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How do scientists decide which projects get resources?

▶ Objective: max productivity (quantity, impact, ...) over some horizon

▶ Challenge: incomplete information about which projects will be productive

Exploitation vs Exploration

prioritize projects that one has...
good info about poor info about

pursue safe projects
max short-term productivity

acquire information
improve long-term productivity

My research empirically models and estimates how a group of large labs traded off
exploitation and exploration in resource allocation under incomplete information
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Why is this question interesting and important?

▶ Classic problem in theoretical literature, little empirical evidence
▶ Multi-armed bandit

▶ Large stakes
▶ Labs in sample spending =$1.3B over 2000–2015

▶ US spending on R&D >$500B per year

Results
▶ Labs explored extensively

▶ Exploration had a large positive impact on their productivity

▶ Policy counterfactuals: Alternative allocation models? Effect of informatics?
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Sections

▶ Setting
▶ Model & Estimation

▶ Results
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Setting enables studying allocation at an ultra-micro level

Project = finding molecule’s 3D image

▶ Structural biology labs
– Funded by $1.3B NIH Protein Structure

Initiative (PSI)

▶ Important basic research

– Lead to valuable applied research e.g.
structure-based drug design of COVID vaccines

▶ Highly granular data
– Clearly defined projects; discrete input bundles
– Daily input allocation to >300,000 projects,

∼1 million input bundles
– Output from each allocation (structure Y/N,

citations, downloads)

– 4 large labs (71% of projects, 85% of input)
Funding & productivity of those labs
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One input bundle = one experimental trial

Large variations in success/failure at every stage, even within project
“...the success of any or all individual steps does not guarantee the success of the overall
process...requires a significant amount of work and much luck...” (Chruszcz et al., 2008)
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Lab allocates trials among many projects
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Exploit or Explore? Let’s be NESG on May 30, 2009...
Project A Project B

Methyl-CpG-binding domain protein 4 vs Malonyl-CoA decarboxylase
(Homo sapiens) (Cupriavidus metallidurans)

involved in DNA repair involved in fatty acid metabolism
Selection human molecule, biomedically novel
rationale important, related to diseases

Previous 8 0
trials 2 failed in stage 2 (expression)

3 failed in stage 3 (purification)
3 failed in stage 4 (crystalization)

ML pred prob of 0.0692 0.0012
success next trial

Similarity to prev 100% 58%
tried projects
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NIH policies simplify the setting and motivate counterfactuals

Simplifications
▶ Assume away competition U01 collaborative grant, More evidence committee determined

and assigned projects to labs Details

▶ Assume away principal-agent problem, predetermined preferences NIH closely
monitored labs based on evaluation metrics Evidence

Many interesting policy features
▶ Strong emphasis on exploration of poorly covered knowledge space Evidence

▶ Support for informatics: databases, informaticians,... ($40M)
· · ·· · ·· · ·

7 / 13



Sections

▶ Setting

▶ Model & Estimation
▶ Results
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Sketch of a simple model

Labs faced a finite-horizon dynamic decision problem

For each period t in horizon 1, ...,T :

1. Lab uses info from prev trials to retrain ML models and update posterior about future
trial success probability ppp

2. Based on this posterior & its preferences, lab determines the “value” of each trial
value = Vexploit︸ ︷︷ ︸

current payoff

+ Vexplore︸ ︷︷ ︸
benefit for future

3. Lab chooses trials with the highest values up to capacity constraint
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Estimation & model validation

▶ Estimation recovers the lab’s perceived Vexploit (· ; θ̂θθ,ppp) and Vexplore(· ; θ̂θθ,ppp),
methodological innovation for computational tractability Likelihood Function

Intuition for Identification

▶ Use estimated model to simulate labs’ allocation, training of ML models, and output
period-by-period and compare w/ actual data Simulation Procedure
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Model captures the labs’ decisions: evidence from model validation
simulations Additional Evidence

Output by Year (One Large Lab)

Simulated outcomesPrior data
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Model captures the labs’ decisions: evidence from model validation
simulations Additional Evidence

Simulated number of projects attempted, output quantity, citations, downloads
within 10% different from actual output for all labs

10 / 13



Labs explored extensively—as they should!

