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1 Introduction

Market fragility is often at the center of economic crises, featuring spirals of depressed asset

prices and illiquidity, with potentially devastating consequences for the economy. Tradi-

tionally, the focus has been on deleveraging and capital shortages in the (shadow) banking

sector, exemplified by the 2008 Global Financial Crisis. However, in recent decades nonbanks

have been growing rapidly and now perform a large share of intermediation in the economy.

This growth is, however, not without systemic risk. The COVID-19 episode was a clear

example, with bond markets entering severe turmoil in March 2020, prompting a large-scale

intervention by the Federal Reserve (Haddad, Moreira, and Muir, 2021a). Nonbank fragility

was an important driver of this turmoil, with historical levels of outflows suffered by bond

mutual funds (Falato, Goldstein, and Hortaçsu, 2021; Ma, Xiao, and Zeng, 2022). Forced

sales by shrinking funds significantly contributed to the sharp increase in credit spreads, as

shifts in institutional demand can lead to substantial disruptions in corporate bond prices

(Bretscher et al., 2022). This episode, as well as prior ones, suggest that asset prices and

flows are jointly determined in equilibrium and that their interaction is a key driver of mar-

ket fluctuations (Gabaix and Koijen, 2021). Nevertheless, the quantitative magnitude of the

equilibrium effects and the appropriate policy response still remain open questions.

This paper aims to fill this gap by developing a framework to analyze the fragility of

the corporate bond market. The model features a two-layer asset demand system: house-

holds allocate wealth to institutions, which allocate funds to specific assets. The framework

generates tractable joint dynamics of flows and asset values. It captures the dynamics of

crisis episodes by featuring dynamic amplification of shocks, as well as contagion across as-

sets and institutions. We show how the model can be estimated using micro-data on bond

prices, institutional investors’ holdings, and fund flows. We match the model to the March

2020 turmoil and quantify the equilibrium effects of unconventional monetary and liquidity

policies on asset prices and institutions.
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We first develop equilibrium conditions for the two-layer asset demand model. In the

first layer, households allocate wealth to institutional investors. Our key focus is on the flow-

performance relationship in the mutual fund sector, which affects the size of funds’ Assets

under Management (AUM): high returns lead to inflows into a fund, while poor returns lead

to outflows. In the second layer, institutional investors then allocate funds to specific assets.

We build on the framework of Bretscher et al. (2022) in which asset demand is driven by

asset returns and the institutions’ investment mandates. Equilibrium asset prices reflect

the demand of both households and institutional investors: AUM determines asset demand

through mandates, while asset holdings affect fund returns and drive changes in AUM going

forward. The framework can account for large heterogeneity across institutions in terms of

their flow sensitivities or asset demand elasticities.

The model yields rich yet tractable equilibrium dynamics characterized by a difference-

equation system of fund flows and asset prices. First, the model displays a feedback loop

between prices and flows. A negative shock to asset prices reduces fund returns, which leads

to outflows from mutual funds. Outflows then lead to asset sales by these institutions, fur-

ther depressing asset prices. The cumulative effect could be several times greater than the

initial shock.1 Second, the model displays contagion across assets. Shocks on the funda-

mental value of one asset can spill over to other assets through investor outflows. Because

institutions prefer to maintain certain portfolio weights, they tend to buy and sell assets

that are not directly affected by the fundamental shock. Third, the model displays conta-

gion across institutions. Institutions that themselves do not face significant outflows, such as

insurance companies, are affected by outflows from other institutions. Because asset prices

are depressed by outflow-induced asset sales, the asset values of insurance companies can

1Most of the paper focuses on an initial shock to bond values. However, the model is equally well suited
to studying flow shocks in the mutual fund sector. For example, households might decide to massively
re-balance away from bond funds towards money market funds at the start of a crisis, even before fund
performance deteriorates significantly. Because flows and asset prices are tightly linked in our framework,
price and flow shocks are amplified in relatively similar ways. We thus mainly focus on only one type of
shock for readability.
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decrease.

Although these amplifications and contagions have been documented in the prior liter-

ature, our framework has the unique advantage of characterizing them as simple sufficient

statistics that can be estimated, such as institution demand elasticities, flow-to-return sensi-

tivities, and the distribution of assets across institutions. This tractability makes the model

highly scalable despite heterogeneity: our empirical implementation includes thousands of

investor-specific parameters. The model guides us to construct an asset fragility measure,

which measures how much aggregate asset prices would decline for a given shock to the value

of one asset, taking into account both the direct contribution of the asset and the amplifi-

cation through other assets or institutions. A similar fragility measure can be constructed

for each financial institution in an analogous manner.2 These two measures can help poli-

cymakers evaluate the source of systemic fragility in credit markets and better target any

ex-post interventions.

We estimate the model parameters using microdata. The first layer uses flow-performance

regressions to determine how much outflow an institution would suffer if it experienced neg-

ative returns (Chevalier and Ellison, 1997; Sirri and Tufano, 1998). The second layer uses an

instrumental variables technique to estimate the asset demand system that exploits rigidities

in institutions’ investment mandates (Koijen and Yogo, 2019; Bretscher et al., 2022). For

the first layer, we construct a monthly panel of fixed-income funds from January 1992 to

December 2021 from the CRSP Mutual Fund Database and complement it with daily fund

flow and net asset value data for open-end funds from Morningstar. For the second layer,

we use a comprehensive dataset that merges holdings data from eMAXX and CRSP, pricing

data from WRDS Bond Returns, and bond details from Mergent FISD.

We estimate asset fragility in the cross-section of corporate bonds. The least fragile

asset class is long-term investment-grade (IG) bonds with a fragility of 1.3, which means

2Falato et al. (2021) provide strong empirical evidence of fire-sales spillovers across funds.
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that a 1% shock to the long-term IG bond prices would decrease the aggregate bond index

by 1.3% multiplied by the market value share of these bonds. Interestingly, IG bonds are

not always less fragile than high-yield (HY) bonds. In particular, short-term IG bonds (less

than five years) are surprisingly fragile: they face a level of amplification similar to short-

term HY bonds and a fragility of 2. Our framework allows us to unpack these differences:

these IG bonds are much more likely to be held by mutual funds than longer-term IG bonds,

particularly by mutual funds with a high flow sensitivity. This is intuitive: funds antici-

pating potentially large inflows prefer to hold liquid IG bonds as a precautionary measure.

In principle, differences in investor price elasticity also matter in explaining differences in

fragility, but quantitatively the effect of flow sensitivities dominates. Across institutions, we

find a significant fraction of mutual funds that are extremely fragile.

We use our estimates to study the effects of policy interventions to stabilize the market.

The Federal Reserve responded swiftly in the Spring of 2020 by lowering its interest rate

targeting and announcing corporate bond purchases for the first time. Other potential

interventions have been discussed, but quantifying their effects has largely been an open

question. We match the model to the key moments of the flows and price dynamics of March

2020 and study four types of ex-post interventions: First, conventional monetary policy

(risk-free rate cut) and asset purchases, which are broad measures that were implemented in

2020. Then we study two interventions focused on the fragile mutual fund sector, specifically:

direct lending to mutual funds and restricting redemption on mutual fund shares, which have

not been implemented but are related to interventions that have been implemented for the

banking sector.3 In each counterfactual, we feed in two weeks of price shocks implied by

CDS spreads and evaluate the impact of an intervention two days (early) or 14 days (late)

after the initial shocks. Moreover, we also study how well targeted these interventions are

in addressing fragility, in the sense of maximizing price impact while limiting the size of

3Nevertheless, there are some important dimensions of policy that are outside the current scope of our
framework, such as promises (Haddad et al., 2021a) or signaling (Cieslak et al., 2019).
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the intervention. Our framework allows us to compute the benchmark of a maximum-price-

impact intervention, in which the policy-maker targets the assets with the highest fragility,

as measured above, per unit of price elasticity.

First, we find that a rate cut improves prices and restores some of the loss in fund value.

IG bonds rebound significantly more than HY bonds because they have a longer duration.

There is also a significant rebound in institutional investors’ assets under management.

Interestingly, the timing of the intervention matters for the short-term path of prices and

AUM, but the eventual rebound is similar when intervening early or late. Second, we evaluate

a policy where the central bank purchases 5% of outstanding short-term (five years or less)

IG bonds. While these asset purchases target IG bonds, there is nevertheless a small price

benefit for HY bonds because of the rebound in fund AUM as well as investment mandates

increasing demand for HY assets. Mutual fund values rebound relatively more than insurers

due to the amplifying effect of inflows following a good performance but remain significantly

below pre-crisis levels. The timing of the intervention also matters relatively little for the

size of the eventual rebound.

Next, we study two types of intervention targeting the mutual fund sector specifically.

We consider the effects of lending directly to mutual funds against 2% of their IG bond

portfolio as collateral.4 We find that this policy is extremely effective at supporting prices

and limiting outflows, but only if it is implemented early. Despite not being targeted directly,

insurers also benefit from the market rebound. Intervening late, however, is almost entirely

ineffective. This evidence suggests that a “lender of last resort” towards nonbanks can

potentially be effective, but only if implemented sufficiently quickly. We then consider a

policy of freezing mutual fund redemption. Regulators did not mandate this policy in Spring

2020, but a significant number of funds facing severe liquidity issues suspended redemption

4On March 18, 2020, broadens program of support for the flow of credit to households and businesses by
establishing a Money Market Mutual Fund Liquidity Facility (MMLF). See “Money Market Mutual Fund
Liquidity Facility”, https://www.federalreserve.gov/monetarypolicy/mmlf.htm. However, this facility
does not cover bond mutual funds.
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(Grill, Vivar, and Wedow, 2021). Similar to direct lending, this policy is very effective, but

only when it occurs sufficiently quickly. Redemption restrictions, a classical tool of bank

regulation, might thus also be a consideration for nonbanks.

We then compare how well-targeted these policies are in addressing fragility. Perhaps

surprisingly, even though they only focus on IG bonds, asset purchases are the best-targeted

intervention and in fact close to the theoretical maximum-price-impact benchmark. This

is because they target short-term IG bonds which are significantly fragile due to being

held by especially flow-sensitive investors. This gives support to the policy choice of the

Federal Reserve in Spring 2020 if the goal was to maximize price impact under a limited

budget. On the other hand, conventional monetary policy (risk-free rate cut) is the least

well-targeted because it has the biggest price effect on less fragile long-term IG assets due to

their high duration. This is not necessarily surprising: the return to the zero lower bound was

dictated by many considerations other than addressing the bond market turmoil specifically.

The two other interventions targeting the mutual fund sector are better targeted, although

quantitatively, the effect is perhaps not as large as could be expected.

