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ABSTRACT

We propose and experimentally test a new theory of probability distortions in risky choice. The
theory is based on a core principle from neuroscience called efficient coding, which states that per-
ception is more accurate for those stimuli that the agent expects to encounter more frequently. We
show that when the agent holds a prior that attaches greater likelihood to extreme probabilities
compared to intermediate probabilities, efficient coding generates the inverse S-shaped probability
weighting function from prospect theory. More important, as the agent’s prior varies, the model
predicts that probability distortions change systematically. Across two experiments, we provide
novel support for the efficient coding hypothesis. In the first experiment, we show that perception
of probability is more precise for those values near the boundaries of 0 and 1. These data validate
the key model assumption about the shape of the prior, which generates the steeper slope of the
weighting function for low and high probabilities compared to intermediate probabilities. In the
second experiment, we provide evidence that the shape of the weighting function can be modu-
lated through changes in the prior. Our theory generates additional novel predictions regarding
heterogeneity and time variation in probability distortions.
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I. Introduction

Consider the prospect of winning $25 with 5% probability and winning $0 otherwise. Under

expected utility theory, valuation of the lottery should be linear in the probability of winning the $25

outcome. For decades, however, experimental evidence points to decision-making that is nonlinear

in probability: for example, subjects report a larger increase in valuation as the experimenter

increases the probability from 5% to 10%, compared with an increase from 30% to 35% (Tversky

and Kahneman, 1992; Camerer and Ho, 1994; Gonzalez and Wu, 1999; Bernheim and Sprenger,

2020). This nonlinearity gives rise to probability distortions, which in turn, have been used to

explain fundamental puzzles in risky choice such as the simultaneous demand for gambling and

insurance. Probability distortions have also been invoked to explain a wide array of anomalies in

financial markets (Barberis, 2018).

In this paper, we ask a basic question: why do humans distort probabilities? We explore

whether the distortion can be traced to fundamental properties about how the brain processes

information. Our hypothesis is that valuation is linear in perceived probability, which differs from

objective probability due to information processing constraints. Furthermore, we propose that this

hypothesis can microfound the probability weighting function from prospect theory—which is the

leading behavioral theory of choice under risk (Kahneman and Tversky, 1979). We are by no means

the first to investigate the psychological underpinning of probability weighting (Gonzalez and Wu,

1999; Bordalo, Gennaioli, and Shleifer, 2012; Khaw, Li, and Woodford, 2021, 2022; Enke and

Graeber, 2022).1 But the mechanism we test—which is called efficient coding—is novel in the sense

that it generates new testable hypotheses about the source and instability of probability weighting.

To assess the empirical validity of our proposed mechanism, we develop a theory and present two

experimental tests. The data largely confirm the idea that probability weighting derives, at least

in part, from the efficient allocation of cognitive resources.

The basic premise of our theory is that, when faced with a risky prospect, the decision maker

(henceforth DM) bases her decision on her perception of state probabilities; in general, the DM ’s

perception does not coincide with the objective probability. This wedge between reality and per-

1See also important earlier work by Viscusi (1989), Tversky and Kahneman (1992), Rottenstreich and Hsee
(2001), Stewart, Chater, and Brown (2006), Zhang and Maloney (2012), Steiner and Stewart (2016), and Zhang,
Ren, and Maloney (2020).
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ception stems from limited cognitive resources. That is, we assume that the DM does not have the

capacity to form a precise cognitive representation of each probability that she could potentially

be presented. But, what she can do is to efficiently allocate cognitive resources towards accurately

representing those probabilities that she expects to encounter in a given class of situations.

For example, consider someone who is often faced with binary lotteries that have probabilities

which fall in the range from say, 45% to 55%. We argue that, when faced with two novel lotteries,

one with 50-50 odds and another with 51-49 odds, this person will be better able to discriminate

between the two lotteries, compared to someone who is often faced with skewed lotteries that have

extreme odds such as 90-10 or 95-5. Our model formalizes how the DM ’s prior belief about the

probabilities she expects to encounter will optimally distort her perception of the probabilities that

she actually encounters.

Our theoretical contribution builds on our own previous work in which we demonstrated that

risk taking depends on the prior distribution of monetary outcomes to which the DM is adapted

(Frydman and Jin, 2022). In that model, we made the simplifying assumption that probabilities

were encoded without noise. Here, we show how noisy and efficient coding can generate signature

patterns of probability distortions. In this regard, our work is closely related to recent theory

by Steiner and Stewart (2016), Zhang et al. (2020), and Khaw et al. (2021, 2022). However, an

important difference is that in our model, we show how the shape of the prior distribution over

probabilities pins down the degree of probability distortion.

The model works as follows. The DM encodes a single probability p subject to a capacity

constraint. We assume her objective is to choose an encoding function that maximizes the mutual

information between the true probability p and the encoded signal Rp. The model predicts that

the agent will encode with more precision those probabilities that she expects to encounter more

often—according to her prior belief.

Thus, a key input to the model is the DM ’s prior belief about p. We show theoretically that

when the DM holds a U -shaped prior—one that puts more mass on probabilities farther from

50%—she will encode these “extreme” probabilities with more precision. In fact, this type of prior,

when coupled with efficient coding, generates the inverse S-shaped probability weighting function

that is often assumed in prospect theory (Gonzalez and Wu, 1996; Prelec, 1998). The endogenous

weighting function exhibits high sensitivity for extreme probabilities. In contrast, the weighting
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function exhibits low sensitivity over intermediate probabilities, where the DM optimally chooses

to encode probabilities with the least precision.

An obvious question is whether the U -shaped prior is a reasonable specification for prior ex-

pectations about probabilities. This is important, because as we show, efficient coding without a

U -shaped prior is insufficient to generate an inverse S-shaped probability weighting function. Inter-

estingly, Stewart et al. (2006) argue that people’s experiences with probabilities are, in fact, likely

to be concentrated near the extreme values of 0 and 1; for example, Stewart et al. (2006) document

that the frequency of probability phrases in the English language is skewed towards extreme prob-

abilities. Brown and Qian (2004) and Zou, Brown, Zhao, and Dong (2008) provide evidence where

subjects report that extreme probabilities occur more frequently than intermediate probabilities.

Moreover, in economics experiments that investigate probability distortions, experimenters tend to

use designs that oversample extreme probabilities (Tversky and Kahneman, 1992; Gonzalez and

Wu, 1999; Bernheim and Sprenger, 2020).

Given how crucial the role of the prior is in generating theoretical predictions in our model,

we design our first experiment to provide a joint test of the U -shaped prior and efficient coding.

The design is motivated by the model prediction that perception should be noisier for intermediate

probabilities relative to extreme probabilities. Our test is simple: on each of several trials, we

present subjects with a pair of probabilities that are displayed as two fractions, and we then ask

them to classify which fraction is larger. The crucial aspect of the design is that we fix the numerical

distance between fractions, and only vary the level of the fractions across trials. If perception is

noisier for intermediate probabilities, we should observe a U -shaped accuracy function.

We recruit 800 subjects from Prolific, an online data collection platform. We find that accuracy

is substantially higher at extreme values of probability—below 0.2 or above 0.8. Moreover, response

times are the shortest when the probabilities to be discriminated lie near the extremes. Our evidence

is therefore consistent with the joint hypothesis that (i) human subjects hold a U -shaped prior

about probabilities and (ii) encoding of such probabilities is efficient given cognitive constraints.

Interestingly, the encoding function that endogenously arises in our model provides a qualitative

match to the encoding function that is assumed in Khaw et al. (2021, 2022). Moreover, the U -

shaped accuracy function that we uncover in our data is also consistent with the hump-shaped

“cognitive uncertainty” function that Enke and Graeber (2022) document when eliciting certainty
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equivalents across the unit interval.

We then move on to a second experiment in which we test whether biases in perception of prob-

ability feed into subjective valuation of risky lotteries. To investigate the link between perception

of probability and valuation, we exogenously manipulate a subject’s prior belief about probabil-

ities, and then elicit certainty equivalents for lotteries of the form: ($25, p; $0, 1 − p). Efficient

coding predicts that when the DM is adapted to a distribution of probabilities that is concentrated

near intermediate probabilities, she should have less difficulty discriminating probabilities over this

range, compared to someone who is adapted to extreme probabilities. Crucially, because the DM

does not have access to the objective probability p, she must rely only on her perceived value of p

when forming a valuation. These observations lead to a testable prediction: conditional on a given

risky lottery, valuation will depend systematically on the prior distribution to which a subject is

adapted.

We find strong evidence in favor of this prediction. The slope of the measured probability weight-

ing function over intermediate probabilities is significantly higher for subjects who are adapted to

intermediate probabilities, compared to those who are adapted to extreme probabilities. Specifi-

cally, for subjects who are adapted to intermediate probabilities, increasing an intermediate prob-

ability of winning $25 by 1% causes a $0.26 increase in their certainty equivalent. In contrast, for

subjects who are adapted to extreme probabilities, the same increase of an intermediate probabil-

ity of winning $25 by 1% leads to only a $0.17 increase in their certainty equivalent. Thus, the

marginal effect of a 1% increase in probability on valuation of the same lottery is about 50% larger

for subjects who are adapted to intermediate probabilities. We find that the effect of the prior on

valuation carries a similar magnitude for lotteries associated with small probabilities of winning

$25. Finally, the effect is of a smaller magnitude, but remains statistically significant, for lotteries

associated with high probabilities of winning $25.

Taken together, our results suggest that probability weighting stems from people having an im-

precision in forming the cognitive representation of probability. At the same time, other candidate

explanations for probability weighting may also be active. The salience theory by Bordalo et al.

(2012) proposes that probability weighting arises from limited attention. In their theory, attention

is disproportionately drawn to salient payoffs that are precisely defined. As in our framework,

salience theory also delivers a context-dependent probability weighting function. One distinction,
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however, is that salience theory’s weighting function depends on the payoffs of the risky lottery,

whereas our theory of efficient coding does not take these payoff amounts as input.2

Another candidate explanation for probability weighting is the framework of cognitive uncer-

tainty proposed by Enke and Graeber (2022). In their framework, agents have a precise perception

of probability, but cognitive noise corrupts the valuation process. As in efficient coding and salience

theory, cognitive uncertainty also generates a weighting function that depends on the environment.

