGPs. The relationship between B̂ and Bn, however, is poorer when
K ≤ N + 1, especially for K = N = 2, and B̂ is no longer bounded by one.

worst case, and from a χ2(1) distribution in the other draws. In both cases, the draws are normalized
such that the smallest diagonal element of DΛ0 is unity.

8The Online Appendix shows that the failures of the Nagar approximation for K ≤ N + 1 become
even more dramatic in homoskedastic models. For example, the Nagar bias is always zero if K = N + 1
and W takes the Kronecker form, as discussed above.
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3.2 Size and Power of the Generalized First-Stage Test

Figure 2 presents scatter plots of the empirical rejection rates as a function
of bias across the five million DGPs. The red dots plot the rejection rates
as a function of the worst-case Nagar bias (when K > N + 1), or the more
conservative bound (when K ≤ N+1), evaluated at the values of λmin and W

in each DGP. For illustration, the blue dots also plot the rejection rates against
the Monte Carlo bias given the values of {β,

√
λminC0,W} in each DGP (but

not taking the worst case over all possible β and C0). The horizontal lines
in each panel mark the nominal size of the test, α = 0.05. The vertical line
marks the bias tolerance level of τ = 0.10. These values for α and τ are the
typical choices in applied use.

If the test is perfectly sized, the empirical rejection rates should equal the
nominal size of α = 0.05 when the worst-case Nagar bias is precisely τ = 0.10.
Figure 2 shows that the empirical rejection rates never exceed 0.05 at worst-
case Nagar bias levels of 0.10 or higher, except marginally so for a handful
of DGPs for K = N = 2. Moreover, at the bias tolerance level of 0.10, the
rejection rates are all strictly below 0.05. This is not surprising given our use
of a bounding distribution for the test statistic gmin, which implies that the
test is conservative by construction. As there are no DGPs with meaningful
positive size distortions, the test controls size well at the nominal level.

Despite the fact that our test is conservative, Figure 2 shows that it nev-
ertheless has meaningful power. The dashed vertical line marks a bias level
of 0.05. At that level, the rejection rates in the K = N + 2 models, for ex-
ample, range from 0 to 60%, while in the K > N + 2 models the rejection
rates range from roughly 20% to 90%. At lower – but still strictly positive –
bias levels, the empirical rejection rates rise to 100% for all DGPs. The sim-
ulations therefore demonstrate that our testing procedure is not prohibitively
conservative.

As discussed in the preceding section, the more conservative threshold for
the minimum eigenvalue, Bs(W)/τ = ||Ψ||2/τ , is more effective in bounding
the Monte Carlo bias in the simulations than the worst-case Nagar bias when
K ≤ N + 1. The first panel of Figure 2 shows that rejection rates for N =

K = 2 exceed 0.05 in only a handful of DGPs when Monte Carlo bias is
greater or equal than 0.10. In the N = 2, K = 3 model, the rejection rates
based on the alternative threshold essentially never exceed 0.05 for Monte
Carlo bias greater than or equal to 0.10. In the Online Appendix, we further
show that when the test is based on the worst-case Nagar bias instead of the
more conservative bound in models with K ≤ N + 1, the Monte Carlo bias is
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Figure 2: Size and Power of the First-Stage Test

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: Figure shows rejection rates across 1,000 samples for each of five million DGPs gen-
erated as explained in the main text. The red dots shows the rejection rates as a function of
the worst-case Nagar bias or the alternative conservative bound on the bias. The blue dots
show the rejection rates as a function of the Monte Carlo bias. The vertical full line marks
the bias tolerance level τ = 0.10 in the null hypothesis, the dashed vertical line marks a bias
level of 0.05 for reference, and the horizontal full line plots the nominal size α = 0.05.

instead not well-controlled.
Overall, these simulation results show that our testing procedures perform

as intended, including in models with K ≤ N + 1 as long as the more conser-
vative threshold is used in those cases. Ultimately, the theoretical justification
of a bias-based test is on a much weaker foundation whenever K ≤ N + 1,
since the first moment of the 2SLS bias generally does not exist, and the
Monte Carlo bias can exceed one. This is no different than for Stock and
Yogo (2005), who do not report critical values for K ≤ N + 1, or Montiel
Olea and Pflueger (2013), who proceed with the Nagar bias in these cases,
motivated by its existence alone.

3.3 Size Distortions of t-Statistic Inference on β

Alternative testing strategies for weak instruments can be based on control-
ling size distortions of Wald or t-statistic inference on β. The generalization
of the size-based test of Stock and Yogo (2005) to heteroskedastic and serially
correlated models is beyond the scope of this paper. Nevertheless, we explore
the relationship between the test statistic gmin and the distortions of a stan-
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Figure 3: Size of t-statistic inference on β

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: For each specification, we consider five million DGPs as described in the text. For
each DGP we take 1000 samples, and for each sample we calculate the first-stage test statistic
gmin and conduct a two-sided t-test for each element of β. The figure shows the average and
95 percentiles of the t-test rejection rates as a function of the average gmin for 100 equally
spaced bins.

dard two-sided t-test in Figure 3. The t-tests are for the null hypothesis that
a given element in β̂2SLS equals the true value. Each panel shows binned av-
erages of the rejection rates across the N t-tests in the five million DGPs as a
function of the average ratio of gmin to the critical value of the first-stage test.
The shaded area plots the 95 percent interval of the rejection rates within
each bin. The full horizontal line shows the 0.05 nominal level of the t-test.
For reference, the dashed horizontal line marks the 0.15 level, corresponding
to a common tolerance level of 0.10 in size-based tests of weak instruments.