Finally, we also provide a counterfactual to gauge the effects of implementing swing

pricing, a preventive policy measure that requires funds to adjust their NAV to pass trading

costs to redeeming shareholders. We model this policy through a reduction in flow-to-

performance sensitivities, informed by the empirical finding of Jin, Kacperczyk, Kahraman,

and Suntheim (2021). We find that this policy is effective in avoiding the onset of a negative

feedback loop. It reduces by about 10 percentage points the decline in bond prices as well as

in the size of the mutual sector, even if naturally the policy does not fully prevent the effect

of a negative shock. Our quantitative result thus supports the recent regulatory proposal to

mandate swing pricing for mutual funds.5

Our paper contributes to the debate on the financial stability implications of non-bank

5See the SEC swing pricing proposal at https://www.sec.gov/rules/proposed/2022/33-11130.pdf.
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financial institutions. Our main contribution is to provide a framework to quantify the joint

dynamics of financial flows and asset values, with three objectives: (i) linking transparently

to the economic forces that have been documented in prior theoretical and empirical work, (ii)

being estimable with micro-data, (iii) conducting counterfactual analysis of unconventional

monetary and liquidity policies within a unified setting. We show how to combine a flow-

performance relationship for fund flows with a logit model of institutional asset demand to

generate tractable dynamics, amplification, and contagion. Moreover, key parameters can

be estimated with standard regression techniques, which allows for rich heterogeneity across

assets and institutions. To achieve this tractability, some dimensions are admittedly left

outside the scope of our modeling assumptions. Generalizing the framework further is an

important area for future research.

Related literature: We mainly relate to two growing areas of research: the literature

applying a demand system approach to asset pricing and the literature on mutual funds

fragility. While the first area has focused on the limited price elasticity of institutions’

demand and the second on the flow sensitivity of bond mutual funds, we focus on how the

combination of these two forces is key to generating the large amplification generally seen in

crises.

From a methodological standpoint, relative to existing work applying a demand system

approach to asset pricing (Koijen and Yogo, 2019, 2020; Koijen et al., 2021; Bretscher et al.,

2022) we endogenize institutional investors’ AUM, incorporating a second layer into our

model. In this way, we are able to capture strong dynamic feedback loops between flows and

asset prices that are particularly important in crisis episodes. Our focus on fund outflows

is also directly related to work on the role of flows and inelastic investors in equity markets

(Gabaix and Koijen, 2021). Our paper supports the view of Bretscher et al. (2022) that argue

that institutional investors’ demand is crucial for the pricing of corporate bonds. We build

on their result that the main investors in the corporate bond market exhibit vastly different
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demand elasticities and that investor composition matters greatly for corporate bond pricing.

We add that institutions’ flow sensitivity is a key driver of fragility in crisis times. In a

different application, Fang (2022) quantifies monetary policy amplification through bond

fund flows by estimating a nested logit demand system with flexible investor elasticity both

within and across asset classes. Similar in spirit, Azarmsa and Davis (2022) develop and

estimate a two-layer demand system in equity markets in which households allocate funds

among heterogeneous intermediaries.

This paper is also closely related to works studying the risks imposed by investor redemp-

tion for institutions that issue demandable liabilities, such as open-end mutual funds (Chen,

Goldstein, and Jiang, 2010; Goldstein, Jiang, and Ng, 2017; Zeng, 2017). Another strand

of the literature focuses on the illiquidity of the bond market and the fire-sale spillovers.6

Falato, Hortacsu, Li, and Shin (2021) in particular provide compelling evidence of how flow

shocks to some funds affect other funds, asset values, and ultimately financial stability. Im-

portantly, the impact of forced sales on prices depends on the market price elasticity, i.e.

the ability of other investors to absorb the selling pressure. Our two-layer framework ex-

plicitly connects both strands of this literature and accounts for the interaction between

flows and limited price elasticity. Our structural approach complements the existing em-

pirical studies of the stress events in the credit markets by nesting an explicit equilibrium

asset pricing model (Falato, Goldstein, and Hortaçsu, 2021; Haddad, Moreira, and Muir,

2021b; Ma, Xiao, and Zeng, 2022; Jiang, Li, Sun, and Wang, 2022). For instance, our frame-

work allows us to run counterfactuals to study various policy interventions that have been

implemented or discussed in serious stress events. For instance, we can shed light on the

“bond-fund fragility channel” of Falato, Goldstein, and Hortaçsu (2021) whereby the Fed

liquidity backstop transmits to the real economy via funds.

More generally, this paper also contributes to our understanding of the role of inter-

6See Coval and Stafford (2007); Frazzini and Lamont (2008); Greenwood and Thesmar (2011) for earlier
work on stock markets.
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mediaries for asset valuation during crisis episodes. A large body of work measures the

systemic risk in the financial system, with a particular focus on banks (Adrian and Brunner-

meier, 2016; Acharya, Pedersen, Philippon, and Richardson, 2017; Greenwood, Landier, and

Thesmar, 2015; Duarte and Eisenbach, 2021). Other papers have popularized the idea of

intermediary asset pricing (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014;

Haddad and Muir, 2021). We contribute to this line of work in two dimensions. First, the

existing literature often focuses on levered financial intuitions such as traditional banks and

shadow banks such that the key amplification mechanism is through deleveraging and capital

constraints. In contrast, we focus on unlevered nonbanks such as open-end mutual funds

whose fund sizes fluctuate over time even absent a leverage constraint. Second, we bring in

new insights and methods from the recent literature on demand system asset pricing, which

allows us to tightly map the model to micro-data on investor holdings.7

2 Data

For demand estimation, we construct a comprehensive dataset of corporate bonds using

bond issuance details from Mergent FISD, fund holdings from Thomson Reuters eMAXX

and CRSP Mutual Fund holdings, and trading information fromWRDS Bond Returns. From

Mergent FISD, we include all USD corporate bonds issued by non-financial, non-utility, non-

sovereign firms that are over $100 million at issuance.8 We exclude bonds that are issued

in exchange for an identical existing bond, or that do not report at least one credit rating,

tenor, credit spread, or size at issuance. We further exclude convertible bonds, capital impact

bonds, community investment bonds, and PIK securities. We restrict the holdings sample

to fund-quarters in which the fund holds at least 20 unique corporate bonds in our sample in

7However, one limitation of our framework relative to existing models of intermediary asset pricing is
that, while it generates asset price dynamics, it does not explicitly model institutions’ portfolio choice as a
fully dynamic optimization problem.

8Issuers with NAICS codes beginning with 52, 92, and 22 are excluded.
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the year. Following Bretscher et al. (2022), we use the last recorded price and yield for each

quarter in the WRDS Bond Returns dataset. We back out the credit spread for each bond-

quarter using an interpolated U.S. Treasury yield curve as per Gürkaynak et al. (2007). We

include holdings from 2010-2021 to capture the post-2008 financial crisis period up through

the COVID crisis of 2020. The estimation sample includes 2,306 mutual funds, 987 insurers,

and 10,942 unique corporate bonds.9

For estimating flow-to-performance parameters, we use the CRSPMutual Fund Database

to create a monthly panel of fixed-income funds from January 1992 to December 2021, cov-

ering a total of 2,967 funds. We complement the CRSP dataset using the daily fund flows

and net asset value (NAV) of open-end fixed-income mutual funds from the Morningstar

database. The daily sample focuses on the COVID-19 crisis period from January 1, 2020,

to April 30, 2020, covering a total of 1,199 funds. The daily sample allows us to zoom in on

the high-frequency variations in the flow and returns in a distressed period.

3 Framework

This section presents a two-layer asset demand model of institutional investors’ size, portfolio

holdings, and asset prices. The first layer consists of household demand for institutions

(mutual funds flows), i.e. savings allocation, which determines the dynamics of fund size

(Assets Under Management, or AUM). The second layer consists of institutional portfolio

allocation across assets. The combination of AUM and portfolio allocation across institutions

determines asset prices through market clearing. We first present a general setup and then a

more specific version to focus on the joint dynamics of fund flows and asset prices in a crisis.

9Because we focus on two classes of investors in the model, insurers and mutual funds, we group fund
types as follows: money market, balanced, unit investment trusts, funds of funds, and variable annuity
funds are classified as mutual funds, and property and casualty insurance, life insurance, and reinsurance
companies are classified as insurers.
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3.1 General setup

Layer 1: Household demand for institutions Each household is endowed with a dollar

that can be invested in a set of institutions including mutual funds, insurance companies,

and pension funds indexed by I = {0, 1, ..., I}, with option 0 representing the outside option

of managing the wealth by themselves. Each option is described as a vector of characteristics

Xt(i), which includes the return of the institution, the fee paid to the management, and so

on. Each household chooses the best option to maximize its indirect utility, i.e.

max
h∈H

uh,t(i) = κhXt(i) + ϵh,t(i), (1)

where κh are sensitivities to the characteristics of household type h; ϵh,t(i) captures hori-

zontal differentiation across each investment option. The weight of institution i in household

h’s portfolio is given by the following logit form:10

θh,t(i) =
exp (κhXt(i))∑I
i=0 exp (κhXt(i))

, (2)

The demand for institution liability by household h is then given by the portfolio shares mul-

tiplied by the household’s wealth Ah,t, then divided by the net asset value (NAV) Pt−1(i):
11

QD
h,t(i) =

θh,t(i)Ah,t

Pt−1(i)
, (3)

Layer 2: Institution demand for assets Financial institutions allocate households’

investments to a set of assets. We index assets by n = 0, 1, ..., N , where n = 0 corresponds

10This follows from the standard assumption that ϵh,t(i) follows a generalized extreme-value distribution
with a cumulative distribution function given by F (ϵ) = exp (− exp (−ϵ)).

11The assumption that household demand depends on Pt−1(i) is motivated by the fact the NAV is cal-
culated at the end of the date, so households only know the last period’s NAV when they invest. In our
application, the time between periods is small and equal to one day. The main result remains robust if we
use a different timing convention.
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to the outside asset and, time by t. Each institution has wealth Wi,t to invest (its assets

under management, or AUM). Each asset is described by a vector of characteristics Xt(n),

which includes risk and return, rating, maturity, and so on. Each institution chooses the

best option to maximize its indirect utility, i.e.

max
i∈I

ui,t(n) = κiXt(n) + ϵi,t(n), (4)

where κi are sensitivities to the characteristics of institution i, which reflects the mandates

of different institutions; ϵi,t(n) captures the idiosyncratic preference over different assets.

Assuming that ϵi,t(n) are extreme-value distributed, the weight of asset n in institution i’s

portfolio also takes a logit form:

θi,t(n) =
exp (κiXt(n))∑N
n=0 exp (κiXt(n))

, (5)

The NAV of an institution can be calculated using its asset portfolio weights,12

Pt(i) =
N∑

n=0

θi,t(n)Pt(n). (6)

The quantity of institution liability supplied is given by the asset under management divided

by the NAV,

QS
t (i) = Wi,t/Pi,t. (7)

The demand for asset n of institution i is given by the institution’s asset portfolio weights

multiplied by its assets under management, then divided by the price of the asset:

QD
i,t(n) =

θi,t(n)Wi,t

Pt(n)
, (8)

where Pt(n) is the price of asset n.

