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Abstract

Government debt can be rolled over forever without primary surpluses in some
stochastic economies, including some economies that are dynamically efficient. In an
overlapping-generations model with constant growth rate, g, of labor-augmenting pro-
ductivity, and with shocks to the durability of capital, we show that along a balanced
growth path, the maximum sustainable ratio of bonds to capital is attained when the
riskfree interest rate, rf, equals g. Furthermore, this maximal ratio maximizes utility
per capita along a balanced growth path and ensures that the economy is dynamically

efficient.
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What is the maximum amount (possibly zero) of bonds that a government can rollover
forever without running primary budget surpluses? If the government can rollover a positive
amount of bonds forever, what is the optimal amount of bonds to rollover? Blanchard’s pres-
idential address to the American Economic Association spurred renewed scholarly interest in
these questions. Only a year later, global events brought these issues into the public realm
as governments around the world ran huge deficits to deal with the catastrophic economic
consequences of the covid-19 pandemic.

In the absence of uncertainty, the ability of the government to rollover bonds forever is
determined by the “r vs ¢” comparison, as it is colloquially known, where r is the net rate of
return on all assets, including government bonds, and g is the growth rate of the capital stock.
Specifically, if and only if » < ¢ along a balanced growth path in a competitive economy;,
government bonds can be rolled over forever and will shrink as a share of the economy
over time. Also, if and only if » < g, the economy suffers from a dynamically inefficient
overaccumulation of capital. That is, government bonds can be rolled over forever if and
only if the economy is dynamically inefficient.

In the presence of uncertainty, the link between dynamic inefficiency and the feasibility
of rolling over government bonds forever is more nuanced. Put simply, the rate of return on
capital is the rate of return relevant for assessing dynamic efficiency, but the riskfree interest
rate is the rate of return relevant for assessing whether the government can rollover its bonds
forever. Uncertainty breaks the equality of these two rates of return. As we will show, in
some dynamically efficient competitive economies with a constant growth rate g > 0, it is
possible for the riskfree interest rate, 7, to be less than g, which makes permanent rollover of
government bonds feasible. This possibility of permanently rolling over debt in an efficient
economy does not exist in deterministic, dynamically efficient, competitive economies.

Our principal findings in this paper result from both positive and normative analyses of
sustainable levels of the ratio of government bonds to the capital stock, which we define as
levels of this ratio that permit government bonds to be rolled over forever without any primary
surpluses. In our positive analysis, we find that if r; < g along a balanced growth path

without government bonds (which can be the case in some dynamically efficient economies,



and must be the case in all dynamically inefficient economies), the maximum sustainable
level of the bond-capital ratio is strictly positive. Starting from zero government bonds,
increasing the amount of bonds crowds out capital, thereby driving up the marginal product
of capital and the constellation of rates of return until, at the maximum sustainable bond-
capital ratio, 7y = ¢g. Provided that uncertainty about the rate of return on capital, r, is
not degenerate, 7y = ¢ implies that E{in(1+ r)} > In(1 + g) (Proposition 2), and hence,
the economy is dynamically efficient.

Our normative analysis examines the optimal sustainable level of the bond-capital ratio,
specifically the sustainable level of this ratio that maximizes welfare, measured as the utility
of consumers in the steady state. =~ We find that the marginal impact on welfare of an
increase in this ratio is positive along balanced growth paths with r; < ¢g and is non-negative
along balanced growth paths with 7; = g. Therefore, since the bond-capital ratio is not
sustainable for ry > g, the optimal sustainable level of government bonds is a corner solution
where the bond-capital ratio equals its maximum sustainable value and 7y = ¢g. As noted
above, the equality of r; and ¢ implies E{in(1 + )} > In(1 + g), and hence the economy
is dynamically efficient. Thus, the optimal bond-capital ratio eliminates any dynamically
inefficient overaccumulation of capital that may exist at lower levels of this ratio. But
even if the economy without government bonds is dynamically efficient, it is possible that
ry < g, which indicates the consumers have such strong desire for safety in their portfolios
that they are willing to hold government bonds that offer a riskfree rate of return below g.
To summarize, government bonds play the dual role of eliminating any overaccumulation
of capital and reducing risk in the portfolios of consumers. As long as 7y < g, the second
role implies that welfare is increased by an increase in the bond-capital ratio, even in a
dynamically efficient economy. The optimal value of the bond-capital ratio, which equals
the maximum sustainable value of this ratio, is attained when r; = g.

The model in this paper is crafted so that along a balanced growth path, the capital stock
per unit of effective labor is constant but the rate of return on capital is stochastic. To
illustrate the mechanism in its simplest form, we preview the model in the case in which (1)

there is no labor-augmenting technical progress, so g = 0, and (2) the government wastes any



funds collected when it issues new bonds in excess of contemporaneous interest payments on
existing government bonds. The model has overlapping generations of a constant number
of people who live for two periods, earn labor income only in the first period of life, and
save some of their wage income to provide for consumption in the second period of life.
Output in each period is produced with labor and capital according to a Cobb-Douglas
production function without a productivity shock, which implies that wage income is non-
stochastic. Consumers save a constant fraction of their wage income because they earn
non-asset income only in the first period and they have Epstein-Zin-Weil (Epstein and Zin
(1989) and Weil (1990)) preferences with an intertemporal elasticity of substitution equal to
one. Therefore, aggregate saving of the young consumers is non-stochastic, which makes
total assets, the sum of capital and government bonds non-stochastic.

The uncertainty in our model economy enters through a stochastic shock to the durability
of capital that makes the rate of capital depreciation, and hence the rate of return on
capital, stochastic. Bulow and Summers (1984), p. 25, argue that “capital risk,” which
they associate with the stochastic nature of depreciation, is far larger than “income risk,”
which they associate with the stochastic nature of the marginal product of capital. The
uncertainty about the rate of capital depreciation drives a wedge between the expected rate
of return on capital and the riskfree interest rate. However, in this simple form of the model,
the evolution of the capital stock, wage income, as well as the consumption and saving of the
young generation, are all invariant to the distribution and realizations of the durability shock.
Thus, there is a useful dichotomy in the equilibrium of the economy. We can determine
the equilibrium values of aggregate saving and the capital stock, without any consideration
of financial values and without any consideration of the realizations or the distribution of
the durability shocks.! Despite the deterministic evolution of the capital stock, we show
that the rate of return on capital, and hence the consumption of the old generation are risky
because the depreciation rate of capital is stochastic. The stochastic nature of consumption

when old implies that the pricing kernel is stochastic.

!This dichotomy holds if we relax the assumption (1) that g = 0, but it does not hold if we relax
assumption (2) that the government wastes any funds it receives when it issues new bonds in excess of
interest payments on existing government bonds.



The simplicity of the model in the case described above has several useful features. Be-
cause wage income per unit of effective labor, and hence aggregate saving of young consumers
per unit of effective labor, are constant along a balanced growth path, there is no chance that
adverse shocks will reduce aggregate saving below the amount needed to absorb the equilib-
rium amount of government bonds. Thus, government bonds are riskfree and the riskfree
interest rate is the appropriate market interest rate on these bonds.? In the simple case of
the model described above, the equilibrium size of the capital stock is invariant to the distri-
bution of durability shocks. We illustrate that an increase in the variance of this shock can
change an economy from dynamically efficient to dynamically inefficient, without changing
the capital stock. In our quantitative analysis, we illustrate that the maximum sustainable
bond-capital ratio, which is the optimal value of this ratio, is an increasing function of the
variance of the durability shock. We also illustrate that the maximum sustainable amount

of government bonds is an increasing function of the coefficient of relative risk aversion.

1 Literature Review

The celebrated Golden Rule of capital accumulation derived by Phelps (1961) characterizes
the capital stock per capita that maximizes consumption per capita along a deterministic
balanced growth path. If the rate of return on capital, r, equals the growth rate of the
economy, ¢, then consumption per capita is at the highest feasible level in the long run.
If the saving rate exceeds the rate consistent with the Golden Rule, then the capital stock
per capita exceeds the Golden Rule level so r < g and consumption per capita is less than
in the Golden Rule; that is, there is a dynamically inefficient overaccumulation of capital.
Diamond (1965) develops and analyzes an overlapping generations economy with optimizing
consumers and competitive firms and finds that if the optimal saving of young consumers is
sufficiently high, either because consumers are very patient or the wage share of total income

is very high, then capital per capita can exceed the Golden Rule level along a balanced growth

ZBertocchi (1994) and Binswanger (2005) discuss the unsustainability of government bonds in economies
in which the capital stock evolves stochastically. Our model features a non-stochastic capital stock and
avoids the unsustainability problem in Bertochhi and Binswanger.



path and there is a dynamically inefficient overaccumulation of capital. However, if young
consumers use some of their saving to hold government bonds, they will end up holding
a smaller amount of capital in their portfolios, driving down the aggregate capital stock,
possibly by enough to eliminate any dynamically inefficient overaccumulation of capital.

Cass (1972) provides a complete characterization of dynamic inefficiency that does not
depend on consumers’ preferences. The Cass criterion simply asks whether it is feasible
to increase aggregate consumption at some date without having to reduce aggregate con-
sumption at some later date(s). In a deterministic steady state, the Cass condition is the
same as in Phelps and Diamond, that is, an economy is dynamically inefficient if and only if
r < g. However, the general version of the Cass criterion also applies to economies outside
the steady state.

A government bond that is rolled over forever is often regarded as a bubble, which is
an asset with zero fundamental value that nevertheless has a positive market value. Tirole
(1985) develops a tight link between dynamic inefficiency and the feasibility of bubbles, in his
words “the existence of bubbles is conditioned by the efficiency of the bubbleless equilibrium.”
(Tirole (1985), p. 1076) In our context, a “bubbleless equilibrium” has zero government
bonds. Part (a) of Proposition 1 in Tirole (1985) states that if the economy without any
government bonds is dynamically efficient, then equilibrium in the economy cannot contain
bubbles. Tirole’s statement holds in deterministic economies where the rates of return on
capital and government bonds are equal. The introduction of government bonds crowds
out capital, thereby increasing the common rate rates of return on government bonds and
capital. If the economy was dynamically efficient without government bonds, then r > ¢
initially and this increase in r induced by government bonds increases the excess of r over
g, which implies that government bonds cannot be rolled over forever.

In order for bubbles to be feasible in a deterministic dynamically efficient economy, there
must be a wedge between the rates of return on government bonds, ry, and on capital,
r. Specifically, » must exceed ry and the growth rate g must lie between ry and r. In
deterministic models, Farhi and Tirole (2011) and Martin and Ventura (2012) provide this

wedge by introducing a wedge between borrowing and lending rates for firms. Also in



a deterministic framework, Ball and Mankiw (2021) introduces monopoly power by firms,
which drives a wedge between the marginal product of capital, r, and the user cost of
capital, which is based on the interest rate on government bonds, ry. Aguiar et al. (2021)
also examine the role of monopoly power in driving a wedge between the rate of return on
capital and the interest rate on government bonds, but their analysis includes idiosyncratic
risk. Like Ball and Mankiw (2021), however, in their analysis the aggregate rate of return
of capital is not uncertain.?

Aggregate uncertainty also drives a wedge between the riskfree rate, ry, and the rate of
return on capital, r. Abel, Mankiw, Summers, and Zeckhauser (1989), hereafter AMSZ,
proves that if the rate of return on capital is greater than the growth rate in all states and
at all times, then the economy is dynamically efficient; and since the rate of return on
capital is always greater than the growth rate, the riskfree rate is greater than the growth
rate and hence it is not feasible to rollover government bonds forever. Alternatively, AMSZ
proves that if the rate of return on capital is less than the growth rate in all states and at all
times, then the economy is dynamically inefficient; and since the rate of return on capital
is always lower than the growth rate of capital, the riskfree rate is less than the growth
rate and it is feasible to rollover government bonds forever. Thus, in the situations that
can be declared dynamically efficient or dynamically inefficient by the sufficient conditions
in AMSZ, the link between dynamic inefficiency and the feasibility of bubbles continues to
hold. However, the AMSZ conditions are not applicable in economies where the rate of return
on capital is sometimes greater than the growth rate and sometimes less than the growth
rate. Zilcha (1990, 1991) steps into the gap left by AMSZ and derives a characterization of
dynamic efficiency in stochastic economies in which the rate of return on capital sometimes
exceeds and sometimes falls short of the growth rate, g, of the economy. Zilcha adapts
Cass’s definition of dynamic efficiency in a natural way to stochastic economies and derives

a remarkable sufficient condition for dynamic inefficiency when the economy grows at a

3Amol and Luttmer (2022) also examines fiscal policies in economies with idiosyncratic uncertainty but
no aggregate uncertainty. The analysis in that paper does not include monopoly but is conducted in a two-
sector model with a capital goods sector and a consumption goods sector. As in Ball and Mankiw (2021)
and Aguiar et al. (2021), but unlike in our paper, the aggregate return to capital in Amol and Luttmer
(2022) is not random.



constant rate, g: E{ln(1+r)} <In(1+ g).

