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Abstract

When releasing outputs from confidential data, agencies need to balance the analytical use-
fulness of the released data with the obligation to protect data subjects’ confidentiality. For
releases satisfying differential privacy, this balance is reflected by the parameter ε, known as the
privacy budget. In practice, it can be difficult for agencies to select and interpret ε. We use
Bayesian posterior probabilities of disclosure to provide a framework for setting ε. The agency
decides how much posterior risk it is willing to accept in a data release at various levels of prior
risk. Using a mathematical relationship among these probabilities and ε, the agency selects
the maximum ε that ensures the posterior-to-prior ratios are acceptable for all values of prior
disclosure risk. The framework applies to any differentially private mechanism.

1 Introduction

Differential privacy (DP) [8] is a gold standard definition of what it means to protect individuals’
confidentiality when releasing sensitive data. DP is used by large tech companies, like Google
[10] and Meta [25], both internally and for public data releases. A variant of DP is used by the
U. S. Census Bureau for the release of 2020 redistricting data [1] and for the release of the 2020
demographic and housing characteristics file.

The confidentiality guarantee of DP is determined principally by an agency-selected parameter,
typically referred to as the privacy budget ε. Smaller values of ε generally imply greater confiden-
tiality protection. However, smaller values of ε also typically inject more noise into the released
data, which can degrade the accuracy of analyses of the disclosure-protected data products. Thus,
agencies must choose ε to balance confidentiality protection with analytical usefulness. This bal-
ancing act has resulted in a wide range of values of ε in practice. For example, early advice in
the field recommends considering ε of “0.01, 0.1, or in some cases, log(2) or log(3)” [7], whereas
recent large-scale implementations use values like ε = 8.6 in OnTheMap [23], ε = 14 in Apple’s
use of local DP for iOS 10.1.1 [29], and an equivalent of ε = 17.14 in the 2020 decennial census
redistricting data release [1].

To navigate this trade off, decision makers inside agencies can benefit from familiar interpreta-
tions of the confidentiality protection guarantee afforded by ε. In particular, this can help agencies
justify the choice of ε and lead to satisfactory trade offs of confidentiality protection and analytical
usefulness. One familiar and interpretable quantity is the Bayesian posterior probability that an
adversary learns sensitive information from the released data [6, 11, 16, 26]. Fortunately, posterior
probabilities can be related to the randomness in algorithms that satisfy DP [2, 18, 19, 21, 24].

We propose that agencies utilize this relationship to select values of ε that accord with their
desired confidentiality guarantees. The basic idea is as follows. First, the agency constructs a
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function that summarizes the maximum posterior probability of disclosure permitted for any prior
probability of disclosure. For example, for a prior risk of 0.001, the agency may be comfortable
with a ten-fold (or more) increase in the ratio of posterior risk to prior risk, whereas for a prior
risk of 0.4, the agency may require the posterior-to-prior ratio not to exceed, say, 1.2. Second, for
each prior risk value, the agency converts the posterior-to-prior ratio into the largest ε that still
ensures the ratio is satisfied. Third, the agency selects the smallest ε among these values, using
that value for the data release. Importantly, the agency does not use the confidential data in these
computations—they are theoretical and data free—so that the selection of ε does not use privacy
budget or require access to representative test data.

Our main contributions are as follows.

• We propose a framework for selecting ε that applies to any differentially private mechanism,
does not use additional privacy budget, and can account for disclosure risk from both an
individual’s inclusion in the data and the sensitivity of the values in the data.

• We enable agencies to tune the choice of ε to achieve a posterior-to-prior risk profile. This
can avoid setting ε unnecessarily small if, for example, the agency tolerates larger posterior-
to-prior ratios for certain prior risks.

• We give complete theoretic justification for the framework and derive closed-form solutions
for the ε implied by a range of risk profiles. For more complex risk profiles, we also provide
a general form for ε as a minimization problem.

The remainder of this article is organized as follows. In Section 2, we describe notation and
relevant definitions. In Section 3, we illustrate the approach and outline the choices a practitioner
must make under the framework. In Section 4, we prove that our method for setting ε bounds
the disclosure risk as desired. In Section 5, we compare to related methods from the literature
on DP. Finally, in Section 6, we provide some concluding remarks. To streamline the discussion,
throughout we focus on the release of discrete-valued statistics computed on discrete-valued data;
extension to continuous-valued statistics and data is straightforward.

2 Background

We first describe differential privacy, followed by Bayesian probabilities of disclosure.

2.1 Differential Privacy

Let P represent a population of individuals. The agency has a subset of P, which we call Y,
comprising n individuals measured on d variables. For any individual i, let Yi be the length-d
vector of values corresponding to individual i, and let Ii = 1 when individual i is in Y and Ii = 0
otherwise. For all i such that Ii = 1, let Y−i be the (n − 1) × d matrix of values for the n − 1
individuals in Y excluding individual i.1 The agency possessing the data—henceforth referred to
as the data holder—wishes to release some function of the data, T (Y). We assume Y and T (Y)
each have discrete support but may be many-dimensional. The data holder turns to DP and will
release T ∗(Y), a noisy version of T (Y) under ε-DP. We use the following definition of ε-DP.2

1For all i such that Ii = 0 we let Y−i be an (n− 1)× d matrix of individuals not including individual i.
2In Defintion 1, implicitly, for all individuals j such that j ̸= i, the values of Ij in the numerator and denominator

in (1) do not differ.
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Definition 1 (ε-Differential Privacy). For a dataset Y ⊂ P and ε ∈ (0,∞), a function T ∗(Y)
satisfies ε-differential privacy if for all i, all y in the support of Yi, all y−i in the support of Y−i,
and all t∗ in the support of T ∗(Y),

e−ε ≤ P [T ∗(Y) = t∗ | Yi = y, Ii = 1,Y−i = y−i]

P [T ∗(Y−i) = t∗ | Ii = 0,Y−i = y−i]
≤ eε. (1)

This DP definition, involving data with and without individual i, is referred to as unbounded
DP. An alternative DP definition replaces the denominator in (1) by P [T ∗(Y) = t∗ | Yi = y′, Ii =
1,Y−i = y−i] for y′ in the support of Yi, that is, changing Yi only; this is referred to as bounded
DP. A mechanism satisfying unbounded DP also satisfies bounded DP, with the ε increased by a
factor of 2. See [20] for more details on bounded and unbounded DP.

Commonly-used mechanisms satisfying DP involve releasing the sum of the statistic of inter-
est and noise randomly sampled from an appropriate distribution. These noise distributions are
centered at zero and have variance inversely proportional to ε. A commonly used mechanism in
settings where the statistic of interest is a count is the geometric mechanism [14].