12Note that we can incorporate a management fee when calculating NAV. Because our focus is short-run
in which the management fee is mostly fixed, we abstract away the management fee.
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Market clearing The market for institution liabilities clears when the households’

demand for institution i’s liabilities equals its supply:

H∑
h=0

QD
h,t(i) = QS

t (i) (9)

for all institutions i = 0, 1, ..., I.

The asset market clears the demand for asset n equals its supply:

I∑
i=0

QD
i,t(n) = QS

t (n) (10)

for all assets n = 0, 1, ..., N .13

3.2 Joint dynamics of flows and asset prices

Layer 1: Flow-to-performance relationship We derive the equilibrium dynamics follow-

ing a shock to asset values. Specifically, we log-linearize the household demand for institution

liabilities, equation (3), and then take a first difference. Note that time-invariant character-

istics would drop out after taking the first difference. The main time-varying characteristic

that remains after the first difference is the lagged return of the institutions. Therefore, we

can specify ∆Xi,t = ri,t−1 for the household demand for institution liabilities, equation (3).

In that case, the aggregate inflow into institution i follows a familiar flow-to-performance

relationship:

fi,t ≃ βiri,t−1 − κirt−1 + at, (11)

13Note that the two markets clear in different manners. The price of institution liabilities is the NAV,
which is mechanically determined by the underlying assets according to the accounting rule, equation (6).
Therefore, the market of institution liabilities clears mostly through quantity adjustment: mutual funds
elastically create and destroy shares given investors’ purchase and redemption. In comparison, the asset
market clears mainly through prices, at least in the short run, because the quantity of outstanding assets is
mostly fixed.
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The key coefficient is the institution’s flow sensitivity βi which reflects the return sensitivity

of its households investors (κh). rt−1 is the weighted average return of all institutions, while

at is the average change in household wealth.14

Given our focus on nonbank fragility in credit markets, we emphasize this well-known

flow-to-performance relationship linking fund size (AUM) to past fund returns (Chevalier

and Ellison, 1997; Sirri and Tufano, 1998; Berk and Green, 2004). Flows in and out of

the mutual fund sector also played a central role in the 2020 turmoil (Falato et al., 2021;

Haddad et al., 2021b; Ma et al., 2022). Our focus on this particular version of the model is

justified by how important this economic channel is for nonbank fragility, both conceptually

and practically.

Layer 2: Institutions’ asset demand To derive institutions’ asset demand, we follow

the same steps of log-linearizing demand (equation (8)) before taking a first difference. We

assume the main time-varying asset characteristic that remains after the first difference

is the asset’s expected return. Furthermore, we assume changes in expected return are

negatively related to the price change according to the following relationship: ∆Xt(n) =

π(n) = ρ(n) (dt(n)− pt(n)), where dt(n) = ∆Et [lnDt+1(n)] is the expected change in the

cash flow from the asset, in the spirit of Gabaix and Koijen (2021). ρ = D
P
is the yield of the

asset.15 Therefore, the log-linearized equation (8) can be written as

qi,t(n) = −ζi(n)pt(n) + κiρ(n)dt(n) + fi,t +
N∑

m=0

θi(m) (ζi(m)pt(m)− κiρ(m)dt(m)) , (12)

The key coefficient is the price elasticity ζi(n) = 1 + κiρ(n) of institution i for asset n.16

14The full derivation is in Appendix A.
15Formally, consider a perpetuity bond that pays an expected cash flow D (adjusting for inflation and

default). The discount rate is ρ. Using the perpetuity formula, the price of this asset is given by P = D
ρ , where

ρ is the expected return of this asset. Take the first difference, π = ∆ρ = ∆D
P = ∆D

P /
(
D
P

)
× D

P = (d−p)×ρ.
The intuition is the following: an increase in expected cash flow leads to an increase in the expected return,
while an increase in price implies that the expected return going forward is likely to be low.

16Technically, the price elasticity is ∂qi,t(n)/∂pt(n) = −ζi(n)(1−θi(n)). It is however more convenient for
the algebra to keep track of the parameter ζ. Empirically, we recover ζ from elasticity estimates by dividing
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Importantly, inflows fi,t also impact demand because they determine the overall institutional

wealth (AUM) to be invested. The last term captures cross-price elasticities: when the price

of another asset m increases, the demand for asset n increases via a traditional substitution

effect.17

Matrix notation We can represent the model dynamics around a shock to asset values

using matrix notation. For simplicity, we ignore changes in immediate cash flows, i.e. d = 0,

so that the shock can thus for example be thought as a shock to the asset’s risk or its

long-term cash-flows. Note that the framework is equally well suited to study other types of

shocks such as flow shocks on the mutual fund sector.18

For tractability, the benchmark model makes one additional assumption. We study

shocks that affect the corporate bond market but not other assets in the household portfolio.

This implies that the shock a has negligible impact on the average return of household

portfolio (r ≈ 0) and induces a negligible change in total household wealth (a ≈ 0). In

the model, this assumption corresponds to the outside option being large enough relative

to corporate bond investments. Consistent with this assumption, in practice, the majority

of household wealth is invested in other asset classes, such as housing, stocks, deposits, and

government bonds. We study shocks that are orthogonal to shocks to these assets.19

Now, we can express the model dynamics using matrix notation. Note that asset prices

by (1− θi(n)).
17Technically, the last term also includes one term related to own-price elasticity (when m = n). The

derivation is in Appendix B.
18For example, households might decide to massively re-balance away from bond funds towards money

market funds at the start of a crisis even before fund performance deteriorates significantly. Because flows
and asset prices are tightly linked in our framework, price and flow shocks are amplified in relatively similar
ways. Internet Appendix C provide an illustration. We thus mainly focus on one type of shock for readability.

19These assumptions can be relaxed. Assuming that household wealth falls following a negative shock to
bond values would only amplify the feedback loop between flows and asset values we emphasize. Our main
mechanism also applies if the shock affects other asset classes as long as it affects corporate bonds relatively
more.
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determine the returns of institution based on the portfolio holdings:

rt−1 = θt−1 × pt−1, (13)

where θt−1 is a I × N matrix of portfolio weights for each institution. One row of θt−1

represents one fund’s portfolio weights across all assets, and adds up to one. Combined with

the flow-to-performance equation (11), the next period fund flows are given by

f t = β × rt−1 = β × θt−1 × pt−1, (14)

where β is I × I diagonal matrix with the i’th diagonal element being βi, the flow-to-

performance sensitivity of institution i.

Next, we map fund flows to asset prices. Define St as an N × I matrix of each

investor’ share of holding for each bond: the (n, i) element is thus equal to si,t(n) =

Qi,t(n)/
∑I

i=0Qi,t(n). One row of St thus reports every fund’s holdings of one asset nor-

malized by the size of that asset, and adds up to one. The aggregate elasticity for each asset

market is diag(St × ζ), where ζ is an I ×N matrix with the (n, i) element representing the

demand elasticity of institution i for asset n, ζi(n) . The aggregate elasticity for each asset

market depends on the holding shares of each investor. A bond mostly held by an inelastic

investor has a lower aggregate demand elasticity. This captures the key idea in Bretscher

et al. (2022) that investor composition matters greatly for market-level elasticity.

Similarly, we can write an expression for aggregate flows at the asset level as St × f t,

where f t is a I × 1 vector of the flow for each institution. Importantly, note that St × f t

represents how flows affect each bond, depending on how much the investor subject to this

flow was holding of the bond. Aggregate asset-level flows thus depend on the distribution of

bond holdings interacted with individual fund outflows.
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Now we can write down an expression for asset prices based on aggregated flows and

demand: qt = −diag (St × ζ)×pt+St×f t+St×(θt ⊙ ζ)pt, which is obtained by multiplying

equation (12) with si,t(n) and summing across i. Intuitively, the three terms capture the

three drivers of demand described above (1) own-price elasticity; (2) flows; and (3) cross-

price elasticities.20 Market clearing with no net issuance implies that qt = 0, thus we can

recover equilibrium prices. To simplify notation, define the price impact matrix of flows as

Ψt ≡ (diag (St × ζ)− St × (θt ⊙ ζ))−1×St, which depends on fund demand elasticities and

fund shares. Equilibrium prices are given by

pt = Ψt × f t (15)

where pt is an N × 1 vector of the change in log price for each asset.

Equilibrium dynamics We summarize the equilibrium dynamics of asset prices and

fund flows with the following difference equation system:

f t = Φt × pt−1

pt = Ψt × f t

(16)

Previous period asset log prices pt−1 affect current period fund flows f t by a price-to-

flow multiplier Φ ≡ β × θ, which depends on fund flow to performance sensitivity and the

portfolio weights of each fund. Current period fund flows f t in turn affect current period

prices pt by the price impact matrixΨ ≡ (diag (S × ζ)− S × (θ ⊙ ζ))−1×S, which depends

on fund demand elasticities and fund shares.

What is the cumulative effect of a given price shock? To build intuition, we can use

the equation system to derive a closed-form expression for how a primitive shock v to asset

20Technically, the last term also includes some terms related to own-price elasticity (the diagonal ele-
ments). The main effect nevertheless comes from the off-diagonal elements capturing cross-price elasticities.
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prices propagates through the system by making the simplifying assumption that Ψ and Φ

are constant over time. In that case, the first round impact on asset prices is v. The second

round impact is (ΨΦ)v. The n’th round impact is (ΨΦ)n−1v. The cumulative impact is

thus (I +ΨΦ+ (ΨΦ)2 + ...)v = (I −ΨΦ)−1v.

Figure 1 shows an example of the model dynamics. We consider an economy with two

sectors: mutual funds and insurance companies investing in two assets: IG and HY. For the

sake of illustration, we provide an example with parameters that are in line with the data,

although we defer the details of estimation to the next section. Mutual funds face an average

flow-to-performance sensitivity β of 0.6 while insurance companies face a sensitivity of 0

because insurance companies’ liabilities are not demandable as mutual funds. The demand

elasticities ζ are 1.1 and 0.97 for mutual funds and insurance companies, respectively. The

assets under management W and the portfolios θ for each sector are calibrated to the 2019Q4

level. We simulate the dynamics following a 10% shock on the asset prices of HY bonds at

time 1.

The example shows three interesting dynamics in equilibrium. First, there is a feedback

loop between prices and flows. A negative shock reduces the HY bond price by 10%, as

shown by the intercept of the red solid line of Figure 1a. However, this 10% is not the full

impact. The price drop reduces fund returns, which leads to outflows. Outflows then lead

to asset sales by mutual funds, which further depresses asset prices. The cumulative effect

on the HY bond prices is over 13% in this example, well over the initial 10% shock.