For example, Enke and Graeber (2022) find that when displaying a lottery in a more complex

format (i.e., a compound lottery), the inferred probability distortions become more pronounced.

Thus, our efficient coding-based explanation joins a growing class of models that microfounds the

probability weighting function, and importantly, makes predictions about how the shape of the

weighting function changes with context. One distinguishing feature of our model, however, is that

it is based on an optimization process that delivers a nonlinear probability weighting function.3

Zhang et al. (2020) develop a model that is closely related to ours—it is also an efficient coding

model of probabilities. An important distinction, however, is that our model is able to accommodate

any shape of a prior distribution, whereas the model in Zhang et al. (2020) only takes as input

the range of probabilities to be considered. Their model predicts that, as the range of probabilities

becomes wider, the slope of the weighting function should decrease. The authors find suggestive

correlational evidence for this effect: in a meta-analysis on the slope of the weighting function

across twelve different experimental studies, the range of probabilities used in a given experimental

design negatively predicts the slope of the weighting function. Our model takes a substantial step

forward by showing that the shape of the DM ’s prior distribution has a systematic and causal

effect on valuation.

Our model also shares similarities with the decision by sampling model from Stewart et al.

(2006). In that model, when the DM is presented with a probability, she draws samples from

memory and compares the currently presented probability with the randomly drawn samples. This

2Khaw et al. (2022) propose a model in which the imprecision in representing a monetary amount is tied to the
probability of winning that amount. In their model, less resources are devoted towards processing payoffs that are
less likely to be delivered.

3Steiner and Stewart (2016) provide an alternative explanation of probability weighting that is also based on
noisy perception of probability. In particular, they show that a nonlinear probability weighting function can arise as
an optimal response to perceptual noise. Khaw et al. (2021, 2022) also propose a model that delivers an endogenous
probability weighting function based on an optimal response to noisy coding of probabilities. One difference—which
we discuss further in Section VI.2—is that the encoding function in our model also arises from an optimization
process.
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cognitive operation enables the DM to rank the current probability in the context of probabilities

that are recalled from memory. Thus, memory plays a similar role to the prior in our model. Bhui

and Gershman (2018) show theoretically that efficient coding can implement decision by sampling.

Indeed, the Heng, Woodford, and Polańıa (2020) model that we use is flexible enough to implement

decision by sampling with a specific encoding function, one that also depends on the DM ’s prior.

Our experimental results are qualitatively consistent with both the decision by sampling model and

efficient coding; at the same time, our results reject a broad class of models that predict a stable

probability weighting function.

Finally, it is worth noting that one of the earliest psychological explanations for the probability

weighting function was tied to the idea that decision makers cannot perfectly discriminate between

all probabilities. Tversky and Kahneman (1992) propose that the inverse S-shaped weighting func-

tion arises from the principle of diminishing sensitivity from two separate reference points, namely

0 and 1. Gonzalez and Wu (1999) point out that the concept of diminishing sensitivity is tied

closely to the psychophysical notion of discriminability—which itself is related to the basic premise

of our efficient coding model. Gonzalez and Wu (1999) propose that the weighting function can

be characterized by a discriminability “slope” parameter and an attractiveness “level” parame-

ter. Our model can be interpreted as providing a microfoundation both for the lack of perfect

discriminability and its malleability across contexts.

The rest of this paper is organized as follows. Section II presents a theory to show that ef-

ficient coding and a U -shaped prior together lead to an inverse S-shaped probability weighting

function. Section III presents an experiment that provides a joint test of efficient coding and the

U -shaped prior. Section IV shows theoretically that the slope of different portions of the probability

weighting function changes as the DM ’s prior changes. Section V presents an experiment which

uses data on lottery valuations to confirm that the weighting function is indeed malleable in the

manner predicted by efficient coding. Section VI provides additional discussions, and Section VII

concludes.
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II. The Model: Generating the Inverse S-shaped Probability

Weighting Function

In this section, we apply the efficient coding model of Heng et al. (2020) to study the perception

of probability. The model works as follows. Before the DM is presented with a probability p,

she holds a prior belief about the probability, denoted by f(p). Then, upon presentation of the

probability p, the DM ’s perceptual system generates a noisy signal Rp; specifically, Rp is randomly

drawn from a conditional distribution—or, in the language of Bayesian inference, a likelihood

function—denoted by f(Rp|p). The likelihood function captures the idea that the DM encodes

information about probability with cognitive noise, even if the probability p is clearly presented to

the DM . Alternatively, the likelihood function can reflect noise in retrieving information about p

from memory when the DM is asked to make a decision.

Following Heng et al. (2020), we assume that the DM encodes probability p through a finite

number of n “neurons,” where the output state of each neuron takes the value of 0 or 1. The output

states of these n neurons are assumed to be mutually independent, and each neuron takes the value

1 with probability θ(p) and 0 with the remaining probability 1 − θ(p). The encoded value of p is

therefore represented by an output vector of 0s and 1s, with length n. Given that the neurons are

mutually independent, a sufficient statistic for the output vector is the sum across the n output

values, which gives rise to the noisy signal Rp. Taken together, the likelihood function is given by

f(Rp|p) =
(

n

Rp

)
(θ(p))Rp(1− θ(p))n−Rp , (1)

where the noisy signal Rp can take on integer values from 0 to n.

A signature feature of efficient coding is that the DM endogenously chooses the likelihood

function f(Rp|p) as a function of the prior f(p). We assume the DM chooses θ(p) in (1) to

maximize mutual information between probability p and its noisy signal Rp

max
θ(p)

I(p,Rp), (2)

where the mutual information I(p,Rp) is defined as the difference between the marginal entropy
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of Rp and the entropy of Rp conditional on p.4 Intuitively, the objective function in (2) leads

the DM to better discriminate between probability values that she expects to encounter more

frequently given her prior belief. A large literature in sensory perception documents strong support

for this objective function (Laughlin, 1981; Girshick, Landy, and Simoncelli, 2011; Wei and Stocker,

2015). Heng et al. (2020) show that the optimal coding rule that maximizes I(p,Rp) is given by

θ(p) =
(
sin

(π
2
F (p)

))2
, (3)

where F (p) is the cumulative distribution function of the prior belief f(p).

Given the prior belief and the noisy signal, the DM follows Bayes’ rule to generate posterior

belief about p

f(p|Rp) =
f(Rp|p)f(p)∫ 1

0
f(Rp|p)f(p)dp

. (4)

For an objective probability value p, the DM draws the noisy signal Rp according to the

likelihood function f(Rp|p) from equation (1). For each noisy signal Rp, the DM forms a posterior

distribution about p given by equation (4). Together, these two steps imply that the average

perception of p is

v(p) =
∑n

Rp=0
f(Rp|p) · E[p̃|Rp], (5)

where

E[p̃|Rp] ≡
∫ 1

0
f(p|Rp)pdp =

∫ 1

0
f(Rp|p)f(p)pdp∫ 1

0
f(Rp|p)f(p)dp

(6)

is the posterior mean of p conditional on Rp. Note that v(p) in (5) represents the DM ’s subjective

valuation of p averaged across different values of Rp, and in general, v(p) is a nonlinear function

that maps objective probabilities into decision-relevant probabilities—similar to the decision weights

from prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).5 At the same

time, unlike the deterministic weighting function exogenously assumed in prospect theory, v(p) in

our model is derived from stochastic probability perception. To formally define the stochastic nature

4We discuss an alternative performance objective of maximizing the expected payoff in Section VI.3.
5As we later discuss in Section VI.1, our theory and prospect theory differ in an important way: our theory

computes v(p) as the DM ’s average belief about probability p; by contrast, prospect theory posits that the DM ’s
belief about p is correct, and the overweighting or underweighting of p arises from her preferences.
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of probability perception, we compute the standard deviation of the DM ’s subjective valuation,

σ(p) =

[∑n

Rp=0
f(Rp|p) · (E[p̃|Rp]− v(p))2

]1/2
. (7)

Equation (7) makes it clear that the randomness in probability perception comes from the fact that

a given objective value of p randomly generates one of the n possible values of Rp; each Rp then

generates a different posterior distribution f(p|Rp) and hence a different valuation E[p̃|Rp].

It is important to note that, in an efficient coding model, the DM ’s subjective valuation of

probability v(p) depends on her prior belief f(p) through two channels. First, the posterior belief

f(p|Rp) is directly affected by the prior belief f(p), as shown in equation (4). Second and more

importantly, f(p) indirectly affects the posterior belief f(p|Rp) through the coding rule θ(p). In

particular, equation (3) shows that the coding rule takes as input the prior, so that the same

value of p is encoded differently depending on the prior. Thus, the prior continues to play its

traditional and direct role in Bayesian inference, but it also affects information processing through

the endogenously determined likelihood function given by equations (1) and (3).

The above framework demonstrates that the DM ’s prior belief, when combined with efficient

coding, governs the shape of the weighting function v(p). Here we pick a particular shape of the prior

distribution and illustrate how the various components of the model pin down the nonlinearities in

probability perception. We assume that the DM holds a U -shaped prior of the following form

f(p) =
we−λ1p + (1− w)e−λ2(1−p)

wλ−1
1 (1− e−λ1) + (1− w)λ−1

2 (1− e−λ2)
, (8)

where the parameters w, λ1, and λ2 control for the shape of the function. This prior puts more

weight on extreme probabilities compared to intermediate probabilities. Some motivation for this

type of prior comes from previous work which shows that, in both daily life and economics experi-

ments, extreme probabilities are encountered more often than intermediate probabilities (Stewart

et al., 2006). Because of the crucial role the U -shaped prior assumption plays in our theoretical

analysis, in the next section, we conduct an experiment which tests this assumption.