Definition 2 (Geometric Mechanism). Let T (Y) ∈ Z be a count statistic and suppose we wish
to release a noisy count T ∗(Y) ∈ Z satisfying ε-DP. The geometric mechanism produces a count
centered at T with noise from a two-sided geometric distribution with parameter e−ε. That is,

P [T ∗(Y) = t∗ | T (Y) = t] =
1− e−ε

1 + e−ε
e−ε|t∗−t|, t∗ ∈ Z. (2)

It is straightforward to show that under the Geometric Mechanism, the variance of T ∗(Y) is

V[T ∗(Y) | T (Y) = t] =
2e−ε

(1− e−ε)2
. (3)

The process for choosing ε has received scant attention in the literature [5, 27, 28]. Prior
work focuses on either (i) scenarios where the data have yet to be collected, and the goal is to
simultaneously select ε and determine how much to compensate individuals for their loss in privacy
[4, 12, 17, 22], or (ii) settings where the population is already public information, and the goal
is to protect which subset of individuals is included in a release [21]. We focus on the common
setting where data have already been collected and the population they are drawn from is not
public information.

2.2 Bayesian Measures of Disclosure Risk

Consider an adversary who desires to learn about some particular individual i in Y using the release
of T ∗(Y). We assume the release mechanism for T ∗(Y) is known to the adversary. We suppose the
adversary has a model, M, for making predictions about Yi based on auxiliary information about
individual i, which does not directly use the confidential data. For example, the adversary could
make M based on proprietary information or data from sources like administrative records. We
require that the DP release mechanism does not depend on M and that, under M, the observations
are independent but not necessarily identically distributed. These conditions are formalized in
Section 4. For our ultimate purpose, i.e., helping data holders set ε, the exact form of the adversary’s
M is immaterial. In fact, as we shall discuss, we are not concerned whether the adversary’s
predictions from M are highly accurate or completely awful.

On a technical note, we make the distinction that the data holder views Y and Ii as fixed
quantities, since it knows which rows are in the collected data and what values are associated to
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each row. The adversary, however, views Y and Ii as random variables, and thus probabilistic
statements about these quantities are well defined from the adversary’s perspective. Notationally,
we signify that a probabilistic statement is from the adversary’s perspective by conditioning on the
adversary’s model, M.

Let S be the subset of the support of Yi that the data holder considers a privacy violation. For
example, if d = 1 and Y is income data, then S may be the set of possible incomes within 5,000
or within 5% of the true income for individual i. If d = 1 and Y is binary, then S is a subset of
{0, 1}. The selection of S must not depend on P, as this might constitute a privacy violation.

The data holder may be concerned about the risk that the adversary determines individual i is
in Y or the risk that the adversary makes a disclosure for individual i; that is, Ii = 1 and Yi ∈ S,
respectively. Assuming that the adversary’s model puts nonzero probability mass on these events,
we can express their relevant prior probabilities as follows.

P [Ii = 1 | M] = pi, P [Yi ∈ S | Ii = 1,M] = qi. (4)

For fixed pi and qi, we can measure the risk of disclosure for individual i in a number of ways.
Drawing from [24], one measure of the risk to individual i is the relative disclosure risk, ri(pi, qi, t

∗).
Writing the noisy statistic as T ∗ and suppressing the dependence on Y or Y−i, this is defined as
follows.

Definition 3 (Relative Disclosure Risk). For fixed data Y, individual i, prior model M, and
released T ∗ = t∗, the relative disclosure risk is the posterior-to-prior risk ratio,

ri(pi, qi, t
∗) =

P [Yi ∈ S, Ii = 1 | T ∗ = t∗,M]

P [Yi ∈ S, Ii = 1 | M]
. (5)

For interpretation, note that the relative risk can be decomposed into the posterior-to-prior
ratio from inclusion (Ii) and the posterior-to-prior ratio from the values (Yi). We have

ri(pi, qi, t
∗) =

P [Yi ∈ S | Ii = 1, T ∗ = t∗,M]

P [Yi ∈ S | Ii = 1,M]
· P [Ii = 1 | T ∗ = t∗,M]

P [Ii = 1 | M]
. (6)

The relative risk, however, does not tell the full story. The data holder also may care about absolute
disclosure risks, ai(pi, qi, t

∗) [16].

Definition 4 (Absolute Disclosure Risk). For fixed data Y, individual i, prior model M, and
released T ∗ = t∗, the absolute disclosure risk is the posterior probability,

ai(pi, qi, t
∗) = P [Yi ∈ S, Ii = 1 | T ∗ = t∗,M]. (7)

Since ri(pi, qi, t
∗) = ai(pi, qi, t

∗)/(piqi), it is straightforward to convert between these risk mea-
sures.

3 Using Posterior-to-prior Risks for Setting ε

The quantities from Section 2 can inform the choice of ε. For example, it has been shown that DP
implies that for all pi, qi, t

∗,

ri(pi, qi, t
∗) ≤ e2ε. (8)
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Symbol Description

P Population of individuals the data is drawn from
Y n× d confidential data set
Yi Length-d vector of values for individual i
Ii Indicator for whether individual i is included in Y

Y−i (n− 1)× d matrix of the values in Y excluding those for individual i
S Subset of the support of Yi constituting a privacy violation

r∗(pi, qi) Function describing the data holder’s desired relative risk bound
M Adversary’s model for Yi based on information other than Y
T ∗ Noisy estimate of T (Y), the function being released

Table 1: Summary of notation.

Symbol Definition Description

pi P [Ii = 1 | M] Prior probability of inclusion
qi P [Yi ∈ S | Ii = 1,M] Prior probability values disclosed

ri(pi, qi, t
∗) P [Yi∈S,Ii=1|T ∗=t∗,M]

P [Yi∈S,Ii=1|M] Relative disclosure risk

ai(pi, qi, t
∗) P [Yi ∈ S, Ii = 1 | T ∗ = t∗,M] Absolute disclosure risk

Table 2: Summary of definitions.

See, for example, Theorem 1.3 in [15] for proof of this fact.3 (8) implies a naive strategy for setting
ε: select a desired bound on the relative risk, r∗, and set ε = log(r∗)/2. Practically, however, this
strategy suffers from two drawbacks, which cause the recommended ε to be smaller than necessary.
First, for any particular prior probabilities pi and qi, the bound in (8) need not be tight. In fact, this
bound is actually quite loose across a wide range of priors. Second, this strategy does not account
for the fact that the data holder may be willing to tolerate different relative risks for different
adversary priors. For example, if piqi = 0.25, a data holder may wish to limit the adversary’s
posterior to ai(pi, qi, t

∗) ≤ 2 × 0.25 = 0.5, but for piqi = 10−6, the same data holder may find a
limit of ai(pi, qi, t

∗) ≤ 2× 10−6 unnecessarily restrictive.
This suggests that, rather than restricting themselves to a constant relative risk bound, the

data holder can consider tolerable relative risks as a function of a hypothetical adversary’s priors.
We refer to this function as the data holder’s desired risk profile and denote it as r∗(pi, qi). Thus,
the data holder establishes a risk profile so that, for all pi, qi, and t∗,

ri(pi, qi, t
∗) ≤ r∗(pi, qi). (9)

As we show in Section 4, the requirement in (9) translates to a maximum value of ε.