Second, the model displays contagion across assets. Although there is no fundamental

shock on IG bonds, their prices also drop in the equilibrium because institutions’ demand for

these assets falls. The cause of the cross-asset contagion is due to institutions’ investment

mandates; funds need to maintain certain portfolio weights, so they will sell IG bonds to

rebalance their portfolios.
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Third, the model displays contagion across institutions. Although insurance companies

are not directly affected by the outflows, their asset values decrease subsequently due to the

falling asset prices. The magnitude of the reduction is smaller than mutual funds, which

suffer from outflows on top of decreasing asset prices.

Importantly, the flow effects embodied in the first layer of the model are crucial to gen-

erate these dynamics. Figure IA.1 in the Internet Appendix shows that there is no dynamic

amplification nor contagion when institutions’ wealth is exogenous. Note also that while

this example assumes away most of the investor heterogeneity for the sake of illustration,

the framework’s tractability makes it highly scalable: our empirical implementation below

includes thousands of investor-specific parameters.

4 Estimation

In this section, we describe the estimation of key parameters of the model. Specifically, we es-

timate for each fund-year: (1) asset-specific demand elasticities and (2) flow-to-performance

sensitivities. This rich set of parameter estimates is important to realistically quantify the

contagion of shocks through financial markets. Our framework is tractable enough to handle

these multiple dimensions of heterogeneity.

4.1 Demand estimates

To estimate the price elasticity of demand, we implement a method similar to Bretscher et al.

(2022) and Koijen et al. (2021). Specifically, we take the investment universe of other funds

as exogenous to a given fund’s demand for an asset, and use other fund investment universes
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as an exogenous price shifter to pin down demand elasticities.21 Based on the empirically

tractable model derived in Koijen and Yogo (2019), we can write log demand δi,t(n)
22 as a

function of credit spreads and bond characteristics xt(n):

ln δi,t(n) ≡ αi,tst(n) + βi,txt(n) + ui,t(n). (17)

We include the following bond characteristics in xt(n) to capture potential risk sources

that could affect both credit spread and investor demand: duration-matched U.S. Treasury

yield, issuer credit rating, time to maturity, initial tenor, initial offering amount (logged),

and the bid-ask spread.

To address the endogeneity concerns discussed above, we instrument the credit spread

by

ẑi,t(k) = ln

(∑
j ̸=i

Aj,t
1j,t(k)

1 +
∑N

m 1j,t(m)

)
, (18)

where k indexes the class of a bond, as defined by the credit rating-tenor-industry of the issuer

and 1j,t(k) indicates that fund j includes class k in its investment universe in period t. This

definition of the instrument prevents a fund’s investment universe from being affected by the

frequent issuance and maturity of bonds. It accounts for the findings of Li et al. (2022) that

individual bonds can be very good substitutes: inelastic demand tend to arise across classes

of bonds instead.23 The intuition behind the instrument is that it affects prices because the

more funds (and the larger those funds) include class k in their investment universe, the

21A growing literature explores other methodological advances, including incorporating the competitive
interaction among investor demand elasticities (Haddad et al. (2021)), and identifying off of fund flows
rather than holdings (van der Beck (2021)). While we adjust the instrument to reflect the idea that investors
have preferred habitats (Vayanos and Vila (2021)), the goal is not to deviate significantly from the existing
demand estimation literature.

22Note that δi,t(n) =
wi,t(n)
wi,t(0)

represents the portfolio weight fund i invests in asset n at time t relative to

the portfolio weight of the fund’s outside option
23Concretely, an insurer might be close to indifferent between two BBB bonds of similar maturity, but

might display very inelastic demand for a similar HY bond. See Table 13 of Siani (2021) for a summary of
the persistence of fund class holdings.
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larger the exogenous component of demand, holding fixed other bond characteristics. The

instrument satisfies the exclusion restriction as long as other funds’ investment universes are

exogenous to one fund’s demand for individual bonds.

We construct the instrument by defining a security as part of a fund’s investment uni-

verse in a given quarter if the fund has held that class of security at least once in the prior

12 quarters. Bonds are categorized into 460 “classes” based on tenor-rating-industry.24 Ta-

bles 2 and IA.1 reports summary statistics of the classes and Table IA.2 reports summary

statistics on investor holdings data. We find the instrument is relevant: i.e., a higher ẑ(k)

corresponds to lower (higher) credit spreads (prices). Table 3 reports the results for the first

stage, within a fund-asset combination. A higher value for the instrument corresponds to

higher prices and thus lower yields, and the relationship is statistically significant.

We run IV regressions for each investor, asset class, and year from 2010-2021 in which

the fund holds at least 20 unique bonds and at least 20% of its holdings in corporate bonds

in the period. On the left-hand side, we use the total market value of bonds relative to the

total value invested in the outside asset. We construct the right-hand-side variable as the

last traded credit spread as of quarter end, scaled by the time to maturity remaining on the

bond in years so that we can map it easily to prices. We include quarter fixed effects to

absorb within-year variations in market conditions that may affect all funds.

Table 4 reports the distribution of estimated demand elasticities.25 While demand

curves are downward sloping (i.e., funds allocate towards lower-priced securities, all else

equal), funds are relatively inelastic, as documented in prior papers including Bretscher

24There are six tenor categories (up to and including 1, 3, 5, 7, 15, 100 years), five rating categories (up
to and including CCC+, B+, BB+, BBB+, and AAA), and 16 industry categories (2-digit NAICS codes).
Not all tenor-rating-industry triplets have bonds in the category.

25We convert estimated coefficients to demand elasticities as per Koijen et al. (2021). where −∂qit(n)
∂pt(n)

=

1 + β
mt(n)

(1 − wit(n)), where mt(n) is the remaining maturity of the asset n. Because we estimate directly

the elasticity on credit spread times remaining maturity, our coefficients map to β
mt(n)

, and we approximate

the weight of the asset n to be zero, as the weight of each individual asset is negligible relative to the full
fund.
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et al. (2022). On average, holders of HY bonds are more elastic than holders of IG bonds.

Across investors, mutual funds are more price elastic than non-mutual funds (in this case,

insurers), consistent with findings in Bretscher et al. (2022). We estimate an average demand

elasticity of 0.97 for insurers and 1.1 for mutual funds. Within mutual funds, ETFs are the

most demand elastic on average, followed by index funds. Index funds have a mean elasticity

very close to 1, as expected. Over time, funds have become more price elastic overall, with

average elasticities increasing from 0.8 before the 2008 financial crisis to 1.5 in the 2020-2022

period, likely driven by the increase in mutual fund shares.

4.2 Flow to performance estimates

Another key input to our model is the flow to performance sensitivities. We first use the

CRSP data to construct a monthly panel of flows and returns. We define net flow as the net

growth in fund assets adjusted for price changes. Formally,

Flowi,t =
TNAi,t − TNAi,t−1 × (1 +Ri,t)

TNAi,t−1

, (19)

where TNAi,t is fund i’s total net assets at time t, Ri,t is the fund’s return over the prior

month. We conduct the following regression at the fund-month panel and report the results

in Table 5:

Flowi,t+1 = βReturni,t + γXi,t + vi,t, (20)

where Xi,t is a vector of control variables including flows at time t, fund fixed effects, and

time fixed effects.

Columns 1–4 of Table 5 show that fund flows are highly responsive to past returns, a

relation well documented in prior literature (Chevalier and Ellison, 1997; Sirri and Tufano,

1998). In the monthly sample, one percentage point reduction in monthly fund return leads
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to a net outflow in the magnitude of 0.26%–0.29% of the fund’s assets under management.

The magnitudes are robust to the inclusion of fund and time fixed effects. Because we are

mostly interested in the pattern of fund outflows, in Column 5 we separate negative and

positive returns. We find the flows are more sensitive to negative returns, consistent with

Chen, Goldstein, and Jiang (2010).

We next consider the daily sample during the COVID-19 crisis. Using the daily sample

allows us to calibrate the model to daily frequency during a major distress event in the bond

market, which helps to study financial stability implications. We run similar regressions

as equation (20) and report the results in Table 6. In the daily sample, a one percentage

point reduction in daily fund return leads to a net outflow in the magnitude of 0.06%–0.14%

of the fund’s assets under management, as shown in Columns 1–4. We find the flows are

more sensitive to negative returns in the daily sample in Column 5. A one percentage point

reduction in daily fund return leads to a net outflow in the magnitude of 0.17% of the fund’s

assets under management.

We report further cross-sectional and time-series variation in flow to performance es-

timates in Table 7. These fund-specific elasticities will be used in simulating the model to

run policy counterfactuals. The average flow to performance estimates in 2010-2019 across

all mutual funds was 0.6, indicating that a 1pp decline in returns leads to a net outflow of

0.6% of the fund’s assets under management.

5 Measures of fragility

Using the model dynamics derived in Section 3.2, we can construct two measures of fragility

in the model. Asset fragility measures fragility in the cross-section of bonds, while fund

fragility measures fragility in the cross-section of mutual funds. It is worth noting that
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both fragility measures are macro-prudential in nature. They measure the contribution of a

specific asset or a specific financial institution to the aggregate market fragility but do not

measure the risk of the individual asset or institution by itself.

5.1 Fragility in the cross-section of bonds

The first measure is defined at the asset level. We ask: what is the impact on the aggregate

bond price index if asset n experiences an exogenous shock to its price? For each asset,

fragility depends on how prices affect flows and how flows then affect prices. As described in

the previous section, these objects are functions of the asset’s share of the overall market and

the characteristics of the funds that hold the asset, including portfolio weights, the flow to

return sensitivity, demand elasticities, and other asset holdings. Building on this intuition,

the asset fragility measure is given by

Asset fragility ≡ α′(I −ΨΦ)−1./α′, (21)

where α is an N × 1 vector of the market share of each bond and Ψ and Φ are the price

impact matrix of flows and the price-to-flow multiplier, respectively. We normalize each

asset’s effect on the market by the total market share of this asset αn so that the shock is

on a per-dollar basis. Asset fragility measures the contribution an asset makes to aggregate

fragility. It is not a measure of the risk of the asset itself. As we will see in the empirical

analysis, safe bonds can score larger on that fragility metric.26

26This formula shares some elements with the fire-sales spillover measure of Falato et al. (2021), the
fragility measure of Jiang et al. (2022), or the stock price fragility measure of Greenwood and Thesmar (2011).
To understand the intuition behind this formula, it is useful to define a new variable mn,k = (I −ΨΦ)−1

n,k

as the cumulative spillover from asset n to asset k. Recall from the example in the previous section that
this formula for the cumulative impact comes from

(
I +ΨΦ+ (ΨΦ)2 + ...