Figure 3 shows that the size distortions generally grow larger as gmin be-
comes smaller relative to the critical value. In addition, the size distortions
vanish – up to Monte Carlo error – as gmin grows larger. On average across the
DGPs, the t-tests lead to over-rejection for low values of gmin relative to the
critical value. The size distortions are relatively small in the N = 2, K = 2

model even when gmin is well below the critical value of the bias-based test.
The size distortions become more severe at low relative values of gmin as the
degree of overidentification increases. Overall, these patterns are qualita-
tively the same as those discussed in Stock and Yogo (2005) for conditionally
homoskedastic and serially uncorrelated models. They indicate that size dis-
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tortions are well controlled (with a tolerance of 0.10) at values of gmin well
below those required to control bias at τ = 0.10 when the number of instru-
ments is small. As the number of instruments increases, gmin eventually needs
to exceed the threshold for the bias-based test to control size in t-statistic
inference on β. The relationship shown in Figure 3 naturally suggests an
adjustment for t-based confidence intervals based on gmin similar to the one
suggested recently in Lee et al. (2022) for N = 1, K = 1 models based on
the first-stage F -statistic. We leave the development of such a procedure for
future work.

4 Empirical Application

We illustrate our testing procedure in an application to Ramey and Zubairy
(2018), who use instrumental variables in local projections to estimate gov-
ernment spending multipliers using military spending news and recursively
identified government spending shocks as instruments. The authors’ key in-
novation is to allow the spending multipliers to depend on the state of the
business cycle, or alternatively on the monetary policy regime. To this end,
the authors interact government spending with an indicator for whether the
economy is in a period of slack, or an indicator for whether the policy rate
is constrained at the zero lower bound (ZLB). Using their original notation,
Ramey and Zubairy (2018) estimate cumulative multipliers for h = 0, 1, . . .

based on

h∑
j=0

yt+j =It−1

[
γA,h + φA,h(L)zt−1 +mA,h

h∑
j=0

gt+j

]
(16)

+ (1− It−1)

[
γB,h + φB,h(L)zt−1 +mB,h

h∑
j=0

gt+j

]
+ ωt+h,

where h is the horizon in quarters, yt is detrended GDP, It−1 is the regime in-
dicator, zt−1 is a vector of controls, φA,h(L), φB,h(L) are polynomials in the lag
operator, gt is government spending divided by trend GDP, andmA,h,mB,h are
the cumulative spending multipliers over h quarters in the respective states.
The use of interaction terms involving endogenous regressors is quite com-
mon, and is one example of how multiple endogenous regressors often arise in
practical applications.

To assess instrument relevance, Ramey and Zubairy (2018) apply the Mon-
tiel Olea and Pflueger (2013) test to the individual subsamples implied by the
regime indicators, as for each such subsample there is only a single endogenous
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regressor. However, to assess whether the multiplier estimates are statistically
different across regimes, government spending ultimately has to be interacted
with the indicators in a single specification as in (16), in which there are not
one but two endogenous regressors (N=2). As autocorrelated errors are an
inherent feature of local projections such as (16), Ramey and Zubairy (2018)
can unfortunately not rely on the Stock and Yogo (2005) test to assess instru-
ment strength for their regression of interest. Our robust test, in contrast,
allows for a direct test of instrument relevance for the specifications in (16).
We therefore implement our test as described in Section 1 for τ = 0.10 and
α = 0.05, and using the same Newey and West (1994) automatic bandwidth
HAR estimation procedure as Ramey and Zubairy (2018). The instruments
are the military news measure and the recursive spending shocks interacted
with the regime indicator as instruments, such that K = 4. For reference, we
replicate the results from Ramey and Zubairy (2018) for the regime subsam-
ples in the Online Appendix.

Figure 4 reports the results for the main specifications and sample periods
discussed in Ramey and Zubairy (2018). Panel (a) covers specifications that
interact government spending with a measure of slack based on the unem-
ployment rate. The starred blue line plots the difference between our test
statistic gmin and the critical value for τ = 0.10, α = 0.05, truncated at 30
for readability as in Ramey and Zubairy (2018). Although not reported by
Ramey and Zubairy (2018), for illustrative purposes the circled red line plots
the difference between the Cragg and Donald (1993) test statistic and the
Stock and Yogo (2005) critical value. Panel (b) in Figure 4 shows the cor-
responding results for specifications where government spending is interacted
with an indicator for whether monetary policy is constrained by the ZLB. For
the interested reader, we report the test statistics and critical values for our
test separately in the Online Appendix.

Similar to the regime-specific results reported by Ramey and Zubairy
(2018), our robust test rejects that the instruments are weak at relatively
short horizons across all samples. According to our test, issues with instru-
ment relevance start to arise in the specifications with the slack indicator
after horizons between 5 to 8 quarters unless the sample includes WWII. In
the specifications with the ZLB indicator, instrument relevance becomes a
concern for horizons beyond 9 quarters.