Estimates reject no exploration
Estimates

▶ V̂explore >> 0 for all large labs

Effect of exploration?
▶ Compare w/ no exploration in

counterfactual

Miss low-hanging fruits, inefficient
allocation
▶ Output quantity ↓ 51%,

citations ↓ 57% across labs

Output by Year (One Large Lab)

Simulated outcomesPrior data
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Many policy counterfactuals: one example

What if no informatics?
▶ Save $40M (3% of funding)

▶ No machine learning in
counterfactual

Still find low-hanging fruits, but less
inefficient allocation
▶ Output quantity ↓ 7%, citations

↓ 9% across labs

Output by Year (One Large Lab)
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0
5

0
1
0

0
1

5
0

2
0

0
P

u
b

lic
a

ti
o

n
s

2000 2004 2008 2012 2016
Year

Original model

No updating

12 / 13



Many policy counterfactuals: one example

What if no informatics?
▶ Save $40M (3% of funding)
▶ No machine learning in

counterfactual

Still find low-hanging fruits, but less
inefficient allocation
▶ Output quantity ↓ 7%, citations

↓ 9% across labs

Output by Year (One Large Lab)

Simulated outcomesPrior data

0
5

0
1
0

0
1

5
0

2
0

0
P

u
b

lic
a

ti
o

n
s

2000 2004 2008 2012 2016
Year

Original model

No updating

12 / 13



Many policy counterfactuals: one example

What if no informatics?
▶ Save $40M (3% of funding)
▶ No machine learning in

counterfactual

Still find low-hanging fruits, but less
inefficient allocation
▶ Output quantity ↓ 7%, citations

↓ 9% across labs

Output by Year (One Large Lab)

Simulated outcomesPrior data

0
5

0
1

0
0

1
5

0
2

0
0

P
u

b
lic

a
ti
o

n
s

2000 2004 2008 2012 2016
Year

Original model

No updating

12 / 13



Discussion—why do these results matter?
▶ Exploration improves long-term productivity and should be encouraged

▶ “Information” is an important research output that improves future allocation and
should be rewarded

▶ Policy relevance: PSI and beyond

Some bold proposals
▶ Open, queryable database of research experience (what has been done, successes

AND failures)

▶ Big data analytics on project potential

▶ Reward for research experience vs research successes

▶ More ideas?

13 / 13



Discussion—why do these results matter?
▶ Exploration improves long-term productivity and should be encouraged

▶ “Information” is an important research output that improves future allocation and
should be rewarded

▶ Policy relevance: PSI and beyond

Some bold proposals
▶ Open, queryable database of research experience (what has been done, successes

AND failures)

▶ Big data analytics on project potential

▶ Reward for research experience vs research successes

▶ More ideas?
13 / 13



Thank You



Literature (science of science) Back to Contributions

▶ Resource allocation under uncertainty & incomplete information: Arrow (1962);
Roberts & Weitzman (1981); Bergemann & Hege (2005)...

▶ Idea development, experimentation & learning: Cohen & Levinthal (1989); Henderson
& Cockburn (1996); Azoulay et al. (2011); Ederer & Manso (2013); Manso (2016);
Krieger (2021); Ganglmair et al. (2019); Khmelnitskaya (2021); Lane et al. (2022);
Nagaraj et al. (2022)...

▶ Impact of innovation policy & institutions: Jaffe (2002); Furman & Stern (2011);
Azoulay (2012); Cantoni & Yuchtman (2014); Lane et al. (2015); Azoulay et al. (2019);
Myers (2020)...



Literature (single-agent dynamics and multi-armed bandit) Back to Contributions

▶ Recursive & simulation methods: Pakes (1986); Rust (1987); Hotz & Miller (1993);
Hotz et al. (1994); Rust (1994); Timmins (2002); Aguirregabiria & Mira (2010)...

▶ Theoretical lit on MAB and dynamic allocation indices: Gittins (1979); Weitzman
(1979); Lai & Robbins (1985); Whittle (1988); Bergemann & Valimaki (1996); Bolton &
Harris (1999); Auer et al. (2002); Keller et al. (2005); Bubeck & Cesa-Bianchi (2012);
Russo et al. (2017)...

▶ Empirical analyses of bandit-like single-agent problems: Miller (1984); Erdem & Keane
(1996); Crawford & Shum (2005); Dickstein (2018); Li et al. (2020); Caria et al. (2020)...



Funding & productivity of 4 large labs Back to Empirical Setting

Funding (million $)
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Labs using ML to form posterior Back to Empirical Setting

▶ Labs published a series of journal articles describing their ML models (Slabinski et al.
(2007a,b); Jaroszewski et al. (2008); Price Ii et al. (2009a,b); Babnigg & Joachimiak
(2010); Jahandideh et al. (2014)

Jahandideh et al. (2014)



How did the labs use info to guide decision-making?