Blanchard and Weil (2001) presents four simple example economies that debunk various
simplistic views about the relation between dynamic inefficiency and the feasibility of rolling
over government bonds forever. In particular, the third and fourth examples in that paper
illustrate that government bonds can be rolled over forever in some dynamically efficient
economies. Interestingly, in all of the examples in that paper, dynamic efficiency or ineffi-
ciency does not depend on the variance of the shocks, since the shocks are additive shocks
to the logarithm of the rate of return on capital, and thus do not affect £ {In (1 +r)}. By
contrast, in the current paper, we illustrate how an increase in the variance of shocks can
push an economy from dynamic efficiency to dynamic inefficiency, even without affecting the
capital stock.

Blanchard’s presidential address (Blanchard (2019)) is a far-ranging analysis of both
empirical and theoretical issues related to the rollover of government bonds. It carefully
documents that the recent situation with safe interest rates below growth rates is not unusual
in historical data. In simulations reminiscent of the eponymous deficit gamble in Ball,
Elmendorf, and Mankiw (1998), Blanchard finds that even if government bonds cannot be
rolled over forever, it is likely that they can be rolled over for many decades before investors
become unable, or unwilling, to buy newly issued government bonds.

Since Blanchard’s presidential address, at least three papers have appeared with simple
titles that involve comparisons of the rate of return and the growth rate. Cochrane (2021b),

)

simply titled “r < g,” is a forceful warning against the notion that when the riskfree interest
rate is lower than the growth rate, the government can rely on growing itself out of debt. An
attempted permanent rollover of bonds is bound to fail eventually, especially if government
deficits are large. “The constraint on public debt when r < g but ¢ < m” (Reis (2021))
develops a model in which the interest rate on government bonds (r) is less than the growth
rate of the economy (g), opening the possibility that government bonds can be rolled over,
and yet the marginal product of capital (m) is greater than g so the economy is dynamically

efficient. That paper derives the fiscal capacity of the economy, which is a limit on the

ratio of government spending to the amount of bonds outstanding. Barro (2020), simply



titled “r Minus ¢,” provides data on (arithmetic) averages in each of 14 OECD countries of
rates of return on bonds and equities and growth rates of GDP per capita and consumption
per capita. However, the Zilcha criterion directly implies that for the purpose of assessing
dynamic efficiency, one must use the geometric means of rates of return and growth rates
rather than arithmetic means.

Two interesting questions — one positive and one normative — remain unanswered in the
papers described above. First, what is the mazimum amount of government bonds that can
be rolled over forever? The fiscal capacity in Reis (2021) is related to this question but, as
mentioned above, it is the maximum ratio of government spending to the amount of bonds
outstanding, rather than the maximum ratio of the amount of bonds outstanding to the
capital stock that is the focus of our analysis. Second, what is the optimal amount of bonds
to rollover along a balanced growth path? Blanchard (2019), Ball and Mankiw (2021), and
Kocherlakota (2021) provide interesting analyses and discussions of the marginal impact of
government bonds on welfare, where, as in our paper, welfare is defined to be the level of
utility of consumers along a balanced growth path.* However, none of these three papers
derives the optimal sustainable amount of government bonds, though Kocherlakota (2021)
concludes that “as long as there is a public debt bubble (in this class of models), agents are
better off in the long run if the government changes its policy choices so as to increase the
debt and deficit” (p. 20).5 Our paper addresses both of these questions. In our overlapping
generations model with aggregate uncertainty about the durability of capital, the answers
to the positive and normative questions are related in a perhaps surprising way. As we
demonstrate in Section 5, the optimal sustainable bond-capital ratio equals the maximum
sustainable value of this ratio.

Finally, in addition to the positive and normative questions that share a common answer,

our paper also offers fresh insights about the intertemporal government budget constraint.

4A0ki et al. (2014) show that in situations in which bubbles exist in equilibrium, welfare in the bubbly
equilibrium is higher than in the equilibrium without bubbles. However, it does not examine the marginal
impact on welfare of an increase in the size of the bubble.

®Aiyagari and McGrattan (1998) numerically computes the optimal value of government debt in a model
with uninsurable idiosyncratic risks, but no aggregate risks. It finds that the welfare loss resulting from the
actual level of debt in the US economy (at the time of that paper’s writing), rather than the optimal level
of debt as computed in their model, is small.



It is typical in discussions of the sustainability of fiscal policy (O’Connell and Zeldes (1988),
Wilcox (1989), and Bohn (1995)), the pricing of government bonds (Jiang et al. (2019)), and
the fiscal theory of the price level (Cochrane (2021a)) to assume that the value of government
debt equals the expected present value of the sum of primary government surpluses over the
infinite future, for an appropriate path of discount rates over time. This budget constraint is
often described as a transversality condition or, more accurately, as a No Ponzi Game (NPG)
condition. In our paper, the NPG condition is violated by design.® The NPG condition is
often invoked to rule out the possibility of rolling over debt forever. While the NPG arises
naturally in some contexts, we examine situations in which permanent rollover of debt is
both feasible and optimal, and the NPG condition need not, and does not, hold. Contrary
to the literature in which the value of government debt equals the sum of present values of
future primary surpluses, in our model, the value of government debt is positive even though

all future primary government surpluses are non-positive.

2 Deterministic Capital Stock with Risky Returns

Aggregate output at time ¢, Y;, is produced by competitive firms using capital, K;, and
effective labor, G'N, where G = 1+ ¢ > 1 is an index of labor-augmenting productivity that
grows at rate g > 0 and N is the constant number of young consumers in each time period.
The production function is Y; = F (K;, G'N) = (G'N)' " K®, where 0 < o < 1, and it is

convenient to write the production function in intensive form as

Y = kta7 (1)

where y;, = G}f—’N and k; = fo—fv Capital depreciates at the rate 0 < § — g; < 1 per period,

where the durability shock ¢; is an i.i.d., non-degenerate random variable with mean zero,

6As shown in Santos and Woodford (1997), in an economy in which the present value of the stream of
present and future aggregate consumption is infinite, there is room for the NPG condition to fail. Neverthe-
less, even though the NPG condition fails in our model when ry < g, thereby enabling permanent rollover
of government debt, the market value of the existing capital stock is finite, because it is the valuation of the
stream of profits to the remaining portion of a depreciating capital stock that approaches zero over time.



so 6 > 0 is the expected depreciation rate in each period.”

The economy is populated by people who live for two periods. In period ¢, N people are
born and each of these people inelastically supplies G* units of effective labor, earns wage
income W, = (1 —a) (G K2N~* = (1 — ) G'k and receives a lump-sum transfer, 7.

To focus on the impact of government borrowing, we simplify other aspects of fiscal
policy. Specifically, we assume that the government does not purchase goods or services and
that all taxes and transfers are lump-sum. Let B; be the amount of one-period government
bonds outstanding at the beginning of period ¢, which are held by the old generation of
consumers at time £. These bonds were bought at the end of the preceding period, when

the currently-old consumers were young. Government budget accounting implies
Biyn = (1+71s¢) B+ Dy, (2)

where D, is the primary government budget deficit during period ¢ and 7, is the riskfree
interest rate on government bonds bought at the end of period ¢ — 1 and maturing in period
t. Define gg; to be the growth rate of government bonds from the end of period ¢t — 1,
when the amount of government bonds equals By, to the end of period ¢, when the amount
of government bonds equals By;1, so By = (1 + gp.) By and equation (2) can be rewritten

as

(QB,t - 'f’f,t) B, = D,. (3)

When the primary deficit, Dy, is positive, the government acquires funds to pay for the
primary deficit by issuing additional bonds in excess of the interest payments on existing

bonds. The government uses these funds to pay for lump-sum transfer payments to young

"Blanchard and Weil (2001) uses models of stochastic storage in its third and fourth examples so that
output is linear in the capital stock. In their footnote 11, they point out that these models could be extended
to incorporate concavity in the capital stock by specifying output to be Y; = K{* — 0K, where 0 is a random
variable, but they do not work out the implications of this model. Barro (2020) uses a model with stochastic
depreciation as in our model, but specifies Y; = AKy, so that, as in Blanchard and Weil’s specification with
simply stochastic storage, there is no concavity in the capital stock. Without concavity in the capital stock,
the issue of capital overaccumulation is moot.
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consumers or to pay for wasteful government purchases, or some mix of the two. In period ¢,
total transfers to the NV young consumers are N7, = (D, where 0 < ¢ < 1 is the share of the
primary deficit that is used to make transfer payments to young consumers and (1 — () D;
is spent wastefully.® Therefore, the lump-sum transfer received by each young consumer in

period ¢, is 7, = (£, where D is given by equation (3), so

B,

7 = C (9Bt — T1t) N (4)

Young consumers in period ¢ each consume ¢! and save s; = Wi +7; —¢/. The aggregate

saving of the young generation, S; = Ns;, is used to purchase assets, A1 = Ki1 + By,
consisting of capital, K;,;, and one-period riskfree government bonds, B;;;. Thus the

aggregate capital stock in period ¢t + 1 is
Kt+1 = At+1 - Bt+1 = St - Bt+1- (5)
The rate of return on capital purchased at the end of period ¢t and used in period ¢+ 1 is
Tip1 = ki — 0+ ey, (6)

which is the marginal product of capital in the production function in equation (1), a (G*1N)
K3 = ak{', less the depreciation rate, § — £/41.

At the end of period ¢, young consumers hold a fraction, A\;;1, of their portfolios in riskfree
government bonds with interest rate, 7441, and the remaining fraction, 1 — A1, in risky
capital with rate of return r,,1. In the following period, when these consumers are old, they
do not work. The generation of old consumers in period ¢+ 1 uses the gross return on total

assets, (14 7q¢41) Aiy1, to pay for its consumption, Ncf, |, where

Tatr1 = Mp1Tpee1 + (1 — A1) 7o (7)

81f, instead of wasting (1 — ¢) Dy, the government purchased public goods that entered utility functions
additively separably from consumption when young and when old, such purchases would not affect the
equilibrium values of consumption, saving, or rates of return. However, any utility associated with public
goods would need to be considered when analyzing the impact of government bonds on welfare in Section 5.

11
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is the rate of return on total assets.

Each person born in period ¢ has an Epstein-Zin-Weil (Epstein and Zin (1989) and Weil
(1990)) utility function with intertemporal elasticity of substitution (/ES) equal to one.
We use the specification for a consumer who lives for two periods that is used in the second

example in Blanchard and Weil (2001)°

U=(1-p8)Inc¢/ + B1n <[Et {(Cto+1)1_7}] 117) ‘ (8)

We assume that v > 1, and to ensure a non-negative rate of time preference, we assume
that 3 < 1.
To solve the consumption/saving problem, use s, = W, +7 —¢f and ¢f,; = (1 4+ 7r441) 8¢

in equation (8) to write the consumption/saving problem as

m;}X(l —B)In (Wi + 7 —s;) + Blns; + 1 f“Y In (B, {(1+ Ta,tJrl)l_W}) : (9)

The joint impact of IES = 1 and the assumption that consumers do not earn wage income
or receive transfers in the second period of life is that the optimal value of s; is independent

of r4411. The solution to the maximization problem in equation (9) is

se=PBWi+m), (10)
which implies

¢ =1 =B)(We+m) (11)
and

Aty =1 +ra1) BWi+7). (12)

Aggregate saving in period tis S; = Ns; = NE (W + 1) = 8 (NW, + N7) = B[(1 — a) Y+

If v = 1, we treat the utility function in equation (8) as Uy = (1 — 8)Inc} + BE, {Incf 4 }.

12



C (9t —7y1) Bi]. Therefore, equation (5) implies that the aggregate capital stock in period
t+11s

K1 =8 — By = B[(1 —a) Yy + (9Bt — 154) Be] — By (13)

Divide both sides of equation (13) by G**' N, define the bond-capital ratio, B; = %, and

rearrange the resulting equation to obtain

ki1 = G'B[(1— @) kY + C (984 — ry) Bike] — Begikiera. (14)

From this point onward, we focus on balanced growth paths along which K;, Y;, and B,
all grow at rate g > 0, so that gp,, k = Glt(_ztv’ Y = (;f—tN, b = G]f—ﬁv and B, = % are all
constant, with values g, k, y, b, and B, respectively. Also, since the durability shock is i.i.d.,
the riskfree interest rate is constant and equal to 7y. Throughout, we use the notational
convention that variables without time subscripts represent constant values along balanced
growth paths.

Equation (14) implies that along a balanced growth path, the marginal product of capital
is

Oék‘a_lZm[U*'B)G—ﬁC(Q—Tf)B]- (15)

Remarkably, the ratio of capital to effective labor, k, in equation (15) is constant despite
the shocks to the durability of capital. In the case with ( = 0, the marginal product
of capital along a balanced growth path is invariant to the distribution of the durability
shock. However, if ( # 0, then the marginal product of capital in equation (15) depends
on the riskfree interest rate, which, as we will see below, depends on the distribution of
the durability shock. Equation (15) also illustrates the crowding out effect of government

debt; specifically, since the right hand side of equation (15) is an increasing function of B,

0The derivative of the right hand side of equation (15) with respect to B is ﬁ[G — BCg + Bry] =
ﬁ[(l —B¢)g+ 1+ p¢rg] >0, since 0 < ¢ < 1 and ry > —1.
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the marginal product of capital is an increasing function of B and hence k is a decreasing
function of B.