3.1 Specifying the risk profile

Given S, the data holder must select a form for r∗(pi, qi). A default choice, equivalent to the naive
strategy using (8) discussed above, is to set the bound to a constant r̃ > 1, i.e.,

r∗(pi, qi) = r̃. (10)

3[15] prove this under bounded DP in the case where |S| = 1, but we show in Corollary 1 that, under our
assumptions, it still holds for larger sets and for unbounded DP (with ε replaced by 2ε).
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As we prove later in Theorem 3, the bound in (10) implies the data holder should set ε = log(r̃)/2.
While a constant bound on relative risk is simple, data holders’ that tolerate different risk profiles
may be able to set ε to larger values, as we now illustrate.

As a first example, consider a data holder that requires the relative risk bound to hold on
a subset of the (pi, qi) space and does not have any bounds outside that space. That is, rather
than enforcing r∗(pi, qi) = r̃ for all 0 ≤ pi, qi ≤ 1, the data holder only enforces this condition for
p̃0 ≤ pi ≤ p̃1 and q̃0 ≤ qi ≤ q̃1, where 0 ≤ p̃0 ≤ p̃1 ≤ 1 and 0 ≤ q̃0 ≤ q̃1 ≤ 1 (for p̃1, q̃1 > 0).
Formally,

r∗(pi, qi) =

{
r̃, if p̃0 ≤ pi ≤ p̃1 and q̃0 ≤ qi ≤ q̃1;

∞, otherwise.
(11)

This risk profile seems unlikely to map to realistic preferences, as it characterizes a data holder
who does not care at all about the additional risks from releasing t∗ for prior risks that are outside
the defined range. However, it does serve to illustrate the potential of the framework to allow the
data holder to increase ε based on their risk profile. In particular, as shown later in Theorem 4,
the data holder with the risk profile in (11) can set

ε =



log

(
2p̃1(1−q̃0)√

(1−p̃1)2+4p̃1(1−q̃0)( 1
r̃
−p̃1q̃0)−(1−p̃1)

)
, if 0 ≤ q̃0 ≤ 1

r̃+1 ;

log

(
2p̃0(1−q̃0)√

(1−p̃0)2+4p̃0(1−q̃0)( 1
r̃
−p̃0q̃0)−(1−p̃0)

)
, if 1

r̃+1 < q̃0 < 1 and p̃0 > 0;

log (r̃) , if 1
r̃+1 < q̃0 < 1 and p̃0 = 0;

log
(

1−p̃0
1
r̃
−p̃0

)
, if q̃0 = 1.

(12)

Notably, this can produce a larger ε than log(r̃)/2.
As a second and more realistic example, consider a data holder that seeks to bound the relative

risks for high prior probabilities and bound the absolute disclosure risk for low prior probabilities.
For example, the data holder may not want adversaries whose prior probabilities are low to use t∗

to increase those probabilities beyond 0.10. Simultaneously, the data holder may want to ensure
adversaries with large prior probabilities cannot use t∗ to triple their posterior probability. Such a
data holder can specify a risk profile that requires either the relative risk be less than some r̃ or
the absolute risk be less than some ã < 1, as we now illustrate.

When the sensitivity of the values in the data is of primary concern (and the sensitivity of
inclusion is secondary), the data holder can fix p̃ to some value p̃ ∈ (0, 1]. For example, for a survey
of size ns of a population of size N , the data holder could set p̃ = ns/N , which effectively treats Y
as a simple random sample from P. The data holder could set p̃ = 1 to imply an adversary that
knows a priori that individual i is included in Y. With a fixed p̃, the implied r∗ is of the form

r∗(pi, qi) =

{
max

{
ã
p̃qi

, r̃
}
, if pi = p̃;

∞, if pi ̸= p̃.
=


ã
p̃qi

, if pi = p̃ and 0 < qi <
ã
p̃r̃ ;

r̃, if pi = p̃ and ã
p̃r̃ ≤ qi < 1;

∞, if pi ̸= p̃.

(13)

An example data holder with this risk function is presented in the first column of Figure 1. The
upper plot displays the risk profile as a function of qi when pi = p̃ and the lower plot displays the
maximal ε for which the relative risk bound holds for each pi. We recommend the data holder
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Figure 1: Each column corresponds to a particular hypothetical agency. The first row presents the
agency’s risk profile and the second row presents the profile’s implied maximal allowable ε at each
point on the curve. Agency 1’s risk profile is given by (13) with ã = 0.1, p̃ = 0.05, and r̃ = 3, while
Agency 2’s risk profile is given by (15) with ã = 0.1, q̃ = 1, and r̃ = 3.

select the smallest ε on this curve for their release. As we show later in Theorem 5, the minimal
point on this curve has the following form.

ε =

log

(
2(p̃r̃−ã)√

r̃2(1−p̃)2+4(p̃r̃−ã)(1−ã)−r̃(1−p̃)

)
, if ã

p̃ < r̃;

log
(
ã(1−p̃)
p̃(1−ã)

)
, if ã

p̃ ≥ r̃.
(14)

It can be shown that the ε produced by (14) is bounded below by log(r̃)/2 and may be much larger.
Alternatively, when the sensitivity of inclusion in the data is of primary concern (and the

sensitivity of the values in the data are secondary), the data holder can fix some q̃ ∈ (0, 1], giving
an implied r∗ of the form

r∗(pi, qi) =

{
max

{
ã
piq̃

, r̃
}
, if qi = q̃;

∞, if qi ̸= q̃.
=


ã
piq̃

, if qi = q̃ and 0 < pi <
ã
q̃r̃ ;

r̃, if qi = q̃ and ã
q̃r̃ ≤ pi < 1;

∞, if qi ̸= q̃.

(15)

An example data holder with this risk function is presented in the second column of Figure 1. The
upper plot displays the risk profile as a function of pi when qi = q̃ and the lower plot displays the
maximal ε for which the relative risk bound holds for each pi. We show later in Theorem 6 that
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the minimal point on this curve has the following form.

ε =


1
2 log

(
1−q̃
1
r̃
−q̃

)
, if 0 < q̃ ≤ 1

r̃+1 ;

log

(
2ã(1−q̃)√

(r̃q̃−ã)2+4q̃(1−q̃)(1−ã)−(r̃q̃−ã)

)
, if 1

r̃+1 < q̃ < 1;

log
(
r̃−ã
1−ã

)
, if q̃ = 1.

(16)

The ε produced by (16) is bounded below by log(r̃)/2 and may be much larger.
For r∗ of other forms, there may not be a closed form for the recommended ε. Instead, the

optimal ε can be determined by numerically solving the following minimization problem.4

ε = min
pi,qi∈(0,1]


log

 2pi(1−qi)√
(1−pi)2+4pi(1−qi)

(
1

r∗(pi,qi)
−piqi

)
−(1−pi)

 , if 0 < qi < 1;

log

(
1−pi
1

r∗(pi,1)
−pi

)
, if qi = 1.