Evidence
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NIH evaluation metrics Back to NIH Involvement

During production phase



NIH evaluation metrics Back to NIH Involvement

During biomedical phase



Production target for the large labs Back to NIH Involvement



NIH policy features Back to NIH Involvement

▶ Restrictions on choice sets
– Centralized committee periodically drew families of molecules
– Solicited nominations from research community
– Reviewed projects proposed by labs

▶ Robustness check: exogenous shift in preferences in 2009
– Pilot (2000–2004)
– Production phase (2005–2008): publish a lot of unique structures
– Biomedical phase (2009 onwards): publish a lot of unique structures and focus on

biomedically important ones



Hill & Stein (2022) Back to NIH Involvement

Labs in my sample (SG) not motivated by competition



Emphasis on poorly covered knowledge space in structural biology
Back to NIH Involvement



Prediction of 5-year citations To Simulation Procedure

▶ Fit a ridge reg of 5-year citations of actual pubs on their characteristics
▶ Hyperparameters chosen with cross validation



Prediction of 5-year downloads To Simulation Procedure

▶ Fit a ridge reg of 5-year detrended downloads of actual pubs on their characteristics
▶ Hyperparameter chosen with cross validation



Theoretical foundation of index approximation Back to Index Approximation

▶ The labs’ allocation problem is a finite-horizon
multi-armed bandit (MAB)
– Project = arm
– Trial = pull

▶ Some MABs have optimal index solutions
– Compute an index value for each choice
– Optimal action is picking the choice w/ the highest index
– E.g. Gittins Index for infinite-horizon discounted MAB

Objective function

▶ The labs’ problem does not have an optimal index
solution
– Nonstationarity, correlated choices, complex action space
– But index could work reasonably well Details

– Lack of alternatives to index



Index rules could work reasonably well Back to Setting Back to Index Approximation

▶ Finite horizon ∑T
t=1 instead of ∑∞

t=1 βt

– Index rules are asymptotically optimal as T → ∞, nearly optimal (both in the Bayesian
and frequentist viewpoints) for small T (Lai& Robbins (1985); Lai (1987))

▶ Nonstationarity F̃t instead of F̃
– Restless bandits (Whittle (1988)), index rules suboptimal in the general case (Ortner et al.

(2012))
– Assume specific form of change in F̃t , UCB-like index approximations could match the

lower bound on regret up to a logarithmic factor (Garivier & Moulines (2011)
▶ Correlated choices F̃t (pijt |Ωt ) instead of F̃ (i)(pijt |Ω(i)

t )
– Contextual bandits (Woodroofe (1979); Langford & Zhang (2007))
– UCB-like index approximations could match the lower bound on regret up to a

logarithmic factor (Guan & Jiang (2018); Zhou et al. (2020)), first build models to correlate
the contextual characteristics with the observed outcomes, then use the models to
predict the UCB

▶ Multiple choices in each period ∑ji∈Clt
aijt = nlt , all pulled arms reveal payoffs

– Combinatorial semi-bandits, need strong functional form assumptions on action space
and payoff function for index approximations to work well (Kveton et al. (2015); Chen et
al. (2016); Wang & Chen (2018))



Practical applications of index approximations Back to Index Approximation

▶ Recommender systems: Netflix Link

▶ Dynamic pricing: Boston Globe Link

▶ Games: AlphaGo Link

▶ Self-driving cars: Tesla Link

https://scale.com/blog/Netflix-Recommendation-Personalization-TransformX-Scale-AI-Insights
https://arxiv.org/pdf/2010.15835.pdf
https://jonathan-hui.medium.com/monte-carlo-tree-search-mcts-in-alphago-zero-8a403588276a
https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-3-planning-control-9a25cc6d04f0


Likelihood function – definitions Back to Model Back to Estimation

Define variables:
aijt = 1 if allocate the jth trial to project i on day t , = 0 if not
Ωt information set on day t , includes allocations and outcomes observed before t
θθθX lab’s welfare weights on different evaluation metrics, unknown to us

Objective function: fix input, max welfare-weighted output over the horizon by choosing
aaa1,...,aaaT

Value function:

Vijt (Ωt ,aaat ; θθθX ) = πijt (Ωt ,aaat ; θθθX )︸ ︷︷ ︸
posterior expected output

+EΩ′
t+1

[ max
aaal,t+1

Vi ,j ′,t+1(Ω′
t+1,aaal ,t+1|Ωt ,aaalt ) ]︸ ︷︷ ︸

continuation value
(1)

