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1 Introduction

Prompted by the failure of CAPM market betas to explain asset returns, numerous

strands of finance literature have looked elsewhere for a risk-return trade-off. One approach,

typified by Fama and French (1993), relies on ICAPM (Merton, 1973) or APT (Ross, 1976)

logic to rationalize empirical factors which do generate robust risk-return relationships. This

work drifts away from the canonical Markowitz (1952) insight that investors should demand

higher returns for assets with high portfolio level covariance. More recently, He and Krishna-

murthy (2012, 2013), Haddad and Muir (2021), Adrian, Etula, and Muir (2014), He, Kelly,

and Manela (2017), and others emphasize that institutions, not representative households,

are the key players in asset markets. Starting with Koijen and Yogo (2019), a large litera-

ture estimates reduced-form demand systems which are flexible functions of characteristics

of both assets and investors.1 These papers explicitly account for the large observed het-

erogeneity in portfolio holdings which is typically ignored in the asset pricing literature. In

this paper we connect these two strand of research back to the seminal idea in Markowitz

(1952) by demonstrating that an asset’s covariance with one’s own portfolio is a first-order

determinant of perceived risk, and hence, expected return.

To motivate our empirical analysis, we develop an asset pricing model featuring partial

segmentation as in Merton (1987), that shares the insight from Koijen and Yogo (2019) that

institutional preferences can aggregate to impact prices. Our key innovation is to allow for

returns that are “idiosyncratic” relative to a factor model but still have cross-correlations

within a portfolio. In our setting, investors demand a higher return for assets that have

a high covariance with their portfolio. Segmentation causes these fund level preferences to

aggregate and drive a wedge between the risk experienced by the investors who hold an

asset and the “factor” risk of the asset. The model predicts that an asset’s expected return

is linear in its beta with respect to each institutional investor’s portfolio return, averaged

1. See also Koijen and Yogo (2020); Koijen, Richmond, and Yogo (2020); Jiang, Richmond, and Zhang
(2020); Koijen, Koulischer, Nguyen, and Yogo (2021); Haddad, Huebner, and Loualiche (2021); Bretscher,
Schmid, Sen, and Sharma (2022).
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across all investors who own the asset.

We empirically estimate this relationship separately for equities and corporate bonds

using quarterly holdings data to construct a time-series of portfolio returns for each insti-

tutional investor. For each asset × fund pair we estimate a time-series beta in a first stage

regression. We then calculate the share-weighted average of the beta across funds, yielding

our “investor beta” measure for each asset. Finally, we sort assets into ten decile portfolios

according to investor beta and compute average returns by group. Panel A plots average

returns vs investor betas for equities and Panel B does the same for corporate bonds. For

both asset classes, the cross-sectional fit is nearly perfect. The resulting “investor security

market line” for equities has an annualized slope of 6.0%. This is in contrast to the well

known pattern of a nearly zero slope when plotting average returns against equity market

betas.2 For bonds, the slope is 1.1%. In panel regressions, after controlling for the market,

we find slopes of 5.5% and 2.0% respectively, which, after accounting for differences in the

underlying portfolio risk, correspond to implied risk aversion of 6.1 for equity investors and

3.8 for bond investors.

[Insert Figure 1 Near Here]

We perform several robustness tests to ensure our results are not mechanical. First, we

exclude asset i when computing the portfolio returns and obtain a nearly identical result.

Second, we run 24 month rolling betas excluding the month when we measure returns for

the second stage from beta estimation in the first stage and find nearly identical risk premia.

Finally, for equities, utilize daily data to estimate higher frequency betas.3 Each quarter,

we first sort stocks into portfolios based on β estimated using odd days, then regress returns

on even day return data (and vice versa). The resulting premium for investor portfolio risk

is slightly larger than the monthly estimates, further alleviating concerns of endogeneity or

look-ahead bias.

2. See, for example, Black, Jensen, and Scholes (1972), Fama and MacBeth (1973), Baker, Bradley, and
Wurgler (2011) and Frazzini and Pedersen (2014) among many others.