Despite the fact that k; is constant along a balanced growth path, the rate of return on
capital is stochastic, even along a balanced growth path. Use equation (6), which implies
that the rate of return on capital along a balanced growth path is r = ak*! — § + & (where

€ is the random durability shock), and equation (15) to obtain

It will be convenient to use the ratios of the gross rates of return to the gross growth
rate, G. Specifically, along a balanced growth path, R = 1% is the “adjusted gross rate
of return” on capital, Ry = H% is the “adjusted gross riskfree interest rate” and R, =
1*% = AR;+ (1—X)R. For R and Ry, a value equal to one has special significance
along deterministic balanced growth paths: the government can rollover debt forever at the
riskfree interest rate if and only if Ry < 1; and the economy is dynamically inefficient if
and only if R < 1, or equivalently, In R < 0. In stochastic economies with deterministic
growth, Ry = 1is still the crucial value of the riskfree interest rate that determines whether
the government can rollover its debt forever; and, as we discuss in detail in Section 4, the

economy is dynamically inefficient if and only if £ {ln R} < 0.
Use Gl (g—r;) =G (1+g—(1+rs) =1— Ry and equation (16) to obtain

147
G

R =R+G'E (17)

where

}_%:T?(B,C,Rf)zm[1+B—5C(1—Rf)5]+(1—5)G_17 (18)

is the expected “adjusted gross rate of return on capital” along a balanced growth path.

Nmetmmamigm)=:@3W[1—BC+5CRA>(“md8M$§m)Z(Limﬁﬂ320kwwu%

0<pf<zand0< (<1
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2.1 Isomorphic Formulation with Stochastic Output

The model used throughout paper—which we will call the baseline model—was designed so
that the aggregate capital stock, K;, evolves deterministically and grows at a constant rate,
g, along any balanced growth path. As we show in Section 3, the riskfree interest rate, ry, is
also constant along any balanced growth path, so the feasibility of rolling over government
debt depends only on the sign of 7y — ¢g. In addition, aggregate output, Y;, evolves non-
stochastically in the baseline model. In this subsection, we develop a class of models that
are isomorphic to the baseline model in the sense that the evolution of K;, as well as the
evolution of rates of return, including the riskfree interest rate, are identical to those in the
baseline model. Nevertheless, Y;, evolves stochastically for all models, except for the baseline
model, in this isomorphic class. We choose to use the baseline model throughout the rest
of the paper for expositional simplicity, recognizing that the non-stochastic evolution of Y;
is not at all essential to our findings.

Consider a class of models in which the production function is
11—« @ a—
Y, = (G'N) " KP + Ky = (k2 ) Ko (19)

where 7, is an i.i.d. random productivity shock with a mean that can be positive, zero, or
negative. Because aggregate wage income, (1 — ) (GIN)'™* K@, is deterministic, aggregate
saving of the young and the evolution of K, are deterministic and identical to those in the
baseline model.

In this class of models, the depreciation rate of capital is d — 724, where 1y, is an i.i.d
random variable with arbitrary correlation with 7,4, and 0 < § —ny; < 1. In addition,
assume that £ {n;; +n2:} = 0. The (net) rate of return on capital is the marginal product

of capital, ak{ " + 1+, minus the depreciation rate, § — 1.,
Ty = akd =6+ (N1 + o) - (20)

This class of isomorphic models is defined by 1y + 172+ = ;. Therefore, equation (20)
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can be rewritten as
= akf’l — 0+ &y, (21)

which is identical to equation (6) with E {e,} = 0. As a consequence, the riskfree rate, ry,,
is identical to that in the baseline model. Thus, all of the models in this class of models are
isomorphic to the baseline model in the sense that K; and all rates of return in all periods are
identical to their values in the baseline model. Therefore, our major findings about rolling

over government debt are not dependent on deterministic output.

2.2 Deterministic Version of the Model

In this subsection, and only in this subsection, we consider a deterministic version of the
model. The following nonlinear combination of parameters, #, allows us to easily assess
whether a balanced growth path in a deterministic economy with ¢ = 0 is dynamically

efficient.
Definition 1 0 = % 1—(1-90)G 1 —1.

Lemma 1 Along a balanced growth path in a deterministic economy with ¢ = 0, the ratio

- T S 140
of gross investment to gross capital income is 4B

According to the criteria in AMSZ Proposition 1, if the ratio of gross investment to gross
capital income is always greater than one, then the economy is dynamically inefficient; and
if the ratio of gross investment to gross capital income is always less than (or equal to)!!
one, the economy is dynamically efficient. Thus, Lemma 1 implies that if ( = 0, then a
balanced growth path in a deterministic economy is dynamically inefficient if and only if
146

5 > L Therefore, if 6 is positive, it equals the value of the bond-capital ratio, B, in

a deterministic economy for which the balanced growth path is on the boundary between

ILAMSZ Proposition 1 does not address the case in which the ratio of gross investment to gross capital
income is equal to one. However, in a deterministic economy, if the ratio of gross investment to gross capital
income is always equal to one, the economy is at the Golden Rule, which is the boundary between dynamic
efficiency and dynamic inefficiency.
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dynamic efficiency and dynamic inefficiency. The deterministic balanced growth path will
be dynamically inefficient if and only if B < 6. Consistent with this result, note from the

definition of R(B,(, R;) in equation (18) that

R(6,0,-) = 1. (22)

Since R(B,0, Ry) is increasing in B, the balanced growth path will be inefficient if and only
if B < 0. Ina deterministic economy, the riskfree interest rate, Ry, is identically equal to
R. Therefore, in a deterministic economy, we get the familiar result that if Ry = R <1,
then the economy is dynamically inefficient (R < 1) and government debt can be rolled over
forever because Ry < 1, which is equivalent to 7y < g.

Four parameters each independently increase the value of # and push the deterministic
balanced growth path toward dynamically inefficient overaccumulation of capital: (1) since
aggregate saving is proportional to [, an increase in 3, which increases , increases aggregate
capital accumulation; (2) a decrease in « increases 6 through two channels: (i) a decrease
in « increases the labor share of income 1 — «, which increases saving and investment,
B (1 —a)Y;; and (ii) a decrease in a reduces capital income, aY;, making any given amount
of capital less attractive; (3) an increase in d, which increases ¢, makes capital less attractive
because it depreciates more quickly; and (4) an increase in GG, which increases 6, pushes the

economy closer to the situation in which r < g, which characterizes dynamic inefficiency.

3 Portfolio Allocation and Asset Pricing

Young consumers choose portfolios consisting of riskfree government bonds and risky capital.

Formally, the optimal share of riskfree government bonds in a young consumer’s portfolio is

Ai11 = argmax

At+1 1-— Y In Et {(Ra’t*'l)l_v} ) (23)
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where, as discussed earlier, R, ;11 = Mr1Rri11 + (1 — Mg1)Riyq. The first-order condition

associated with this maximization problem along a balanced growth path is
E{(AR;+(1—=XN)R)"(R;—R)} =0. (24)

The first-order condition in equation (24) is an implicit function of A\, Rs, and R. Viewing
R and the distribution of R as given, the implicit function determines the optimal value of
A. Alternatively, equation (24) can be viewed as a financial market equilibrium condition
that determines Ry as a function of the equilibrium value of A\ and the distribution of R.

In financial market equilibrium with a given value of B = %, the share of the aggregate

B _ B

portfolio that is held in riskfree government bonds is A = B = 1B

1—v
Lemma 2 For any distribution of R > 0, Ry = %.

Let Ry (B) denote the equilibrium value of R as a function of the bond-capital ratio B,
along a balanced growth path. Where convenient, we omit the argument of this function
and write simply R;. Before analyzing the impact of B on Ry, we introduce the following

definition and proposition.

Definition 2 Ruiw = 77555 + (1 -8+ infe) G > 0, which from equations (17) and (18),
is less than or equal to the rate of return on capital for any B > 0 and € > inf€,;,. If Ry <1,

and the distribution of € is non-degenerate, then, by the absence of arbitrage, Ry, < 1.

Along a balanced growth path, government bonds can be rolled over forever if and only if
Ry <1, so we focus our attention only on situations with B¢ < 1. The following proposition
presents a sufficient condition for the riskfree interest rate to be an increasing function of B

along balanced growth paths for which rollover is feasible.

o . 1_%(1_Rmin) 1
Proposition 1 If1 <y <A = 15 C 1 Rum

, then R (B) > 0 for Ry (B) < 1.

Proposition 1 presents an interval of values of the risk aversion parameter v for which

R} (B) > 0. Two comments are in order. First, the condition in Proposition 1 is a sufficient,
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but not necessary, condition, so that R} (B) > 0 for a larger set of values of 4 than specified
in this proposition. Second, the upper bound A in this proposition is a function only of the

parameters of the model. In the case in which ¢ = 0, Proposition 1 simplifies to
Corollary 1 If (=0 and1 <~y < ﬁ, then R (B) >0 for Ry (B) < 1.

Recall from the definition of R, that the no-arbitrage condition implies that R, < 1

when Ry (B) < 1, so the condition in Corollary 1 is non-vacuous.'?

4 Dynamic Efficiency and the Feasibility of Rollover

A deterministic economy along a balanced growth path is dynamically efficient if and only
if R > 1, equivalently, » > ¢g. In the presence of uncertainty, it might be tempting to
assess dynamic efficiency simply by comparing the expected value of r to the expected value
of g. However, that approach can lead to incorrect conclusions about dynamic efficiency
in situations that are neither extraordinary nor pathological. Specifically, there is a set of
situations in which F {R} > 1 and yet the economy is dynamically inefficient.!?

As shown by Zilcha (1991), the correct sufficient statistic for assessing dynamic efficiency
in an economy that grows at constant rate g is F {In R}, which equals F{In(1+r)} —
In(14g¢g). An economy is dynamically inefficient if and only if F{Iln R} < 0, which, in
the case of certainty is the familiar condition R < 1, equivalently, r < ¢g. Zilcha (1990,
1991) extends to stochastic economies an ingenious argument developed in Cass (1972) for
assessing dynamic efficiency. Here is a greatly simplified sketch of the rigorous Cass-Zilcha
analysis. Consider whether it is possible to increase aggregate consumption at time ¢ while
maintaining aggregate consumption unchanged at all times after ¢. The increase in aggregate
consumption at time ¢ reduces the capital stock at time ¢ + 1 by one unit—in Cass-Zilcha
terminology, a capital decrement of one unit—which, ignoring for the moment any impact of

the capital decrement on the rate of return on capital, reduces output at time ¢ + 1 by r;1,

12For the general case in which 0 < ¢ < 1, the proof of Proposition 1 in Appendix A demonstrates that
the condition in that proposition is non-vacuous when 0.6 < Ry, < 1.
13Since In £ {R} > E {In R} when R is stochastic, it is possible for E {R} > 1 even though F {In R} < 1.
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units, leading to a capital decrement at time ¢ 4+ 2 of 1+ 7., units, which leads to a capital
decrement at time t+3 of (1 + 7¢41) (1 + r112), and so on. Thus, continuing for a moment to
ignore the impact of capital decrements on the rate of rate of return on capital, the capital
decrement at time t+n > t+2is H;?;ll (1 +7.4;). Relative to the path of the capital stock in

the absence of a change in consumption at time ¢, that is, relative to K;,,, = (1 + g)"_1 Kiiq,

n—11+r¢gp; 1 Hn—l — I4reyy
i X i Lty

the capital decrement at time ¢ + n is ﬁﬂ 1 Ry j, where Ry j = — w

K j=1"1tg ~ Kin
is the “adjusted gross rate of return on capital.” If E{In R} > 0, the size of the expected
capital decrement grows relative to the capital stock until the decrement at some future
time eliminates the entire capital stock, thereby rendering impossible the attempt to achieve
an increase in aggregate consumption at time ¢ without decreasing consumption at any
time following ¢t. That is, the original allocation of consumption and capital over time
is dynamically efficient. Strengthening this argument is the fact that capital decrements
themselves increase the marginal product of capital and increase In R.

Alternatively, if E {In R} < 0, the capital decrement relative to the capital stock shrinks
over time toward zero, making it feasible to increase aggregate consumption at time ¢ without
driving the capital stock to zero eventually. Thus, the original allocation of consumption
and investment over time is dynamically inefficient. Finally, if £ {In R} = 0, the capital
decrement at time t 4 1 increases future marginal products of capital, thereby increasing
future capital decrements above what they would be if we ignore this impact. Thus, it is
infeasible to increase aggregate consumption at time ¢, without driving the capital stock to
zero eventually. Hence, the economy is dynamically efficient if £ {ln R} = 0.