Comparison with the results from the Stock and Yogo (2005) test demon-
strates the importance of allowing for heteroskedasticity and autocorrelation
in the first-stage testing procedures. For three of the five specifications con-
sidered in Figure 4, the Stock and Yogo (2005) test leads to a rejection of weak
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Figure 4: Test Results for the Ramey and Zubairy (2018) Regression Across Horizons

(a) Government Spending Interacted with Indicator of Slack

Full sample Post-WWII Excluding WWII

(b) Government Spending Interacted with ZLB Indicator

Full sample Excluding WWII

Notes: Panel (a) reports results for specifications with government spending interacted with
an indicator for whether the economy was in a state of slack, using combined instruments
for different sample periods: 1890-2015, 1947-2015 (post-WWII), and 1890-2015 excluding
WWII. The starred blue line plots the difference between the robust test statistic and robust
critical values for τ = 0.10 and α = 0.05 across horizons. As in Ramey and Zubairy (2018),
we cap the results at 30 for visibility. The circled red line shows the difference between the
Cragg and Donald (1993) statistic and critical values from Stock and Yogo (2005). Panel
(b) reports analogous results for specifications with government spending interacted with an
indicator for whether monetary policy is constrained by the zero lower bound for different
sample periods, 1890-2015 and 1890-2015 excluding WWII.

instruments at all horizons considered. For the remaining two specifications,
the Stock and Yogo (2005) test rejects weak instruments for an additional 3
to 4 quarters compared to the robust test.

The comparison of our robust test results to the regime-specific results in
Ramey and Zubairy (2018), reported in the Online Appendix, is also informa-
tive. Since the point estimates (and thus the bias) in the interacted regression
are the same as those obtained from the regressions in the regime subsamples,
it is not surprising that when each regime-specific regression appears to be
separately strongly identified, the interacted regression generally is too.9 The
more interesting cases occur when one state is strongly identified, but the

9In just a few cases where one state is only marginally strongly identified, the interacted specification
is weakly identified. We attribute this to the fact that the test is more conservative for N > 1.
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other is weakly identified. Ex ante, it is not obvious whether the interacted
model would fall above or below the relevant critical value. In this application,
the more weakly identified state appears to dictate the test result. However,
this need not be the case in general, depending on the covariance structure of
the regressors and instruments.

For models with N > 1, researchers sometimes report results for the robust
Kleibergen and Paap (2006) test of under-identification. In the Online Ap-
pendix, we report the results for this test for the Ramey and Zubairy (2018)
regression. In general, the Kleibergen and Paap (2006) test statistic decreases
with the horizon, as does our robust statistic for the null of weak identification
(unlike in our test, the Kleibergen-Paap critical value is constant across hori-
zons). For three of the specifications shown in Figure 4, the Kleibergen and
Paap (2006) test rejects the null of under-identification at all horizons. For
the remaining two, under-identification cannot be rejected after horizons of
around 10 to 15 quarters. These results from a test of under-identification are
entirely compatible with our findings based on a test of weak identification,
since the tests consider different null hypotheses. Indeed, instruments may
be weak enough to induce bias above the tolerance level, even if the null of
a rank deficiency in Π can be rejected with high statistical significance.10 In
most applications, the bias of an estimator is of greater interest than knowl-
edge of the rank of Π. In those cases, a bias-based test of weak instruments
is therefore more directly useful.

5 Concluding Remarks

First-stage tests like those proposed by Stock and Yogo (2005) or, more re-
cently, Montiel Olea and Pflueger (2013), are a widely-used diagnostic tool to
assess instrument relevance in empirical applications that involve instrumental
variables. When researchers are not comfortable imposing homoskedasticity
assumptions for second stage inference, they should also avoid imposing such
assumptions in first-stage testing procedures. In this paper, we generalize the
testing approach of Montiel Olea and Pflueger (2013) to provide a first-stage
test that is valid under heteroskedasticity and autocorrelation regardless of
the number of endogenous regressors. The computer code accompanying this
paper provides empirical researchers with an easy-to-use bias-based first-stage
test under assumptions that match those imposed for second-stage inference.
Future work could consider the generalization of the size-based test of Stock

10An alternative possibility is that the 2SLS estimator is not making optimal use of the information
contained in the instruments, see e.g., Windmeijer (2022)

29



and Yogo (2005). The first-stage test statistic in this paper could also be the
foundation for extending the t-statistic inference approach for K = 1, N = 1

models of Lee et al. (2022). Finally, our generalization of the Nagar aprox-
imation to the 2SLS bias should also permit extensions to the methods in
Ganics et al. (2021) to construct confidence intervals for the 2SLS bias.
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A Proof of Lemma 1

From Assumption 2.b it follows that η1 = S12S
−1
2 (η2− c) + ε, where ε is mean

zero and independent of η2 and c = vec(C ′). Substituting into the expression
for β∗2SLS in Proposition 1 and taking expectations,

E [β∗2SLS] = E
[(
R′N,K(η2η

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(S12S

−1
2 (η2 − c)η′2)

]
.

(A.1)

Defining l = S
− 1

2
2 c, ψ = S

− 1
2

2 (η2 − c) ∼ N (0, INK) and using vec(UV ) =

(V ′ ⊗ I) vec(U), the bias in (A.1) can be rewritten as

E [β∗2SLS] = E

[(
R′N,K(S

1
2
2 (l + ψ)(l + ψ)′(S

1
2
2 )′ ⊗ IK)RN,K

)−1

(A.2)

×R′N,K
(
S

1
2
2 (l + ψ)ψ′S

− 1
2

2 ⊗ IK
)]

vec (S12) .