3. Infrequent trading of most corporate bonds precludes the measurement of daily returns.
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If segmentation is not an important feature of markets, that is, if all investors are marginal

in all assets, a similar beta/return relationship should exist when beta is measured with

respect to funds who do not hold the asset. This theoretical result motivates our placebo

test of segmentation. For each fund-stock pair, we find a “similar” institution that has

approximately the same market beta, total assets, and number of positions but never holds

the stock in question. We run the exact same process above but we measure betas between

each asset and the placebo fund’s returns. Aggregated across placebo funds, there is zero

relation between placebo investor betas and stock returns. This finding is suggestive of

partially segmented markets, even within an asset class.

Corporate bonds are different from equity shares in many ways. One interesting feature

of bonds is that a firms often have multiple bonds outstanding. That is, adding firm fixed

effects to a panel regression allows us to test the investor beta risk premium relationship

within a given firm. Strikingly, we find that even when comparing bonds within a firm it

holds true that bonds associated with higher investor betas exhibit higher excess returns.

Only interacting firm fixed effects with time and bond maturity bucket fixed effects renders

investor beta insignificant. This should not come as a surprise as a significant beta in this

last regression specification would suggest the presence of (close to) arbitrage opportunities

and a violation of the law of one price.4

Since heterogeneous portfolio holdings distort investor betas away from market betas, we

investigate the characteristics associated with high investor beta firms and how they differ

from those with high market betas. We find a number of stark differences. First, measures

relating firm performance to price (e.g. dividend yield, price/sales, return on equity etc.)

have opposite correlations between investor and market betas, where the performance to

price relation is positively associated with investor betas and negatively associated with

market betas. Higher profitability, as a characteristic, is associated with higher returns.

4.When a firm has multiple bond issues outstanding that have similar maturity dates and disagree in
their prices, investors can realize close to risk-free arbitrage opportunities. Hence, in the absence of arbitrage
opportunities, controlling for time × firm ×maturity fixed effects should render the coefficient on the investor
beta insignificant.
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However, perhaps that return relation is partially attributable to the increased risk these

firms impose on the funds that hold them. Second, we find that high investor beta firms

have lower R&D expense and higher labor costs, while the opposite is true of high market

beta firms. In these cases there is no well documented risk–return relation associated with

these factors.

In light of the charactistic loadings, we next investigate whether our results in both eq-

uity and bond markets represent a novel form of risk which appears unrelated to previously

documented risk factors in three ways. First, we include security or portfolio level beta esti-

mates from the set of factor models we consider in the second stage price of risk regressions.

Again, we find that including these betas does not change our results. Second, We re-run

our first stage investor risk regressions excluding the market, and including multiple asset

class appropriate risk models. We then aggregate these investor betas as before. That is, the

resulting investor betas are orthogonalized to the relevant risk model. We find that investor

betas are priced no matter the risk model we choose, though the exact slope coefficient can

change for some of the models. The few instances of lower coefficients indicate that other

successful risk factor models may be implicitly capturing some element of aggregate investor

portfolio risk. Lastly, we can replicate all of our analysis using DGTW excess returns and

find similar results.

1.1 Related Literature

This paper contributes to a large literature which studies the performance of institutional

investors. Van Nieuwerburgh and Veldkamp (2010) show that because information acquisi-

tion features increasing returns to specialization, active managers may hold quite dissimilar

and underdiversified portfolios. Wermers (2000), Chen, Jegadeesh, and Wermers (2000),

Cohen, Gompers, and Vuolteenaho (2002), and Massa, Reuter, and Zitzewitz (2010) show

that fund managers do appear to have some stock picking ability. Kacperczyk, Sialm, and

Zheng (2005) show that funds which follow a relatively narrow investment mandate tend to
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outperform funds which follow a broader strategy. Our results contrast with the findings

in Fama and French (2010) because we incorporate essential investor heterogeneity whereas

that paper does not.

Several other works demonstrate that fund holdings have valuable information content.