)
= (I − ΨΦ)−1, summing up

indirect effects across all “rounds”. This parameter measures the cumulative price impact on asset k due to
a shock on asset n through all the flow-return linkages. The aggregate impact on the aggregate asset market
index is then

∑N
k=1 αkmn,k. For simplicity, the measure assumes that Ψ and Φ are constant. We however

use time-varying Ψ and Φ in our policy counterfactuals below.
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Numerical example: To see more clearly what contributes to an asset’s fragility, we

consider a simple numerical example with three funds of equal size that invest in two equally-

valued assets, A and B, and 30% in an outside asset. One fund invests in equal weights in

each asset A and B, another is a specialist in asset A and holds twice as much of asset A

as asset B, and the third specializes in asset B and holds twice as much of asset B as asset

A. We fix the flow sensitivity of the equal-weighted fund to 0.1 and the flow sensitivity of

Specialist A to 0.6. See Table 1 for a summary of the parameters in the numerical example.

We plot how the fragility of the two assets varies with different parameter values in

Figure 2. In the first panel of Figure 2, we hold all fund demand elasticities fixed at 1 (i.e.,

a 1% drop in prices corresponds to a 1% increase in quantity) to mimic a value-weighted

portfolio target and demonstrate how variation in the flow sensitivity of Specialist B impacts

the fragility of the assets in its portfolio. As the flow sensitivity for Specialist B increases,

asset B fragility increases as a convex function of the flow sensitivity. Asset A fragility

increases as well because all funds hold both assets, but not as much because Specialist B

holds a smaller share of Asset A.

In the second panel of Figure 2, we hold the flow sensitivity of Specialist B fixed at

one and instead vary the demand elasticity of Specialist B over asset B. As Specialist B

becomes more price elastic over asset B, reducing the price impact of a given sale, the

asset fragility of asset B declines. The fragility of asset A also declines as a smaller price

impact on sales of asset B will also reduce asset A fragility. However, the effect is not as

dramatic as adjusting flow sensitivities. The asset pricing literature has emphasized the role

of demand elasticity (Bretscher et al., 2022) while works on mutual funds have emphasized

flow sensitivities (Falato et al., 2021). We argue that both perspectives are important to

understand the cross-section of bond fragility, but that neither is sufficient on its own.

Asset fragility estimates: We can use the fund-level flow sensitivity estimates, the

fund-asset-level demand estimates, and observed holdings shares and fund values to compute
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this asset fragility measure in the cross-section of bonds. Table 8 shows the asset fragility es-

timates for different asset classes as of 2019, splitting our sample of bonds into four categories

based on IG vs. HY and long-term (5 or more years remaining) vs. short-term.

Across asset classes, asset fragility is between 1.3 and 2.1. Interestingly, IG bonds are

not generally less fragile than HY bonds. Moreover, within rating categories, short-term

bonds are more fragile than long-term bonds. In terms of economic magnitudes, the least

fragile asset class are long-term IG bonds, with a fragility of 1.3. This corresponds to some

moderate, albeit not insignificant, amount of amplification. Strikingly, short-term IG bonds

are significantly more fragile: with a fragility of 2, they face an amount of amplification

between that of long-term HY bonds (fragility of 1.9) and that of short-term HY bonds

(fragility of 2.1).

Our framework allows us to unpack these differences. First, being held by investors

facing a stronger flow sensitivity β increases fragility. For instance, the third row of Table 8

shows that long-term IG bonds have a very low mutual fund market share, while short-term

HY bonds have the highest share. The fact that insurers and pensions are large investors

in that segment plays an important stabilizing role that is reflected in our low fragility

estimate (Coppola, 2021). However, fragility cannot be reduced to mutual funds’ market

share alone. Short-term IG bonds are more fragile than long-term HY bonds in spite of

not having a higher mutual fund market share. The fourth row shows that heterogeneity in

mutual funds’ flow sensitivities β is key: short-term IG bonds are held by mutual funds that

have particularly high β. This is intuitive: funds that anticipate potentially large inflows

prefer to hold liquid IG bonds as a precautionary measure.

In principle, differences in investor price elasticity also matter in explaining differences

in fragility, as illustrated in the numerical example above. For example, long-term IG bonds

are still fragile in spite of low investors’ flow sensitivities in part because they are held

by the most inelastic investors (elasticity of 1). However, quantitatively the effect of flow
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sensitivities dominates. Mutual funds are more elastic than insurers, but the asset classes

they hold tend to nevertheless be more fragile.

5.2 Fragility in the cross-section of mutual funds

We next define a fund-level fragility measure, which tells us the impact of the aggregate

bond price index if fund i experiences a shock to its return:

Fund fragility ≡ α′(I −ΨΦ)−1Ψ× β./αf
′, (22)

where αf is a I × 1 vector of the market share of each fund. We normalize each fund i’s

effect on the market by its market share so that the overall impact on the bond index is

expressed on the basis of per dollar AUM.

Numerical example: To clarify what contributes to a fund’s fragility, we return to

the numerical example above and plot fund fragilities in Figure 3. In the first panel of Figure

3, we hold all fund demand elasticities fixed at one and demonstrate how variation in the

flow sensitivity of Specialist B impacts the fragility of all funds. As the flow sensitivity for

Specialist B increases, its fund fragility increases. Importantly, the fragility of the other

funds increases as well, given the increased fragility in the underlying assets. The equal-

weighted fund is more negatively affected by the increase in Specialist B’s flow sensitivity

than Specialist A is, given Specialist A holds a smaller share of asset B. In the second panel

of Figure 3, as the demand elasticity of Specialist B over asset B increases, the price impact

of a given shock decline, and thus the fragility of the fund declines. The decline in the price

impact for Specialist B’s holding of asset B will also reduce the fund fragility of the other

funds that hold asset B. In both panels, the fund fragility of the equal-weighted fund is lower

than the fund fragility of the other two funds, given its low flow-to-performance sensitivity.

28



Intuitively, the fund fragility is driven by two categories of characteristics: (1) its own

characteristics as well as (2) the characteristics of its holdings. In the first category, the

fund’s elasticity, flow to performance, and its portfolio share in each asset affect its fragility.

Importantly, in the second category, we find fragility can also arise from the characteristics

of a fund’s holdings. If a fund holds more assets that are also held by funds with high

flow sensitivities or low demand elasticities and are thus more fragile, its fragility increases.

This fund fragility measure thus demonstrates the importance of considering the interaction

between fund- and asset-level holdings and characteristics.

Fund fragility estimates: Across mutual funds, we find a significant fraction of mutual

funds that are extremely fragile. Figure 4 presents a histogram of our fund fragility estimates

at year-end 2019. Many funds have a fragility between 1 and 5, but many are substantially

more fragile. To understand the economic magnitudes, a fund having a fragility of 10 means

that a 1pp decline in its return would lead to a 10% decline in aggregate bond market values

if that fund held the entire market portfolio (taking the matrices Ψ and Ψ that capture

amplification as given).27

6 The March 2020 turmoil and intervention

The onset of the COVID-19 crisis saw significant disruptions in the corporate bond market,

including sudden spikes in spreads and outflows from bond mutual funds as liquidity dried

up in a matter of days in March 2020 (Haddad et al., 2021b; Falato et al., 2021; O’Hara

et al., 2021). Our framework is designed to understand such an episode and can capture

feedback loops between price changes and flows, as well as contagion effects across asset

classes and institutions. In this section, we first match our model to the March 2020 turmoil

and then we run counterfactuals to evaluate different policies that attempt to mitigate this

27In this picture, we exclude fund with an estimated fragility larger than 25 as they are likely driven by
estimation noise.
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large negative shock to the corporate bond market.

6.1 Matching the model to the March 2020 turmoil

We match our model using three ingredients. First, we feed a sequence of daily price shocks

to IG and HY bonds separately for the first 10 days of the crisis in March. The magnitudes

of these shocks are implied by the rise of CDS spreads from March 4-18 and capture a

sudden deterioration in fundamental credit risk. We however feed no initial flow shock to

the mutual fund sector, such that the dynamics of outflows will be entirely endogenous to

our equilibrium model.

Second, we use estimates of (β, ζ) documented above to capture cross-sectional differ-

ences in flow sensitivities and elasticities across institutions. Specifically, we consider an

economy with two sectors: mutual funds and insurance companies. Mutual funds face a

fund-specific flow-to-performance sensitivity β as summarized in Table 7, while insurance

companies, which we aggregate into one fund, face a sensitivity of 0.28 The estimated de-

mand elasticities vary by fund-year-asset and are reported in Table 4.29 The assets under

management W and the portfolios θ for each institution are calibrated to the 2019Q4 levels.

Our framework is tractable enough to account for thousands of parameters capturing the

rich investor heterogeneity of the data. In particular, we include the 264 unique mutual

funds for which we can estimate both ζ and β in 2019.

Third, we add an additional economic force to institutions’ asset demand: the tendency

to potentially sell certain assets first to meet redemption given outflows. In our baseline

model, a mutual fund sells assets proportionally when faced with outflows holding future

28O’Hara et al. (2021) document how insurers’ stable funding allow the sector to become buyers in periods
of market distress. In fact, insurers may even experience net inflows when credit conditions worsen and prices
drop; see Figure 7 of Coppola (2021), although these are probably small at the horizon of a week or two.

29To ensure our counterfactual results are not driven by outliers, we focus on the 95% (96%) of IG (HY)
elasticities that are between 0 and 5, and the 89% of positive flow sensitivity funds with flow sensitivity
below 5. We then transform estimated elasticities into the parameter ζi by dividing by 1− θi.
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expected returns constant. However, empirically it is now well understood that institutions

have a tendency to sell more liquid assets first (Ma, Xiao, and Zeng, 2022). Formally,

the demand for assets depends also on the level of outflows ft faced by the fund: ∆Xt =

(πt, ft). The loading on outflows for a specific asset, which we refer to as λ(n), has a natural

interpretation in terms of (relative) transaction costs: an asset with λ < 0 will be sold

more than proportionally after an outflow, while an asset with λ > 0 will be sold less than

proportionally (for the same news about their expected returns). We will assume two values

of λ, one for each of IG and HY bonds, and calibrate (λIG, λHY ) to match the data given

our other parameter estimates.

Specifically, we match key moments of price and flow dynamics of the March 2020

turmoil. We target a 20% price decline for IG bonds (Haddad et al., 2021b), as well as

cumulative mutual fund outflows of 10% of AUM (Falato et al., 2021). Figure 5 shows the

dynamics of bond prices and flows in our model simulation. It matches the data well, except

that the model-implied cumulative outflows are a little larger than in the data. We also

recover that λIG < 0 and λHY > 0, which is consistent with IG bonds having a tendency to

be sold first. This was by assumption but is a by-product of our calibration that lines up

with the evidence in Ma, Xiao, and Zeng (2022).