(17)

Regardless of the data holder’s desiderata for a risk profile, we recommend that they keep the
following in mind when setting its functional form. First, for any region where r∗(pi, qi) > 1/(piqi),
the risk profile generates a bound on the posterior probability that exceeds 1. Of course, the
posterior probabilities themselves cannot exceed 1; thus, in these regions, the risk profile effectively
does not bound the posterior risk. For example, an agency that sets r∗(pi, 1) = 3 in the region
where pi ≥ 1/3 (as in the right column of Figure 1) implicitly is willing to accept an unbounded ε
for prior probabilities pi ≥ 1/3. Second, when bounding the absolute disclosure risk below some ã
in some region of (pi, qi), the data holder should require piqi < ã in that region. When piqi = ã,
the recommended ε = 0 since the data holder requires T ∗ to offer no information about Yi. This
also suggests that a data holder bounding absolute disclosure risk in a region of (pi, qi) that set ã
close to some value of piqi in the region is willing to accept only small ϵ values.

3.2 Examples of Risk Profiles

The use of non-constant posterior-to-prior ratios can lead to different, and potentially larger, ε than
the data holder might select otherwise. To demonstrate, in this section we present two examples,
beginning with a setting inspired by a case study in [9].

Example 1. A healthcare provider possesses a data set comprising demographic information about
individuals diagnosed with COVID-19 in a particular community. They plan to release the count of
individuals diagnosed with COVID-19 in various demographic groups via the Geometric Mechanism.
They are concerned this release, if insufficient noise is added, could reveal which individuals in the
community had COVID-19 and wish to choose ε appropriately.

In this example, the primary concern is with respect to inclusion in the data set. That is, for a
given individual i, the adversary’s prior probability pi = P [Ii = 1 | M] is the key quantity, whereas
the qi = P [Yi ∈ S | Ii = 1,M] is not as important for any given S. Suppose the data holder is
most concerned about adversaries who already know individual i’s demographic information, i.e.,
qi = 1, and suppose the data holder is generally willing to accept a maximum absolute disclosure

4We provide R code at https://github.com/zekicankazan/choosing_dp_epsilon to determine the recommended
ε for a provided risk profile.
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Figure 2: The risk profiles for three agencies with risk profile given by (18). The lines represent
the risk profiles for qi = 1 as a function of pi, and the colors represent the implied ε at each point
on the curve. The left plot sets r̃ = 1.5, the center sets r̃ = 3, and the right sets r̃ = 6.

Agency r̃ ε Recommendation Noise Std. Dev. Prob. Exact

1 1.5 0.51 2.74 25%
2 3 1.30 1.02 57%
3 6 2.04 0.59 77%

Table 3: For each of the three risk profiles in Figure 2, we present the ε recommended by our frame-
work. For a release satisfying ε-DP using the Geometric Mechanism, we present the corresponding
standard deviation of the noise distribution and the probability that the exact value is released,
i.e., the noise distribution’s probability mass at zero.

risk of 0.25 for adversaries with small prior probabilities. A reasonable risk profile for this data
holder might be of the form, for some r̃ > 1,

r∗(pi, qi) =

{
max

{
0.25
pi

, r̃
}
, if qi = 1;

∞, if qi ̸= 1.
(18)

Three example risk functions of this form are presented in Figure 2. Agency 1 corresponds
to a risk averse data holder, agency 3 corresponds to a utility seeking data holder, and agency
2 corresponds to a data holder that sits in between in terms of risk and utility. For adversaries
with high prior probabilities, agencies 1, 2, and 3 bound the relative disclosure risk at r̃ = 1.5,
r̃ = 3, and r̃ = 6, respectively. Table 3 presents the maximal ε which satisfies the desired risk
profile for each agency, computed via (16). To provide intuition on the amount of noise implied by
these ε’s, in Table 3 we display the standard deviation of the noise distribution for each statistic
under the Geometric Mechanism and the probability that the Geometric Mechanism will output
the exact value of each statistic. The risk averse data holder is recommended a ε that results in a
release with a high standard deviation and fairly low probability of releasing the exact value of the
statistic. The utility seeking data holder is recommended a ε that results in a release with a fairly
low standard deviation and high probability of releasing the exact value of the statistic.

The ε recommendations from these risk profiles, which are tailored to the specific setting and
data holder preferences, are much higher than the recommendations from a corresponding simple
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Figure 3: The risk profiles for three agencies with risk profile given by (19). The lines represent the
risk profiles for pi = 0.05 as a function of qi, and the colors represent the implied ε at each point
on the curve. The left plot sets ã = 0.025, the center sets ã = 0.15, and the right sets ã = 0.3.

Agency ã ε Recommendation Noise Std. Dev. Prob. Exact

1 0.025 1.09 1.24 50%
2 0.15 1.21 1.10 54%
3 0.3 2.10 0.56 78%

Table 4: For each of the three risk profiles in Figure 3, we present the ε recommended by our frame-
work. For a release satisfying ε-DP using the Geometric Mechanism, we present the corresponding
standard deviation of the noise distribution and the probability that the exact value is released
(i.e., the noise distribution’s probability mass at zero).

risk profile of r∗(pi, qi) = r̃ for all priors. For comparison, this simple profile yields ε ≈ 0.20,
ε ≈ 0.55, and ε ≈ 0.90 for r̃ = 1.5, r̃ = 3, and r̃ = 6, respectively, which are less than half the
recommended ε’s above.

We now consider a second example that alters Example 1. This example is inspired by Example
16 in [30].

Example 2. A survey is performed on a sample of individuals in the community of interest. 5%
of the community is surveyed, and respondents are asked whether they have had COVID-19 along
with a series of demographic questions. The data holder plans to release the counts of surveyed
individuals who have and have not been diagnosed with COVID-19 in various demographic groups
via the Geometric Mechanism. They are concerned this release, if insufficient noise is added, could
reveal which individuals in the community had COVID-19 and wish to choose ε appropriately.

In this example, the primary concern is with respect to the values in the data set. For ease
of notation, let Yi be a d-vector of binary values and let the first element, Y1i, be an indicator for
whether individual i has had COVID-19. Set S to be the subset of the support of Yi for which
individual i has had COVID-19, i.e., S = {y ∈ {0, 1}d : y1 = 1}. For individual i, the adversary’s
qi = P [Yi ∈ S | Ii = 1,M] is the key quantity, and their pi = P [Ii = 1 | M] is not of interest.
Suppose the data holder is most concerned about adversaries whose only prior knowledge is that
individual i is in the population, but not whether they were surveyed, i.e., pi = 0.05, and suppose
the data holder is generally willing to accept a maximum relative disclosure risk of 3 for adversaries
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with large prior probabilities. A reasonable risk profile for this data holder might be of the form,
for some ã < 1,

r∗(pi, qi) =

{
max

{
ã

0.05qi
, 3
}
, if pi = 0.05;

∞, if pi ̸= 0.05.
(19)

Three example risk functions of this form are presented in Figure 3. Once again, agency 1
corresponds to a risk averse data holder, agency 3 corresponds to a utility seeking data holder,
and agency 2 corresponds to a data holder that sits in between on risk and utility. Agencies 1, 2,
and 3 are willing to allow adversaries to achieve an absolute disclosure risk of ã = 0.025, ã = 0.15,
and ã = 0.3, respectively. Table 4 presents the ε recommendations for each agency along with the
standard deviation of the noise and probability of releasing the exact value of each statistic under
the Geometric Mechanism.