Wermers, Yao, and Zhao (2012) use past performance to rank funds and show that differences

in holdings between skilled and unskilled managers predicts returns. Shumway, Szefler, and

Yuan (2011) use a mean-variance framework similar to ours to transform holdings into beliefs

to first rank managers by skill and then use the difference in beliefs among skilled and

unskilled managers to identify good investments. Using a closely related theoretical setup,

Antón, Cohen, and Polk (2020) identify each manager’s “best idea” from portfolio holdings

and show that these stocks do outperform. Jiang, Verbeek, and Wang (2014) show that

stocks which mutual funds, in aggregate, overweight have relatively high future returns. Our

results agree with this prior work that holdings contain useful information which aggregates

across managers, indicating that managers have some stock-picking ability. However, we

additionally show that managers are aware of a risk–return trade off which also meaningfully

aggregates.5 That is, we do not merely posit a risk–return trade off to extract information

from holdings. We show this trade off is quantitatively present in the data.

Our finding that expected returns are positively linearly related to covariance with the

investor’s chosen portfolio may seem at odds with the literature documenting a negative

correlation between idiosyncratic variance and average returns.6 However, the measures are

economically different from each other. High investor betas occur when a stock positively

covaries with the rest of an investor’s portfolio (averaged across holders). This covariance

is determined both by the overall composition of the portfolio as well as the weight of the

5. Some results in Shumway, Szefler, and Yuan (2011) also “suggest that fund managers do care about
risk when making portfolio decisions.”

6. Falkenstein (1994), Ang, Hodrick, Xing, and Zhang (2006), and Ang, Hodrick, Xing, and Zhang (2009)
find a negative relation. Fu (2009) finds a positive relation using GARCH instead of realized variances. Bali
and Cakici (2008) examine the robustness of these results and find essentially zero relation after excluding
small or low priced stocks. We use these same exclusion criteria and find a robustly positive relation between
idiosyncratic covariance and returns.
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stock in the portfolio. High idiosyncratic risk, in contrast, simply measures residual variance,

independent of portfolio composition. Thus there is no inherent relation between investor

betas and idiosyncratic risk.

The remainder of the paper is organized as follows. In Section 2 we present the theoretical

framework which guides our empirical analysis. Section 3 lays out the methodology and data

summary. Section 4 presents our the findings and in Section 8 we conclude.

2 Theoretical Framework

In this section we present a simple partial-equilibrium framework to guide the empirical

analysis in Section 4. This analysis yields an empirically useful characterization of expected

returns.

As in Merton (1987, henceforth “Merton”), each institutional investor may only invest in

a subset of securities. Merton motivates this constraint with fixed holding costs which may

vary by asset i × investor j. It is further motivated by He and Xiong (2013), who show that

narrow mandates can arise as optimal contracts for delegated asset management. Our key

departure from Merton is that we allow for cross-correlation of “idiosyncratic” asset returns,

returns residualized with respect to some factor model such as the CAPM. This is a salient

feature of the data. Our model predicts that an asset’s alpha (with respect to the factor

model) is linear in its beta with respect to investors’ portfolio returns (orthogonalized with

respect to the same factor model).

In what follows, generally, uppercase letters are matrices, bold lowercase are vectors, and

all others are scalars. Rather than solving for an equilibrium by clearing all markets, we

derive equilibrium relationships by examining investors’ first-order condition for portfolio

optimality.
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2.1 Model Environment

We assume a two period economy with discrete time t = 0, 1 and satisfying no arbitrage.

There are N tradable assets in the economy, indexed by s = 1, ..., N . The equilibrium

net risk-free rate is rf . We assume the assets feature limited liability. Combined with no

arbitrage, this implies strictly positive prices and hence rates of return exist. Let r̃ be the

vector of excess returns on the N assets with covariance matrix Σ̃.

Define k ≪ N (arbitrary) factors as f = Ar̃ with rank(A) = k.7 In Merton, f is the

market portfolio, but here it may be anything (including the empty set). Let Ω = cov (f) =

AΣ̃A′. The betas of the assets with respect to the factors are given by

β =
(
AΣ̃A′

)−1 (
AΣ̃
)
.