We apply the Zilcha criterion to examine, in economies with a constant growth rate, the
relationship between dynamic inefficiency and the feasibility of rolling over a small amount
of government bonds. The link between dynamic inefficiency and the feasibility of rollover is
particularly stark in deterministic economies because Ry, the adjusted gross riskfree interest
rate equals R, the adjusted gross rate of return on capital. If Ry = R < 1, then the
economy is dynamically inefficient and, since Ry < 1, government bonds can be rolled over
forever; alternatively, if Ry = R > 1, then the economy is dynamically efficient and, since

R; > 1, government bonds cannot be rolled over forever. However, in stochastic economies,
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Ry and R generally differ since R is stochastic. In such economies, there are parameter
configurations for which E {In R} > 0, indicating that the economy is dynamically efficient
and nevertheless, Ry < 1 so that at least a small amount of government bonds can be rolled

over forever.

Lemma 3 Assume that R, > 0 is a non-degenerate random variable with E {ln R,} < 0.

E{Rs"}

When there are no government bonds, that is, when A = 0, we have R, = R, so Lemma
Et{Rli’Y}

Therefore, Lemma 3 implies the following proposition.

Proposition 2 Assume that v > 1, B = 0, and the adjusted gross rate return on capital,

R= ﬁ; > 0, is a non-degenerate random variable.

1. If E{InR} <0, then Ry < 1.

2. If Ry > 1, then E{In R} > 0 and the economy is dynamically efficient.

Proposition 2 implies that in the absence of government bonds, if the economy is dynam-

ically inefficient, i.e., E{In R} < 0, then R; = llfgf < 1 so the net riskfree rate, ry, is less

than the growth rate, g, and hence a small amount of government bonds can be rolled over
forever. More interestingly, in the absence of government bonds, if the adjusted gross rate
of return on capital, R, is stochastic with F {In R} = 0, then the economy is dynamically
efficient and Ry < 1 so that r; < g and a small amount of government bonds can be rolled
over forever. Thus, contrary to dynamically efficient deterministic economies, it is possible
to roll over government bonds forever in some dynamically efficient stochastic economies.
Proposition 2 leaves open the possibility that in some dynamically efficient economies
that have E{In R} > 0, the riskfree interest rate, Ry < 1, so government bonds can be rolled

over forever. We illustrate such economies in Figures 1 and 2 in Section 6.
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5 Maximum and Optimal Amounts of Sustainable Gov-
ernment Debt

In this section, we analyze two questions about sustainable levels of government debt. First
we address a positive question: what is the maximum sustainable value of B along a balanced
growth path? Then we address a normative question: what is the sustainable value of B
that maximizes utility along a balanced growth path? Remarkably, we find that utility

along a balanced growth path is maximized by the maximum sustainable value of B.

Definition 3 A constant value of B along a balanced growth path is sustainable if govern-
ment debt can be rolled over forever at the riskfree interest rate without any primary budget

surpluses in the future. Define Bpax as the maximum sustainable value of B.

Remark 1 Along a balanced growth path with constant Ry, a constant value of B is sus-

tainable if and only if Ry < 1.
Proposition 3 If R} (B) > 0 whenever Ry (B) < 1, then
1. if Ry (0) > 1, then Buax =0
2. if Ry (0) < 1, then
(a) Bumax is the unique root of Ry (B) =1

(b) Buax is finite

(c) B is sustainable if and only if 0 < B < Bax

Proposition 3, as well as later Propositions 4 and 5, assume that R}(B) > 0 whenever
Ry < 1. Proposition 1 provides a sufficient condition for this assumption to be true, namely,
v < A. Since this condition is sufficient, but not necessary for the results of Propositions
3, 4, and 5, these propositions potentially apply to a larger set of economies than the set of

economies for which v < A.

Corollary 2 If R} (B) > 0 whenever Ry (B) < 1, then Buax is invariant to (.
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The parameter ¢ appears only in the transfers to young consumers, which, along a bal-
anced growth path, equal 7 = ( (9 —rf) £ = ( (9 —ry) Bk. Transfers are equal to zero,
regardless of the value of ¢, when B = 0 so R (0) is invariant to ¢ and hence the determi-
nation of whether B, is zero or positive is invariant to . Similarly, transfers are equal to
zero, regardless of the value of (, when Ry (B) = 1, so the root of Ry (B) = 1 is invariant to
¢. Therefore, the value By is invariant to (.4

As in Blanchard (2019) and Ball and Mankiw (2021), our measure of welfare is the utility

of consumers along a balanced growth path.

Definition 4 Define uy = U, — tIn G, which is constant along a balanced growth path. The

optimal sustainable value of B along any balanced growth path is arg max u(B) .

0, maz}

To evaluate utility along a balanced growth path for a given value of B, define w = Vavf =
(1 — ) k* and use the expression for U, in equation (8) along a balanced growth path to

obtain'®

B

w(B) = nw + In <1+_> N

InE, {R™ tant. 25
W —In  {R)"} + constan (25)

Proposition 4 If R} (B) > 0 whenever Ry < 1, then 9 > 0 for any B € [0, Byad-

As shown in Lemma 8 in the Appendix, an increase in B has opposing effects on Inw
and % In £, {R!™}. An increase in B crowds out the capital stock, thereby reducing In w
but increasing the marginal product of capital, which increases rates of return and hence
increases & In E; {R!=7}. Despite these opposing effects, the impact of an increase in B

on utility is unambiguously positive whenever Ry < 1, as stated in Proposition 4. Corollary

3 provides a simple expression for g—Z, in the case with ¢ = 0. This expression allows us to
1Getting Ry = 1 and A = HLB in Lemma 2 and using equations (17) and (18) implies

-
that when Bpax > 0, it is a root of v(B) = E{(H_BBJr(l_O‘a)BJrHBG (175+E)> } _

1=
E{(lfza"'_uaa)ﬁ"'_ 1+BG (1—5+§)) = 0, which is invariant to .
15Substitute ¢ = (1 —3) (Wi +7) and ¢y = (14 rq41) B (Wi + 7¢) into equation (8) to obtain U, =
In Wy +1In (1 + V%) + % In E; {(1 + ra’t“)l*V} +constant. Subtract In G* from both sides of the resulting

equation and use u = U; — InG* and Inw = In W; — In G* to obtain equation (25).
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show how the two opposing effects are related through the factor price frontier in a way that

the utility-increasing effect dominates the utility-decreasing effect.

Corollary 3 If ¢ =0, then % = 1pb [(1— Rp) 12 + 615’de]

Corollary 3 is proved formally in Appendix A. Here we provide a heuristic derivation of j—g
to illustrate how the welfare-decreasing impact of the decrease in wage income is dominated
by the welfare-increasing impact of the increase in rates of return on capital and bonds, when
Ry < 1. To demonstrate that the main features of % do not depend on Epstein-Zin-Weil
utility with IES equal to one, we consider an addltlvely separable two-period utility function
u=uY(c¥)+ E{u®(c’)}, where, for i = y, 0, the utility function u’ (c’) is strictly increasing
and strictly concave with limg_ou” (¢!) = oo and limu_,. u” (c!) = 0. For simplicity, we
also assume for the purposes of this heuristic derivation that G = 1.

The heuristic proof proceeds in the three steps. First, for an individual consumer who has
optimally chosen to consume ¢ when young and ¢® when old, the envelope theorem implies
that the impact on utility of a change in B equals the change in utility if the consumer
reduces ¢ by the amount of lost wage income in the first period and increases ¢° by the
additional return on the % units of capital and % units of bonds held in the second period.

That is, 2 = u¥ (¢v) 4% + E{u” ()} (%fl—g %%), where, in addition to the envelope
KdR

B dRy .. .
NGB N_B is non-stochastic in our model. Using the

theorem, we have used the fact that

chain rule we obtain

du dW dK KdRdIK BdR

. + EL{u? (c° / 9

a5~ ) g TR e )}(NdeB+NdB) (26)
Second, use the factor-price frontier,'® N % + K % = 0, which 1mphes &L = —%%,

to obtain
du K dR dK B dR
yl [y E ol kit E ol 0o __f 2
S = (@) + B ()] g s+ B {0 () 27)

16Since F (K, N) is homogeneous of degree one in K and N, Euler’s theorem implies NFy + K Fy = F.
Differentiating this equation with respect to K yields NdFN + KdFK =0.
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Third, use the first-order condition for the optimal intertemporal allocation of consump-
tion along with the fact that R is not stochastic to obtain u¥ (¢¥) = RyE {u” (¢°)}, which

implies!”

d 1 K dR dK 1 BdR
" =u’ (¢Y) [(——1) oy 2 (28)

dB Ry NdK dB '~ R; N dB
The interpretation of g—g is simplest in the situation with B = 0, so'®
du 1 K dR dK
il T OSAY I I ekl if B = 2
B “(ﬁf)(Rf )NdeB’ 5 =0, (29)
sign(1-Ry) +) (=) (=)

which is the product of five terms (reading from right to left): (1) an increase in B crowds

out capital (%5 < 0); (2) the reduction in the capital stock increases the expected rate of

return on capital (4£ < 0); (3) the increase in the rate of return capital can be used to
K dR dK

increase expected ¢® by %9795, and along the factor-price frontier the increase in the rate

K dR dK

of return on capital reduces the wage per capita by §; 3= 55, which be used to decrease ¢¥; (4)

the sign of the net impact of the decrease in ¢¥ and the equal-sized increase in ¢° is the same
1 B{u”'(c%)}

. 1 o
as the sign of R 1, where - =

BT a(o) is the intertemporal price of consumption; and

(5) the marginal utility of consumption when young, u¥' (¢?), which converts the calculation
from goods to units of utility. Thus, if B =0 and Ry — 1 < 0, then j—g > 0, with strict

inequality if Ry < 1; and when B > 0, this positive effect on welfare is reinforced by the

17To see that equation (28) with ¢ = 0 is identical to Corollary 3, multiply and divide the right hand side

of (28) by & K+B and use the chain rule to replace & ‘flg by 4% = = (from equations (17) and (18)
u dR

with ¢ = 0) to obtain £% = u¥’ (c¥) %Rif {( — Ry) K+B s T KEBTBf]' If u¥ (V) = (1 —6)Inc?,

() = BInes, and € =0, then & = (1~ 5) 1V, (c V) = 1 = g and wse i = iy and 25 = 5
. . . du _ K+B dR .

to rewrite this expression as 7z = W—JFNR%CH#B [( — Ry) (= Q)ﬁ +B f] Finally, use BWN = K + B to

obtain g% = B le {( — Ry) 125 + BB i, } which is identical to Corollary 3.

8Equation (29) states that the sign of 4% depends only on the sign of 1 — Ry. In contrast, Blanchard
(2019) shows that the sign of the impact of an increase in debt on welfare depends on both the riskfree rate
and the risky rate of return on capital. This difference arises because in our model, the effect of a change in
the capital stock on the marginal product of capital (the second derlvative of the production function with
respect to K) is non-stochastic. In addition to making the sign of 5 depend only on the sign of 1 — Ry, this
feature allows us to derive exact expressions for the marginal anact on welfare of an increase in B, without
relying on approximations.
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final term in equation (28), u¥ (¢#) =24 which is positive when Ry <1.

Proposition 5 If R (B) > 0 whenever Ry (B) < 1, then arg max s, w(B) equals Buax,
that s, utility per effective unit of labor along a balanced growth path is mazximized by the

mazimum sustainable value of B.

Since the proof of Proposition 5 is both simple and instructive, we present it here. If
u(B)
equals Byax = 0. Alternatively, if Ry (0) < 1, then Byax > 0 and Statement 2¢ of Propo-

R¢ (0) > 1, then Byax = 0 and the closed interval [0, Byax] is a singleton so arg maxo s

max}

sition 3 implies all B in [0, B.x] are sustainable. Proposition 4 implies that g_zus > 0 for
all B € [0, Biax|, S0 arg maxge(o,B,..,] 4(B) is a corner solution with B = Byax. Corollary 2,
which states that B,,., is invariant to ¢, implies that the main result of the paper does not
depend on whether the government uses its net resources from rollover to make transfers to

the young consumers or simply wastes these resources.

6 A Graphical Illustration of Dynamic Efficiency and
Feasibility of Debt Rollover in a Simple Case

The model developed and analyzed in this paper has the convenient property that the capital
stock per unit of effective labor is constant along a balanced growth path, which implies that
the expected rate of return on capital, R, is also constant along a balanced growth path.
In this section, we assume that the durability shock, €;, has a two-point distribution with
Pr{e; =0} =4 =Pr{e, = —0}, where 0 < o < min {4,1 — §}. Therefore, along a balanced
growth path, the adjusted gross rate of return on capital, R, has a two-point conditional
distribution, Pr{R =Ry = R+ G 'o} =1 =Pr{R= R, = R— G 'o}, where R is given
by equation (18). We further simply the presentation in this section by setting v = 1 and
¢ =019

YWhen ¢ = 0, the mapping from the pair (Rg, Rz) and a given value of B back to the fundamental
parameter values is straightforward. Given Ry, Ry, o0 = %(RH — Ry), and B, use equation (18) to obtain
$(Rgy+Ry)=R= =L (1+ B) + (1 — ) G=1, which characterizes, for given bond-capital ratio B, the
values of «, 3,0, G, and o that lead to a balanced growth path along which the two possible adjusted gross
rates of return on capital are the given values of Ry and Ry .
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Certainty Ry = Rp,

IE Z-efficient

Permanent rollover not
feasible

Permanent rollover
feasible

Z-inefficient
Permanent rollover ™ N
feasible N

Figure 1: A Graphical Summary of Dynamic Efficiency and Feasibility of Debt Rollover
when ( =0, y=1, and B =0.