As in Table 3, the ε recommendations appear to match the data holder’s desired balance between
privacy and accuracy. They also are much higher than the recommendations from a corresponding
simple risk profile of r∗(pi, qi) = 3 for all priors, which implies ε ≈ 0.55. Even the most risk averse
data holder is recommended an ε that is much larger than this baseline risk profile. This gain is
primarily due to the assumption that the survey is a simple random sample from the population
and the adversary has no prior knowledge about which individuals are surveyed. Essentially, the
additional uncertainty from the sampling mechanism allows for an ε recommendation with less
noise injected. This is consistent with prior work showing that DP mechanisms applied to random
subsamples provide better privacy guarantees [3].

4 Theoretical Results

We now describe the main theoretical results used to develop the expressions in Section 3. Omitted
proofs can be found in Appendix A.2. We begin by formalizing the assumptions on the release
mechanism for T ∗ and the adversary’s model, M.

The first assumption implies the following three conditions: (i) the mechanism for releasing T ∗

given Y is known to the adversary, (ii) the adversary does not assume a release mechanism that
is different than the actual mechanism used by the data holder, and (iii) the adversary does not
possess any additional information about T ∗ beyond what is present in Y.

Assumption 1. The release mechanism under the adversary’s model, M, is the same as the true
release mechanism used by the data holder. That is, for all y in the support of Yi, all y−i in the
support of Y−i, and all t∗ in the support of T ∗,

P [T ∗(Y) = t∗ | Yi = y,Y−i = y−i, Ii = 1,M] = P [T ∗(Y) = t∗ | Yi = y,Y−i = y−i, Ii = 1]

P [T ∗(Y−i) = t∗ | Y−i = y−i, Ii = 0,M] = P [T ∗(Y−i) = t∗ | Y−i = y−i, Ii = 0].

Assumption 1 implies that the data holder fully describes release mechanism to the public. It
also implies adversaries who are rational and do not use a mechanism other than the one used
by the data holder. Additionally, it implies that the adversary has no additional prior knowledge
about T ∗ that does not come from their prior knowledge about Y.

The second assumption involves the adversary’s prior distribution for Y−i, the values in the
data excluding individual i. We assume that this distribution does not change whether or not
individual i is included in the data nor does it depend on individual i’s confidential values. We
formalize this as follows.
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Assumption 2. Under the adversary’s model M, Y−i is independent of {Yi, Ii}. In particular,
for all y in the support of Yi and all y−i in the support of Y−i

P [Y−i = y−i | Ii = 1, Yi = y,M] = P [Y−i = y−i | Ii = 0,M].

Data with a network or hierarchical structure can violate this assumption.
We now show that given these assumptions and an adversary’s model M, we can relate ε to

the distribution of T ∗ unconditional on Y−i via the following lemma.

Lemma 1. Under Assumption 1 and Assumption 2, and T ∗ adhering to DP, for all y in the support
of Yi and t∗ in the support of T ∗, we have

e−ε ≤ P [T ∗ = t∗ | Yi = y, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
≤ eε. (20)

Proof. Let Y−i be the support of Y−i under M. Then,

P [T ∗ = t∗ | Yi = y, Ii = 1,M]

=
∑

y−i∈Y−i

P [T ∗ = t∗ | Yi = y,Y−i = y−i, Ii = 1]P [Y−i = y−i | Yi = y, Ii = 1,M] (21)

≤
∑

y−i∈Y−i

eεP [T ∗ = t∗ | Y−i = y−i, Ii = 0]P [Y−i = y−i | Yi = y, Ii = 1,M] (22)

= eε
∑

y−i∈Y−i

P [T ∗ = t∗ | Y−i = y−i, Ii = 0,M]P [Y−i = y−i | Ii = 0] (23)

= eεP [T ∗ = t∗ | Ii = 0,M]. (24)

The equality in (21) follows from the law of total probability and Assumption 1. The inequality in
(22) follows from the definition of DP in (1). The equality in (23) follows from Assumption 2. The
equality in (24) follows from the law of total probability and Assumption 1. This completes the
proof of the right inequality. The proof of the left inequality is identical with the other inequality
in (1) applied in (22).

We now generalize Lemma 1 from a single point Yi = y to a set Yi ∈ S. We include a proof in
Appendix A.2.

Lemma 2. Under Assumption 1 and Assumption 2, if the release of T ∗ = t∗ satisfies DP, then for
any subset S of the domain of Yi, we have

e−ε ≤ P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
≤ eε (25)

and

e−2ε ≤ P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]
≤ e2ε. (26)

For a given function r∗ selected by the data holder, we can determine the ε that should be used
for the release. This is due to the following result relating the relative risk to ε.

Theorem 1. Under Assumption 1 and Assumption 2, if the release of T ∗ = t∗ satisfies DP, then

ri(pi, qi, t
∗) ≤ 1

qipi + e−2ε(1− qi)pi + e−ε(1− pi)
. (27)
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Proof. We begin by applying Bayes’ Theorem to reverse the conditional in the relative risk.

ri(pi, qi, t
∗) =

P [Yi ∈ S, Ii = 1 | T ∗ = t∗,M]

P [Yi ∈ S, Ii = 1 | M]
(28)

=

P [T ∗=t∗|Yi∈S,Ii=1,M]P [Yi∈S,Ii=1|M]
P [T ∗=t∗|M]

P [Yi ∈ S, Ii = 1 | M]
(29)

=
P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | M]
. (30)

We may decompose the denominator via the law of total probability.

P [T ∗ = t∗ | M] = P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]P [Yi ∈ S | Ii = 1,M]P [Ii = 1 | M]

+ P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]P [Yi /∈ S | Ii = 1,M]P [Ii = 1 | M]

+ P [T ∗ = t∗ | Ii = 0,M]P [Ii = 0 | M] (31)

= P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M] qipi + P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M] (1− qi)pi

+ P [T ∗ = t∗ | Ii = 0,M] (1− pi). (32)

Using this expansion in the expression for ri and dividing through by the numerator yields

ri(pi, qi, t
∗) =

1

qipi +
P [T ∗=t∗|Yi /∈S,Ii=1,M]
P [T ∗=t∗|Yi∈S,Ii=1,M] (1− qi)pi +

P [T ∗=t∗|Ii=0,M]
P [T ∗=t∗|Yi∈S,Ii=1,M] (1− pi)

. (33)

Using Lemma 2, we then have

ri(pi, qi, t
∗) ≤ 1

qipi + e−2ε(1− qi)pi + e−ε(1− pi)
. (34)

Using Theorem 1, one can solve for e−ε in (27) to determine the recommended ε, which is given
by Theorem 2. A proof of this theorem is included in Appendix A.2.

Theorem 2. For individual i, fix the adversary’s prior probabilities, pi and qi, and a desired bound
on the relative disclosure risk, r∗(pi, qi). Under the conditions of Theorem 1, any statistic T ∗ = t∗

released under ε-DP with

ε ≤


log

 2pi(1−qi)√
(1−pi)2+4pi(1−qi)

(
1

r∗(pi,qi)
−piqi

)
−(1−pi)

 , if 0 < qi < 1;

log

(
1−pi
1

r∗(pi,1)
−pi

)
, if qi = 1,

(35)

will satisfy ri(pi, qi, t
∗) ≤ r∗(pi, qi).