6.2 Policy intervention

Policy-makers often choose to intervene in the face of market turmoil, and March 2020 was

no exception. Intervention can involve some form of unconventional monetary or liquidity

policy, where the typical rationale is to stop feedback loops between declining asset prices

and asset sales. How to design/conduct these interventions is still largely an open question.

In practice, vastly different policies have been implemented or discussed. For instance, the

interventions carried out by the Federal Reserve in the Spring of 2020 were pretty broad: a
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large interest rate cut and a program of corporate bond purchases. On the other hand, other

proposals have suggested more focus on the fragile mutual fund sector specifically. While

traditional banks are often subject to such targeted interventions in crises, similar policies

were not implemented for non-banks intermediaries such as bond mutual funds, despite being

at the center of the 2020 turmoil.

In this section, we use our model to study the equilibrium effects of ex-post interventions

on corporate bond prices and institutional investors. Our framework is well suited to compare

different interventions within a unifying framework. We run counterfactuals related to four

types of ex-post interventions: conventional monetary policy, asset purchases, direct lending

to funds, and redemption restrictions on mutual fund shares. For each intervention, we can

also study how much the timing, early versus late, matters. We can also use the model to

measure how well “targeted” an intervention is, given the large heterogeneity in fragility

documented above. Finally, we study the impact of swing pricing, an important type of

ex-ante intervention.

While our model can simulate the effects of these policies on prices and fund value, we

note from the outset that any counterfactual analysis is subject to potential caveats. First,

we can only study interventions that can be clearly mapped to variables in our framework.

Certain dimensions of policy are thus outside the current scope of our analysis, such as

conditional policy promises (Haddad et al., 2021a) or signaling (Cieslak et al., 2019). Sec-

ond, the counterfactual exercise takes estimated parameters as invariant and re-calculates

equilibrium prices and flows across assets and institutions. Nevertheless, there is a concern

that policies might change the underlying parameters. This concern is especially salient for

fund-to-performance sensitivities β. For this reason, we deliberately include specific policies

that affect β directly, such as redemption restrictions or swing pricing, and allow β to vary

within the policy counterfactual.
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6.2.1 Conventional monetary policy

First, in Figure 6, we simulate a conventional policy rate cut of 100 basis points implemented

after the negative shock to bond markets. Specifically, we allow the price of each asset to

increase by 1.00%×m(n) at the implementation of the policy, where m(n) equals the average

remaining maturity for each asset. In 2019, the average remaining maturity for long-term

IG, short-term IG, long-term HY, and short-term HY bonds is 13.5, 2.4, 6.7, and 3.1 years,

respectively.

The top panels show the effects of intervening two weeks after the start of the crisis

(T = 14). We see a broad market rebound. The left panel shows that the fall in asset prices

is reversed immediately following the rate cut. Because IG bonds are longer duration, their

prices rebound nevertheless more relative to HY bonds. The right panel of Figure 6 shows

that there is also a rebound in the AUM of both mutual funds and insurers.

Interestingly, the timing of the intervention matters for the short-term path of the

recovery, but not for the eventual size of the rebound. The bottom panel shows the effect of

cutting interest rates two days after the start of the crisis (T = 2). Eventually, bond prices

and institutions’ AUM reach similar values as the case of a late intervention.30

6.2.2 Corporate bond purchases

Next, in Figure 7, we evaluate a policy where the central bank purchases 5% of outstanding

short-term (below 5 years) IG assets. In March 2020, in response to the market turmoil

brought upon by the COVID-19 pandemic, the Federal Reserve announced its intention to

purchase up to $750 billion in primarily IG corporate bonds. While the actual purchases were

30Note that we focus on the short-term effect of an emergency rate cut during a crisis. Changes in the
policy rate can have other effects on the size of the mutual fund sector, as shown by Bretscher et al. (2022):
the sector tends to shrink in a rising rate environment for example. See also Fang (2022) for an analysis of
monetary transmission through mutual fund flows.
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much smaller, the announcement effect was significant (Haddad et al., 2021a; Boyarchenko

et al., 2022) and the potential purchase size was over 7% of the corporate bond market.31

The top panel shows a smaller market rebound. This is to be expected given that short-

term IG bonds only constitute a fraction of the overall market. Naturally, IG bonds benefit

from these asset purchases, as they are directly targeted; however, there is a small rebound

for HY bonds. This is due to the rebound of fund wealth as well as the investment mandate

increasing demand for HY assets. Mutual fund values rebound by more than insurers due

to the amplifying effect of inflows following the positive performance. As with conventional

monetary policy, the timing of the intervention also matters little for the size of the eventual

rebound.

6.2.3 Direct lending to mutual funds

In Figure 8, we consider the effects of a policy that lends directly to bond mutual funds.

While such a policy currently has not been implemented for such nonbank intermediaries,

such direct lending (or “lender of last resort”) is a classical policy tool for traditional banks.

In the counterfactual, we assume funds can borrow against up to 2% of their IG assets.

Specifically, net outflows from mutual funds decrease by the amount borrowed from the

central bank. The key finding is that such a policy is extremely effective, but only if it is

implemented early. Comparing the top and bottom panels reveals that a late intervention

(T = 14) leads to virtually no rebound in contrast to an early intervention (T = 2) which has

large effects in equilibrium. Intuitively, intervening early stops spirals of feedback loops in

their tracks. This evidence suggests that acting as a “lender of last resort” towards nonbanks

could potentially be effective.

31At the end of 2019, there was over $9.5 trillion in outstanding corporate bonds. Source: SIFMA 2021
Capital Markets Factbook).
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6.2.4 Redemption restrictions

We next consider a policy of freezing mutual fund redemption. This is also a classical policy

tool that has been repeatedly implemented in the banking sector. Figure 9 displays the

effects. At the implementation of the policy, we set the net flow for each fund to be bounded

below zero. Like the previous intervention, acting early is critical: a late intervention has

no effects while an early intervention has dramatic positive effects in stopping amplification.

This type of intervention is naturally particularly effective at preventing the mutual fund

sector from shrinking considerably.

6.3 Policy targeting and price impact

In practice, policymakers often prefer to limit the “size” of intervention. For example, they

might explicitly want to limit the increase in the central bank’s balance sheet when designing

an asset purchases program. We can use our model to construct a measure of a policy’s “bang

for the buck.” In order to have a measure that can be used to compare very different types of

interventions, it is useful to introduce some notation in order to define a unifying framework.

Any policy can be mapped to a vector g of price shocks for the different existing assets.

This is more general than it seems at first. Policy interventions can take many forms: some

interventions such as interest rate policy directly change the prices of bonds, but others

operate through quantities such as quantitative easing and asset purchases. However, note

that quantity-based and price-based policies can be mapped to each other using demand

elasticities. We also need to model the “cost” of a policy. For tractability, we abstract away

from the many potential reasons why a resource constraint might exist and simply model it

as a linear constraint γ ′g ≤ b. γ is an N×1 vector of the cost to generate one percent of price

change for each asset, and b is a scalar indicating the total resources that the policy-maker

has.
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For example, in the context of asset purchases, γ can be interpreted as the dollar value

of an asset to be purchased to move the price by 1% (normalized by the size of the total

asset market) γ = α ⊙ diag (S × ζ), where α normalizes the quantity of purchases by the

total market size of all the assets. The nth element of diag (S × ζ) is simply the aggregate

(market) elasticity for asset n, which we also denote by ζn. b can be interpreted as the total

dollar value of the asset purchase committed by the Federal Reserve normalized by the total

market size.

We define a policy price impact multiplier as the average asset fragility per unit of

resource of a given policy, g:

Price impact multiplier(g) =
(Asset fragility⊙α) g

γ ′g
, (23)

where Asset fragility is a vector of asset fragility of each asset, as defined in equation (21).

Importantly, targeting matters for price impact given the significant amount of heterogeneity

in fragility documented above. It is worth repeating that this multiplier can be constructed

for an intervention that does not have an explicit resource constraint. Doing so allows us

to study the distance between conventional monetary policy and other more targeted asset

purchases in terms of the degree of amplifications that is achieved by different types of

policies.

We can also compute a benchmark for the best-targeted intervention that maximizes

the cumulative impact on the aggregate bond market index for a given resource constraint.

Such a maximum-price-impact intervention solves the following program:

max
0≤g≤g

α′(I −ΨΦ)−1g,

subject to: γ ′g ≤ b,

(24)

The maximum-price-impact benchmark turns out to be a function of the asset fragility
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measure constructed in section 5. Specifically, we sort assets in descending order by the

ratio of their asset fragility over their aggregate elasticity: Asset fragility1
ζ1

≥ Asset fragility2
ζ2

≥

... ≥ Asset fragilityN
ζN

. Targeting follows a pecking order: the policymaker should first raise the

price of the asset with the highest asset fragility per unit of price elasticity. Assets with

higher fragility lead to higher price impact, but assets with higher elasticity require more

resources to raise their price. After the maximum price change is reached, the policy-maker

then should move to the asset with the next highest asset fragility per unit of elasticity until

the budget is exhausted.32 This result suggests that simply supporting the most beaten-up

assets or assisting the institutions that suffer the most outflows or value loss in a crisis might

not have the highest “bang-for-the-buck”. Instead, to maximize price impact from a macro-

prudential perspective it is best to target the assets or institutions that are central in the

network that propagates and amplify the shock.

We can use these concepts to compare how well targeted the different types of interven-

tions studied above were in addressing fragility in March 2020. Figure 10 compares these four

interventions using our model estimates. It also reports the maximum-price-impact bench-

mark. Perhaps surprisingly, this reveals that asset purchase (“AP”) is the best-targeted

intervention. Even though it only focuses on IG bonds, it is, in fact, close to the theoretical

maximum-price-impact benchmark (“MAX”). This is because purchases targeted short-term

IG bonds, which are significantly fragile due to being held by especially flow-sensitive in-

vestors. This gives support to the policy choice of the Federal Reserve in Spring 2020, at

least if the goal was to maximize price impact under a limited budget. On the other hand,

conventional monetary policy (“MP”) is the least well-targeted because it has the biggest

price effect on less fragile long-term IG assets, which have the highest duration. This is not

necessarily surprising: the return to the zero lower bound was dictated by many considera-

tions other than addressing the bond market turmoil specifically. The two other interventions

targeting the mutual fund sector (direct lending “DL” and redemption restrictions “RR”)

32A formal derivation can be found in Appendix D.
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are better targeted, although quantitatively, the effect is perhaps not as large as could be

expected.

6.4 Preventative policy: swing pricing

We can also use our framework to evaluate preventative policies that could mitigate a neg-

ative feedback loop in the first place. For example, in November 2022, the SEC proposed

a policy to avoid selling pressure of open-ended mutual funds called swing pricing.33 This

policy would require funds to adjust their NAV to pass trading costs to shareholders who are

redeeming (or purchasing) shares in the fund. Jin et al. (2021) show that implementation of

this policy in the UK led to a significant reduction in flow-to-performance sensitivity.