[Place Figure I about here]

We now illustrate the implications of such a U -shaped prior. Recall that the prior influences the
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posterior in part through the optimal choice of the likelihood function. Thus, here we first examine

the properties of the likelihood function implied by the U -shaped prior. Figure I Panel A plots the

U -shaped prior from equation (8); the parameter values are: λ1 = λ2 = 8, and w = 0.5. Given

this prior, Panel B plots the corresponding coding rule θ(p). It shows that, under the U -shaped

prior, θ(p) is steep for low and high values of p; it is much flatter for intermediate values of p. This

nonlinear pattern is a consequence of the DM ’s objective to maximize the mutual information

between p and Rp; importantly, the nonlinear pattern of the coding function will be passed on to

the weighting function v(p), which will form the basis of our experimental tests.

Panel C plots the implied likelihood function for four different probability values: p = 0.02,

p = 0.04, p = 0.49 and p = 0.51. We note that p = 0.02 and p = 0.04 generate distinctive likelihood

functions; when p is low, the slope of θ(p) is high, and a small change in p leads to a large shift in

the likelihood function. As such, the DM is able to easily discriminate between low probabilities.

By the symmetry of the likelihood function—that is, f(Rp|p) = f(n− Rp|1− p)—the DM is also

able to easily discriminate between high probabilities. On the contrary, p = 0.49 and p = 0.51 give

rise to nearly identical likelihood functions; when p is intermediate, the slope of θ(p) is low and

changes in p cause almost no change in the likelihood function. As such, the DM finds it difficult

to discriminate between intermediate probabilities.

[Place Figure II about here]

Given the prior and the implied likelihood functions, we next turn to the DM ’s subjective

valuation of probability v(p). We substitute the U -shaped prior from equation (8) into the coding

rule in equation (3) and explicitly compute v(p) according to equation (5). Figure II demonstrates

that, with efficient coding and with the U -shaped prior, the resulting weighting function v(p) is

inverse S-shaped, consistent with prospect theory. To understand this shape, we first note from (5)

that v(p) is constructed by combining the likelihood function f(Rp|p) with the posterior mean

E[p̃|Rp]. We also note that the posterior mean E[p̃|Rp] does not depend directly on p. As a result,

when p varies, changes in v(p) depend only on changes in the likelihood function. As shown in

Figure I Panel B, the slope of θ(p) is steep both for high and low values of p; for these probability

values, a small change in p leads to a large shift in the likelihood function and hence also a large

change in v(p); as such, the slope of v(p) is steep. On the other hand, the slope of θ(p) is low for
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intermediate values of p; in this case, changes in p cause little change in the likelihood function and

hence also little change in v(p), resulting in a shallow slope of v(p). Taken together, the inverse

S-shaped coding function θ(p) in Figure I Panel B, which is implied by the U -shaped prior, gives

rise to an inverse S-shaped probability weighting function v(p).

[Place Figure III about here]

It is worth noting that both efficient coding and a U -shaped prior are fundamentally important

for generating an inverse S-shaped probability weighting function. To illustrate how the weighting

function depends on both components, we examine two scenarios. The first scenario keeps the

U -shaped prior but replaces the efficient coding rule in equation (3) by an inefficient one

θ(p) =
(
sin

(π
2
p
))2

. (9)

An important implication is that this alternative coding rule does not connect the prior belief f(p)

with the likelihood function f(Rp|p).6 Figure III Panel A plots the weighting function v(p) when

the coding rule takes the form of (9). It shows that, in the absence of efficient coding, the U -shaped

prior alone is insufficient to generate an inverse S-shaped probability weighting function.

The second scenario keeps the efficient coding rule but replaces the U -shaped prior by a uniform

prior. That is, we replace the U -shaped prior in equation (8) by a uniform prior f(p) = 1. Figure III

Panel B shows that, with the uniform prior, efficient coding alone is insufficient to generate an

inverse S-shaped weighting function. The results in Figure III therefore highlight that it is the

particular set of likelihood functions that are optimized under a U -shaped prior that are crucial for

generating the inverse S-shaped probability weighting function. In the next section, we conduct an

experiment which is aimed precisely at testing whether subjects’ perception is consistent with the

likelihood functions that are efficient under a U -shaped prior.

6Note that there are an infinite number of inefficient coding rules; equation (9) is just one of them that we use to
illustrate that a noisy coding model with a U -shaped prior is not sufficient to generate an inverse S-shaped probability
weighting function.

11



III. Experiment 1: Discrimination task

We have shown how efficient coding and a U -shaped prior can theoretically generate an inverse

S-shaped probability weighting function. A key assumption driving our theoretical result is that

the DM has a prior which puts more mass on extreme probabilities compared to intermediate

probabilities. In this section, we test an important implication of the theory, namely that perception

is noisier for intermediate probabilities compared to extreme probabilities.

III.1. Background on numerical cognition of fractions and probabilities

The foundation of our experimental design comes from the literature on numerical cognition.

There are numerous papers documenting empirical evidence consistent with the hypothesis that

humans have an “approximate number system” for integers (Dehaene, 2011). The approximate

number system facilitates an intuitive but noisy representation of number that uses brain circuits

which are distinct from those invoked in symbolic representation and manipulation of numerical

quantities. Recently, the approximate number system has been shown to have important conse-

quences for the way that humans process monetary amounts in simple risky choice (Khaw et al.,

2021; Frydman and Jin, 2022).

It is more controversial, however, to argue that the same approximate number system also

facilitates representation of ratios and fractions—which in turn could support an intuitive repre-

sentation of probability. Clarke and Beck (2021) put forth the hypothesis that the number sense

supports rational numbers—those that can be expressed as a ratio between two integers—but not

irrational numbers.7 In particular, the authors offer an evolution-based explanation for why the

approximate number system would support rational numbers (pg 22): “...organisms need to rea-

son under uncertainty...The capacity to engage in fast and efficient probabilistic reasoning would,

thus, be enormously advantageous...To do so, they need to represent probabilities; and the most

straightforward to do this is to represent rational numbers.”

Some evidence in favor of the hypothesis that the approximate number system supports fractions

comes from Matthews and Chesney (2015). Those authors show that humans exhibit a “distance

effect” when comparing two fractions: error rates decrease as the difference between the two frac-

7The controversy of such a hypothesis was highlighted when Clarke and Beck (2021) triggered 26 published
commentaries.

12



tions increases.8 Crucially, Matthews and Chesney (2015) demonstrate the distance effect even

when one fraction is displayed symbolically (as a ratio of Arabic numerals) and the other is dis-

played non-symbolically (as two different clouds of dots). The fact that a distance effect obtains in

this “cross-modal” format suggests that humans convert the clouds of dots into an abstract and in-

tuitive notion of ratio, which is then compared with the cognitive representation of the symbolically

presented fraction.9

An obvious question is whether the ratios and fractions that have been used in the previous

experimental literature are interpreted by subjects as probabilities. An alternative hypothesis is

that subjects instead interpret the ratios in a manner that is detached from any probabilistic

connotation. Some recent evidence from developmental psychology, however, suggests that ratio

perception can indeed be regarded as probability perception. Szkudlarek and Brannon (2021) give

children an experimental task in which they are asked to choose a machine that will give the

highest chance of delivering a specific colored ball. The probability is shown symbolically in one

condition, but non-symbolically in the other condition. Interestingly, accuracy in the non-symbolic

version of the probability discrimination task was highly correlated with accuracy in the symbolic

version of the task, where probabilities were displayed with symbolic fractions. This evidence

suggests that probabilities can be represented both with symbolic and non-symbolic stimuli, and

the representation of each type may share a common cognitive underpinning. Further evidence

of this effect from adult experimental subjects comes from Eckert, Call, Hermes, Herrmann, and

Rakoczy (2018).

Both Szkudlarek and Brannon (2021) and Eckert et al. (2018) provide evidence consistent with

the hypothesis that imprecision of ratio perception follows Weber’s law. The evidence for this

hypothesis comes from the fact that error rates in probability discrimination decrease as the ratio

of ratios increases. However, at least in these two studies, the distance between probabilities on

each trial is confounded with the ratio of ratios. In the next subsection, we design a task in which

we fix the distance between ratios and vary only the level of ratios across the unit interval. This

8Evidence for a distance effect from earlier experiments where subjects compare integers has been taken as support
for the existence of an approximate number system for integers.

9The cross-modal evidence complements other demonstrations of the distance effect when both stimuli are rep-
resented as symbolic fractions (DeWolf, Grounds, Bassok, and Holyoak, 2014; Jacob and Nieder, 2009; Kallai and
Tzelgov, 2009, 2012; Meerta, Grégoire, and Noël, 2010; Schneider and Siegler, 2010; Siegler, Thompson, and Schneider,
2011; Meerta, Grégoire, Seron, and Noël, 2012).
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design enables us to investigate how the degree of imprecision in perception of ratios shifts across

the unit interval.

III.2. Design

Our design builds on symbolic numerical discrimination tasks that began with Moyer and Lan-

dauer (1967). Such tasks can be used to elucidate the patterns of imprecision that experimental

subjects display when asked to classify which of two symbolic numbers is larger (e.g., “1” vs. “8”).

A classic result from this literature is that subjects exhibit a “distance effect,” whereby error rates

and response times become larger as the numerical distance between quantities becomes smaller.

Here, we seek to understand how the degree of imprecision varies systematically over the unit

interval. To do so, we incentivize subjects to accurately and quickly classify which of two fractions is

larger. We elicit responses across multiple trials, and crucially, we fix the distance between fractions

on each trial at 2%. Thus, we control for the distance effect and look for systematic variation in

imprecision depending on the location of the two fractions in the unit interval. Using the theory

from the previous section as a guide, we expect that the degree of imprecision should be largest for

fractions near 50%, and it should be smallest for those fractions near the extremes (0% and 100%).