By Theorem 2, to achieve ri(pi, qi, t
∗) ≤ r∗(pi, qi) for all (pi, qi), the data holder should set

ε = min
pi,qi∈(0,1]


log

 2pi(1−qi)√
(1−pi)2+4pi(1−qi)

(
1

r∗(pi,qi)
−piqi

)
−(1−pi)

 , if 0 < qi < 1;

log

(
1−pi
1

r∗(pi,1)
−pi

)
, if qi = 1.

(36)

Results regarding closed forms for the ε resulting from specific risk profiles are included in the
appendix.
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5 Relationship to Prior Work

In this section, we compare our framework to two previous works with similar aims. We begin with
Lee and Clifton’s “How Much is Enough? Choosing ε for Differential Privacy” [21], which also
examines the problem of selecting ε from a Bayesian perspective. We then discuss Wood et al.’s
“Differential Privacy: A Primer for a Non-Technical Audience” [30], which uses similar ideas in a
different context.

5.1 “How Much is Enough? Choosing ε for Differential Privacy”

Lee and Clifton [21] focus on settings where the population, P, of size n is public information and
the adversary’s goal is to determine which subset of individuals in P was used for a differentially
private release of a statistic. We can characterize their setting with the notation of Section 2 as
follows. We define Y to be the subset of individuals’ values in P used to compute the statistic of
interest, T (Y), and its released DP counterpart, T ∗(Y). In their examples, the authors focus on
the setting where only one individual is removed from P to create Y, and the adversary’s goal is
to determine which i was removed.

We can apply our framework to this setting with a minor modification. For this comparison,
we assume the adversary’s qi = P [Yi ∈ S | Ii = 0,M] = 1 for any set S (although we note that
this is a weaker assumption than that of Lee and Clifton, since we do not assume P is public). We
redefine pi and the risk measures to be in terms of Ii = 0, rather than Ii = 1.

pi = P [Ii = 0 | M] (37)

ri(pi, 1, t
∗) =

P [Ii = 0 | T ∗ = t∗,M]

P [Ii = 0 | M]
(38)

ai(pi, 1, t
∗) = P [Ii = 0 | T ∗ = t∗,M]. (39)

Lee and Clifton [21] focus on the case of pi = 1/n, and seek to enforce the bound ai(1/n, 1, t
∗) ≤ ã

for some constant ã and all t∗, which implies the relative risk bound

r∗(pi, qi) =

{
nã, if pi =

1
n , qi = 1;

∞, otherwise.
(40)

From an analogy to Theorem 2 with the redefined pi, it follows that under these conditions, our
method sets

ε = log

(
1− 1

n
1
nã − 1

n

)
= log

(
(n− 1)ã

1− ã

)
. (41)

In the motivating example from their paper, the authors set n = 4 and ã = 1/3, giving r∗(1/n, 1) =
4/3. This results in ε = log(3/2) ≈ 0.41 from our method. When the release mechanism is the
addition of Laplace noise, Lee and Clifton’s method [21] arrives at a similar form, but with the
recommendation scaled by a factor of ∆T/∆v.

ε =
∆T

∆v
log

(
(n− 1)ã

1− ã

)
, (42)

∆T = max {|T (Y1)− T (Y2)| : Y2 ⊂ Y1 ⊂ P, |Y1| = n− 1, |Y2| = n− 2} (43)

∆v = max {|T (Y1)− T (Y2)| : Y1 ⊂ P,Y2 ⊂ P, |Y1| = |Y2| = n− 1} . (44)
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The recommendation of Lee and Clifton’s method [21] thus depends on both the population, P,
and the particular release function, T . This results in different ε’s for the same n and ã, as low as
0.34 and as high as 1.62 in the authors’ examples, depending on the statistic of interest and the
values in the data.

Lee and Clifton’s method [21] for selecting ε is tailored to the setting where the Laplace mecha-
nism is used for the release, only disclosure of an individual’s inclusion in the data is of concern, and
the values of the entire population can be used to inform the choice of ε. Setting ε in this manner
allows for the choice to be tailored to the particular statistic and the variance of the population,
providing an ε recommendation that may be larger than that of our framework. The population-
dependent nature of the choice, however, limits the generalizability of the method to settings where
the values of the entire population are not public and where the privacy of the values in the release
is of primary concern.

5.2 “Differential Privacy: A Primer for a Non-Technical Audience”

Another related work involves an example in [30] (corrected in [31]). The example considers an
individual deciding whether or not to participate in a survey for which results will be released via
DP with a particular ε. Using our notation, let Zi = f(Yi, Ii) ∈ {0, 1} be a quantity of interest
to the adversary, who wishes to learn whether Zi = 1. They have some prior qi = P [Zi = 1 |
M]. Rather than considering the relative or absolute disclosure risk, the individual is interested
in comparing the adversary’s posterior probability if they participate in the survey, a1i(qi, t

∗) =
P [Zi = 1 | Ii = 1, T ∗ = t∗,M], to the adversary’s posterior probability if they do not participate,
a0i(qi, t

∗) = P [Zi = 1 | Ii = 0, T ∗ = t∗,M]. The authors of [30] state that for all qi and all t∗,

a1i(qi, t
∗) ≤ a0i(qi, t

∗)

a0i(qi, t∗) + e−2ε(1− a0i(qi, t∗))
. (45)

This expression is in the same spirit as the results from our framework with pi = 1. By Theorem
1, we have

ri(1, qi, t
∗) ≤ 1

qi + e−2ε(1− qi)
=⇒ ai(1, qi, t

∗) ≤ qi
qi + e−2ε(1− qi)

. (46)

The authors of [30] suggest that the individual considering survey participation use (45) to
bound a1i for various values of a0i. The individual can examine these bounds to make an informed
decision about whether to participate in the survey.

While this result is similar to results from our framework, the goals of the frameworks differ.
The authors of [30] use (45) to characterize the individual’s disclosure risks for a fixed ε, whereas
we fix the data holder’s disclosure risk profile in order to set ε.

6 Commentary

In this article, we propose a framework for selecting ε for DP using a data holder’s disclosure risk
profile. Essentially, we provide a method for data holders to trade the problem of selecting ε for
a release for the problem of specifying their desired disclosure risk profile. This process involves
focusing on particular classes of adversaries the data holder is most concerned about and tuning ε
to ensure the risk from these adversaries is sufficiently low. We emphasize that, once applied, DP
will protect against all attacks with the guarantee of DP, not just the attack used to tune ε.

Recent work has expressed concerns about the suitability of posterior-to-prior comparisons in
the context of DP. For example, one concern in [19] is that the relative risk can be arbitrarily large
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without making assumptions on the prior, and consensus about prior specification will never be a
settled issue. In our framework, the data holder sets a maximum allowable risk for every value of
the prior probabilities pi and qi in their analysis. No consensus about reasonable priors is required.
A second concern in [19] is that posterior-to-prior comparisons consider any information gain,
including generalizable scientific knowledge, to be a privacy violation. This issue, while still present,
is mitigated by the use of a disclosure risk profile to select ε. For example, when the adversary’s
prior probability is small, the data holder can account for potential gain in disclosure risks due to
generalizable knowledge by allowing for a larger relative risk for such priors. Importantly, the data
holder uses relative risks only to set ε; the resulting release is differentially private.