Using the definitions Φ = R′N,K(S2 ⊗ IK)RN,K , S = ((Φ/K)−
1
2 ⊗ IK)S

1
2
2 , and

ρ =
(
(R′N,K(S2 ⊗ IK)RN,K)−

1
2 ⊗ IK2

)
vec (S12) /

√
Tr(S1).1 The unweighted

bias becomes

E [β∗2SLS] = KΦ−
1
2E
[ (
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1(A.3)

×R′N,K
(
S(l + ψ)ψ′S−1 ⊗ IK

) ]
ρ
√

Tr(S1).

Using Definition 2,

B2 =
E [β∗2SLS]′R′N,K(S2 ⊗ IK)RN,KE [β∗2SLS]

Tr(S1)
= ρ′h′hρ,(A.4)

where h = KE
[(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1
R′N,K (S(l + ψ)ψ′S−1 ⊗ IK)

]
.

Therefore, B = ||hρ||2.

B Proof of Theorem 1

Define the function h : RNK 7→ RN×NK2

h(ψ) =
(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1(B.1)

×R′N,K
(
S(l + ψ)ψ′S−1 ⊗ IK

)
.

The Nagar approximation of h, denoted by hn, is the expectation of the
second-order Taylor expansion of Kh(ψ) evaluated at ψ = 0, and is given in

1The matrix S is non-symmetric in general, and Tr(S) = Tr(SS ′) = NK.
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vectorized form by

vec(hn) =
K

2
(1′NK ⊗ I(NK)2)

(
KN∑
j=1

(
eNKj (eNKj )′ ⊗ I(NK)2

)
(O2h(0))j

)
,

(B.2)

where 1m is the m× 1 vector of ones, emj the m× 1 vector with j-th element
equal to one and zeros in all other rows, and O2h(ψ) is the (NK)3 × NK

second matrix derivative of h. Using the matrix differentiation rules in, for
instance, Magnus and Neudecker (2019), O2h(ψ) is given by

O2h(ψ) =(INK ⊗ A3(ψ))OA1(ψ) + (A1(ψ)′ ⊗ I(NK)2)OA3(ψ)(B.3)

+ (INK ⊗ A4(ψ))OA2(ψ) + (A2(ψ)′ ⊗ I(NK)2)OA4(ψ),

where

A1(ψ) = −(C1(ψ)⊗ C1(ψ))B1 ((S ⊗ S(l + ψ)) + (S(l + ψ)⊗ S))

A2(ψ) = B2

((
(S−1)′ ⊗ S(l + ψ)

)
+
(
(S−1)′ψ ⊗ S

))
A3(ψ) =

(
S(l + ψ)ψ′S−1 ⊗ IK

)′
RN,K ⊗ IN

A4(ψ) = INK2 ⊗ C1(ψ)

OA1(ψ) =
(
((S ⊗ S(l + ψ)) + (S(l + ψ)⊗ S))

′
B′1 ⊗ IN2

)
C2(ψ)− (INK ⊗ (C1(ψ)⊗ C1(ψ)))B3

OA2(ψ) = (INK ⊗B2)
(
(vec((S−1)′)⊗ INK)S + (KNK,NK ⊗ INK)(INK ⊗ vec(S))(S−1)′

)
OA3(ψ) = (IN ⊗KN,NK2 ⊗ IN )(I(NK)2 ⊗ vec(IN ))KN,NK2A2(ψ)

OA4(ψ) = (INK2 ⊗KN,NK2 ⊗ IN )(vec(INK2)⊗ IN2)A1(ψ)

B1 = (R′N,K ⊗R′N,K)(INK ⊗KK,NK ⊗ IK)
(
I(NK)2 ⊗ vec(IK)

)
B2 = (INK2 ⊗R′N,K)(INK ⊗KK,NK ⊗ IK)

(
I(NK)2 ⊗ vec(IK)

)
B3 = (INK ⊗B1) (vec(S ⊗ INK)S + (KNK,NK ⊗ INK)(INK ⊗ vec(S))S)

C1(ψ) =
(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1

C2(ψ) = (IN ⊗KN,N ⊗ IN ) [vec(A0(ψ))⊗ IN2 : IN2 ⊗ vec(A0(ψ))] [A1(ψ)′ : A1(ψ)′]′.

Writing (B.2) in matrix form and simplifying yields

hn = Λ−1
(
R′N,K − (vec(Λ−1)⊗ IN

)′
(IN ⊗KN,N)

(
(IN2 +KN,N)(IN ⊗ L)⊗ L

))
,

(B.4)

where L = K−
1
2R′N,K(Sl⊗IK) and Λ is the concentration matrix in Definition

1. To proceed, we reparametrize the functional dependence of the bias on l
through

l = S−1
√
K vec(L′0D

1
2
ΛQ
′
Λ),(B.5)

34



where QΛ ∈ ON×N ,DΛ ∈ RN×N contain the eigenstructure of the concen-
tration matrix Λ, and L0 ∈ ON×K is an orthogonal matrix. By definition,
Λ = QΛDΛQ

′
Λ, where DΛ is a diagonal matrix containing the eigenvalues

λi > 0, i = 1, ..., N , and QΛQ
′
Λ = IN . The reparametrization in (B.5) refor-

mulates the choice of the NK parameters of l as an equivalent choice of the
N free parameters in DΛ, the N2 − (N + 1)N/2 free parameters of QΛ, and
the NK − (N + 1)N/2 free parameters of L0.