Try backward induction: infeasible to compute the value for every state of Ωt



Likelihood function – index approximation Back to Model Back to Estimation

▶ True value is intractable to compute, both for labs and for us
▶ Indices are well-studied in theory and well-used in practice for multi-armed bandit

Theoretical foundation Regret analysis Many applications

▶ Assume lab approximated the perceived value w/

V A
ijt (Ωt ,aaat ; θθθ) = πijt (Ωt ,aaat ; θθθX )︸ ︷︷ ︸

as before

+ Bijt (Ωt ,aaalt ; θθθBl)︸ ︷︷ ︸
exploration bonus

(2)

▶ Bijt (·) does not integrate over future states Ωt+1,Ωt+2, ... easily computable



Main model modifies a well-used index Back to Model Back to Estimation

Upper Confidence Bound (UCB) Bijt (·) =
√

θB1
j

▶ Auer et al. (2002) Detail

▶ Larger θB1 = more exploration

▶ (t − t ′i ,t ) = duration b/w current day & last previous allocation to project i
▶ Negative θB2 = lab discounted older projects
▶ Proxy for learning staying with one individual, forgetting...



Modification approximates for unobservables Back to Model Back to Estimation

UCB + Discounting Bijt (·) =
√

θB1
j + θB2 · (t − t ′i,t )

▶ Auer et al. (2002) Detail

▶ Larger θB1 = more exploration

▶ (t − t ′i ,t ) = duration b/w current day & last previous allocation to project i
▶ Negative θB2 = lab discounted older projects
▶ Proxy for learning staying with one individual, forgetting...



Likelihood function Back to Estimation

▶ Assume lab treats whether to allocate each trial as a two-armed bandit (choose a trial
if its V A

ijt is greater than a threshold value)
for computational tractability

▶ Let threshold V nlt
lt (θθθ) = nlt th largest value of V A

ijt on day t , ϵ
iid∼ Type-I EV

Pr (ao
ijt = 1; θθθ) = Pr{V A

ijt (Ωt ,aijt = 1; θθθ) + ϵit > V nlt
lt (θθθ) + ϵlt}

=
exp(V A

ijt (Ωt ,aijt = 1; θθθ))

exp(V A
ijt (Ωt ,aijt = 1; θθθ)) + exp(V nlt

lt (θθθ))

(3)

▶ Total log likelihood adds up
▶ Log Pr (ao

ijt = 1; θθθ) for all actually allocated trials in Cl1, ...,ClT
▶ Log Pr (ao

ijt = 0; θθθ) for all actually not allocated trials in Cl1, ...,ClT



Functional form of πijt(·) Back to Estimation

πijt (Ωt ,aaalt ; θθθXl) =
∫

r (XXX it ; θθθXl)︸ ︷︷ ︸
welfare upon payoff

· q(aaalt ,pijt )︸ ︷︷ ︸
posterior belief of
prob of payoff

d F̃t (pijt |Ωt )︸ ︷︷ ︸
posterior belief of
prob of success

,
(4)

where
r (XXX it ; θθθXl) = 1 · θquant ,l + biomedi · θbiomed ,l + ...+ humani · θhuman,l (5)

and
q(aaalt ,pijt ) = aijt (1 − pijt )

mpijt . (6)

▶ r includes 8 variables corresponding to NIH evaluation metrics of labs’ productivity
▶ m is the number of ongoing trials of project i before ji
▶ Duplicated structure does not receive additional payoff ⇔ a success of trial ji pays off

only if all of the already ongoing trials of the project fail ⇔ (1 − pijt )
mpijt



Functional form of πijt(·) Back to Estimation

πijt (Ωt ,aaalt ; θθθXl) =
∫

r (XXX it ; θθθXl)︸ ︷︷ ︸
reward upon payoff

· q(aaalt ,pijt )︸ ︷︷ ︸
probability of payoff

dF̃t (pijt |Ωt ),

= aijt · r (XXX it ; θθθXl)
∫ let it be Mijt︷ ︸︸ ︷

[(1 − pijt )
mpijt ] dF̃t (pijt |Ωt )︸ ︷︷ ︸

estimated offline

.