One avenue for future work involves incorporating a version of this framework into differentially
private data analysis tools, such as OpenDP’s [13] DP Creator. In particular, [28] recently inter-
viewed users of DP Creator and found that interviewees wished for more explanation about how
to select privacy parameters and better understanding of the effects of this choice. Relating this
decision to statistical disclosure risks as in our framework could aid decision making within such
tools.

Additional future extensions could involve examining whether similar results follow under
weaker assumptions, for example, not requiring the independence of Assumption 2. It may be
possible to extend the framework to settings with multiple differentially private releases, exploiting
results relating the relative risk to DP composition theorems (e.g., Section S5 of [18]). Additionally,
these results could be extended from the posterior-to-prior risks we discuss in this article to the
sorts of posterior-to-posterior risks discussed in Section 5.2.
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A Omitted Results and Proofs

A.1 Omitted Results

In this section, we present all results omitted from the paper. Proofs of these results are included
in Appendix A.2.

First, we state a corollary to Theorem 1, which generalizes Theorem 1.3 in [15] to sets where
|S| > 1 and to unbounded DP.

Corollary 1. Under the conditions of Theorem 1, for all pi, qi ∈ (0, 1] and all t∗,

ri(pi, qi, t
∗) ≤ e2ε. (47)

Next, we state a corollary to Theorem 2 which considers the special case where pi = 1. This
corresponds to a setting where individual i’s inclusion in the data is known a priori by the adversary,
for example data from a census or public social media platform.

Corollary 2. Under the conditions of Theorem 2, if pi = 1 and 0 < qi < 1, any statistic T ∗ = t∗

released under ε-DP with

ε ≤ 1

2
log

(
1− qi
1

r∗(1,qi)
− qi

)
, (48)

will satisfy ri(1, qi, t
∗) ≤ r∗(1, qi).

For particular forms of r∗, the optimization in (36) has a closed form solution. This is detailed
by the following theorems, which are preceded by two lemmas used in the proofs.

Lemma 3. Fix pi, qi ∈ (0, 1) and let r∗(pi, qi) =
ã

piqi
. Then the function

ε(pi, qi) = log

 2pi(1− qi)√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
− (1− pi)

 (49)

has partial derivatives such that

1. ∂ε(pi,qi)
∂pi

< 0 for all 0 < pi < 1 and 0 < qi < 1

2. ∂ε(pi,qi)
∂qi

< 0 for all 0 < pi < 1 and 0 < qi < 1.

Lemma 4. Fix pi, qi ∈ (0, 1) and let r∗(pi, qi) = r̃. Then the function

ε(pi, qi) = log

 2pi(1− qi)√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
− (1− pi)

 (50)

has partial derivatives such that

1. ∂ε(pi,qi)
∂pi

< 0 if 0 < qi <
1

r̃+1 and 0 < pi < 1

2. ∂ε(pi,qi)
∂pi

= 0 if qi =
1

r̃+1 and 0 < pi < 1
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3. ∂ε(pi,qi)
∂pi

> 0 if 1
r̃+1 < qi < 1 and 0 < pi < 1

4. ∂ε(pi,qi)
∂qi

> 0 for all 0 < pi < 1 and 0 < qi < 1.

Theorem 3. Under the conditions of Theorem 2, if r∗(pi, qi) = r̃ > 1, the solution to the mini-
mization problem in (36) is

ε =
1

2
log (r̃) . (51)

Theorem 4. Under the conditions of Theorem 2, let 0 ≤ p̃0 ≤ p̃1 ≤ 1, 0 ≤ q̃0 ≤ q̃1 ≤ 1, p̃1, q̃1 > 0,
and r̃ > 1. If the function r∗ is such that r∗(pi, qi) = r̃ if pi ∈ [p̃0, p̃1], qi ∈ [q̃0, q̃1] and r∗(pi, qi) = ∞
otherwise, then the solution to the minimization problem in (36) is

ε =



log

(
2p̃1(1−q̃0)√

(1−p̃1)2+4p̃1(1−q̃0)( 1
r̃
−p̃1q̃0)−(1−p̃1)

)
, if 0 ≤ q̃0 ≤ 1

r̃+1 ;

log

(
2p̃0(1−q̃0)√

(1−p̃0)2+4p̃0(1−q̃0)( 1
r̃
−p̃0q̃0)−(1−p̃0)

)
, if 1

r̃+1 < q̃0 < 1 and p̃0 > 0;

log (r̃) , if 1
r̃+1 < q̃0 < 1 and p̃0 = 0;

log
(

1−p̃0
1
r̃
−p̃0

)
, if q̃0 = 1.

(52)

Theorem 5. Under the conditions of Theorem 2, let ã < 1, p̃ ≤ 1, and r̃ > 1, and 0 < qi < 1.
If the function r∗ is such that r∗(p̃, qi) = max{ã/(p̃qi), r̃} and r∗(pi, qi) = ∞ if pi ̸= p̃, then the
solution to the minimization problem in (36) is

ε =

log

(
2(p̃r̃−ã)√

r̃2(1−p̃)2+4(p̃r̃−ã)(1−ã)−r̃(1−p̃)

)
, if ã

p̃ < r̃;

log
(
ã(1−p̃)
p̃(1−ã)

)
, if ã

p̃ ≥ r̃.
(53)

Theorem 6. Under the conditions of Theorem 2, let ã < 1, q̃ ≤ 1, and r̃ > 1, and 0 < pi < 1.
If the function r∗ is such that r∗(pi, q̃) = max{ã/(piq̃), r̃} and r∗(pi, qi) = ∞ for qi ̸= q̃, then the
solution to the minimization problem in (36) is

ε =


1
2 log

(
1−q̃
1
r̃
−q̃

)
, if 0 < q̃ ≤ 1

r̃+1 ;

log

(
2ã(1−q̃)√

(r̃q̃−ã)2+4q̃(1−q̃)(1−ã)−(r̃q̃−ã)

)
, if 1

r̃+1 < q̃ < 1;

log
(
r̃−ã
1−ã

)
, if q̃ = 1.

(54)

A.2 Omitted Proofs

This section provides proofs of results from Section 4 and Appendix A.1, including Lemmas 2–4,
Theorems 2–6, and Corollaries 1–2.

Lemma 2. Under Assumptions 1-2, if the release of T ∗ = t∗ satisfies differential privacy, then for
any subset S of the domain of Yi,

e−ε ≤ P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
≤ eε (55)

and

e−2ε ≤ P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]
≤ e2ε. (56)
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Proof. We begin by applying Bayes’ Theorem to the numerator in (25).

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
=

P [Yi∈S|T ∗=t∗,Ii=1,M]P [T ∗=t∗|Ii=1,M]
P [Yi∈S|Ii=1,M]

P [T ∗ = t∗ | Ii = 0,M]
(57)

=
P [T ∗ = t∗ | Ii = 1,M]P [Yi ∈ S | T ∗ = t∗, Ii = 1,M]

P [Yi ∈ S | Ii = 1,M]P [T ∗ = t∗ | Ii = 0,M]
(58)

We can then break the second term in the numerator into a summation and apply Bayes’ Theorem
to each term in the sum.