[Place Table I and Figure IV about here]

Each trial contains a pair of fractions. We build the pairs by applying several restrictions that

follow from the design in Matthews and Chesney (2015). First, we use only reduced fractions to

eliminate any cognitive processing involved with reducing fractions. For simplicity, the numerator

and denominator in each fraction have at most 2 digits. Second, we avoid fraction pairs where

the numerator is the same for each fraction in the pair; we similarly avoid fraction pairs where

the denominator is the same for each fraction in the pair. This is done so that subjects cannot

simply use the heuristic of comparing only the numerators when the denominators are the same,

or of comparing only the denominators when the numerators are the same. These restrictions,

along with our main goal of varying fraction levels across the entire unit interval lead to a set of

28 fraction pairs that are presented in Table I. We define the trials on which we show these 28

fraction pairs as “test trials.” We show each subject each of the 28 fraction pairs twice, and we

counterbalance the location of each fraction on the right or left part of the screen. This generates
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a total of 56 test trials per subject; Table I shows that, on each test trial, the denominator for each

fraction takes the value of either 25 or 50. Figure IV provides a screenshot of one sample trial.

Subjects choose either the left or right fraction by pressing the “Q” or “P” key on their keyboard.10

Finally, to reduce the chance that subjects develop a strategy where they simply double the

numerator associated with the denominator of 25 and then just compare numerators, we add a set of

28 “catch” trials to the experiment. These catch trials have random numerators and denominators.

Moreover, the distance between fractions on catch trials is not fixed at 2%. The 28 catch trials are

also presented in Table I.

When constructing our design, we made a conscious choice to use fractions rather than per-

centages. Our justification for this design choice is that the fractional notation is likely to help

foster the perception of a probability. If we were to instead use percentages, subjects may employ

a heuristic where they ignore the percent sign (%) and simply compare integers. Our goal here is

to assess whether imprecision has any features that are unique to the unit interval, compared to

other number systems that have already been well-studied (e.g., integers).

III.3. Procedures

As described above, the experiment consists of 56 test trials and 28 catch trials, for a total of

84 trials. Subjects were paid $2.25 for completing all 84 trials. Additionally, 10% of subjects were

randomly selected to receive a bonus payment. The bonus payment follows the incentive scheme

in Frydman and Jin (2022), in which subjects are paid as a function of both accuracy and speed.

Specifically, if a subject is selected to receive a bonus, we pay $0.10 for each correct answer and

we subtract $0.01 for each second it takes the subject to respond. We impose a minimum bonus

amount of $0, and subjects are aware of this minimum. For those subjects who were randomly

selected to receive a bonus, the average total earning was $6.06. We recruit 800 subjects from

Prolific, an online data collection platform. The sample size, main analyses, and data exclusion

criteria are pre-registered on Aspredicted.org.11

10The experimental instructions are provided in Online Appendix B.
11The pre-registration document for this experiment is at: https://aspredicted.org/blind.php?x=YKS FMK.
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III.4. Results

As outlined in the pre-registration document, we exclude trials for which the response time is

less than 0.2 seconds or greater than 10 seconds. After this exclusion, we have 65,511 trials, of which

43,833 are test trials. The average accuracy among test trials is 73.3% and the average response

time is 2.44 seconds. The substantial error rate—in the presence of time pressure—suggests that

the task is not trivial.

[Place Figure V about here]

Figure V shows how the accuracy and response times vary across the unit interval. Each point

in the figure summarizes data from one pair of fractions used on test trials; recall that each of

the 28 fraction pairs used on a test trial is presented to a subject twice, as we counterbalance the

left-right display of the two fractions. For both panels in Figure V, the “average probability” on

the x-axis denotes the average of the two fractions on a given test trial. One can see, visually, that

accuracy is U -shaped while response times are hump-shaped. This specific pattern of non-uniform

imprecision across the unit interval is a key prediction of efficient coding when the subject’s prior

is U -shaped.

To provide a more formal test of the systematic imprecision, we partition the unit interval into

“extreme” and ”intermediate” probabilities. As outlined in pre-registration, we define a fraction

to be extreme if it is less than 0.2 or greater than 0.8; all remaining probabilities are defined to

be intermediate. Table II provides results from mixed effects regressions where the dependent

variables of interest are accuracy and response times. The key explanatory variable is a dummy

that takes the value of one if both fractions on the test trial are extreme.12

[Place Table II about here]

Table II Column (1) shows that average accuracy among intermediate test trials is 72.3%, while

accuracy on extreme test trials is significantly higher by 2.6% (p-value < 0.001). Moreover, Column

(2) shows that response times are significantly shorter by 0.112 seconds when both fractions are

12Our design precludes the scenario in which, within a test trial, one fraction is extreme and the other is interme-
diate; either both fractions are extreme or both are intermediate.
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extreme compared to intermediate (p-value < 0.001). Thus, subjects not only exhibit higher accu-

racy for fractions near the endpoints of the unit interval, but they also implement these decisions

significantly more quickly. This result is important as it provides novel evidence for a systematic

imprecision across the unit interval in a design that controls for the difference between fractions.

One natural concern, however, with the above results is that smaller fractions in our design tend

to have only one digit in the numerator, whereas larger fractions have two digits in the numerator.13

Thus, it may be that our tests are just picking up the extra difficulty that subjects have with

perceiving a two-digit numerator relative to a one-digit numerator. To address this concern, we re-

run our analyses restricting to trials where both fractions have two digits. This restriction implies

that all extreme fractions are now above 0.8. Our tests therefore rely on comparisons of behavior

among fractions in the intermediate range with those extreme fractions near one.

Columns (3) and (4) of Table II show that the regression results are robust to removing tri-

als with one-digit numerators. These subsample results are additionally important because they

highlight that imprecision over the unit interval fails to conform to the pattern of imprecision

often found among integers. Specifically, it is often found that as the distance between integers

remains fixed, imprecision grows monotonically in the level of the integers (Moyer and Landauer,

1967; Buckley and Gillman, 1974; Dehaene, 2011). We instead find evidence that subjects are more

accurate and respond more quickly when discriminating between large fractions compared to when

discriminating between intermediate fractions.

We conclude this section by providing evidence on the distance effect from the 28 catch trials.

These results serve as a replication of previous experimental work on symbolic fraction comparisons,

except that in our design, subjects are financially incentivized. As outlined in the pre-registration

document, we test whether error rates and response times decrease in the distance between fractions.

We run mixed effects linear regressions where the dependent variable is either error rates or response

times and the explanatory variable is the distance between the two fractions. We also include a

random intercept and a random slope. Consistent with previous work, we find that both error rates

and response times are negatively correlated with the distance between fractions; each negative

correlation is significant at the 0.1% level.

13All fractions in our design have two-digit denominators.
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IV. The Model: Instability of Probability Weighting

The experimental data presented in the previous section are consistent with the efficient coding

hypothesis and with human subjects holding a U -shaped prior belief about probability. As we

emphasized in Section II, the prior belief is a key input to the efficient coding model. Thus, in

principle, a change in the DM ’s prior belief should affect her perception through a change in the

likelihood functions. In this section, we formally show how a shift in the prior affects perception

and hence, subjective valuation.

In particular, we highlight how efficient coding generates a probability weighting function that

is malleable. We begin by assuming that the DM ’s prior belief takes the following form

fc(p) = ξ · f1(p)︸ ︷︷ ︸
a stable component

+(1− ξ) · f2(p)︸ ︷︷ ︸
a fast-moving component

. (10)

We refer to fc(p) as a “mixed” prior, which contains two components. The first component is stable,

and is denoted as f1(p). This component represents the “natural” prior that the DM has formed

based on encountering different probability values with different frequencies over her lifetime. The

second, fast-moving component is denoted as f2(p); it captures transient changes in statistics of

the local environment. For example, f2(p) can capture the empirical distribution of probabilities

that we present in the lab experiment in the next section.14 The parameter ξ in equation (10)

represents the weight the DM puts on the stable component; this weight may depend on the rate

at which the statistics of the environment change.

In light of our experimental results from the previous section—as well as the arguments outlined

in Stewart et al. (2006)—it is reasonable to assume that the natural prior f1(p) is U -shaped. We

operationalize this assumption by setting f1(p) equal to the U -shaped prior from equation (8)

f1(p) =
we−λ1p + (1− w)e−λ2(1−p)

wλ−1
1 (1− e−λ1) + (1− w)λ−1

2 (1− e−λ2)
. (11)

For the second, fast-moving component, we consider two specifications. Our main goal is to demon-

strate how shocks to the fast-moving component drive differences in valuation. As such, it is useful

14A growing literature has argued that people adapt, at least in part, towards the local context that changes
over the course of an experimental session (Burke, Baddeley, Tobler, and Schultz, 2016; Zimmermann, Glimcher, and
Louie, 2018; Conen and Padoa-Schioppa, 2019; Payzan-LeNestour and Woodford, 2022).
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to choose two specifications of the fast-moving component that have very different shapes. We

investigate an “intermediate” prior component, which has density only in the center of the unit in-

terval and thus balances out the U shape of the stable component. Formally, for this “intermediate”

prior component, we assume

f2(p) =


1

ph − pl
pl ≤ p ≤ ph

0 otherwise

, (12)

where pl and ph take intermediate values and 0 < pl < ph < 1.

We also investigate an “extreme” prior component, which has density only near the the end-

points of the unit interval; as such, this prior component accentuates the U -shape of the stable

component. For this “extreme” prior component, we assume

f2(p) =



1

(ph,2 − ph,1) + (pl,2 − pl,1)
pl,1 ≤ p ≤ pl,2

1

(ph,2 − ph,1) + (pl,2 − pl,1)
ph,1 ≤ p ≤ ph,2

0 otherwise

, (13)

where pl,1 and pl,2 take low values, ph,1 and ph,2 take high values, and 0 ≤ pl,1 < pl,2 < ph,1 <

ph,2 ≤ 1.

The two different specifications of the fast-moving component give rise to two different mixed

priors, which we refer to as the intermediate prior and the extreme prior. We specify the parameter

values for these two priors as follows. For the stable component f1(p) of each mixed prior, we set

λ1 = λ2 = 8 and w = 0.5. For the fast-moving intermediate prior component, we set pl = 0.38 and

ph = 0.62. For the fast-moving extreme prior component, we set pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79,

and ph,2 = 0.9. Finally, we set ξ, the weight on the stable component in the mixed prior, to 0.5.