Figure 1 shows the possible adjusted gross rates of return on capital along a balanced
growth path, with Ry on the horizontal axis and Ry on the vertical axis. In the absence
of durability shocks, Ry = Ry, so the locus of possible pairs (Ry, Ry) is the 45-degree line
labeled “Certainty: Ry = Rp,” which passes through the origin. Point F on this line

1+r
1+g

represents the Golden Rule under certainty, = Ry = Ry, =1, sothat r = g. The area

above and to the left of the 45-degree line is grayed out because Ry > R; by definition.
Now consider the situation in which the durability shock, ¢;, has a positive variance,

o? > 0, so that (R, Ry) lies in one of the five regions below the 45-degree line. In

two of these regions, the AMSZ criterion that compares the rate of return on capital with
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the growth rate gives a decisive assessment of dynamic efficiency. In Region A, labelled
“AMSZ-inefficient,” both Ry and Rj are less than one so r < g for both possible values
of R. Therefore, the AMSZ criterion implies that the economy is dynamically inefficient.
Furthermore, since R, < Ry < 1, the adjusted gross riskfree interest rate, which satisfies
R;, < Ry < Ry, is always less than one. In this case, 7y < g, so that a dollar of government
debt that is rolled over at the riskfree interest rate will shrink over time toward zero.

In Region B, labelled “AMSZ-efficient,” both Ry and R are greater than one so the
net rate of return on capital is always greater than the growth rate. Therefore, the AMSZ
criterion implies that the economy is dynamically efficient. Furthermore, since 1 < R <
Ry, the adjusted gross riskfree interest rate, which satisfies R, < Ry < Ry, is always greater
than one. Therefore, the amount of government bonds grows at rate r¢, which is higher than
the growth rate of the capital stock, g. There is no possibility of rolling over government
bonds, without primary surpluses, at the riskfree rate forever.

The downward-sloping curve originating at Point F' and labelled E {In R} = 0 is a rect-
angular hyperbola, R; = ﬁ. This curve is the boundary between dynamically inefficient
(Rp, Ry) pairs in Region C below the curve and dynamically efficient (Ry, Ry) pairs in Re-
gions D and E above the curve. Regions C, D, and E are all characterized by R;, < 1 < Ry,
so that sometimes the net rate of return on capital is less than growth rate, g, and sometimes
the net rate of the return on capital is greater than g. Because the net rate of return on
capital fluctuates around g, the AMSZ criteria are not decisive about dynamic efficiency.
However, in Region C, R,Ry < 1 and hence E{ln R} < 0 so the economy is dynami-
cally inefficient according to the Zilcha criterion; thus, we label Region C as “Z-inefficient.”
By contrast, in Regions D and E, RyRy > 1 and hence E {ln R} > 0 so the economy is
dynamically efficient according to the Zilcha criterion; thus, we label Regions D and E as “Z-
efficient.” The dashed line segment FH is a locus of (Ry, Ry) pairs for which Ry + Ry = 2
so that the expected return on capital, R = @ = 1. Points between this line segment
and the £ {ln R} = 0 curve are dynamically inefficient even though R > 1 (equivalently,
E{r} > g), thereby illustrating that the expected value of the risky return on capital is

not the correct statistic to compare to the growth rate for the purpose of assessing dynamic
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efficiency.

The government can rollover its bonds forever if r; < g, equivalently, if Ry < 1. The
higher of the two downward-sloping curves through Point F is the locus of (R, Ry) for which
R; =1 in the case with B =0 and v = 1. For points above this curve (Regions B and D),
R; > 1 and permanent rollover of government bonds is not feasible. For points below the
R; =1 curve (Regions A, C, and E), Ry < 1 and permanent rollover of government bonds,
without any primary surpluses, is feasible. Region E is of particular interest because it
has a different relationship between dynamic efficiency and feasibility of permanent rollover
than in deterministic economies. In Region E, which lies above the E {In R} = 0 curve, the
economy is dynamically efficient, but since Region E is below the Ry = 1 curve, permanent

rollover of government bonds is feasible.

Lemma 4 With a symmetric, two-point distribution for the durability shock, €;, if ( =0, a
balanced growth path is dynamically efficient if and only if RyRy > 1, equivalently, if and
only if G?0* < [R (B,C,Rf)]2 -1.

If ¢ = 0, then the capital stock along a balanced growth path is independent of both
the variance and the realizations of the durability shock, ;. Thus, holding «, 3, §, and G
fixed, an increase in the variance o2 of the durability shocks has no impact on the capital
stock along a balanced growth path. Nevertheless, Lemma 4 implies that an increase in the
variance o2 can change the efficiency status of a given capital stock along a balanced growth
path from dynamically efficient to dynamically inefficient. With a capital stock invariant
to the durability shock along a balanced growth path, the arithmetic mean of the rate of
return on capital is unchanged by an increase in o2, but the geometric mean, which is the

concept relevant for dynamic efficiency, falls when o? increases.

Lemma 5 With a symmetric, two-point distribution for the durability shock, ¢, if v =1, =
0, and B € [0, 1] then along a balanced growth path, Ry ; 1 as G202 z R(B,0,-) + B] x
[R(B,0,-) —1].%°

20We confine attention to B < 1 in this case because the interval of values of G=?¢? in equation (30) below
is vacuous if B > 1.
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Lemma 5 implies that starting from a situation in which Ry > 1, an increase in the

2

variance o“ can push R; below one as investors seeking safety accept a lower riskfree interest

rate on government bonds.

Proposition 6 With a symmetric, two-point distribution for the durability shock, ¢, if v =
1, (=0, and B € |0, 1], then along a balanced growth path in a dynamically efficient economy,
the ratio of government debt to the capital stock, B, is sustainable if and only if

h(B) = [R(B,0,") + B] [R(B,0,-) — 1] < G %> < g(B) = [R(B,0,)]" — 1. (30)

/

~~

Ry<1 dynamic efficiency

Since R (1,0, -) is linear in B, the functions g (B) and h (B) in Proposition 6 are quadratic
in B. There are two values of B for which g (B) = h(B). Since, from equation (22),
R(0,0,-) = 1, the definitions of g (B) and h (B) imply that g (§) =0 = h(6). Also, the defi-
nitions of g (B) and h (B) imply that & (1) = [R(1,0,-) + 1] [R(1,0,-) — 1] = [R(1,0, .)]2—
1 =g(1). More generally, for other values of B, g (B) — h(B) = (1 — B) [R(B,0,-) — 1], so
for§ < B <1, R(B,0,-)—1 > 0 and hence g (B) > h(B). For values of B > 1, g(B) < h(B)
and the set of values of G~20? in Proposition 6 is vacuous.

Figure 2 shows the long-run bond-to-capital ratio, B, on the horizontal axis and the
adjusted variance G202 on the vertical axis. In this figure, « = 0.3, 8 = 0.5, § = 0.8,
v=1,(=0,and G = 1s0 60 = —0.067 < 0. Since g(#) = 0 = h(f), the horizontal
intercepts of g (B) and h (B) are both equal to 6, which is negative in this case. Thus, the
horizontal intercepts do not appear in this figure since it is confined to the positive quadrant.
As discussed above, # < 0 implies that the deterministic version of this economy with zero
government bonds (B = 0 and 02 = 0, which is the origin in Figure 2) is dynamically efficient.
More generally, for any points below the g (B) (dashed) curve, G™20? < g (B) so the economy
is dynamically efficient; for points above the g (B) curve, G20% > ¢ (B) so the economy is
dynamically inefficient. For any points below the i (B) (solid) curve, G 20% < h(B) so
R; > 1, which implies r; > g, and hence it is not feasible to rollover government bonds
forever; for points above the h (B) curve, G202 > h(B) so Ry < 1, which implies r; < g,

and hence it is feasible to rollover government bonds forever. Thus, points between the
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B

Figure 2: The boundaries of dynamic efficiency, ¢g(B), and sustainability of rollover, h(B),
for ( = 0 and 7 = 1. The economy is dynamically efficient below g(B), and Ry < 1 above
h(B).

two curves are dynamically efficient economies in which it is feasible to rollover government
bonds forever.

Consider the origin in Figure 2, where B = 0 and o2 = 0, which represents the version of
the economy with no uncertainty and no government bonds. As discussed above, since this
point lies below the ¢ (B) curve, the economy is dynamically efficient, and since this point
lies below the h (B) curve, we have R; > 1. Now consider increasing o2 while maintaining
B = 0, which is a movement upward along the vertical axis. As o2 increases, consumers
are willing to pay increasing amounts for the increased safety offered by riskless government
bonds, thereby decreasing R;. When G202 reaches the vertical intercept of the i (B) curve,
which is Point A, Ry = 1, which means that r; = g and government bonds can be rolled

over forever, even though the economy at Point A is dynamically efficient because Point A
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lies below the g (B) curve.

Now we examine the impact of increasing the bond-capital ratio, B, for a given value
of G202, We will use Figure 2 to illustrate that if Ry < 1 in a steady state without any
government bonds, the maximum sustainable amount of government bonds is positive; in
addition, we will illustrate the determination of this maximum level in this figure. Consider
Point B on the vertical axis, where B equals zero. At Point B, the economy without
government bonds is dynamically inefficient because it lies above the g (B) curve and Ry < 1
because the Point B is above the h (B) curve. Holding G~?0? unchanged, increase B, until
we reach Point C on the g (B) curve. The increase in B from Point B to Point C crowds
out capital and eliminates the overaccumulation of capital. At Point C the economy is
dynamically efficient, and because Point C is above the h (B) curve, R; remains less than
one, so it is feasible to roll over government bonds forever. Increase B further to Point D
on the h(B) curve. At Point D, the economy remains dynamically efficient, and Ry =1
so that it remains feasible to roll over government bonds forever. Indeed, the value of the
bond-capital ratio, B, at Point D is the highest sustainable value of B for the given value of

G202 at points B, C, and D.

7 Quantitative Application

In this section, we provide a quantitative illustration of (a) Byax, which is the maximum
sustainable value of B as well as the welfare-maximizing value of B, and (b) the value
of B on the boundary between dynamic efficiency and inefficiency for given values of the
fundamental parameters «, 3, 9, v, o, and G.

We set the capital share o equal to 0.33. We interpret a “period” as 30 years and set

1-B
an annual discount rate of 2% per year. We assume that labor-augmenting productivity

1/30
£ = 0.353, so that the annualized discount factor, ( B ) , is 0.98 per year, which implies
grows at the rate of 1% per year, so G = 1.35. For risk aversion we consider v = 1, 3,8, and
10. Finally, we model the durability shock, €, as a lognormal variable minus a constant, and

choose the parameters so that when the ratio of government bonds to the capital stock, B,
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equals 0.5, E{(1 4+ r)} = E {GR} matches a target value of (1 4+ m)*’, where m = 0.03 is an
annualized rate of return on unlevered equity and sd {(1 + r)} = sd {GR} matches a target
value of S\/%, where s is an annualized standard deviation of the rate of return on unlevered
equity. Further details of the calibration, including a discussion of the implied mean and
standard deviation of the rate of return on levered equity, are contained in Appendix C.

Tables 1 and 2 report for ( = 0 and ( = 1, respectively, B,,., and the value of B on
the dynamic efficiency boundary (i.e., the value of B such that E{in(R)} = 0). In both
tables, some of the cells for low values of s are blank. In the section of each table that
reports By,., a blank indicates that Ry > 1 for all nonnegative values of B; thus, there
is no positive value of B that can be rolled over forever. In the section of each table that
reports the dynamic efficiency boundary, a blank indicates that the economy is dynamically
efficient for all non-negative values of B. Both tables show that as risk aversion increases,
there is a significant gap between B,,,, and the dynamic efficiency boundary, so there is a
non-trivial set of parameter values for which government bonds can be rolled over forever in
dynamically efficient economies. For instance, in Table 1 when v = 10 and s = 0.22, the
dynamic efficiency boundary is attained at B = 0.083, while B,,,, = 0.478.

To interpret the magnitude of the values of B in Tables 1 and 2, recall that empirically
the level of government debt is often expressed as a multiple of GDP, while the values of B
are expressed as multiples of the capital stock. For an economy in which the capital-output
ratio is 2, the debt-GDP ratio is twice as high as the debt-capital ratio, B. In such an
economy, the values of B in Tables 1 and 2, which range from 0 to 0.478, correspond to
debt-GDP ratios ranging from 0 to 0.956.