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
=

P [T ∗ = t∗ | Ii = 1,M]
∑

y∈S P [Yi = y | T ∗ = t∗, Ii = 1,M]

P [Yi ∈ S | Ii = 1,M]P [T ∗ = t∗ | Ii = 0,M]
(59)

=
P [T ∗ = t∗ | Ii = 1,M]

∑
y∈S

P [T ∗=t∗|Yi=y,Ii=1,M]P [Yi=y|Ii=1,M]
P [T ∗=t∗|Ii=1,M]

P [Yi ∈ S | Ii = 1,M]P [T ∗ = t∗ | Ii = 0,M]
(60)

=

∑
y∈S

P [T ∗=t∗|Yi=y,Ii=1,M]
P [T ∗=t∗|Ii=0,M] P [Yi = y | Ii = 1,M]

P [Yi ∈ S | Ii = 1,M]
(61)

By Lemma 1, to achieve the left bound in (25),

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
≥
∑

y∈S e−εP [Yi = y | Ii = 1,M]

P [Yi ∈ S | Ii = 1,M]
= e−ε. (62)

To achieve the right bound in (25),

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
≤
∑

y∈S eεP [Yi = y | Ii = 1,M]

P [Yi ∈ S | Ii = 1,M]
= eε. (63)

We now turn to (26). First note that

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]
=

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
· P [T ∗ = t∗ | Ii = 0,M]

P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]
.

(64)

By applying the bounds in (25) to S and SC ,

e−ε ≤ P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
≤ eε and e−ε ≤ P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]

P [T ∗ = t∗ | Ii = 0,M]
≤ eε.

(65)

Thus, to achieve the left inequality in (26),

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]
≥ e−ε · (eε)−1 = e−2ε. (66)

To achieve the right inequality in (26),

P [T ∗ = t∗ | Yi ∈ S, Ii = 1,M]

P [T ∗ = t∗ | Yi /∈ S, Ii = 1,M]
≤ eε ·

(
e−ε
)−1

= e2ε. (67)
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The proof of the main theorem is provided below.

Theorem 2. For individual i, fix the adversary’s prior probabilities, pi, qi, and a desired bound on
the relative disclosure risk, r∗(pi, qi). Under the conditions of Theorem 1, any statistic T ∗ = t∗

released under ε-DP with

ε ≤


log

 2pi(1−qi)√
(1−pi)2+4pi(1−qi)

(
1

r∗(pi,qi)
−piqi

)
−(1−pi)

 , if 0 < qi < 1;

log

(
1−pi
1

r∗(pi,1)
−pi

)
, if qi = 1,

(68)

will satisfy ri(pi, qi, t
∗) ≤ r∗(pi, qi).

Proof. We begin with the simpler case where qi = 1. By Theorem 1,

ri(pi, 1, t
∗) ≤ 1

pi + e−ε(1− pi)
. (69)

Since ε ≤ log ((1− pi)/(1/r
∗(pi, 1)− pi)), it follows that e

−ε ≥ (1/r∗(pi, 1)− pi)/(1− pi). Thus, as
desired,

ri(pi, 1, t
∗) ≤ 1

pi +
1

r∗(pi,1)
−pi

1−pi
(1− pi)

=
1

pi +
(

1
r∗(pi,1)

− pi

) = r∗(pi, 1). (70)

Now consider the case where 0 < qi < 1. By Theorem 1,

ri(pi, qi, t
∗) ≤ 1

qipi + e−2ε(1− qi)pi + e−ε(1− pi)
. (71)

Since

ε ≤ log

 2pi(1− qi)√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
− (1− pi)

 , (72)

it follows that

e−ε ≥

√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
− (1− pi)

2pi(1− qi)
. (73)

Taking the square gives

e−2ε ≥
4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
+ 2(1− pi)

2 − 2(1− pi)

√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
4p2i (1− qi)2

(74)

=

1
r∗(pi,qi)

− piqi

pi(1− qi)
+

(1− pi)
2 − (1− pi)

√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
2p2i (1− qi)2

. (75)
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Thus,

qipi + e−2ε(1− qi)pi + e−ε(1− pi) (76)

≥ qipi +

1
r∗(pi,qi)

− piqi

pi(1− qi)
· (1− qi)pi

+

(1− pi)
2 − (1− pi)

√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
2p2i (1− qi)2

· (1− qi)pi

+

√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi,qi)
− piqi

)
− (1− pi)

2pi(1− qi)
· (1− pi) (77)

= qipi +

(
1

r∗(pi, qi)
− piqi

)
+

(
(1− pi)−

√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi, qi)
− piqi

))
1− pi

2pi(1− qi)

−

(
(1− pi)−

√
(1− pi)2 + 4pi(1− qi)

(
1

r∗(pi, qi)
− piqi

))
1− pi

2pi(1− qi)

(78)

=
1

r∗(pi, qi)
. (79)

It is then immediate that

ri(pi, qi, t
∗) ≤ 1

qipi + e−2ε(1− qi)pi + e−ε(1− pi)
≤ 1

1
r∗(pi,qi)

= r∗(pi, qi). (80)

We now prove the generalization of Theorem 1.3 in [15].

Corollary 1. Under the conditions of Theorem 1, for all pi, qi ∈ (0, 1] and all t∗,

ri(pi, qi, t
∗) ≤ e2ε. (81)

Proof. First note that since, 0 ≤ e−ε ≤ 1, it follows that e−2ε ≤ e−ε. Then, applying the result of
Theorem 1,

ri(pi, qi, t
∗) ≤ 1

qipi + e−2ε(1− qi)pi + e−ε(1− pi)
≤ 1

qipi + e−2ε(1− qi)pi + e−2ε(1− pi)
(82)

Combining terms and using the fact that qipi ≥ 0 gives

ri(pi, qi, t
∗) ≤ 1

qipi + e−2ε(1− qipi)
≤ 1

e−2ε + qipi(1− e−2ε)
≤ 1

e−2ε + 0
= e2ε. (83)

We now prove the corollary of Theorem 2 in the case of pi = 1.
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Corollary 2. Under the conditions of Theorem 2, if pi = 1 and 0 < qi < 1, then any statistic
T ∗ = t∗ released under ε-DP with

ε ≤ 1

2
log

(
1− qi
1

r∗(1,qi)
− qi

)
, (84)

will satisfy ri(1, qi, t
∗) ≤ r∗(1, qi).

Proof. Plugging pi = 1 into the expression from Theorem 2 yields

ε ≤ log

 2(1− qi)√
0 + 4(1− qi)

(
1

r∗(1,qi)
− qi

)
− 0

 = log

(√
1− qi
1

r∗(1,qi)
− qi

)
=

1

2
log

(
1− qi
1

r∗(1,qi)
− qi

)
.

(85)

Proofs for Lemmas 3–4 and Theorems 3–6 will be included here.
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