Armed with two specific mixed priors, we now use them as inputs to our efficient coding model

and assess the differences in perception of probability. For each mixed prior fc(p), we substitute it

into the coding rule in equation (3). The two different coding rules—one for each specification of the

mixed prior—give rise to a distinct set of efficient likelihood functions. Figure VI summarizes these
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results: it plots, for both the intermediate prior and the extreme prior, the prior distribution fc(p),

its coding rule θ(p), and the likelihood functions. Figure VII then plots the probability weighting

functions v(p) implied by these two mixed priors.

[Place Figures VI and VII about here]

Figures VI and VII demonstrate the malleability of probability weighting: as the DM ’s prior

beliefs changes (the upper graph of Figure VII), the implied probability weighting function v(p)

changes significantly (the lower graph of Figure VII). More important, the way in which the weight-

ing function changes is governed by efficient coding. Specifically, for intermediate probabilities, the

slope of the weighting function is steeper when the fast-moving prior component “fills in” some

density for intermediate probabilities; however, for extreme probabilities, the slope of the weight-

ing function is steeper when the fast-moving prior component puts extra density in the extreme

portions of the unit interval, near 0 and 1.

To understand these results, we first note that, by construction, intermediate probabilities occur

much more frequently under the intermediate prior, compared to the extreme prior. Thus, under

the intermediate prior, the coding rule θ(p) has a much steeper slope for intermediate probabilities,

which causes the likelihood function f(Rp|p) to shift substantially as p varies over this intermediate

range. To see this visually, Figure VI shows a substantial change in the likelihood function as p

increases from 0.49 to 0.51, under the intermediate prior. By contrast, the same increase in p from

0.49 to 0.51 leads to almost no change of the likelihood function under the extreme prior. This

greater separation of likelihood functions for nearby probabilities gives rise to the higher slope of

the probability weighting function under the intermediate prior.

The same intuition holds when examining perception of probabilities closer towards the bound-

aries of the unit interval. By construction, low or high probabilities occur more frequently under

the extreme prior, compared to the intermediate prior. Therefore, as p varies over the low or high

range of probability, the likelihood function shifts to a greater extent under the extreme prior.

Figure VI shows a substantial change in the likelihood function when p increases from 0.12 to 0.14

under the extreme prior. By contrast, the same increase in p from 0.12 to 0.14 causes a much

smaller change in the likelihood function under the intermediate prior. These patterns of overlap

in the likelihood functions in turn generate a steeper slope of the probability weighting function
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under the extreme prior.

In the next section, we design an experiment that exogenously manipulates the fast-moving

component of a subject’s prior. The particular specifications of the fast-moving component follow

closely from the intermediate and extreme priors we have theoretically considered above. Using data

on lottery valuations, the experiment will allow us to test whether the slope of different portions of

the probability weighting function is malleable in the manner predicted by our theory of efficient

coding.

V. Experiment 2: Main task

V.1. Design

Our experimental design is intended to test whether subjects’ prior belief about probability

causally affects their valuations of risky lotteries. As in the theory outlined in the previous section,

here we assume that subjects in our experiment only have noisy perception of probability; their

perception of lottery payoffs is noiseless. To justify such an assumption, we consider only binary

lotteries with two possible payoffs, and crucially, the two possible payoffs are constant across all

trials. As such, noisy perception of lottery payoffs should be limited.

Before describing the details of the experimental design, we should make clear that testing for

the causal effect of prior belief on valuation is not a new endeavor. For example, in the theory and

subsequent experimental tests of Kőszegi and Rabin (2007), lottery valuations are affected by the

DM ’s reference point, which is equated with her (rational) expectations. The important distinction

with previous literature is that valuation in our setting depends on prior belief about a feature of

the choice set that has already been presented to the DM . In particular, it is the DM ’s prior

belief about the probability p that optimally shapes perception and drives valuation.

We now turn to the details of our design. On each trial, a subject is presented with a risky

lottery of the following form

($25, p; $0, 1− p). (14)

The subject is then asked to provide her certainty equivalent for the lottery by using a slider bar

that appears below a graphical representation of the risky lottery. Figure VIII provides a screenshot
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of an example trial. We choose to use the slider method rather than the commonly used multiple

price list, as it allows us to elicit an exact valuation instead of a switching interval. For similar

reasons, the slider method is also adopted by Khaw et al. (2022).

[Place Figure VIII about here]

Each subject in the experiment completes a total of thirty trials, and thus submits a total of

thirty certainty equivalents for various values of probability p. Subjects are incentivized to report

their certainty equivalents using a Becker-Degroot-Marschak mechanism (Becker, DeGroot, and

Marschak, 1964). We define the first twenty-four trials as “adaption trials” and the final six trials

as “test trials.” The core of our design is to exogenously manipulate the distribution of p on

the adaptation trials and test the impact on valuation in the test trials. The distribution of p

on adaptation trials plays the role of the fast-moving component of the subject’s mixed prior, as

we previously described in Section IV. Importantly, for different sets of adaptation trials, we hold

constant the set of test trials. In this way, the only feature of the experiment that varies is the

distribution of p that subjects experience before they provide their valuations on the six test trials.

When constructing our design, we face a tradeoff in choosing the number of test trials per

subject. On the one hand, more test trials provide us with a greater number of data points on

which to estimate the treatment effect of the prior. On the other hand, the more test trials we use,

the weaker the treatment effect will be for the final few test trials. This is because early test trials

will begin to contaminate the prior that we attempt to induce with the adaptation trials. Thus,

while we would ideally like to construct a large set of test trials that sample p across the entire unit

interval, we are constrained by the number of test trials that we can use per subject.

Because this design constraint operates only at the subject level, we choose to construct three

separate test trial ranges, and randomly assign subjects to one of the three ranges. In this manner,

we can span a large range of the unit interval while minimizing the number of test trials needed

per subject. Specifically, we define a low range for which p ∈ {0.11, 0.15, 0.19, 0.23, 0.27, 0.31},

an intermediate range for which p ∈ {0.38, 0.42, 0.47, 0.53, 0.58, 0.62}, and a high range for which

p ∈ {0.69, 0.73, 0.77, 0.81, 0.85, 0.89}.

After subjects are randomized into one of the three test trial ranges, we further randomize them

into an adaptation condition. Each test trial range is associated with one of two possible adaptation
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conditions. Table III provides the exact values of p that we use in each adaptation condition. For

the low test trial range, we adapt subjects to either a low or intermediate set of adaptation trials.

The intuition is that, for a subject who is adapted to low values of p, she should be able to easily

discriminate between low values of probability once the low range test trials arrive. In contrast,

for a subject who is adapted to intermediate values of p, she should be less able to discriminate

between low values of probability. Thus, conditional on being randomized into the low test trial

range, our model predicts that valuation will respond more strongly to changes in p among subjects

in the low adaptation condition, compared to those in the intermediate adaptation condition.

[Place Table III about here]

A similar intuition applies for the other two test trial ranges. For those subjects randomized

into the high test trial range, we adapt them to either a high or intermediate set of adaptation

trials. For a subject who is adapted to high values of p, she should be better able to discriminate

between probabilities in this high range once the test trials arrive, compared to a subject who is

adapted to intermediate values of p.

Finally, for those subjects randomized into the intermediate test trial range, we adapt them to

either an extreme or intermediate set of adaptation trials. A subject who is adapted to extreme

values of p—closer to the endpoints of the unit interval— should be less able to discriminate between

probabilities in the intermediate range once the test trials arrive, compared to a subject who is

adapted to intermediate values of p.

V.2. Procedures

We recruit 600 subjects from Prolific. Subjects are paid $3.00 for completing the experiment.

In addition, 10% of the subjects are randomly selected to receive a bonus whose amount is based

on their decision in one randomly selected trial. Specifically, the bonus amount is the outcome of a

Becker-Degroot-Marschak mechanism: on the randomly selected trial, we draw a monetary amount

randomly from a uniform distribution between [$0, $25]. If the subject’s certainty equivalent is

below or equal to the randomly drawn monetary amount, the subject receives the monetary amount.

If, however, the subject’s certainty equivalent is above the monetary amount, the computer plays

the lottery and pays the subject either $25 or $0 with the trial-specific probabilities.
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At the beginning of the experiment, subjects are presented with instructions and then need

to pass a two-question comprehension check; the experimental instructions and the comprehen-

sion check are provided in Online Appendix B. On average, subjects completed the experiment in

11 minutes. Conditional on being chosen to receive a bonus, they received an average total earn-

ing of $19.54. The sample size, main analyses, and data exclusion criteria are pre-registered on

Aspredicted.org.15

V.3. Results

Following our pre-registration, we apply two exclusion criteria before analyzing the data. First,

we exclude those subjects who violated a basic monotonicity property in their responses. In par-

ticular, for each subject, we estimate a linear regression of the certainty equivalent on p based on

the first twenty-four adaptation trials. We then record the regression coefficient for each subject,

and drop all subjects for whom the coefficient is negative; this restriction excludes 39 of the 600

subjects. Note that we only estimate the regression for each subject on the first twenty-four trials,

so that we do not select on the dependent variable of interest (certainty equivalents on test trials).

Next, we drop all observations for which the subject reported their certainty equivalent in less than

one second; this restriction excludes an additional 28 observations. Taken together, we are left with

a data set that contains 16,802 trials, of which 3,362 are test trials.

We now turn to testing our main hypothesis for each of the three different test trial ranges. In

order to arrive at an estimate of the subject’s perceived value of p, here we assume that the subject

has a linear utility function. This implies that the subject’s perception of p can be estimated simply

as CE
25 , where CE represents the certainty equivalent that the subject provides.16

Figure IX shows a graphical depiction of the effect of the prior on perception of probability. The

figure has three panels; each panel plots the perceived probability against the objective probability

for two sets of subjects. The left panel involves two sets of subjects who are both randomized into

the low test trials; one set is adapted to the low adaptation trials, while the other set is adapted

to the intermediate adaptation trials. The right panel involves two sets of subjects who are both

15The pre-registration document for this experiment is at: https://aspredicted.org/blind.php?x=W25 48V.
16Later in this section, we consider a more general case that allows the subject to have intrinsic risk aversion over

the lottery payoff; for a payoff of X, the utility is u(X) = Xα, where α ≤ 1. We find that, under nonlinear utility
specifications, our experimental data continue to support the theoretical predictions from Section IV and Figure VII.
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randomized into the high test trials; one set is adapted to the high adaptation trials, while the

other set is adapted to the intermediate adaptation trials. Finally, the middle panel involves two

sets of subjects who are both randomized into the intermediate test trials; one set is adapted to

the extreme adaptation trials, while the other set is adapted to the intermediate adaptation trials.