Define factor neutral excess returns as

r = r̃ − β′f

with covariance matrix Σ.8 For any portfolio weights θ, the factor-neutral realized return is

rθ = θ′r = θ′r̃ − [θ′β′]f .

Hence, any portfolio can be written as

r̃θ = b′f + θ′r,

with b′ = θ′β′ and cov (r,f) = 0 .

7.Without loss of generality, the factors are tradable since in what follows any factor can be replaced by
its mimicking portfolio.

8. In general, Σ has rank N − k.
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2.2 Investors and “Equilibrium”

There are J masses of institutional investors (“funds”) having initial wealth Wj and

mean-variance utility over time 1 wealth. That is, they maximize

U (θ) = Ej (r̃θWj)−
γ

2Wj

V (r̃θWj) , (1)

where subscripts indicate subjective beliefs. We assume investors agree on covariances. Their

beliefs about means are dogmatic; investors agree to disagree. There may be other traders

with arbitrary preferences, beliefs, and endowments.

Like in Merton (1987), each investor of type j may only hold a subset Sj ⊆ {1 . . . N} of

the universe of assets, as well as the risk-free asset and factor ETFs. Let Sj be a diagonal

matrix with entries equal to 1 if the asset is in Sj and 0 otherwise; Sj is called a “selector”

matrix. Maximizing utility given in Eq. (1), fund j’s mean-variance optimal portfolio is

given by

bj =
1

γ
(Ω)+µj (2)

θj =
1

γ
(SjΣSj)

+αj , (3)

where (·)+ indicates the Moore-Penrose pseudoinverse, and µj and αj = Ej (r) are fund

j’s subjective beliefs about factor risk premia and alphas, respectively.9 This is the standard

mean-variance solution with the constraint that if asset i /∈ Sj then θj,i = 0. Let rθ,j = θj
′r

be the factor-neutralized return on fund j’s portfolio. Note that if the covariance matrix, Σ,

is diagonal, Eq. (3) matches equation (9.b) of Merton.

Given the optimal portfolio, we can compute the covariance of any stock ri ∈ Sj with

rθ,j to obtain the investor’s subjective risk-return trade-off for factor-neutral “idiosyncratic”

9.We use the convention that if asset i is not in Sj (not allowed to be held by investor j) then αj,i = αi,
the objective value.
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betas

αj,i = γ ˆcov (ri, rθ,j) . (4)

Each investor adjusts her portfolio weights so that her Euler equation holds for all assets

which she can trade.

2.3 Aggregation

For the model to have any empirical content, we require some restriction on beliefs, αi,j.

Unlike much of the literature which assumes strict rationality, we assume a weaker condition,

“group rationality.” We make no assumption about subjective factor premia, µj.

Assumption 1 (Group Rationality). A weighted-average belief across investors who

hold an asset is correct, where the weights are observable to the econometrician. Let

κi ⊆ K be the set of investors who may hold asset i. Then group rationality requires

αi =
∑
κi

ωj,i θj,i αj,i, (5)

Two particular choices of weights, shares or wealth, are motivated in Appendix B. There

we show that in an unconstrained model, belief errors “wash out” (do not affect equilibrium

prices) using wealth weights. With Merton-style constraints, this obtains using share weights.

Combining Eq. (4) with Assumption 1 we obtain the objective pricing relation

αi = γ
∑
κi

ωj,i cov (ri, rθ,j) = γ cov

(
ri,
∑
κi

ωj,i rθ,j

)
. (6)

2.3.1 β Representation

Since most empirical work uses betas instead of covariances, we now derive a beta version

of eq. (6). Start with eq. (4), multiply by 1 = V (zj) /V (zj), and rearrange to obtain a β
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representation for fund j′s subjective beliefs,

αj,i = βj,i [γ V (rθ,j)] , (7)

where βj,i is the regression beta of ri on rθ,j. If V (rθ,j) is approximately equal across funds,

then we obtain the objective pricing relation

αi = [γ V (rθ)]
∑
κi

ωj,i βj,i = [γ V (rθ)] β
Investor
i (8)

That is, a securities α is proportional to the investor beta, βInvestor
i , where βInvestor

i =∑
κi
ωj,i βj,i. In our empirical analysis we primarily focus on this expected return investor

beta relationship.