Using the eigenvalue decomposition Λ = QΛDΛQ
′
Λ, and the fact that (B.5)

implies L0 = Q′ΛΛ−
1
2L, (B.4) can be rewritten as

hn = QΛD
− 1

2
Λ M1(D−

1
2

Λ QΛ ⊗ L0 ⊗ L0)M2,(B.6)

whereM1 = R′N,N (IN3 + (KN,N ⊗ IN)) andM2 = RN,KR
′
N,K/(N +1)−INK2 ,

which provides the Nagar approximation for the expectation in the general
bias, hn, with

Bn(β,QΛ,DΛ, L0,W) = ||hnρ||2.(B.7)

Let B∗n(W, λmin) = sup
β,QΛ,DΛ,L0

{Bn(β,QΛ,DΛ, L0,W)} denote the sharp up-

per bound on the Nagar bias over β ∈ RN , QΛ ∈ ON×N , L0 ∈ ON×K and DΛ

in the set of all diagonal matrices with no diagonal element smaller than λmin,
the smallest eigenvalue of the concentration matrix.

Using the definitions of S1, S2 and S12 in (7),

Tr(S1) = Tr((β̃′ ⊗ IK)W(β̃ ⊗ IK)) = β̃′R′N+1,K(W ⊗ IK)RN+1,K β̃,(B.8)

vec(S12)′ = vec((β̃′ ⊗ IK)[W12 : W2])′

= vec(β̃′R′N+1,K([W12 : W2]⊗ IK))′,

where β̃ = [1 : −β′]′. Substituting into the definition of ρ in Lemma 1 yields

ρ = K−
1
2 Ψx/

√
x′x,(B.9)

where x = (R′N+1,K(W ⊗ IK)RN+1,K)
1
2 β̃ and Ψ =

(
SW− 1

2
2 [W12 : W2]′ ⊗

IK)RN+1,K(R′N+1,K(W ⊗ IK)RN+1,K)−
1
2 . Since

sup
β∈RN
||hnρ||2 = K−

1
2 sup
x∈RN+1

||hnΨx||2
||x||2

= K−
1
2 ||hnΨ||2,(B.10)

the optimization of the Nagar bias over β amounts to the taking the largest
singular value of the matrix hnΨ.
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Next, note that hnh
′
n = QΛDhQ′Λ where Dh = (K − 2(1 + N))D−2

Λ +

D−
1
2

Λ M1(D−1
Λ ⊗IN2)M ′

1D
− 1

2
Λ is a diagonal matrix, such that QΛ are eigenvectors

of hnh′n and Dh contains the eigenvalues. The i-th diagonal element of Dh is

1

λ2
i

(
K −N + 1 +

N∑
j 6=i

λi
λj

)
> 0,(B.11)

where λi > 0 is the i-th eigenvalue of Λ. Each eigenvalue of hnh′n is decreasing
in all eigenvalues of Λ. Making the dependence on DΛ explicit by the nota-
tion hn(DΛ) and fixing QΛ, it is therefore the case that λ−2

minhn(IN)′hn(IN)−
hn(DΛ)′hn(DΛ) is positive semidefinite for all DΛ with λmin as the small-
est diagonal element. This in turn implies that λ−2

minΨ′hn(IN)′hn(IN)Ψ −
Ψ′hn(DΛ))′hn(DΛ))Ψ is positive semidefinite, see Proposition 8.1.2 in Bern-
stein (2009). It follows fromWeyl’s inequality that λ−1

min||hn(IN)Ψ||2 ≥ ||hn(DΛ))Ψ||2,
see for example Theorem 8.4.9 in Bernstein (2009). Therefore,

sup
DΛ:λi≥λmin

K−
1
2 ||hn(DΛ)Ψ||2 = K−

1
2λ−1

min||QΛM1(QΛ ⊗ L0 ⊗ L0)M2Ψ||2,
(B.12)

which states that largest bias occurs when all eigenvalues of the concentration
matrix are equal to the smallest eigenvalue, and therefore when DΛ = λminIN .
Finally, sup

L0∈ON×K
{||QΛM1(QΛ ⊗ L0 ⊗ L0)M2Ψ||2} = sup

L0∈ON×K
{||M1(IN ⊗ L0 ⊗

L0)M2Ψ||2} for any QΛ, and therefore the sharp upper bound for the bias
does not depend on QΛ. This means the sharp upper bound is

B∗n(W, λmin) = λ−1
minK

− 1
2 sup
L0∈ON×K

{||M1(IN ⊗ L0 ⊗ L0)M2Ψ||2},(B.13)

which concludes the proof of part (i) of the theorem.
Turning to part (ii), the upper boundB∗(W, λmin)n ≤ λ−1

min(2(N+1)/K)
1
2 ||M2Ψ||2

follows fromK−
1
2 ||hn(λminIN)Ψ||2 ≤ K−

1
2λ−1

min||M1||2||(IN⊗L0⊗L0)||2||M2Ψ||2
and the fact that ||M1||2 = (2(N + 1))

1
2 and ||(IN ⊗ L0 ⊗ L0)||2 = 1. The

inequality follows from Proposition 9.6.1 in Bernstein (2009). Finally, the
upper bound, B∗n(W, λmin) ≤ λ−1

min||Ψ||2, follows from K−
1
2 ||hn(λminIN)Ψ||2 ≤

K−
1
2 ||hn(λminIN)||2||Ψ||2 = λ−1

min||Ψ||2 since ||hn(λminIN)||2 = K
1
2λ−1

min, see
(B.11).