[Place Figure IX about here]

Recall from Section IV and Figure VII our theoretical prediction: subjects who are adapted to

intermediate probabilities should have greater difficulty discriminating between low probabilities,

compared to those who are adapted to low probabilities. In other words, when the perceived prob-

ability is plotted against the objective probability, the slope should be lower for subjects who are

adapted to intermediate probabilities; the left panel of Figure IX confirms this prediction. Sim-

ilarly, subjects who are adapted to intermediate probabilities should also have greater difficulty

discriminating between high probabilities, compared to those who are adapted to high probabili-

ties; the right panel of Figure IX confirms this prediction. Finally, subjects who are adapted to

intermediate probabilities should have less difficulty discriminating between intermediate probabil-

ities, compared to those who are adapted to extreme probabilities; the middle panel of Figure IX

confirms this prediction. In sum, the three panels in Figure IX provide experimental evidence for

the theoretical prediction that the slope of different portions of the probability weighting function

is malleable in the manner predicted by the efficient coding hypothesis.

[Place Table IV about here]

To formally test the efficient coding hypothesis, Table IV presents results from three mixed

effects linear regressions, one for each test trial range. For these regressions, the dependent variable

is our estimate of the subject’s perceived valuation of p; the independent variables include the

objective value of probability p, a dummy variable labelled intermediate which takes the value of

one if the subject is randomized into the intermediate adaptation condition (and zero otherwise),

and the interaction between p and intermediate. We include only test trials in the regressions,

which allows us to estimate the effect of adaptation trials on valuation.

Column (1) reports the regression results for the low test trial range. The key variable of

interest, p× intermediate, has a significantly negative coefficient. This indicates that subjects who
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are adapted to intermediate probabilities form perception of low probability that is less sensitive

to changes in the objective probability, compared to subjects who are adapted to low probabilities.

Column (3) reports the regression results for the high test trial range. Again, the interaction term,

p × intermediate, has a significantly negative coefficient. This indicates that subjects who are

adapted to intermediate probabilities form perception of high probability that is less sensitive to

changes in the objective probability, compared to subjects who are adapted to high probabilities.

Finally, Column (2) reports the regression results for the intermediate test trial range. Here, we

see that the interaction term has a significantly positive coefficient. Consistent with the prediction

of efficient coding, this result indicates that subjects who are adapted to intermediate probabilities

form perception of intermediate probability that is more sensitive to changes in the objective

probability, compared to subjects who are adapted to extreme probabilities.

In the above analyses, our key dependent variable is the subject’s perceived value of p. However,

because this perceived value is unobservable, we estimate it using the certainty equivalent data—

under the assumption that the subject has a linear utility function. If, instead, we relax this linear

utility assumption and allow the subject to have intrinsic risk aversion over the lottery payoff X,

where X = 25 with probability p and X = 0 with probability 1−p, then, on each trial, the certainty

equivalent that the subject provides is

CE = [E(p̃|Rp) · (25)α]1/α = [E(p̃|Rp)]
1/α · 25, (15)

where α is the risk aversion parameter and α ≤ 1. Equation (15) implies that E(p̃|Rp) = (CE
25 )α.

We re-estimate our main regressions in Table IV, but now using (CE
25 )α as the dependent variable.

We have examined a variety of values for α, including α = 0.88, the value reported in Tversky and

Kahneman (1992), and α = 0.70, the value used by Barberis, Jin, and Wang (2021) to match

the behavior of real-world retail investors. We find that our regression results are robust to these

alternative nonlinear utility specifications: the coefficient on p× intermediate remains significantly

negative for the low test trial range and the high test trial range, and it remains significantly

positive for the intermediate test trial range. We also note that, with higher risk aversion (i.e., as

α decreases), the implied perceived value of p will change. For example, when α = 0.7, we find

that small probabilities are distorted upwards: v(p) > p when p is small.
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VI. Discussion

VI.1. Belief distortion as a source of probability weighting

Both of our experiments showcase the role that efficient coding plays in generating perceptual

distortions of probability. Experiment 1 highlights that subjects’ discrimination ability varies sys-

tematically over the unit interval, in a way that is predicted by efficient coding when subjects have

a U -shaped prior. Experiment 2 highlights the malleability of probability weighting, as exogenous

shifts in the prior lead to predictable changes in valuation.

The model that we present, which builds on earlier work by Khaw et al. (2021) and Frydman

and Jin (2022), has only one free parameter n. This parameter measures the number of “neurons”

that the DM uses for encoding probability, so it can be interpreted as a capacity constraint. Our

assumption that n is finite—and thus information processing is constrained—is responsible for the

prediction that the average perception of p does not equal p. As such, our model of probability

weighting derives exclusively from a friction in information processing and thus points to a belief-

based channel as an important driver of probability distortions.

Such a belief-based channel is worth emphasizing, given that the literature beginning with Kah-

neman and Tversky (1979) has largely interpreted probability weighting as an expression of pref-

erences, rather than a misperception of beliefs. Specifically, our results suggest that the degree of

probability weighting should be modulated by the agent’s prior expectations, and thus informa-

tion provision and past experience may play an important role in characterizing the shape of the

weighting function. This interpretation is consistent with recent work by Enke and Graeber (2022),

who show that the weighting function can be modulated by the complexity of the lottery under

consideration. If the weighting function were instead exclusively driven by preferences, we should

expect that the weighting function does not vary with complexity—which is counterfactual to the

data presented by Enke and Graeber (2022). At the same time, our data do not rule out prefer-

ences as a source of probability weighting. That is, if we shut down our noisy encoding channel so

that the objective and perceived probability coincide, it may well be that valuation is still passed

through an exogenous nonlinear probability weighting function.

There are some intricacies of the mechanism that our experiments do not nail down. For

example, consider the scenario in which a subject is presented with a risky lottery and is simply
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asked to report the probability that is associated with the upside payoff. We speculate that subjects

would be able to report back to the experimenter the exact probability that is displayed on screen.

This raises the question: if the subject has conscious access to the objective probability, how could

the distortion of probability still operate through a belief-based channel?

One hypothesis is that when information about p is retrieved from memory for the purpose of

valuation, it is retrieved with errors of the type we have modeled in our efficient coding framework.

Obviously, this finer hypothesis about the particular stages at which representations of probability

are and are not corrupted with error remains untested. Put differently, the cognitive representation

of probability may be different when a subject is asked to simply repeat back a probability to the

experimenter, compared to when she is asked to use it as an input to a subjective valuation process.

What our model attempts to capture is the cognitive representation that is relevant for valuation.17

VI.2. Endogenizing the encoding function

As we briefly discussed in the Introduction, there have been many earlier attempts to microfound

the probability weighting function. Our model is closest in spirit to recent models of noisy and

efficient coding of probability. In particular, Khaw et al. (2021, 2022) assume that the DM encodes

probabilities using a log odds encoding (or likelihood) function. That is, the DM ’s noisy signal

of p is drawn from a normal distribution with mean of log( p
1−p).

18 Note that this likelihood

function hard-wires a pattern whereby extreme probabilities are easier to discriminate compared to

intermediate probabilities. In contrast, our efficient coding model endogenously derives a likelihood

function that is qualitatively consistent with this pattern, but under the assumption that the DM

has a U -shaped prior.19 Of course, if the DM ’s prior changes, our model then produces a different

likelihood function, presumably of a different functional form, whereas the likelihood function

in Khaw et al. (2021, 2022) remains fixed. Our data are consistent with the hypothesis that the

17The triple-code model proposed in Dehaene (1992) suggests that the representation of number differs across
different decision contexts.

18Zhang and Maloney (2012) propose a related encoding function whereby the DM ’s distorted probability is a
convex combination of the log odds, namely log( p

1−p
), and a constant.

19One conceptual difference exists between the likelihood function that arises endogenously under our model and
the exogenously assumed likelihood function where the noisy signal is drawn from a normal distribution with mean
of log( p

1−p
). Specifically, in the latter case, encoding of p becomes infinitely precise as p approaches either 0 or 1.

This in turn implies that v(p) → 0 as p → 0. In contrast, with the endogenous likelihood function from our model,
the implied perceived value of p = 0 is strictly above 0; v(p) > 0 as p → 0. In other words, our model generates a
discontinuity of the weighting function at the boundary; similarly, this discontinuity is also derived from the efficient
coding model of Zhang et al. (2020).
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likelihood function indeed shifts with prior beliefs.

Another closely related model of efficient coding of probability is proposed in Zhang et al. (2020).

Those authors highlight the role that the prior plays in determining the precision of the encoding

function: as the range of probabilities considered becomes narrower, precision of each of those

considered probabilities increases. However, Zhang et al. (2020) do not consider general shapes

of the prior, and thus cannot produce the non-uniform discrimination thresholds that our model

generates in the case of a U -shaped prior. At an empirical level, we provide novel evidence that is

consistent with the conjecture by Zhang et al. (2020) that “...human representation of probability

can adapt to the environment, in the spirit of efficient coding...” (pg 22032).

VI.3. An alternative performance objective

The efficient coding model in Section II assumes that the DM chooses the coding function θ(p)

that maximizes the mutual information between probability p and its noisy signal Rp. However,

there are other plausible performance objectives that the DM may prefer instead (Ma and Wood-

ford, 2020). For example, the DM may choose the coding function so as to maximize the expected

payoff from the task at hand (Heng et al., 2020; Frydman and Jin, 2022). In this section, we

examine our model’s implications when the DM chooses the coding function θ(p) that maximizes

the expected payoff from Experiment 2.