(7)

▶ Mijt only depends on pijt , estimated offline
▶ πijt (Ωt ,aaalt ; ; θθθXl) is specified in a way that for all ji < j ′i in choice set,

V A
ijt (Ωt ,aijt = 1; θθθl) + ϵit ≥ V A

ij ′t (Ωt ,aij ′t = 1; θθθl) + ϵit , because the two terms only
differ by EF̃t

(Mijt ) ≥ EF̃t
(Mij ′t )

▶ So one would always choose the 4th trial before choosing the 5th trial of a project in
simulation



Intuition for Identification Back to Estimation

Search for θ̂θθX and θ̂θθB so V̂ A
ijt ( · ; θθθ) maximizes likelihood of observed actions aaao

1, ...,aaa
o
T

▶ Specified the likelihood of choosing trial j of project i as a smooth, monotonically
increasing function of V̂ A

ijt ( · ; θθθ) Likelihood Function

▶ Intuition for identification: variation in biomedically importance of choices identifies
θ̂bio
▶ Observe many trials on biomedically important projects ⇔ large θbio
▶ Want a large θ̂bio to maximize the log likelihood
▶ Biomed projects should have large V A

ijt and have a high likelihood of being chosen
▶ Non-biomed projects should have small V A

ijt and have a high likelihood of not being chosen



Auer et al. (2002) Back to Main Model

Bijt (·,aijt = 1) =

{
∞ if j = 1√

2 ln(Nlt )
j−1 if j = 2,3,4...

(8)

▶ Nlt is the units of resources allocated so far, more recent implementation uses a fixed
value θB1 rather than 2 ln(Nlt ) (see Lattimore & Szepesvari (2020))

▶ I do not use an infinite value for Bijt (·) when j = 1. If I do, V A
ijt would be infinite and

cause problems in estimation via MLE and in identifying θB1.



Model Validation Simulations To Estimation To Counterfactual

Use θ̂θθX and θ̂θθB to simulate labs’ history of allocation and output and compare w/ actual data

Initialization

▶ Ground truth output: use all trial data ΩT+1 to fit a flexible model F ∗ to predict trials’
“true” productivity Prediction of Prob of Success Prediction of Citations Prediction of Downloads

▶ Prior: trial allocation and outcomes realized before 2005, not simulated

For period t in 2005–2015 do:

- Update posterior: use data before t to refit labs’ posterior belief F̃ ′
t (Ω

′
t ) Details

- Make allocations: based on posterior F̃ ′
t (Ω

′
t ) and allocation model θ̂θθX and θ̂θθB , compute

V A′
ijt for trials in choice set; allocate trials according to V A′

ijt up to capacity constraint
- Simulate trial outcomes: use F ∗(ΩT+1) to simulate output of the allocated trials
- Update information set Ω′

t+1
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Modeling of labs’ posterior Back to Simulations To “True” DGP

▶ Fit random forests of trial outcomes on characteristics
▶ Model updated every quarter as newer data incorporated in information set
▶ Characteristics include every variable the labs mentioned ever using and NIH

evaluation metrics to minimize OVB and selection on unobservables
▶ Each random forest consists of 1,000 decision trees (as in Jahandideh et al. (2014)),

the average of the predictions of different trees is the posterior mean, the variance of
the predictions of different trees is the posterior variance

▶ Best-effort replication, not perfect:
▶ Labs changed the models and variables used over time, some of which may be

uncaptured by the published articles
▶ Some variable constructions relied on obsolete software packages
▶ Some models predicted different outcomes, e.g. 1-5 scores of likelihood of success

...
▶ My estimate of F̃t contains errors (different from the labs’ actual posterior beliefs), as

long as the errors are not correlated w/ allocation choices, should not bias the results
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F ∗
t vs F̃t Back to Simulation Procedure

F ∗
t almost identical to F̃t , except
▶ F ∗

t corrects the selection bias of the labs’ models in predicting the probability of
success by conditioning on a propensity score of observing a specific trial stage. There
is no evidence the labs corrected this bias.
– E.g. We observe stage 1 of a trial only if stage 0 of the trial was successful. If the

probabilities of success of stages 0 and 1 are positively correlated, then we are more
likely to observe stage 1 of trials that are more likely to succeed in stage 1. Therefore,
models trained with the observed data on stage 1 would produce prediction results that
are positively biased.