Comparison of Tables 1 and 2 shows the impact of (. Overall, the tables show that the
impact of ( is quantitatively small for the dynamic efficiency boundary and, as stated in
Corollary 2, ( is completely irrelevant for the determination of B,,,,, which is the welfare-
maximizing sustainable value of B.

Now we look at the tables in more detail. First consider B,,,,, which is both the
maximum and the optimal sustainable value of B. Since Ry = 1 when B = B4, the transfer

to young consumers, ¢ (g —ry) Bk = ( (1 — Ry) GBk, equals zero and hence the expected
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adjusted gross rate of return on capital in equation (18) becomes R = o 1+ B) +
(1 —0) G, which is independent of risk aversion, 7, and the volatility parameter, s. An
increase in 7 or an increase in s increases the risk premium on capital relative to the riskfree
rate. With an unchanged R, the increased risk premium implies that R ¢ falls. To maintain
R; = 1, the value of B must increase to crowd out capital, thereby increasing R and Ry.
Therefore, moving rightward in each row in the “maximum sustainable B” section of each
table, v increases and hence the maximum sustainable B increases; similarly, moving down
each column in this section of these tables, s increases and the maximum sustainable B
increases.  As implied by Corollary 2, the sections of Tables 1 and 2 that present the
maximum sustainable BB are identical to each other.

Now, consider the dynamic efficiency boundary, which is characterized by £ {ln(}_% + 5)} =
0. In Table 1, ¢ = 0, so that the transfer to young consumers, ¢ (¢ — ) Bk, is zero. Hence,
as discussed above, equation (18) implies that R = a8 (1+B) + (1 —40)G™!, which is
independent of v and s. Therefore, F {ln(ﬁ + 5)} is independent of v, so the value B on
the dynamic efficiency boundary is independent of v for given s. By contrast, although an
increase in s also has no effect on R, it reduces E {ln(}_%—i- ?f)} because In (+) is a strictly
concave function. In order to restore E {ln(}_2+ 5)} = 0 when s is increased, and thus
remain on the dynamic efficiency boundary, R must increase, so B must increase to crowd
out additional capital and increase the marginal product of capital. This effect is illustrated
in Table 1 by the increasing values of B as one goes down each column in the section of the
table devoted to the dynamic efficiency boundary.

In Table 2, where ¢ = 1, equation (18) implies that R = o L+ B+ B(Ry—1)B] +
(1—-0)G~'. Thus, with ¢ = 1, R is an increasing function of Ry, which is a decreasing
function of v and s, since both a higher coefficient of relative risk aversion, v, and higher
volatility, s, lead consumers to seek safety in riskless government bonds, thereby driving R
downward. Thus, for a given value of s, an increase in v reduces Ry and hence reduces R,
so to remain on the dynamic efficiency boundary where £ {ln(ﬁ + 5)} = 0, B must increase
to increase R. Alternatively, for given values of 7, an increase in s reduces E {ln(ﬁ + 5)}

through two channels. First, the concavity of In (-) implies that for given R, an increase in s
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¢=0

Maximum sustainable B Dynamic efficiency boundary
=1 vy=3 v=28 v =10 v=1 =3 v=28 v =10
s =10.02
s =0.04 0.042 0.062
s = 0.06 0.026 0.122 0.150
s =0.08 0.075 0.193 0.224

s =0.10 0.017 0.120 0.252 0.285
s =0.12 0.043 0.162 0.301 0.334

s=20.14  0.068 0.199 0.342 0.374 0.013 0.013 0.013 0.013
s=20.16 0.091 0.232 0.376 0.408 0.031 0.031 0.031 0.031
s=0.18  0.113 0.261 0.405 0.435 0.049 0.049 0.049 0.049
s=0.20 0.133 0.286 0.429 0.459 0.066 0.066 0.066 0.066
s=0.22 0.152 0.309 0.450 0.478 0.083 0.083 0.083 0.083

Table 1: Maximum sustainable B and the value of B delineating the boundary of dynamic
efficiency. v denotes risk aversion, and s is the annualized standard deviation of the return
on capital in an economy with B = 0.5. ( is set to zero.

reduces E {ln(ﬁ + é)} Second, as discussed above, an increase in s reduces 2y and hence
reduces R. To remain on the dynamic efficiency boundary where, E {ln(}_2 + 5)} =0,B
must increase to increase R. Finally, note that the nonzero entries for the dynamic efficiency
boundary in Table 2 are higher than in Table 1 because the positive transfers to consumers
when ¢ = 1 in Table 2 increase saving thereby increasing the capacity of saving to absorb

bonds without driving the capital stock low enough to increase E {In(R + &)} above zero.

8 Concluding Remarks

In this paper, we develop an overlapping-generations model to analyze sustainable levels of
the ratio of government bonds to the capital stock that can be maintained forever without
any future primary government surpluses. To make the analysis easily tractable, the baseline
model confines exogenous shocks to the depreciation rate of capital, which is additively
separable from the production function so the labor income of young consumers is non-

stochastic. In addition, since (1) consumers have Epstein-Zin-Weil utility functions over
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(=1

Maximum sustainable B Dynamic efficiency boundary
=1 v=3 v=28 v =10 v=1 =3 v=28 v =10
s =10.02
s =0.04 0.042 0.062
s = 0.06 0.026 0.122 0.150
s =0.08 0.075 0.193 0.224

s =0.10 0.017 0.120 0.252 0.285
s =0.12 0.043 0.162 0.301 0.334

s=20.14  0.068 0.199 0.342 0.374 0.013 0.015 0.018 0.018
s =0.16 0.091 0.232 0.376 0.408 0.032 0.037 0.043 0.044
s =0.18 0.113 0.261 0.405 0.435 0.051 0.059 0.068 0.069
s =0.20 0.133 0.286 0.429 0.459 0.069 0.080 0.091 0.092
s =0.22 0.152 0.309 0.450 0.478 0.087 0.100 0.112 0.114

Table 2: Maximum sustainable B and the value of B delineating the boundary of dynamic
efficiency. v denotes risk aversion, and s is the annualized standard deviation of the return
on capital in an economy with B = 0.5. ( is set to one.

their two-period lifetimes with the intertemporal elasticity of substitution set equal to one,
and (2) consumers earn labor income (and possibly receive transfers) only in the first period
of life, aggregate saving of young consumers is a constant fraction of their income in the first
period of life, and hence the evolution of aggregate asset holdings, comprising capital and
government bonds, is non-stochastic. Nevertheless, the rate of return on capital is stochastic
because it includes the stochastic depreciation rate. Along a balanced growth path, aggregate
wage income, the aggregate capital stock, and the aggregate amount of government bonds
outstanding all grow at rate g, which is the constant rate of labor-augmenting productivity
growth. Therefore, the balanced growth path features constant values of aggregate capital
per unit of effective labor, the bond-capital ratio, the riskfree interest rate, and the expected
rate of return on capital. Provided that the net riskfree interest rate, 7y, is less than or equal
to g along a balanced growth path, the bond-capital ratio is sustainable.

Our model is designed so that both 7 and g are constant along a balanced growth path.
Because we are interested in sustainable bond-capital ratios along a balanced growth path,

we confine attention to balanced growth paths that feature r; < g. Along such paths, the
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government can roll over its bonds forever without primary budget surpluses and without
the bond-capital ratio increasing. There is no chance that young consumers will be unwilling
or unable to purchase the bonds that the government issues to rollover its debt, so there is no
chance of default on government bonds. Therefore, the market interest rate on government
bonds equals the riskfree interest rate. In addition, when r; < g, the value of government
bonds at a given point in time is not the expected present value of future primary surpluses;
along balanced growth paths with r; < ¢, the value of outstanding government bonds is
positive and yet all future primary deficits, which equal (¢—7)B; at time ¢, are non-negative
and hence all future primary surpluses are non-positive.

This paper has two major findings—one positive and one normative. We focus on levels
of the bond-capital ratio that can be sustained forever without any future primary surpluses.
The positive finding is that the maximum sustainable bond-capital ratio along a balanced
growth path is attained when r; = g. Given that both r; and g are constant along balanced
growth paths, this finding is not surprising. However, the normative finding is surprising
(to us, at least). The sustainable bond-capital ratio that maximizes utility along a balanced
growth path is the maximum sustainable value of this ratio, that is, the ratio that attains
rs = g. Briefly, an increase in the amount of bonds outstanding crowds out private capital,
which reduces aggregate wage income and increases the marginal product of capital and
hence increases the rate of return on capital. The reduction in wage income reduces welfare
and the increase in the rate of return on capital increases welfare. It follows from the factor-
price frontier that the reduction in wage income per person equals the increase in capital
income per person. Whenever ry < g, the welfare-increasing impact of the increased rate of
return on capital, which occurs in the second period of life, dominates the welfare-decreasing
impact of the reduction in wage income, which occurs during the first period of life. Thus,
starting from a balanced growth path with 7y < g, an increase in the bond-capital ratio
leads to a different balanced growth path with a higher level of welfare. Focusing on long-
run welfare along balanced growth paths, it is optimal to increase the bond-capital ratio, and
thereby increase r¢, until ry = g, at which point the bond-capital ratio equals its maximal

sustainable level. The optimal value of the bond-capital ratio is a corner solution where the

37



sustainability constraint prevents a further increase in the bond-capital ratio and yet welfare
is increasing the level of the bond-capital ratio.

We designed the model to have both constant 7 and g along balanced growth paths so
that the assessment of the sustainability of a given bond-capital ratio would be as straightfor-
ward as possible. But what if, for instance, the growth rate of labor-augmenting productivity,
g, were random. In particular, what if Ry = ?Trgf were random, sometimes greater than one
and sometimes less than one? Then there might be some realization paths with Ry persis-
tently greater than one, so that eventually the stock of government bonds eventually exceeds
the amount that young households would or could purchase. In such a framework, the notion
of sustainability is more nuanced (which is why we designed the model to include constant
g). We leave it as an open question how to characterize sustainability in that framework,
and, in particular, how to characterize an appropriate notion of maximal borrowing. If there
is some suitable notion of maximal borrowing, does the normative result, that the optimal
government borrowing policy is the same as the maximal borrowing policy, generalize beyond
the model in this paper? This generalization of the primary normative result would hold if,
as in the current paper, the welfare-increasing effect of an increased rate of return to capital

exceeds the welfare-reducing effect of a reduced wage income for any sustainable borrowing

policy.
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A Proofs

Proof. of Lemma 1: In this economy, K;; = (1 —«)BY; — By, since young con-
sumers in period ¢ use their saving, (1 — a) Y}, to purchase capital, K1, and bonds, By;.
Along a balanced growth path, K, = G~'K,,i, so gross investment in period t is I, =
Kii—(1-0)K=1-1-0G K1 =[1-(1-6G[(1—-a)BY;— B Gross
capital income in period t is aY}, so the ratio of gross investment to gross capital income is

1—(1-6)G|[(1—) BY:— Bt 41] _ —a B — —a B
| S 1 (1 06 [ - B = (1 (1 - ) 6 [P - Rt

—[1-(1-6)G] [% - BM%} —[1- (106G [1=2 _GB,, L. Useak!

aYy

= ﬁ[(leB)G—BC (9 —ry) B] from equation (15), so that when ¢ = 0, ak® ! =

) (1 + B) G along a balanced growth path. Therefore, along a balanced growth path,

} _ (-o)B
1+B)G « 1+B7

)8
0o By e = 520 1 - GB

gross capital income along a deterministic balanced growth pathis[1 — (1 —0) G

so the ratio of gross investment to

71] (1-a)8 1
o 1+8B

_ 140
T 1+B°

Proof of Lemma 2. The first-order condition for A in equation (24) implies 0 = E; {%}
.

AR;+(1-\)R—R R.—R _ _ e
= Et{W} = Et{ o f} = E{R.} — RyE, {R,"}, which implies R; =

Et{R}z_’y} ]
B R}

Proof of Proposition 1. In preparation for the proof of the proposition we establish two

Lemmas and a corollary.

Lemma 6 If Ry <1, then ﬁ ( Eéf;w}} _ 1) <1— Ruyin.

1—~
Proof of Lemma 6. Assume that Ry < 1. Use Ry = PR} from Lemma 2 to ob-

B{R."}
E{R;"! E{R;"

tin Ry { ey = Ry [E{T“V}J:Rf {E{ﬁ H R SmceE{E{R“} }

is a weighted average of R,, it is greater than or equal to the minimum possible realiza-

tion of R,, and since 0 < A < 1, E{E{R‘” 7 e } > ARf + (1 = A) Rin.  Therefore,

since Ry < 1, we have be;{{RR—V}} <

1 :
Rf,\Rer(l_)\)Rmm S SoovEL (Note that since

~y—1
Ruin < 1, the bound is greater than one.) Therefore, ﬁ ( B{r.""'} 1) <

E{R "}

(11— ,\)R
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A 1 _ A [ 1=2=(=NBRumin | _ A _ 1
fEDY <)\+(1—)\)Rmin - 1> —1-x ( A (LX) Ronin ) = M FAT-NRumin (1= Ruin) = 1+352 Rugin (1 = Ruin)
1 E{R "t .
= TEED (1 = Ruin) < 1— Ry Hence, 2 A E{R 7 — 1) <1— Ry, since B>0
and Ry, > 0. |

Lemma 7 Suppose x > 0 is a non-degenerate random variable with finite moments. Define

= [E{z})? = E{z"'}E{z'"}. Then Z <O0.