Specifically, given the Becker-Degroot-Marschak (Becker et al., 1964) incentive scheme in Ex-

periment 2, the DM will choose θ(p) to maximize the expected payoff

E[payoff] =
25

2

∫ 1

0
(1 + p2)f(p)dp− 25

2

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp, (16)

where f(p) is the DM ’s prior belief, and f(Rp|p) and E[p̃|Rp] are given by equations (1) and (6);

we derive equation (16) in Online Appendix A. Because the coding function only appears in the

second term of equation (16), the performance objective can be rewritten so as to minimize the

following expected error

∫ 1

0

(∑n

Rp=0
(E[p̃|Rp]− p)2f(Rp|p)

)
f(p)dp. (17)
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To derive predictions, we assume that the DM again holds a U -shaped prior given by (8); we

set λ1 = λ2 = 8 and w = 0.5.

[Place Figure X about here]

Given this U -shaped prior, Figure X plots the optimal coding rule θ̂(p), which we solve numer-

ically.20 The figure also plots the subjective valuation v̂(p) implied by θ̂(p). Figure X shows that,

when the DM chooses a coding function that maximizes the expected payoff, efficient coding and

the U -shaped prior no longer lead to an inverse S-shaped probability weighting function. This

finding suggests that if the inverse S-shaped weighting function is driven by efficient coding, then

it is likely to be a consequence of the DM maximizing mutual information.21

The result in Figure X also captures an important intuition about the source of the inverse

S-shape weighting function that arises when the performance objective is to maximize mutual in-

formation. Under this scenario, the DM is essentially choosing the coding function that leads to

greater discriminability among probabilities that she expects to encounter more frequently. Cru-

cially, this heightened discriminability does not necessarily lead to more accurate perception in the

sense of minimizing bias: the steep slope of the value function for low probabilities leads to both a

high degree of discriminability and a large bias in perception.22

VI.4. Broader implications of imprecision of ratios

In Experiment 1, we use fractions as stimuli to represent probabilities. In Experiment 2, we

use explicit representations of state probabilities, both numerically (displaying percentages) and

visually (displaying the ratio of two colored bars). Throughout the paper, we have mainly been

concerned with deriving and testing implications for risky choice when the DM has an imprecise

representation of probability.

However, our theory can be applied more broadly to real numbers in the unit interval that do

20We apply a projection method with Chebyshev polynomials to numerically solve for the θ̂(p) that maximizes (16).
See Mason and Handscomb (2003) for a detailed discussion of the properties of Chebyshev polynomials.

21When comparing different performance objectives that can be implemented in an efficient coding model, one
caveat is that there are also multiple possible information processing constraints for each performance objective. The
particular constraint we impose in our model is inherited from Heng et al. (2020), but other possible constraints—for
example, the one imposed in Wei and Stocker (2015)—have also been examined.

22For further discussion on the comparison between minimizing error and maximizing discriminability in the
context of probabilities, see Zhang et al. (2020).
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not necessarily have to represent probabilities. For example, our framework of noisy and efficient

coding will also make predictions about perception of proportions when there is no intrinsic risk to

consider. To make ideas concrete, consider the task in Oprea (2022) where the DM must report

a valuation of a riskless—but disaggregated—set of monetary payments. In particular, subjects

are asked to provide a valuation for an asset that is comprised of 100 disaggregated payments. A

proportion p of these payments are each worth $2.50 and the remaining proportion 1 − p of the

payments are worth $0. Thus, the subject’s task is simply to integrate the 100 payments into a

single valuation.

If the subject has imprecision in perceiving the proportion p, this will drive a wedge between

the subject’s reported valuation and the “true” valuation—the latter is simply the sum of the 100

disaggregated payments. Indeed, Oprea (2022) finds that subjects report valuations that seem to

accord with the four-fold pattern of risk-taking—even in the absence of any intrinsic risk.23 Our

model would predict the four-fold pattern for what Oprea (2022) calls “simplicity equivalents”—as

long as the DM has a prior over p that is U -shaped, which is consistent with the realized values

of p in Oprea (2022)’s experiment. Moreover, our model makes an additional untested prediction,

which is that the pattern of reported simplicity equivalents can be modulated by the DM ’s prior

belief about proportions.

VI.5. Applications to financial economics

While probability weighting has been applied in a variety of areas of economics, including insur-

ance and betting markets, it has been particularly fruitful in explaining facts in financial economics

(Barberis, 2013; O’Donoghue and Somerville, 2018). The core component of probability weighting

that most researchers in financial economics have invoked is the overweighting of small probabilities.

Models with this basic assumption can generate the high equity premium (De Giorgi and Legg,

2012), abnormal returns of individual stocks (Barberis and Huang, 2008; Barberis, Mukherjee, and

Wang, 2016; Barberis et al., 2021), overpricing of out-of-the-money stock options (Baele, Driessen,

Ebert, Londono, and Spalt, 2019), and time-inconsistent risk-taking (Barberis, 2012; Ebert and

Strack, 2015; Heimer, Iliewa, Imas, and Weber, 2021). Importantly, in all these studies, researchers

23See also Vieider (2022) who replicates the Oprea (2022) findings using binary choice rather than the multiple
price list approach.
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assume that probability distortions are “hard-wired” and do not shift over time.

Our results suggest that the degree of probability distortions depends critically on the DM ’s

prior belief about probability, which can vary over time. It follows that the financial phenomena

described above should also vary over time—to the extent that they are generated by probabil-

ity weighting. This insight leads to two concrete paths forward for future empirical work. First,

our model predicts when probability distortions should arise, and thus when we should observe

anomalous asset prices and risk-taking behavior. For example, when combined with the theory

in Barberis et al. (2021), our model predicts conditional moments by identifying periods when

overweighting of small probabilities should be more pronounced. During these periods—when per-

ception of probability is heavily distorted—we should observe average returns of individual stocks

that are consistent with those returns documented in the idiosyncratic volatility and failure prob-

ability anomalies. But during other periods, when investors’ prior beliefs induce less perceptual

distortions, the asset pricing anomalies should be weaker.

Second, by connecting probability distortions to investors’ prior beliefs, our model also makes

predictions about individual heterogeneity. In particular, those investors who hold prior beliefs that

probabilities are skewed towards 0 and 1 will distort probabilities more than investors who believe

that probabilities are uniformly distributed. One challenge, of course, in testing these predictions

is to obtain accurate measures of investors’ prior beliefs about probabilities.

VII. Conclusion

We have provided a new explanation for probability weighting based on a core principle from

neuroscience: efficient coding. We first develop a theory to show that efficient coding and a U -

shaped prior together generate the inverse S-shaped probability weighting from prospect theory.

The theory also predicts that, when the prior changes, the slope of different portions of the proba-

bility weighting function will change predictably.

In a pair of experiments, we provide novel support for the efficient coding model. First, we

provide support for the joint hypothesis that perception of probability is governed by efficient coding

and a U -shaped prior. The key piece of evidence is that perception of probability is more accurate

for those probabilities that have higher density under a U -shaped prior. Second, we measure the
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impact of the prior belief on valuation. To do so, we experimentally manipulate the prior and then

assess whether valuation of a given lottery changes systematically. Indeed, we find strong support

that the shape of the probability weighting function is unstable yet reacts in the manner predicted

by efficient coding.

In closing, it is useful to highlight the connection between our experimental results and the pat-

terns documented in recent experiments by Payzan-LeNestour and Woodford (2022) and Frydman

and Jin (2022). Each of the two latter papers provides experimental support in favor of efficient

coding as a driver of diminishing sensitivity, which is another core ingredient in prospect theory.

Thus, when viewed against this broader perspective, our data add credence to the hypothesis that

efficient coding serves as a common mechanism underlying multiple features of prospect theory

(Woodford, 2012a,b).
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Figure I
Prior distribution, coding rule, and optimal likelihood functions

Panel A plots a U -shaped prior distribution in the form of (8) described in the main text; the
parameter values are: λ1 = λ2 = 8 and w = 0.5. Panel B plots the coding rule θ(p), defined in
equation (3), for the prior distribution from Panel A. Panel C plots the implied likelihood function
f(Rp|p), defined in equation (1), for four different probability values: p = 0.02, p = 0.04, p = 0.49,
and p = 0.51; the parameter n is set to 10.
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Figure II
Prior distribution and value function: Efficient coding and U -shaped prior

The upper graph plots a U -shaped prior distribution in the form of (8) described in the main
text; the parameter values are: λ1 = λ2 = 8 and w = 0.5. The lower graph plots the subjective
valuation implied by efficient coding, v(p), and its one-standard-deviation bounds v(p)±σ(p); when
computing v(p) and σ(p), we use the coding rule from equation (3) in the main text and we set the
parameter n to 10. The green dash-dot line is the forty-five degree line.
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Figure III
Model implications when relaxing the efficient coding or U -shaped prior assumptions

Panel A: the upper graph plots a U -shaped prior distribution in the form of (8) described in the
main text; the parameter values are: λ1 = λ2 = 8 and w = 0.5. The lower graph plots the subjective
valuation implied by inefficient coding, v(p), and its one-standard-deviation bounds v(p) ± σ(p);
when computing v(p) and σ(p), we use the coding rule from equation (9) in the main text. Panel B:
the upper graph plots a uniform prior distribution f(p) = 1. The lower graph plots the subjective
valuation implied by efficient coding, v(p), and its one-standard-deviation bounds v(p)±σ(p); when
computing v(p) and σ(p), we use the coding rule from equation (3) in the main text. For both
panels, we set the parameter n to 10. In the lower graph of each panel, the green dash-dot line is
the forty-five degree line.
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Figure IV
Screenshot from discrimination task

Subjects are incentivized to quickly and accurately select the greater of the two displayed fractions.
Subjects input their response on the keyboard using either the “Q” key (for left) or the “P” key
(for right).
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Figure V
Accuracy and response time data from the fraction discrimination task

The upper panel plots the average accuracy rate for classification among test trials. The lower
panel plots the average response time among test trials. The x-axis denotes the average probability
of the two fractions on a given trial. The smoothed black line represents the best fitting second
order polynomial (fitted at the individual trial level). The blue vertical bars denote two standard
errors of the mean for each level of average probability.
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Figure VI
Prior distribution, coding rule, and optimal likelihood functions: Efficient coding and mixed prior