C Proof of Theorem 2.

The Laplace transform of the trace of a noncentral Wishart distribution is
given in Mathai (1980), equation (1.6), from which it follows that the cumulant
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generating function is

(C.14) KTr(ζ)(t) = −1

2
Tr (Ω)− K

2
ln |INK − 2Σ|+ 1

2
Tr ((INK − 2Σ)−1Ω).

We follow e.g., Muirhead (1982) and Kollo and Rosen (1995) in evaluating
the cumulant generating function for a submatrix,
(C.15)

KTr(ζ)(TN) = −1

2
Tr (Ω)−K

2
ln |INK−2M(TN)Σ|+1

2
Tr ((INK − 2M(TN)Σ)−1Ω),

where TN is a N ×N matrix and

(C.16) M(TN) =
∑

i,j=1,...,N

tijMij, Mij = eje
′
i,

where ei is the i-th block of K columns of the matrix INK , so that Mijζ is the
matrix containing the i-th block ofK rows of ζ in its j-th block ofK rows, and
zero otherwise. Indexing each selection matrix Mij to a scalar value tij yields
the cumulant generating function of the trace of Mijζ, analogously to Mathai
(1980), when the remainder of TN is set to zero. Note that Tr(Mijζ) = Tr(ζij),
since the j-th diagonal block of MijW is ζij, and all other diagonal blocks are
zero.

The ij entry of R′N,K(ζ ⊗ IK)RN,K corresponds to the trace of the ij

K × K block of ζ. Thus, the n-th cumulants of R′N,K(ζ ⊗ IK)RN,K are ob-
tained by taking the coefficients on TnN

n!
in the Taylor expansion of KTr(ζ)(TN),

evaluated at TN = 0. Let ι(i) denote the index of some K × K block of a
NK×NK matrix. Then κn(ζ)ι(1),ι(2),... denotes the n-th cumulant of Tr(ζι(1))

with Tr(ζι(2)) . . . (i.e. the covariance for n = 2, etc.). Taking such partial
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derivatives yields the following expressions:

κ
ι(1)
1 (ζ) =

K

2
Tr(2Mι(1)Σ) +

1

2
Tr(2Mι(1)ΣΩ)

(C.17)

κ
ι(1),ι(2)
2 (ζ) =

K

2
Tr(22Mι(2)ΣMι(1)Σ) +

1

2

∑
p∈P(ι(1),ι(2))

Tr(22Mp(1)ΣMp(2)ΣΩ)

(C.18)

κ
ι(1),ι(2),ι(3)
3 (ζ) =

K

2

∑
p∈P(ι(2),ι(3))

Tr(23Mp(1)ΣMp(2)ΣMι(1)Σ)

(C.19)

+
1

2

∑
p∈P(ι(1),ι(2),ι(3))

Tr(23Mp(1)ΣMp(2)ΣMp(3)ΣΩ)

κι(1),ι(2),...
n (ζ) =2n−1

K ∑
p∈P(ι(2),ι(3),...)

Tr(Mp(1)ΣMp(2)Σ . . .Mp(n−1)ΣMι(1)Σ)

(C.20)

+
∑

p∈P(ι(1),ι(2),ι(3),...)

Tr(Mp(1)ΣMp(2)ΣMp(3)Σ . . .Mp(n)ΣΩ)

 ,

where P(·) denotes the set of all permutations of the indices in the argument
and p(i) denotes the i-th index in a given permutation. Note that for N = 1,
the formulas collapse to those for the trace in Mathai (1980).

We next prove a lemma relating Tr(Mι(1)ΣMι(2)ΣMι(3)Σ . . .Mι(n)Σ) to
Tr(Σι(1)Σι(2)Σι(3) . . .Σι(n)). For this purpose, denote the row block index of
ι(i) as ι(i)1 and the column block index as ι(i)2, so Mι(i) = Mι(i)1,ι(i)2 . Addi-
tionally, let Ui• denote the i-th block of K rows of the matrix U , and similarly
U•i for the block of columns.

Lemma 2. Tr(Mι(1)ΣMι(2)Σ . . .Mι(n)Σ) = Tr(Σι(1)1,ι(2)2Σι(2)1,ι(3)2 . . .Σι(n)1,ι(1)2).