= 1=
Proof of Lemma 7. Rewrite Z as Z = E{z 7} E{z77"'} (Ebj{;{c_w_}} — EE{{I_A,}}) Observe

Ed{z—7" 1z Elx "z . .
E{Iﬂ,l}} - é{mﬂ}}, which we write as E {g (z)x} —E {h (x) z},

where g( ) = 2"~ and h(z) = =2_~. Observe that E{g(z)} = 1 = E{h(z)}

that Z has the same sign as

B{o— 1] Bl
and ¥ ) = %i = Al so g(x) = ALh(x) where A = % > 0, which implies
g()zh()asmgA. Therefore, E{g(z)x} — E{h(x)z} = [;" [g ( )] xdF (z)
=59 (@) = h @) (& = A)dF (2) = ;" [g (2) = b (2)] (= = A) dF () + fA ~h(@)] x
(x — A)dF (z) <0. n

We present, without proof, the following corollary to Lemma 2, which follows immediately

from Lemma 7 .

Corollary 4 E{R;"} — R;E{R;""} = [(E{R N2 E{R;‘V}{R(;’Y‘l}] <0.

E{R '}
Having presented Lemmas 6 and 7 and Corollary 4, we now proceed with the proof of
Proposition 1.
The portfolio allocation problem of individual consumers is max, ﬁE {R=7}, where

R, =AR;+ (1= X) (R+¢). The first-order condition is
f(\ Ry, R)=E{R,"[Ry— (R+¢)]} =0. (A1)
The optimization problem is concave in A so fy < 0. Formally,
PO R R) = B { R Ry — (R+2)]"} <0, (A.2)

Differentiate f ()\, Rf,ﬁ) with respect to R to obtain fz ()\, Rf,}_%) = —vE{R;77'(1-)\)x
(Ry— (R+¢))}—E{R,"}=vE{R,"' (1= XN (R+c—Ry)}—E{R,"} =vE{R,"'x
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[AR;+ (1= X) (R+¢) — Ry]} —E{R;"} =vE{R," "' (R, — Ry)} —E{R,"}. Therefore,
fr (A Ry, R) =y [E{R,"} = RyE{R,'}| = E{R.,"} <0, (A.3)

where the inequality follows from Corollary 4.

Now differentiate f (/\, Rf,ﬁ) with respect to ¢ to obtain
fr, \Rp,R) = —vE{R;"'\[R; — (R+¢)]} + E{R,"}. (A.4)

Observe that A [Ry — (R+¢)] = 25 [A—1DR;—(A—1)(R+¢)] = 25 (R. — Ry),
so that equation (A.4) can be written as fr, (A, Ry, R) = —yE{R;"'25 (R.— Ry)} +
E{R,"}, so
— A
IR, ()\, Ry, R) = ’ymE {R;V — Rngvfl} +E {R;V} . (A.5)
Now multiply the right hand side of equation (A.5) by E {R,"} and divide each term by
E{R;"} to obtain fg, (A, Ry, R) = E{R;"} [ D 0 e TR Y } which implies

E{R,"}
fr, (MR R) = B{R;"} 1= 2 , (Rfij{fé;? - 1)] . (A.6)
Lemma 6 implies that
fr, MRp,R) > E{R,"} 1 —~(1 = Ruw)], if Ry < 1. (A7)
Therefore,
fr, N\ Rp,R) >0if v < ﬁ and R; < 1. (A.8)

Now totally differentiate f (/\ Rf,}_%) = 0 in equation (A.1) with respect to B to obtain

BORLR) S+ fry (VRGBS + fr (A Ry R) |22+ 4242 = 0, which can rear-
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ranged as

dR ] dR; dR

d\ —
NRi R ANR MRy R)— | —+fa (MR ,R) — =0 (A9
f)\( y LUf, )dB fRf( I >+fR( o )de dB +fR( s LLf, )dB ( )
Since, in equilibrium, A = KL_;B = 1_1:8, we have gg, = (HB)Q > 0 and since f, ()\ Rf,R)

0 from equation (A.2), the first of the three terms in equation (A.9), fi (A Ry, R) %,

is negative.  Equation (18) implies that % = (l—a[ — B¢ (1 —Ry)] > 0 and since

iz ()\ Rf,_R) < 0 from equation (A.3), the third of the three terms in equation (A.9),
bia (>\ Ry, R) d;, is also negative. Therefore, the second of the three terms in this equa-
tion, [fRf ()\,Rf, ) + fz (/\ Rf,}_%) dR] %, is positive. Thus, to derive sufficient con-
ditions for % > 0, it suffices to derive sufficient conditions under which fg, ()\, Rf,ﬁ) +
fz (\, Ry, R) % > 0.

Use equations (A.3) and (A.5), along with equation (18), which implies 4% — 2=(B, to

dR
obtain
dR A . e .
fr, (A Ry, R) + fr ()N Ry, R) iR, =7 _AE{RG7 — RyR,7'+ E{R."} (A.10)
+ WE{R) - BB} - B{RY] 1B,

Rearrange equation (A.10) and use B = =5 to obtain

dR
.fRf (A Ry, )+fR ()‘ Rf’R) dR; =7 (1_"%4.) BE {R;’Y _RfR;’y_l} (A.11)

+ (1 - f‘@gB) E{R"},

and rearrange further to obtain

dR

i i N B{r;"}
fRf (A,Rf,R)—i_fE()\,Rf,R)@:E{R;W]} 7<1+]_—O[C>B 1—RfEM +].—17
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Equation (A.12) implies fr, ()\ Ry, ) + fz (/\ Rf,ﬁ) % > 0 if and only if

o E{R;7'} a
1+—()B|R———2———-1| <1- B. A.13
7(+1—ag) ( "E{R,} ) —a® (A.13)
Since B =2+, Lemma 6 implies that the condition in equation (A.13) will be satisfied if
Ry <1and~y ( ) — Rmin) < 1 — 7%-(B, or equivalently,
1—-2(B 1
v < o (A.14)

1+ﬁ< 1_-Fzmin

If Ry <1, then 1> 2 [1+B BC(1— Ry) Bl+ (1= 8+ Ein) G = Ruin + 2575 %
1—-8C(1—Ry)|B > Rmm + s ( — B¢) B, so ﬁ (1 —-38¢)B < 1— Ry, or, equiv-
alently, t*-(B < ﬁC (1-— Rmin). Therefore, 1 — %-(B > 1 — % (1 = Rin), so the
condition in equation (A.14) will be satisfied if

- i 1— Rmin 1
v < i ) (A.15)

1+m< 1_Rmin‘

The upper bound on v on the right hand side of equation (A.15) is greater than 1 if

— 2 (1= Ruia) > (14 1%5¢) (1 — Rua), that s, if 1 > [1 + et ﬁgc] (1 — Run).
The most unfavorable values of 5 and ¢ for this condition are 8 = 0.5 (which is the maximum
value of [ consistent with non-negative time preference) and ¢ = 1, in which case the
condition becomes 1 > (2 + 72-) (1 — Ryin), which for @ = § becomes 1 > 5 (1 — Ryn) or
equivalently, 1 — Ry, < 0.4, or Ry, > 0.6. [}

¢
Proof of Lemma 3. It suffices to show that £ {Rf} is decreasing in ¢ for ¢ < 0. ap{ri} =

d¢
dE{exp? 1 Ra
{ Z¢ P E{(InR,)R?} = E{lnR,} E{R¢} + cov (In R,, R%) < cov (InR,, R?) < 0,
since F{In R,} < 0 by assumption. .

Proof of Proposition 2. Since B =0, R = R,, and so Statement 1 follows directly from
Lemmas 2 and 3. Statement 2 follows directly from Statement 1. ]
Proof of Proposition 3. Let B; be an arbitrary non-negative value of B for which

Ry (B) > 1 and let By be the smallest value of B greater than B; for which Ry (B) = 1.
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Therefore, R (Bz) < 0 and Ry (By) < 1, which contradicts the assumption that R’ (B) > 0
whenever Ry (B) < 1. Therefore, Ry (B) > 1 for all B > B;. We will use this result to prove
the statements in this proposition. Statement 1: First, if R (0) > 1, then Ry (B) > 1 for
all positive B, so all positive values of B are unsustainable. If R;(0) = 1, then Ry (e) > 1
in a positive neighborhood of € = 0, and therefore, Ry > 1 for all positive B, so all positive
values of B are unsustainable. Therefore, if Ry (0) > 1, then By = 0. Statement 2:
Assume that Ry (0) < 1. Let By > 0 be the smallest positive B for which Ry (B) =1, so B,
is sustainable. Using the result above in this proof for all values of B > By, R;(B) > 1, and

hence these values of B are unsustainable. Therefore, By is the unique root of Ry (B) =

1_Rmin
T=ays (1-89)

risky rate of return ming R > Ry, + (1— 1 — B¢+ BCRs] B > Ruin + o [ — B¢ B >

Runin + 7555 (1 — 5¢) +ﬁ4) = 1. Therefore, if the distribution of the durablhty shock,

€, is non-degenerate, Ry must exceed one because of the absence of arbitrage opportunities.

1. To show that B., is finite, suppose that B > > (0. Then the smallest

1— len
T=ap (1=8C)7

Brax is finite.  Finally, since there is a unique value of B for which R, (B) = 1, we have

Ry (B) < 1for 0 < B < Byax and all of these values of B are sustainable; Ry (B) > 1 for all

Therefore, Ry can be less than or equal to one only if B < which is finite, so

B > B,.x and these values are unsustainable, so B is sustainable if and only if 0 < B < Bjjax.

n
Lemma 8 DefineI' =G — ¢ (g —ry). If df > 0, then

1. T >0 and %% GﬁCde

dlnw __ a FJFGﬁCB ,15
2. aB l1—a G+I'B <0

5. 4 (S mEARTY) = & (355 + r2aG ! [T+ GacBEE|) > 0

d T B¢ g-—r dR
4 g5 (14 ) = o5 | — OB

Proof of Lemma 8. Proof of Statement 1: I'=G —( (g —1¢) =1+ 9 — pCg+ By =
(1+B¢ry) +(1—5¢)g. Since0<f<1,0<(<1,and r; > —1, we have 1+ S{r; > 0,
and since, in addition, g > 0, (1 —3¢)g > 0. Therefore, I' > 0. Differentiate I with
respect to B to obtain 4 ﬁgd*f = GBCde
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_ ldw _ 1.
9 = af and hence - 9% = az;

(2) equation (15) 1mp11es k= s a) (14+B)G -3¢ (g—rf)B] = m(G—i—FB), S0

Proof of Statement 2: (1) Since w = (1 — a) k%, we have 2

dR
f
k= |mas (G+ FB)] and hence 7 = Sh7¥ = Sk——Cc5". Therefore, “5*
dR
_ ldwdk _ _ o I+GACB
T wdk dB T i G+FB

Proof of Statement 3: Use R, = ARy + (1 —\) R to obtain % (% In £, {R}Z*’Y}> =

%m (1—7)E; {R;7 ()\de + (1= dB) }, where we have used the envelope theo-

rem to ignore By {R;Y (B Ry — % R)} = 0. Use the following: (1) 2 is non-random:

dB
(2) equations (17) and (18) imply %% = TasC [G BC(g—ry) +GBCBde}, which

is non-random; (3) Lemma 2, which implies 5{{;‘;7}} = R%J and (4) A = 5 +B to obtain

a5 ( n B {1, W}> (51+de}§§ + ol [F+GBCBde])
_ BNm _ BC(Q*Tf)Bt _
BNWt ,BNWt

Tt
Wi
B(g—rs) Be pN(Witry) _ BS(9-74)Be 7 _ | B -
BN Wi T70) ﬁNIin e Rt B (1 + th) =0BC(g—ry) G B (1 + WZ)? where the final

Proof of Statement 4: Along a balanced growth path,

By

equality uses the fact that along a balanced growth path, B, = G~!B,,, so RintBi

— —K?J:llftBtJlrl G'-E 75 Define X; = 1+ £, so along a balanced growth path we
have X — 1 = ¢ (g —ry) G B5X, which implies X = (1-5¢(g—rf) G Z5) 7" =
(G 11+B (G(1+B)— B¢ (g—ry) )) =G(1+B)(G+ FB)_I. Therefore, In X =1InG +
In(14+B) —In(G+TB). Now differentiate In X with respect to B to obtain dg;gx =
5 — s [ BdE) = oims [(;111;38 B <F+G85Cde>} = GirE [1+B GBﬁCde} Use

I'=G— B¢ (g—ryf) to obtain G — ' = B¢ (g — 1), so 4BX = 1 {ﬁc(g”) GBﬁCde}

aB G+I'B 1+8

_ B [9—77 GBde] =

G+T'B | 1+B

Proof of Proposition 4. Assume that 24 > 0. Differentiate equation (25) with respect
to B and use Statements 2, 3, and 4 of Lemma 8 to obtain —“ = D1 + Dy + D3, where