Panel A: the upper graph plots the mixed prior distribution in the form of (10) for the intermediate
condition; the middle graph plots the corresponding coding rule θ(p); the lower graph plots the
implied likelihood function, for p = 0.12, p = 0.14, p = 0.49, and p = 0.51. Panel B: the upper graph
plots the mixed prior distribution in the form of (10) for the extreme condition; the middle graph
plots the corresponding coding rule θ(p); the lower graph plots the implied likelihood function, for
p = 0.12, p = 0.14, p = 0.49, and p = 0.51. For both conditions, the first component of the mixed
prior is U -shaped in the form of (11); the parameter values are: λ1 = λ2 = 8 and w = 0.5. For the
intermediate condition, we set pl = 0.38 and ph = 0.62; for the extreme condition, we set pl,1 = 0.1,
pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. For both panels, we set ξ = 0.5 and n = 10.
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Figure VII
Prior distribution and value function: Efficient coding and mixed prior

The upper graph plots a mixed prior distribution fc(p) in the form of (10) described in the main
text. The first, stable component takes the form of (11); the parameter values are: λ1 = λ2 = 8
and w = 0.5. The second, fast-moving component takes the form of (12) in the “intermediate”
condition and takes the form of (13) in the “extreme” condition; the parameter values are: pl = 0.38,
ph = 0.62, pl,1 = 0.1, pl,2 = 0.21, ph,1 = 0.79, and ph,2 = 0.9. The weight ξ the DM assigns to the
stable component is set to 0.5. The lower graph plots, for both the “intermediate” condition and
the “extreme” condition, the subjective valuation implied by efficient coding, v(p); when computing
v(p), we set the parameter n to 10. The green dash-dot line is the forty-five degree line.
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Figure VIII
Screenshot of trial from Experiment 2

In this example, the risky lottery pays $25 with 53% probability and $0 with 47% probability. The
slider position indicates that the subject’s reported certainty equivalent on this trial is $10.12.
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Figure IX
Perceived vs. objective probability

Each panel displays probabilities for one of the three sets of test trials. The legend in the upper
left of each panel denotes the adaptation condition. Vertical bars denote two standard errors of the
mean.
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Figure X
Comparing performance objectives: Maximizing mutual information vs. maximizing expected

payoff

Panel A plots a U -shaped prior distribution in the form of (8) described in the main text; the
parameter values are: λ1 = λ2 = 8 and w = 0.5. Panel B plots the coding rule θ̂(p), numerically
solved for maximizing the expected payoff given by equation (16); it also plots the coding rule
θMI(p), defined in equation (3), that maximizes the mutual information between p and Rp. Panel

C plots the subjective valuation v̂(p) implied by θ̂(p); it also plots the subjective valuation vMI(p)
implied by θMI(p); the green dash-dot line is the forty-five degree line. For both Panel B and Panel
C, we set the parameter n to 10.
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Table I
Fraction pairs in Experiment 1

Test trials Catch trials

Fraction 1 num Fraction 1 denom Fraction 2 num Fraction 2 denom Fraction 1 num Fraction 1 denom Fraction 2 num Fraction 2 denom

1 25 3 50 3 45 1 20

2 25 3 50 2 9 3 8

3 25 7 50 7 55 3 20

4 25 7 50 5 6 3 8

4 25 9 50 9 46 4 21

6 25 11 50 3 7 2 7

6 25 13 50 13 55 6 21

7 25 13 50 5 9 3 7

8 25 17 50 17 45 8 21

9 25 17 50 5 9 2 7

9 25 19 50 19 55 9 20

11 25 21 50 3 5 3 8

11 25 23 50 23 45 11 20

12 25 23 50 7 8 2 9

13 25 27 50 27 55 13 20

14 25 27 50 5 6 7 8

14 25 29 50 29 45 14 21

16 25 31 50 2 9 5 9

16 25 33 50 33 55 16 21

17 25 33 50 5 6 3 4

18 25 37 50 37 45 18 19

19 25 37 50 3 7 5 6

19 25 39 50 39 55 19 20

21 25 41 50 7 8 3 7

21 25 43 50 43 45 21 25

22 25 43 50 5 6 3 7

23 25 47 50 47 55 23 25

24 25 47 50 2 7 7 8

Notes. Each row of the table characterizes a pair of fractions used in the discrimination task from Experiment 1. The left panel

provides the 28 test trials; the right panel provides the 28 catch trials. “Fraction 1 num” and “Fraction 1 denom” denote the numerator

and denominator of the first fraction. “Fraction 2 num” and “Fraction 2 denom” denote the numerator and denominator of the second

fraction. We counterbalance the left-right ordering of the two fractions so that each subject is presented with a total of 56 test trials.
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Table II
Accuracy and response times in Experiment 1

All trials Only trials with two-digit numerators

(1) (2) (3) (4)

Dependent variable: Correct Response time (seconds) Correct Response time (seconds)

extreme 0.026*** –0.112*** 0.011** –0.152***

(0.004) (0.013) (0.005) (0.018)

Constant 0.723*** 2.493*** 0.718*** 2.534***

(0.007) (0.040) (0.007) (0.041)

Observations 43,833 43,833 26,597 26,597

Notes. The table reports results from mixed effects linear regressions. Correct is a dummy

variable that takes the value of one if the subject correctly classifies the larger fraction on a given

trial. extreme takes the value of one if both fractions on the trial are less than 0.2 or greater than

0.8. Only test trials are included in the regression; catch trials are not included. We include a

random intercept which allows accuracy to vary across subjects. Standard errors of the fixed effect

estimates are clustered at the subject level and reported in parentheses. *, **, and *** indicate

significance at the 10%, 5%, and 1% level, respectively.
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Table III
Design parameters for Experiment 2

Adaptation conditions Test conditions

Extreme Low Intermediate High Low Intermediate High

10 10 38 67 11 38 69

11 11 39 68 15 42 73

12 12 40 69 19 47 77

13 13 41 70 23 53 81

14 14 42 71 27 58 85

15 15 43 72 31 62 89

16 16 44 73

17 17 45 74

18 18 46 75

19 19 47 76

20 20 48 77

21 21 49 78

79 22 51 79

80 23 52 80

81 24 53 81

82 25 54 82

83 26 55 83

84 27 56 84

85 28 57 85

86 29 58 86

87 30 59 87

88 31 60 88

89 32 61 89

90 33 62 90

Notes. The table provides the specific values of probability used in each of the adaptation and

test conditions. Each adaptation condition contains 24 trials, corresponding to the four columns

on the left. Each test condition contains 6 trials, corresponding to the three columns on the right.

Each entry in the table denotes a probability p (in percentage) associated with the upside payoff of

$25. Subjects who are randomized into the low test condition are further randomized into either the

low or intermediate adaptation condition; subjects who are randomized into the high test condition

are further randomized into either the high or intermediate adaptation condition; subjects who are

randomized into the intermediate test condition are further randomized into either the extreme or

intermediate adaptation condition.
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Table IV
Perceptual biases of probability

(1) (2) (3)

Dependent variable:
“Perceived probability”

Low test trials
sample

Intermediate test trials
sample

High test trials
sample

p 0.620*** 0.664*** 0.983***

(0.060) (0.059) (0.061)

intermediate 1.710 –18.531*** 14.857**

(1.901) (4.092) (6.745)

p×intermediate –0.312*** 0.367*** –0.166**

(0.070) (0.094) (0.084)

Constant 0.352 –5.279* –21.057***

(1.217) (2.722) (4.969)

Observations 1,127 1,096 1,133

Notes. The table reports results from mixed effects linear regressions in which the dependent

variable is the perceived probability, estimated from the certainty equivalent on each trial. The

dummy variable, intermediate, takes the value of one if the trial belongs to the intermediate adap-

tation condition, and zero otherwise. The variable p takes the objective value of the probability

associated with the risky lottery’s upside payoff. Only data from test trials are included. There are

random effects on the independent variables p and the intercept. Standard errors of the fixed effect

estimates are clustered at the subject level and reported in parentheses. *, **, and *** indicate

significance at the 10%, 5%, and 1% level, respectively.
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Online Appendix

A. Expected Payoff from Experiment 2

In this section, we derive the expected payoff a subject receives from Experiment 2. As described

in Section V, each subject receives a fix amount of $3.00 for participating in the experiment. As

such, when computing the subject’s expected payoff, we focus only on the bonus component.

Suppose, for a given trial in Experiment 2, the objective probability is p. Given p, the subject’s

perceptual system generates a noisy signal Rp from f(Rp|p). Then, given Rp, the subject reports

a certainty equivalent of 25 · E[p̃|Rp]. With the Becker-Degroot-Marschak (Becker et al., 1964)

incentive scheme, the expected bonus payoff the subject receives, conditional on p and Rp, is

1

25

∫ 25

25·E[p̃|Rp]
qdq +

1

25

∫ 25·E[p̃|Rp]

0
(25× p)dq

=
1

25

∫ 25

25p
qdq +

1

25

∫ 25p

0
(25× p)dq − 1

25

∫ 25·E[p̃|Rp]

25p
(q − 25p)dq

=
25

2
(1 + p2)− 25

2
(E[p̃|Rp]− p)2. (A.1)

Note that equation (A.1) corresponds to the limiting case of the 2,500-row payoff scheme we im-

plemented in Experiment 2; the details of this 2,500-row payoff scheme are provided in Online

Appendix B.2; as the number of rows increases from 2,500 to infinity, the expected bonus payoff

approaches the expression given by equation (A.1).

Averaging across different Rp for a given p, and further averaging across different values of p

drawn from the subject’s prior belief f(p), the expected bonus payment is

E[payoff] =
25

2

∫ 1

0
(1 + p2)f(p)dp− 25

2

∫ 1

0

 n∑
Rp=0

(E[p̃|Rp]− p)2f(Rp|p)

 f(p)dp, (A.2)

which is equation (16) in the main text.
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B. Experimental Instructions

B.1. Instructions for the discrimination task in Experiment 1
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B.2. Instructions for the valuation task in Experiment 2
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