Proof. For a general symmetric matrix U , the matrix Mι(1)U has the ι(1)1

block of K rows of U transferred to its ι(1)2 block of rows, with the remain-
der zeros. The product of a sequence of such matrices, Mι(1)U . . .Mι(n−1)U

contains zeros except for the ι(1)2 block of K rows. Suppose that this block
of rows can be written as Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n−1)1•. Then the product of
Mι(1)U . . .Mι(n−1)UMι(n)U is also a matrix of zeros except for the ι(1)2 block of
K rows, which are equal to Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n−1)1ι(n)2Uι(n)1•. Consider
as a base caseMι(1)UMι(2)U . The product is zeros except for the ι(1)2 block of
K rows, which is equal to Uι(1)1,ι(2)2Uι(2)1•. Thus, by induction, it follows that
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the product of Mι(1)U . . . UMι(n)U is a matrix of zeros, except for the ι(1)2

block of K rows, which are equal to Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n)1•, for all n. It
follows immediately that Tr(Mι(1)U . . . UMι(n)U) = Tr(Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n)1,ι(1)2),
since the latter argument is the single non-zero diagonal block. Letting U = Σ

and applying the preceding result yields the stated lemma.

Applying Lemma 2 to the cumulants above yields

κ
ι(1)
1 (ζ) =

K

2
Tr(2Σι(1)) +

1

2
Tr(2Σι(1)Ω)

(C.21)

κ
ι(1),ι(2)
2 (ζ) =

K

2
Tr(22Σι(2)1,ι(1)2Σι(1)1,ι(2)2) +

1

2

∑
p∈P(ι(1),ι(2))

Tr(22Σp(1)1,p(2)2Σp(2)1,p(1)2Ω)

(C.22)

κ
ι(1),ι(2),ι(3)
3 (ζ) =

K

2

∑
ι∈P(ι(2),ι(3))

Tr(23Σp(1)1,p(2)2Σp(2)1,ι(1)2Σι(1)1,p(1)2)

(C.23)

+
1

2

∑
ι∈P(ι(1),ι(2),ι(3))

Tr(23Σp(1)1,p(2)2Σp(2)1p(3)2Σp(3)1,p(1)2Ω)

κι(1),ι(2),...
n (ζ) =2n−1

K ∑
p∈P(ι(2),ι(3),...)

Tr(Σp(1)1,p(2)2Σp(2)1,p(3)2 . . .Σp(n−1)1,ι(1)2Σι(1)1,p(1)2)

(C.24)

+
∑

p∈P(ι(1),ι(2),...)

Tr(Σp(1)1,p(2)2Σp(2)1,p(3)2 . . .Σp(n)1,p(1)2Ω)

 .

We ultimately need the cumulants of γ′R′N,K(ζ ⊗ IK)RN,Kγ. Using the
preceding expressions for cumulants of R′N,K(ζ ⊗ IK)RN,K , we can compute
the cumulants of such quadratic forms. By homogeneity, the n-th cumulant
of the quadratic form γ′Uγ for a random matrix U is given by
(C.25)

κn(γ′Uγ) =
N∑

ι(1)1=1

N∑
ι(1)2=1

. . .

N∑
ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2

)
κι(1),...,ι(n)
n (U),

where ι(i) denote indices of individual elements of U . Given the previously
derived expressions for the cumulants of the entries of R′N,K(ζ ⊗ IK)RN,K , we
can now compute the cumulants of γ′R′N,K(ζ ⊗ IK)RN,Kγ, noting that the
cumulants for the ij entry are equal to those for the trace of the ij K × K
block of ζ, Tr(ζij).
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Plugging in the first summation in κι(1),...ι(n)
n (ζ), equation (C.24),

N∑
ι(1)1=1

N∑
ι(1)2=1

. . .
N∑

ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2

) ∑
p∈P(ι(2),ι(3),...)

Tr
(
Σp(1)1,p(2)2Σp(2)1,p(3)2 . . .

(C.26)

Σp(n−1)1,ι(1)2Σι(1)1,p(1)2

)
=

∑
p∈P(ι(2),ι(3),...)

N∑
ι′(1)1=1

N∑
ι′(1)2=1

. . .
N∑

ι′(n)1=1

N∑
ι′(n)2=1

(
n∏
j=1

γι′(j)1γι′(j)2

)
Tr(Σι′(1) . . .Σι′(n))

=(n− 1)!
N∑

ι′(1)1=1

N∑
ι′(1)2=1

. . .

N∑
ι′(n)1=1

N∑
ι′(n)2=1

(
n∏
j=1

γι′(j)1γι′(j)2

)
Tr(Σι′(1) . . .Σι(n)′),

where we used a change of indices to move from the first line to the second
(recognizing that each set of permuted indices on the blocks of Σ is just the
index for some other block of Σ indexed by ι′(i)) and in moving to the third
observed that the summand of the outer summation does not depend on the
indices of that summation. By the definition of matrix multiplication and
considerable algebra,

Tr(((γγ′⊗IK)U)n) =
N∑

ι(1)1=1

N∑
ι(1)2=1

. . .
N∑

ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2)

)
Tr(Uι(1) . . . Uι(n)).

Thus, the expression further simplifies to

(C.27) (n− 1)! Tr(((γγ′ ⊗ IK)Σ)n).

Next, we can apply the same steps to the second summation in the cumulants
to obtain

(C.28) n! Tr(((γγ′ ⊗ IK)Σ)nΩ).