_ T +GBCBo 1 dR B dR GBC ppdR
Dy = - —am™ + R_fH_BﬁG [F+ GACB f} and Dy = - - BEa — airsB s
r dR
and D3 = Gicrsgué‘ First calculate D; = (—m T & 1iBG > g [F—i— GB(B—E

lGl 1G(GR+G+ Gl

. 1
Now we will rearrange — g + 7, Rf 148 R G+TB 1B Rf GitE

((1 — Ry) G — m(i—;jf)g> = & G+FBG x (1-— BCH—B) (9 —r¢), where the penultimate

equality uses the definition I' = G — ¢ (¢ — rf) and the final equality uses the definition

Ry =51 Therefore, Dy = 7ok G (1= BCiE5) 125 x [T+ GACBSE | (g — ry), which
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has the same sign as g—ryf,s0 Dy > 0,if g > ry. Now consider Dy = Rf 1_K:B ddlzf chfFCBBde

N I U 5Bde— 1 1 [G+FB—GCRf] ﬁBd—Bf and use ' = G — (¢ (g — r¢) to

Ry 1+8 G+FB Rf G+4+T'B 1+8
obtain
11 B¢(g—rs)B] , ARy
Dy = — _ _
> R;G+TB _G GCRy +8 | "PaB
11 BClg —rp) B ,pdBy
=R, GqrB |C O T ORy m GOl = e | B
11 T BC(g —rs) B ,,dRy
=— - 1- - .
RyGarB |0 Gt L= QG = == | BB

Now use G — GRy = 1+ g — (1+7rf) = g —ry to obtain Dy = Rf G+FB [(1—-¢)GRs+
¢

(1— 5C1+—B) (9—7)] 58%, so Dy > 0, if ¢ > ry. By inspection, D3 = Girsiﬁg >0, if
if g > ry. Therefore, # Dy + Dy + D3 >0, if g > 7y. ]
Proof of Corollary 3. Assume that ¢ = 0, which implies that ' = G — 3¢ (g — Tf) =G.
Therefore, Statements 2, 3, and 4 of Lemma 8 imply g—g — liBjLRf [5 £_d de + 1+B o

— s [0 Ry) 525 + 8B > 0 .
Proof of Proposition 5. See the discussion in the text. [

Proof of Lemma 4. An economy is dynamically efficient if and only if RgyR;, > 1,
equivalently, ( (B,¢(, Ry) + G ) (E(B,C,Rf) -G ) > 1, equivalently, [ (B, ¢, Rf)] —
G20* > 1, equivalently, G—%02 < [R(B, ¢, /R’fﬂ2 —1. n
-1
Proof of Lemma 5. Assume that v = 1. Lemma 2 implies R; = [E{R%H =
—1 _ _
[E{m}] , SO RfE{m} = 1. WlthPr{R = R+ Gila} = PI‘{R =R- G’la} =

1 1 _ 1 1
=31 >\Rf+(1 A)(R—i—G Lo) T >\Rf+(1—)\)(R—G10):| _Rf)\Rf—&-(l—)\)(E-&-G*lo) AR;+(1-X)(B-G~10) x

1
2

[AR; 4+ (1 — A\) R|, which implies Ry [AR;+ (1 —A)R| = [AR;+ (1 —)) (R+G'0)] x
AR, + (1 =X (R—=Go)]=[AR;+ (1 =N R+ (1 - NG o] [AR;+ (1 =A)R— (1-X) G o]
= [A\R; + (1= NR]" = (1-N)’G %> In equilibrium, A = £ and 1 — A = 15, s0

Ry (85Rs + 25R) = (Z5R; + gR)" — (125)° G 20> Multiply both sides of this
equation by (1 + B)? to obtain (1 + B) Ry (BR; + R) = (BR; + }_%)2 — G202, which, since

¢ =0, can be rearranged to obtain ¢ (B, Ry, G20%) = [BR; + R (B,0,-)] [R(B,0,-) — Ry| -

G~?0* = 0. The equation ¢ (B, Ry, G"20?) = 0 implicitly defines the combinations of B and
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G202 consistent with any given Ry, so ¢ (B,1,G?0?%) = [B + R (B,0,)] [R(B,0,") — 1] —
G202 = 0 implicitly defines the combinations of B and G~20? consistent with R; =

Observe from equation (18) that R (B,0,-) = o (L+B)+(1-06)G™ ! Rg;o ) —
PELT) — Ry + B [R(B,0,) - Rf]+[BRf+Tz<B,o,-)} x

> (. Therefore,

(1-a)B a) B
7202
OR (az;,o,) > 0, since risk aversion implies R (B, 0,-) > Ry; also, 8¢(B’g§%’f ) _ B[R (B,0,") — R;]—

[BA; + R (5,0,0] =~ (1 B) R(B,0.-) ~2BRy <0if0 < B, e LTl

—20.2
20(BR; G720 06(B, Ry G257) < 0, the locus of B and G~?0? for which Ry = 1,

5B > 0 and 5G207)

Since
¢ (B,1,G7%0?) = 0 is upward sloping. For any value of B in the interval [0, 1], an increase
in G202 reduces ¢ (B, Ry, G"20?) so Ry must fall to increase ¢ (B, Ry, G~%0?) back to zero.
Thus, Ry = 1as G2 Z [B+ R(B,0,")] [R(B,0,-) — 1]. -
Proof of Proposition 6. Lemma 5 implies that Ry § 1 as G202 E h(B). Lemma 4

implies that the steady state is dynamically efficient if and only if G202 < g (B). ]

B Properties of Figure 2

Figure 2 illustrates the case in which v = 1,8 = 0, and the durability shock is drawn

from a symmetric 2-point distribution. Lemma 2 implies that for any distribution of the

durability shock, v = 1 implies Ry = ﬁ. When B = 0, we have R, = R, and hence
Ry = ol R FIRT] which is the harmonic mean of R. With a symmetric 2-point distribution,

11 1
Rf =3 (E + R_L> .
Lemma 9 If Ry > 1, then % (ﬁ + RH> > 1, with strict inequality if Ry > 1.

Proof of Lemma 9. Observe that % (% + RH) > 1 if and only if R—lH + Ry —2>0.
Note that - + Ry —2 = - (14 R} — 2Ry) = - (Rg —1)* > 0 if Ry > 0, with strict

inequality if 0 < Ry # 1, which is sufficient to prove the lemma. [ ]

Lemma 10 Assume that Ry > 1 and Ry, > 0. The function Ry (Ry,Ry) = ﬁ
2\Rg "R

has the following properties

1. Ry(1,1) =1.
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2. Ry <RH, ﬁ) = ) <1, with strict inequality if Ry > 1

%(R +RH

2
d

3. amelr (=1 = = <1§—f1> <0

4. the locus Ry (Ry, R) =1 is convex

5. for Ry > 1, the locus Ry (Ry, Rr) =1 lies above the E {ln R} =0 locus.

Proof of Lemma 10. Statement 1 follows from inspection of the definition of Ry (Ry, Ry,).
Statement 2: Inspection of the definition of Ry (Rpy, Ry) reveals that Ry <RH, ﬁ) =
m and Lemma 9 states that % (% + RH> > 1, with strict inequality if Ry > 1,
which suffices to prove Statement 2. Statement 3: To calculate the slope of the locus

Ry (Ry,Ry) = 1 for Ry > Ry, rewrite Ry (Ry, Ry) as Ry (Rg, Ry) = 28284 and cal-

Ru+Rr
OR;(RuRL) _ Ry Ry  _ R, ORy(Ru,Ri) _ Ry Ry _
culate ~9Rs Ry Ry+R;, ~ Ry RH+RLRf > 0 and ORy, ~ Rp Ry+R;
R _ 1 . dR
RZI RH+R Ry > 0. Therefore, the ilope of the locus Ry (Ry,Ry) = 1 is —deI|Rf(RH,RL)=1
-1 R 1 2
_ __ORy(Ru,Ri) | ORs(Ru,RyL) — B RytR, _ (B}~ (  Statement 4: Starting at
ORpy ORL Bg 1 Ry ) ' &
Ry Eg+Ep

any point on the locus R;(Rp, R;) = 1, and moving down and to the right along the lo-
cus, 1%1 decreases, so the absolute value of the slope of this locus decreases. That is, the
Ry (Ry, Rr) = 1 locus is convex. Statement 5: For a given value of Ry > 1, the value of
Ry, on the locus E{InR} =01is Ry, = i. Thus, Statement 2 implies that Ry (Ry, Ry) < 1
for any point on the E{In R} = 0 locus with Ry > 1. From the proof of Statement 3,
R; (Rp, Ry) is increasing in Ry. Therefore, to move from the £ {In R} = 0 locus for a

given Ry > 1 to the Ry (Ry, Ry) = 1 locus with the same value of Ry, R; must increase.

Therefore, the Ry (Ry, Rr) = 1 lies above the E {In R} = 0 locus for any Ry > 1. n

C Calibration

Assume that a period equals 30 years. Since R(B) = 1+T(B is the adjusted gross rate of
return on capital, 147 (B) = G x R (B) is the gross rate of return on capital (not adjusted for
growth). Calibrate the distribution of the durability shock so that along a balanced growth
path with a bond-capital ratio equal to B, E{(1+7r(B))} = G x E{R(B)} = (14 m)"
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where m is the target annual net rate of return on capital; the standard deviation of r (B),
which is equal to the standard deviation of G x R (B), is set equal to its target sv/30, where
s is the target annual standard deviation of the rate of return on capital.

We specify the distribution of the durability shock so that
G 'e=exp(z) — R(0) (C.1)

where z is N (u,0?), and R (0) is obtained by setting B = 0 in equation (18). Our focus
is on the quantitative value of B,... Corollary 2 states that B,., is invariant to (, so,
without loss of generality, we set ( = 0. From equations (17) and (18), the risky rate
of return on capital along a balanced growth path with a given value of B is R (B) =

o (L B)+ (1= 0) G+ GE = [RO) + 58] + [ (2) ~ R (0] s0

We choose the parameters p and o2 so that the mean of the risky rate equals the target

rate rate, which is m on an annual basis, so

E{l+7r(B)} = GxE{R(B)} :GxE{ B+exp(z)}:(1+m)3o. (C.3)

1-a)p

Setting the standard deviation of the risky rate, 1+ r (B), which is Gy/Var {exp (z)}, equal
to the target standard deviation, sv/30, implies

G/ Var {exp (z)} = sv/30. (C4)

Use Var {(exp(2)} = (exp(0?)—1) exp(2u+0?) = (exp(0?) —1) [exp(p + $0?)]” = (exp(o?) -
1) [E {exp (2)}]° to rewrite equation (C.4) as

G x E{exp (2)} /(exp(c?) — 1) = sv/30. (C.5)
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From equation (C.3)

G x E{exp(2)} = (1+m)* — Gﬁ& (C.6)
so equation (C.5) implies
(exp(o?) — 1) = 1 +m)3i¢_3_2;(1 - (C.7)
which can be rewritten as
;
exp(%JQ) — | 1430 ((1 s - Gﬁ[ﬁ) . (C.8)

Substitute exp (p) x exp(30?) for E {exp (z)} in equation (C.6) to obtain

Lo 30 o
G x exp () X exp(2a )= (14+m) G—(l — o) EB, (C.9)
SO
Gl1+m) —g22B G (1+m)Y — 2B
exp (j1) = ( )~ b ( =0 . (C.10)

exp( a?) 2
l [e%

The mean, m, and standard deviation, s, of the rate of return on capital are expressed
on an annual basis. To compare these values to familiar values for the mean and standard
deviation of annual stock returns, we must take account of the fact that m and s are moments
of unlevered rates of return, and the moments of stock returns are levered returns. Let 74,

A

ry, and Tf be rates of return on unlevered equity, levered equity and riskfree assets, all

expressed at annual rates (hence the superscript A). They are related to each other by

A _ D A EA_D/EA

"= 5E"f TBrE'L T Tho/E'r T 1+D/ETL’

where D is the debt owed by the private
owners of capital and F is the equity of these owners. Assume that D equals 45% of D + E.
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Therefore, r4 = 0.457’}4 +0.55r4. Hence, if £ {TA} = 3% per year and r;ﬁ‘ = 0.6% per year,
then F {rf} = 4.96% per year. Also, sd {T’A} = ﬁsd{rﬁ}, sd {rf} = ﬁsd {T’A}, SO
if sd {r*} =0.12, then sd {r}} = 0.218.

Remark 2 If the value of u in equation (C.10) positive, then the economy with B = 0 is

dynamically efficient and hence the economy is dynamically efficient for any positive B also.

To prove this remark, note that equation (C.2) implies that R (0) = exp(z). Since
R (B) > 0, we have R(B) > R(0) = exp(z) and hence E{ln R (B)} > E{InR(0)} =
E{z} =p >0 for any B > 0.
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