Motivated by this policy proposal, we test how swing pricing would affect the propaga-

tion of the negative shock via a reduction in flow-to-performance sensitivities. To implement

this, we refer to Jin et al. (2021) Table 3, Panel B, which reports the reduction in flow sensi-

tivity estimates due to swing pricing across different magnitudes of fund outflows. We adjust

each fund’s flow-to-performance sensitivity according to their estimates and see how prices

and fund valuations respond to the same negative shocks to bond prices in March 2020.

Figure 11 shows that swing pricing inhibits significant outflows and further price declines,

thereby avoiding the onset of a negative feedback loop. It reduces by about 10 percentage

points the decline in bond prices as well as in the size of the mutual sector, even if, naturally

the policy does not fully prevent the effect of a negative shock. Our quantitative result thus

supports the recent regulatory proposal to mandate swing pricing for mutual funds

This exercise comes with important caveats. Implementation of swing pricing would

likely have equilibrium effects on fund investment decisions, as documented by Jin et al.

(2021) and Ma et al. (2023). In this counterfactual, we hold asset characteristics fixed.

33See, for example, “SEC proposes mutual fund-pricing rule to protect long-term investors”, Financial
Times, November 2, 2022.
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Estimating a counterfactual that endogenizes holding characteristics would be useful but

outside the scope of this paper.

7 Conclusion

This paper develops a two-layer asset pricing framework to analyze the fragility of the cor-

porate bond market. Equilibrium asset prices reflect the demand of both households and

institutional investors. The model features dynamic feedback loops between investor outflows

and asset prices, as well as contagion across assets and institutions. The model parameters

can be estimated using micro-data on bond prices, institutional investors’ holdings, and fund

flows. We use our estimated model to evaluate the equilibrium impact on asset prices of poli-

cies designed to mitigate market fragility, including unconventional monetary and liquidity

policies.

Our framework’ underlying economics are general enough and its estimation method-

ology is flexible enough to be applied to other settings. While we focus on corporate bond

markets, similar equilibrium dynamics are at play in equity, government bonds, or currency

markets. Moreover, the heterogeneity in institutions could be enriched, accounting for dif-

ferences between active and passive mutual funds or between different types of insurers and

pensions. Finally, the model could be extended to incorporate a third layer of debt issuance

and firm investment. This would allow for quantifying the effects of financial market disrup-

tions and policy interventions on real activity using an integrated framework and structural

estimation.
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Figure 1: Model dynamics: example
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Note: This graph shows simulated paths of AUM and asset prices for a two-sector-two-asset model.

Parameters values are described in Section 3.2.
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Figure 2: Asset fragility: numerical example
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Note: Reports on the y-axis the asset fragility of two assets in an illustrative numerical example. The left

panel holds fixed the demand elasticities of all funds and varies only the flow sensitivity (beta) of Specialist

B. The right panel holds fixed the flow sensitivities of all funds and varies only the demand elasticity of

Specialist B for asset B.

Figure 3: Fund fragility: numerical example
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Note: Reports on the y-axis the fund fragility of three funds in an illustrative numerical example. The left

panel holds fixed the demand elasticities of all funds and varies only the flow sensitivity (beta) of Specialist

B. The right panel holds fixed the flow sensitivities of all funds and varies only the demand elasticity of

Specialist B for asset B.
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Figure 4: Fund fragility distribution

Note: This table summarizes the fund fragilities estimated across our sample of mutual funds for year-end

2019.
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Figure 5: March 2020: Model-implied dynamics
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Note: This graph shows the counterfactual AUM and asset prices following 10 days of fundamental shocks

to asset prices in line with the corporate bond CDS changes in the first half of March 2020. There is no

policy intervention in this simulation.
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Figure 6: Counterfactual simulation: rate cut
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Note: This graph shows the counterfactual AUM and asset prices following fundamental shocks to

corporate bond prices in line with CDS yields. The central bank cut the policy rate by 100 basis points on

day 14 and day 2 for the upper and lower panels, respectively.
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Figure 7: Counterfactual simulation: asset purchases
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Note: This graph shows the counterfactual AUM and asset prices following fundamental shocks to

corporate bond prices in line with CDS yields. The central bank conducts asset purchases of 5% of

short-term IG bonds on day 14 and day 2 for the upper and lower panels, respectively.
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Figure 8: Counterfactual simulation: central bank lending to mutual funds
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Note: This graph shows the counterfactual AUM and asset prices following fundamental shocks to

corporate bond prices in line with CDS yields. The central bank allows all mutual funds to borrow up to

2% of their IG holdings on day 14 and day 2 for the upper and lower panels, respectively.
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Figure 9: Counterfactual simulation: limits to redemption for mutual funds
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Note: This graph shows the counterfactual AUM and asset prices following fundamental shocks to

corporate bond prices in line with CDS yields. Mutual funds restrict suspend redemption on day 14 and

day 2 for the upper and lower panels, respectively.
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Figure 10: Price impact multipliers of various interventions
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Note: This graph shows the policy targeting multipliers of various interventions at T = 2, as described in

Section 6.2. “MP” stands for conventional monetary policy. “AP” stands for asset purchases. “DL” stands

for direct lending. “RR” stands for redemption restrictions. “MAX” stands for the maximum-price-impact.

The price impact multiplier is defined in equation (23).
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Figure 11: Counterfactual simulation: swing pricing for mutual funds
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Note: This graph shows the counterfactual AUM and asset prices following fundamental shocks to

corporate bond prices in line with CDS yields. Mutual fund flow sensitivity to performance is adjusted

according to Jin et al. (2021) Table 3 in period 1.
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Table 1: Numerical example: parameters

Equal weighted fund Specialist A Specialist B

Asset A share 0.50 0.66 0.33
Asset B share 0.50 0.33 0.66
Total wealth 1.00 1.00 1.00
Flow sensitivity 0.10 0.60 X1
Demand elasticity over Asset A 1.00 1.00 1.00
Demand elasticity over Asset B 1.00 1.00 X2

Note: This table summarizes parameters in the numerical example illustrating asset and fund fragility

metrics. The X1 and X2 values take on various values in Figures 2 and 3 to demonstrate how fragility

metrics respond to variations in flow sensitivities and demand elasticities.

Table 2: Summary of classes

count mean std min 25% 50% 75% max

Funds per class-quarter 26055 7.9 11.6 1 2.0 3.0 9.0 125
Holdings per class-quarter 26055 29207.0 87878.5 0 1148.5 5900.0 22984.5 3657773
Unique bonds per class-quarter 26055 11.1 20.5 1 2.0 4.0 11.0 233
TS avg num funds per class 460 5.8 8.2 1 1.3 2.8 6.5 60
TS avg holdings per class 460 21841.3 47502.0 0 2780.8 6844.5 17619.4 437881
TS avg num bonds per class 460 8.0 14.2 1 1.4 3.0 8.0 105
Avg classes per quarter 88 296.1 66.6 59 274.8 308.0 342.2 375

Note: This table summarizes the distribution of statistics aggregated to the class-quarter and class level. A

bond class is defined as a 2-digit NAIC industry category, a tenor at issuance, and the credit rating of the

bond.
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Table 3: First stage test for instrument

(1) (2) (3)
All funds Insurers Mutual funds

Z icq -0.00512∗∗∗ -0.00622∗∗∗ -0.00455∗∗

(0.00142) (0.00154) (0.00150)

U.S. Treasury -3.807∗∗ -4.224∗∗∗ -2.959∗

(1.339) (1.304) (1.523)

Bidask 6.183∗∗∗ 5.953∗∗∗ 6.891∗∗∗

(1.550) (1.545) (1.552)

Original tenor (log) 0.0457∗∗∗ 0.0538∗∗∗ 0.0356∗∗∗

(0.00619) (0.00713) (0.00669)

Years remaining 0.0163∗∗∗ 0.0158∗∗∗ 0.0163∗∗∗

(0.00112) (0.00110) (0.00126)

Amount issued (log) -0.00401∗ -0.00347 -0.00196
(0.00193) (0.00210) (0.00190)

Issuer rating -0.245∗∗∗ -0.261∗∗∗ -0.236∗∗∗

(0.0181) (0.0185) (0.0232)

Constant 0.683∗∗∗ 0.729∗∗∗ 0.647∗∗∗

(0.0540) (0.0543) (0.0614)

Fund x IG x Quarter FE ✓ ✓ ✓

Observations 1809233 1059467 709888
R-squared 0.697 0.696 0.703

Note: This table shows the first stage estimates of the instrument on term-adjusted credit spreads within
fund-asset-quarter. The instrument is constructed from equation (18) as described in subsection 4.1. The
outcome variable in the first stage regressions is credit spread multiplied by the number of years remaining
on the asset. Credit spreads are from the WRDS Bond Returns month-end transactions data, reported at
the bond-quarter level. Controls include duration-matched US Treasury yield, the bid–ask spread as
reported by WRDS, the tenor at issuance (logged), the number of years remaining, the initial amount
issued (logged), and the issuer credit rating. The sample period is from 2010 to 2019 with quarterly
observations. The first column reports the first-stage results for all funds; the second column reports
results for insurers, and the last column reports results for mutual funds. Includes fund–IG
dummy–quarter fixed effects. Standard errors are clustered at the fund and quarter levels.
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Table 4: Summary of demand elasticity estimates

10% mean 90%
2010-2019 estimates

All fund-bonds 0.782 0.998 1.203
IG holdings 0.765 0.991 1.234
HY holdings 0.798 1.004 1.181
Non-mutual funds 0.807 0.973 1.179
Mutual funds 0.639 1.106 1.350
ETFs 0.823 1.126 1.215
Index funds 0.814 1.068 1.230
Other MF 0.538 1.097 1.425

Time periods

Pre-2008 0.543 0.805 0.983
2008 financial crisis 0.865 1.148 1.343
2020-2022 0.421 1.514 1.500

Note: This table summarizes the distribution of demand elasticities. The top panel summarizes estimates

for different asset and fund categories in 2010-2019. The bottom panel summarizes estimates for mutual

funds in different time periods, excluding ETFs and index funds. Values are winsorized at 0.1%.
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Table 5: Flow to return sensitivity: monthly

(1) (2) (3) (4) (5)
F.Flow F.Flow F.Flow F.Flow F.Flow

Return 0.288∗∗∗ 0.294∗∗∗ 0.274∗∗∗ 0.259∗∗∗

[0.021] [0.021] [0.029] [0.029]

Flow 0.193∗∗∗ 0.165∗∗∗ 0.185∗∗∗ 0.140∗∗∗ 0.140∗∗∗

[0.004] [0.004] [0.004] [0.004] [0.004]

Positive return 0.209∗∗∗

[0.051]

Negative return 0.309∗∗∗

[0.046]
Fund F.E. No Yes No Yes Yes
Time F.E. No No Yes Yes Yes
Observations 242,046 242,033 242,033 242,020 242,020
Adj. R-squared 0.043 0.058 0.051 0.080 0.080

Note: This table shows the relationship between fund flows and returns. The sample period is from 1992 to

2021 with monthly observations. “Return” is the net monthly return of the fund in percentage points.