Combining both terms yields the expression in part (i) of the theorem.
Turning to part (ii), using the fact that for a positive semi-definite matrix

V , |Tr(UV )| ≤ maxevalU Tr(V ), see Fact 8.12.29 in Bernstein (2009), and
the fact that Tr

(
((γγ′ ⊗ IK)Σ)nΩ

)
≥ 0, we have

Tr
(
((γγ′ ⊗ IK)Σ)nΩ

)
≤ maxeval{((γγ′ ⊗ IK)Σ)n−1}Tr

(
(γγ′ ⊗ IK)ΣΩ

)(C.29)

= Kλmin maxeval{((γγ′ ⊗ IK)Σ)n−1},
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where the last step follows from Tr
(
(γγ′ ⊗ IK)ΣΩ

)
= γ′R′(ΣΩ ⊗ IK)Rγ =

Kλmin. Next note that

maxeval{((γγ′ ⊗ IK)Σ)n−1} = (maxeval{(γγ′ ⊗ IK)Σ})n−1

(C.30)

=
(

maxeval{Σ
1
2 (γγ′ ⊗ IK)Σ

1
2}
)n−1

≤ (maxeval{Σ}maxeval{(γγ′ ⊗ IK)})n−1

= maxeval{Σ}n−1,

where the inequality follows from Ostrowski’s theorem, see for example The-
orem 4.5.9 in Horn and Johnson (2013), and the last step is due to the fact
that the matrix γγ′ has only one non-zero eigenvalue that is equal to one. We
therefore have the inequality

Tr
(
((γγ′ ⊗ IK)Σ)nΩ

)
≤ Kλmin maxeval{Σ}n−1.(C.31)

Using the Lieb-Thirring inequality for positive semi-definite matrices, see
Bernstein (2009) Fact 8.12.17,

Tr(((γγ′ ⊗ IK)Σ)n) ≤ Tr((γγ′ ⊗ IK)nΣn) = Tr(((γγ′)n ⊗ IK)Σn) = Tr((γγ′ ⊗ IK)Σn),

where the last equality results from the fact that the matrix γγ′ has only one
non-zero eigenvalue that is equal to one. Since Tr((γγ′⊗ IK)Σn) = γ′R′(Σn⊗
IK)Rγ with γ′γ = 1, we have

Tr(((γγ′ ⊗ IK)Σ)n) ≤ maxeval{R′(Σn ⊗ IK)R}.(C.32)

Applying the two inequalities (C.31) and (C.32) leads to the bounds in part
(ii) of the theorem.

D Proof of Proposition 3.

The distribution under the Imhof (1961) approximation in Definition 5 is

Pr(χ2
ν < (x− κ1)4ω + ν) =

∫ x

κ1−ν(4ω)−1

φ(z)dz ,where

(D.33)

ν = 8κ2ω
2 ; ω = κ2/κ3 ; φ(z) =

(
1 +

z − κ1

2κ2ω

)ν/2−1

e
− ν

2

(
1+

z−κ1
2κ2ω

)
(ν/2)ν/2−1ω

2ν/2−2Γ(ν/2)
.
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The pdf φ(z) has a mode at zm = κ1− (2ω)−1 if ν ≥ 2, and at zero otherwise.
The critical value associated with the upper α-percentile, x(α), is implicitly
defined by α =

∫∞
x(α)

φ(z)dz. To find the largest possible critical value among
all possible distributions, we solve the following optimization problem:

max
κ1,κ2,κ3

x(α) s.t. κn ≤ κ̄n for n = 1, 2, 3 .(D.34)

Consider the Kuhn-Tucker conditions∫ ∞
x(α)

∂φ(z)

∂κn
dz = µn,(D.35)

together with µn ≥ 0, n = 1, 2, 3, the constraints and the complementary
slackness conditions, where µn are the multipliers times φ(x(α)) > 0. The
Kuhn-Tucker conditions follow from the implicit function theorem and Leib-
niz’s rule: 1 = −φ(x(α))∂x(α)

∂y
+
∫∞
x(α)

∂φ(z)
∂y

dz ⇒ ∂x(α)
∂y

=
∫∞
x(α)

∂φ(z)
∂y

dz/φ(x(α))

with φ(x(α)) > 0 for α ∈ (0, 1).
The partial derivatives are

∂φ(z)

∂κ1

=
1 + (z − κ1)2ω

2κ2ω

(
1 +

z − κ1

2κ2ω

)−1

φ(z),(D.36)

∂φ(z)

∂κ2

=
φ(z)

κ2

G1 ((z − κ1)4ω + ν) ,(D.37)

∂φ(z)

∂κ3

=
φ(z)

κ3

G2 ((z − κ1)4ω + ν) ,(D.38)

where

G1(y) = −1

2
(y − 2ν(ν − 2)/y + ν) + 3/2(ln(y/2)− ψ(ν/2))ν,(D.39)

G2(y) =
1

2
(y − ν(ν − 2)/y)− (ln(y/2)− ψ(ν/2))ν,(D.40)

and ψ(x) = Γ′(x)/Γ(x) is the digamma function (the logarithmic derivative of
the gamma function Γ(x)). From Alzer (1997) (equation 2.2), we know that

1/ν < ln (ν/2)− ψ(ν/2) < 2/ν.(D.41)

For n = 1, the LHS of (D.35) is always positive to the right of the mode,
which means the constraint on the mean (n = 1) is always binding. The
Alzer bounds imply that in the right tail of any optimal distribution, the
LHS of (D.35) is always strictly positive for n = 2, 3, which means that the
constraints are also binding as long as α is sufficiently small.
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