2.3.2 A General Equilibrium Example

In Appendix B we present a general equilibrium framework consistent with the above

partial equilibrium model. There we also solve a stark four asset, four investor example to

highlight the mechanism. The economy offers near arbitrage (very high Sharpe ratio) trading

opportunities. Without Merton-style constraints, investors trade aggressively against these

opportunities. In equilbrium, mispricing almost disappears. With constraints, no investor is

able to fully trade against the arbitrages, leading to large equilibrium mispricing.

Figure 2 plots the stark 4 asset case with the following conditions. A) while investors do

not face strict segmentation, no investor can simultaneously hold assets 1 and 3 or 2 and

4. B) Assets 1 and 3 are negatively correlated with eachother as are assets 2 and 4. C)

Assets 1 and 3 are in high supply while 2 and 4 are in low supply, with the market positively

correlated with assets 1 and 4.

[Insert Figure 2 Near Here]

When measured against a CAPM model, asset 3 appears to offer extremely high returns

10



for its level of risk while asset 4 offers low returns as depicted in Panel A. However, after

accounting for the holding constraints by measuring betas with respect to the investors that

hold each asset, investor betas correctly line up with the returns on each asset. This simple

example delivers the main insight of the model: segmentation can drive a wedge between

investor perceived covariance risk and market level covariance risk. As long as investor

covariance is correlated across investors (e.g. does not wash out when aggregated) then

investor level betas will correctly price assets and the security market line predicted by the

CAPM model will be too flat.

3 Methodology

In this section we first discuss how we empirically measure investor betas and how it maps

into the theoretical framework discussed in Section 2. Secondly, we provide a description of

the data and sample summary stats.

3.1 Investor Beta Measurement

The central assumption in our model that investors largely care about an asset’s co-

variance with their chosen portfolio. More precisely, given the importance of relative pay

performance contracts and the likelihood that the market portfolio is easily investable, our

model suggests that investors care about the covariance which obtains after first orthogo-

nalizing the asset and portfolio with respect to the market. Thus, we estimate multi-factor

betas for each manager using the two factor specification in Equation (9)

rit = aj,i + βj,irj,t + βmkt
j,i rmkt

t + ej,i,t, (9)

for fund j, asset i, and time t where rmkt
t is the return on the market and βmkt

j,i the fund

and asset specific market beta. By the Frisch-Waugh-Lovell theorem, βj,i exactly maps to

equation (7) in the model.
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In our base specification, we calculate the monthly portfolio return rj,t for each investor

by measuring the set of portfolio holdings at the quarterly date q, the most recent quarter

relative to time t. That is q < t and q + 3 ≥ t. We then obtain the investment weights for

each asset i at time t as follows:

wj,i,t =
Xj,i,q × Pi,t−1∑N

k=1Xj,k,q × Pk,t−1

, (10)

where Xj,i,q is the number of shares that investor j owns of stock i at the end of quarter q

and Pi,t−1 is the price of asset i at the end of the previous month. Monthly portfolio returns

are defined as the weighted average return of all assets held by an investor j.

rj,t =
N∑
k=1

wj,k,t × rk,t (11)

Thus the regression equation (9) can be rewritten to reflect the portfolio return calculation

as follows:

ri,t = aj,i + βj,i

N∑
k=1

wj,k,t × rk,t + βmkt
j,i rmkt

t + ej,i,t (12)