“Flow” is measured by the percentage change in the asset under management from the previous month.

The dependent variable is the one-month forward fund flow. Data source: CRSP Mutual Fund Database.
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Table 6: Flow to return sensitivity: daily

(1) (2) (3) (4) (5)
F.Flow F.Flow F.Flow F.Flow F.Flow

Return 0.137∗∗∗ 0.058 0.171∗∗∗ 0.067∗

[0.038] [0.036] [0.063] [0.037]

Flow 0.292∗ 0.292∗ -0.010 -0.011 -0.011
[0.163] [0.163] [0.037] [0.037] [0.037]

Positive return -0.120
[0.175]

Negative return 0.167
[0.137]

Time fixed effects No Yes No Yes Yes
Fund fixed effects No No Yes Yes Yes
Observations 45,614 45,614 45,613 45,613 45,613
Adj. R-squared 0.084 0.084 0.288 0.288 0.288

Note: This table shows the relationship between fund flows and returns. The sample period is 2020Q1 with

daily observations. “Return” is the net daily return of the fund in percentage points. “Flow” is measured

by the percentage change in the asset under management from the previous day. The dependent variable is

one-day forward fund flow. Data source: Morningstar Mutual Fund Database.

Table 7: Summary of flow to performance estimates

10% mean 90%
2010-2019 estimates

All fund-bonds -3.079 0.585 4.677
ETFs -2.729 0.790 4.870
Index funds -2.437 0.928 4.810
Other MF -3.125 0.482 4.514

Time periods

Pre-2008 -2.392 0.120 2.632
2008 financial crisis -0.699 0.104 1.453
2020-2022 -1.107 0.186 1.601

Note: This table summarizes the distribution of flow to performance elasticities. The top panel summarizes

estimates for different asset and fund categories in 2010-2019. The bottom panel summarizes estimates for

mutual funds in different time periods, excluding ETFs and index funds.
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Table 8: Asset fragility measure

IG HY
Long Short Long Short

Asset fragility 2019 1.311 2.043 1.883 2.140
Market share of asset 0.482 0.248 0.142 0.128
Mutual fund holding share of asset 0.084 0.159 0.160 0.276
Holdings-weighted average beta 0.218 0.679 0.409 0.592
Holdings-weighted average elasticity 1.009 1.188 1.111 1.277

Note: This table summarizes the asset fragilities and key inputs for year-end 2019. “IG” indicates bonds

with credit rating of BBB- and above; “HY” indicates bonds with credit rating below BBB-. “Long” assets

are those with five or more years remaining and “short” assets have fewer than 5 years remaining.

Reported flow sensitivities (beta) and demand elasticities (zeta) are holdings weighted averages across

funds for each asset.
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Appendix: derivations and proofs

A Log-linearization of household demand

For simplicity, we drop the time and household subscript. Take log and then the first

difference on equation (3) gives

∆ lnQ(i) = κ∆X(i)−∆ ln
I∑

i=0

exp(κX(i)) + ∆ lnA−∆ lnP (i). (25)

Note the dollar flows into the institution is f(i) = ∆ lnQ(i). The change in the NAV equals

the return, so ∆ lnP (i) = r(i). Using Taylor expansion, we have

∆ ln
I∑

i=0

exp(κX(i)) ≃
I∑

i=0

exp(κX(i))∑I
i=0 exp(κX(i))

κ∆X(i) =
I∑

i=0

θ(i)κ∆X(i). (26)

Therefore, we have

f(i) = κ∆X(i)−
I∑

i=0

θ(i)κ∆X(i) + a− r(i). (27)

Plugging in the special case ∆Xt(i) = rt−1(i), we obtain the flow-to-performance relationship

for each household:

fh,t(i) = βhri,t−1 − κh

I∑
i=0

θh,t(i)ri,t−1 + ah,t, (28)

where fh,t(i) = qh,t(i) is the inflow into institution i in dollars by household h, and βh = κh−1

is the flow-to-performance sensitivity.

Finally, we aggregate this flow-to-performance relationship across households by mul-

tiplying equation (28) by the wealth share of each household sh,t = Ah,t/
∑H

h=0Ah,t and

summing them up, which gives rise to the equation in the main text:

fi,t ≃ βiri,t−1 − κirt−1 + at,
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where fi,t =
∑H

h=0 sh,tqh,t(i) is the aggregate inflow into institution i, βi =
∑H

h=0 sh,t(i)(κh−1)

is the weighted sensitivity to the returns for households who invest in institution i, rt−1 =∑I
i=0 θt(i)ri,t−1 is the weighted average return of all institutions. The approximation is exact

when the portfolio weights of the households are the same, θt(i) = θh,t(i). κi =
∑H

h=0 sh,t(i)κh

is the sensitivity to the average returns. at =
∑H

h=0 sh,tah,t is the average household wealth

change.

B Log-linearization of institution demand

For simplicity, we drop the time and institution subscript. Take log and then the first

difference on equation (8) gives

∆ lnQ(n) = κ∆X(n)−∆ ln
N∑

m=0

exp(κX(m)) + ∆ lnW −∆ lnP (n). (29)

Note that

∆ lnW = ∆ lnP +∆ lnQ =
N∑

m=0

θ(m)∆ lnP (m) + f =
N∑

m=0

θ(m)p(m) + f (30)

Using Taylor expansion, we have

∆ ln
N∑

m=0

exp(κX(m)) ≃
N∑

n=0

exp(κX(m))∑N
m=0 exp(κX(m))

κ∆X(m) =
N∑

m=0

θ(m)κ∆X(m). (31)

Therefore, we have

q(n) = κ∆X(n)−
N∑

m=0

θ(m)κ∆X(m) +
N∑

m=0

θ(m)p(m) + f − p(n). (32)
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Plug in the special case ∆X(i) = ρ(n) (d(n)− p(n)), we get

qi,t(n) = −ζi,t(n)pt(n) + κiρ(n)d(n) +
N∑

m=0

θ(m) (ζi,t(m)pt(m)− κiρ(m)d(m)) + fi,t, (33)

where ζi,t(n) = 1 + κρ(n), which is equation (12).

C Flow shocks

The baseline model studies the amplification of shocks to asset values, such as shocks to

fundamentals. The framework is equally well suited to study another type of shock, namely,

flow shocks to the size of the mutual fund sector and how they propagate across asset values

and institutions. Gabaix and Koijen (2021) study the impact of flows in equity markets.

We find that flow shocks have a large impact on asset values and institutions even absent

other fundamental shocks. Figure IA.2 plots the dynamics of asset prices and institutions

AUM following a 5% fund outflow shock to all mutual funds at time 1. We make three

observations. First, the flow shock depresses both IG and HY bonds by a significant amount:

a 5% outflow lead to a drop in asset values of almost 5%. This suggests that other investors

like insurers and pensions provide limited elasticity to the market when mutual funds have

to reduce their bond holdings. Second, outflows beget more outflows: after a few periods,

the decrease in the size of the mutual fund sector is 17%. That is more than three times

the initial flow shock of 5%. Flow sensitivities and limited price elasticity in the market

imply a sizeable amount of dynamic amplification of flow shocks. Third, the spillover to the

insurance sector is non-trivial: even though they are not directly affected by the flow shock,

the value of their AUM eventually drops by about 3%.
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D The maximum-price-impact benchmark

The policy-maker’s problem is

max
0≤g≤g

α′(I −ΨΦ)−1g,

subject to: γ ′g ≤ b,

(34)

The Lagrangian function is

L(g, λ) = α′(I −ΨΦ)−1g + λ(b− γ ′g) + µ′(g − g) + µ′g, (35)

We have

∂L
∂gn

= α′(I −ΨΦ)−1en − γn − µn + µ
n
, (36)

∂L
∂λ

= b− γ ′g, (37)

∂L
∂µn

= gn − gn, (38)

∂L
∂µ

n

= gn, (39)

Sorting the N assets by α′(I −ΨΦ)−1en/γn in descending order, define the marginal

asset N∗ such that
N∗∑
n=1

γngn ≤ b, (40)

N∗+1∑
n=1

γngn ≥ b. (41)

The optimal solution is gn = gn when n < N∗, gn = b−
∑N∗

n=1 γngn when n = N∗, and

gn = 0 when n > N∗.
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Appendix: Additional Tables and Figures

Table IA.1: Top classes

Classifier TS avg num funds TS avg holdings TS avg num bonds

33-15.0-Aaa 57.6 297,430.8 104.5
33-15.0-Baa1 53.7 232,133.4 102.2
32-15.0-Baa1 60.4 254,196.1 101.2
53-15.0-Baa1 49.0 251,800.6 90.5
48-15.0-Baa1 45.9 196,145.1 80.3
32-15.0-Aaa 43.0 184,862.9 77.4
21-15.0-Baa1 41.7 149,029.1 67.7
51-15.0-Baa1 39.2 159,900.0 67.0
33-100.0-Aaa 27.9 332,493.3 65.1
48-100.0-Baa1 29.4 173,449.4 56.1

Note: This table summarizes the top 10 classes by the number of bonds within the class. A classifier is

defined as a 2-digit NAIC industry category, a tenor at issuance, and the credit rating of the bond. The TS

avg num funds reports the average number of funds that hold this class of bond each quarter. The TS

average holdings is the average quarterly volume of each class that is reported. The TS avg num bonds is

the number of bonds, on average, that is considered within each classifier.

Table IA.2: Summary of investor holdings

2002 mean 2002 median 2010 mean 2010 median 2019 mean 2019 median

Avg AUM 804,708 95,095 1,016,236 100,204 1,386,188 118,482
Num classes per fund-qtr 12 7 23 15 35 24
Num bonds per fund-qtr 17 8 49 21 98 36
Avg holding 1,965 700 1,542 513 2,614 441
Std holding 1,335 388 1,221 319 1,925 324

Note: This table summarizes the distribution of fund characteristics statistics aggregated to the

fund-quarter level.
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Figure IA.1: Model dynamics with exogenous wealth
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Note: This graph shows simulated paths of AUM and asset prices for a two-sector-two-asset model.

Parameters values described in Section 3.2. Flow-to-performance sensitivities are set to zero to mimic

exogenous wealth distributions.
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Figure IA.2: Simulation: negative flow shock to mutual funds
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Note: This graph shows the counterfactual AUM and asset prices following a 5% fund outflow shock to all

mutual funds at time 1.
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