– Assuming that the selection into observing a given stage is only based on observable
characteristics of trials, we can use the predicted probability of success of the previous
stages as the propensity score of observing the given stage

▶ F ∗
t does not fit/predict on previous outcomes of trials on the project. In simulations,

all trial outcomes are simulated, should not shift the “true” probability of success
▶ F ∗

t includes additional variables for better fit: keywords & genes associated w/ the
molecule, dummies for different NIH policy phases
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UCB+D captures the labs’ decisions: other evidence Back to Main Slides

Estimation:
▶ UCB+D model has the best fit among many alternative models

▶ With the same number of params, log likelihood of UCB+D model is 52%—72% of
that of the second best fit model across labs

▶ For trials the labs actually allocated, UCB+D model predicts on average a 70%—84%
likelihood of allocating those trials
For trials the labs did not allocate, UCB+D model predicts on average a <0.5%
likelihood of allocating those trials
far better than any alternative model

Model validation simulation:
▶ Simulated number of projects attempted, output quantity, citations, downloads within

10% different from actual output for all labs
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Output by year (UCB+D, another lab) Back to Main Slides

Simulated outcomesPrior data
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UCB+D coefficients reject no exploration Back to Main Slides

▶ No exploration: θB1 = 0
Exploration: θB1 > 0

▶ Lab discounted older projects:
θB2 < 0

▶ Lab preferred biomed projects
more since 2009:
θbiomed ,before < θbiomed ,after

Hard to interpret magnitudes,
study effects→ counterfactuals

2005–2008 2009–2015
Variable (1) (2)

θB1 158.3 119.5
[156.4, 160.1] [118.1, 121.4]

θB2 -2.28 -4.71
[-2.23, -2.30] [-4.66, -4.73]

θbiomed 21.5 52.9
[21.3, 21.7] [52.7,52.9]

Results from one large lab Other labs 95% CI based on
Chernozhukov & Hong (2003)
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UCB+D coefficients reject no exploration Back to Main Slides

2005–2008 2009–2015
Variable (1) (2)

θB1 273.3 127.1
[266.2, 284.8] [126.3, 127.8]

θB2 -3.91 -3.76
[-3.86, -3.98] [-3.75, -3.76]

θbiomed 12.65 84.79
[12.61, 12.72] [84.77,84.81]

Results from MCSG. 95% CI based on Chernozhukov & Hong (2003), almost identical to those based on Chen et al. (2018).
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UCB+D coefficients reject no exploration Back to Main Slides

2005–2008 2009–2015
Variable (1) (2)

θB1 61.6 115.6
[61.2, 61.9] [114.2,116.9]

θB2 -2.94 -3.93
[-2.93, -2.96] [-3.91, -3.95]

θbiomed 33.0 89.4
[32.9, 33.1] [89.1,89.8]

Results from NYSGRC. 95% CI based on Chernozhukov & Hong (2003), almost identical to those based on Chen et al. (2018).
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UCB+D coefficients reject no exploration Back to Main Slides

2005–2008 2009–2015
Variable (1) (2)

θB1 558.2 1001.9
[551.1,573.4] [977.6,1028.0]

θB2 -247.9 -104.7
[-247.6, -248.5] [-102.9, -106.6]

θbiomed -34.3 105.1
[-34.6,-34.1] [104.7,105.8]

Results from JCSG. 95% CI based on Chernozhukov & Hong (2003), almost identical to those based on Chen et al. (2018).
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Objective function for a simple MAB Back to Index Solution Back to Counterfactuals

... where Gittins Index is the optimal solution

max
aaal1,aaal2,...

∞

∑
t=1

βt ∑
ji∈Clt

∫
πijt (aaalt ,pijt ; θθθXl) dF̃ (i)(pijt |Ω(i)

t ), subject to ∑
ji∈Clt

aijt = 1 for all t (9)

▶ Infinite horizon, discounted ∑∞
t=1 βt vs ∑T

t=1

▶ Stationarity F̃ vs F̃t

▶ Independent choices F̃ (i)(pijt |Ω(i)
t ) vs F̃t (pijt |Ωt )

▶ One choice in each period ∑ji∈Clt
aijt = 1 vs ∑ji∈Clt

aijt = nlt
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Form of ψ(·) Back to Counterfactuals

Computing the exact Gittins Index is hard. Use Brezzi & Lai (2002)’s approximation to the
index. The function ψ(·) is defined as

ψ(s) =



√
s/2 if s ≤ 0.2

0.49 − 0.11s−1/2 if 0.2 < s ≤ 1
0.63 − 0.26s−1/2 if 1 < s ≤ 5
0.77 − 0.58s−1/2 if 5 < s ≤ 15
{2log(s)− log(log(s))− log(16π)}−1/2 if s > 15,

(10)

where s =
Var (pijt |Ωt )

−ln(β)E(pijt |Ωt )(1−E(pijt |Ωt ))
. I set the discount factor β = 0.95.

34 / 34


	Setting
	Model & Estimation
	Results
	The End
	Appendix