Equation (12) is akin to the first stage of a two factor model, estimated at the fund by asset

level. While the covariance of each asset with the market includes the asset’s individual

variance term, they are, in practice extremely small and unlikely to play much of a role in

the calculation of market betas. For the beta on the portfolio return, βj,i, this may not be the

case. The variance term of an over-weighted asset in a small portfolio of assets may contribute

in a meaningful way to the overall portfolio variance. This is not a shortcoming of the

framework, since the first-order condition of a constrained manager necessarily embeds the

contribution of each asset held to the covariance of a newly considered asset with the entire

portfolio. However, in order to address concerns that our results are driven by a mechanical

relation between variance and returns, we consider two alternative ways of calculating the

portfolio return betas, βj,i.
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First, we exclude the reference asset from the fund’s portfolio as follows:

ri,t = aj,i + βj,i

N∑
k ̸=i

wj,k,t × rk,t + βmkt
j,i rmkt

t + ej,i,t (13)

The portfolio return no longer includes asset i, so we explicitly break any link between an

investors’ betas and asset returns. Second, we calculate betas excluding the month we use

to measure asset returns. Thus in our second stage when we compare realized returns to our

beta estimates, it is not possible that the betas are mechanically related to those returns

since they are measured using a non-overlapping return sample.

In order to move from fund–CUSIP betas to our asset level investor beta, we aggregate

our betas in a way consistent with equation (8) of our model presented in Section 2. In

particular the Investor Beta for asset i at time t is the weighted sum of each investor beta

for that asset in that period. We aggregate according to equation (14),

βInvestor
i =

∑
κi,t

Xj,i,q∑
κi,t

Xj,i,q

βj,i = ωj,i,tβj,i (14)

where κi,t indexes the set of funds holding asset i at time t and Xj,i,q is the number of shares

of asset i held by investor j at the beginning of quarter q. Since we focus on managers we

consider constrained in holding a particular portfolio, we weight the betas relative to all

other constrained managers who hold that asset at that time.10

3.2 Data and Sample Summary Stats

3.2.1 Data

We empirically examine our model implications both in the context of equities and cor-

porate bonds. That is, for both asset classes, we combine holdings data with pricing infor-

10. In the baseline analysis we discard first stage betas that are either lower than the 10th or larger than the
90th percentile. Importantly, this does not constitute dropping assets from the final analysis since all assets
are held by multiple funds. Our main results are robust to including these noisy betas in the aggregation.
Doing so flattens the investor beta–return relationship due to the two extreme portfolios.
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mation and asset specific static characteristics such as, for example, the name of the issuing

company. For equities, we rely on the 13F filings to identify investors’ quarterly portfolio

holdings. We then merge the holdings data with either the CRSP daily or monthly return

files which allows us to construct equity portfolio returns as outlined in (11). Moreover, we

narrow the sample by additionally merging our data set with the characteristic portfolios

formed in Fama and French (1992). Approximately 70% of the initial CUSIPs also appear

in FF25 portfolios. The CUSIPs that do not appear in the FF25 portfolios are extremely

small firms with insufficient accounting data. In fact, we are able to calculate investor betas

for over 99% of the assets that appear in FF25 portfolios. We further condition each stock

to have greater than $2 share price and drop microcaps (the bottom quintile of firms in any

period).11 Finally, we only include equity investors with portfolios consisting of at least ten

shares at a given point in time.

Similarly, we calculate corporate bond portfolio returns by merging quarterly bond hold-

ings data from Thomson Reuters eMAXX, monthly return data from the WRDS Bond

Returns, and static bond characteristics from the Fixed Income Securities Database (FISD).

The monthly WRDS Bond Returns database is based on the corporate bond transactions

reported in the TRACE (Trade Reporting and Compliance Engine) database. As some bonds

may not trade frequently and thus may not be present in the WRDS database, we check

the quality of the coverage with respect to the overall U.S. corporate bond universe. To

construct the U.S. corporate bond universe, we follow an approach similar to Asquith, Au,

Covert, and Pathak (2013) and identify corporate bonds in FISD that are denominated in

U.S. dollars, are issued by firms domiciled in U.S., and are publicly traded. Our definition

of U.S. publicly traded corporate bond universe yields the total outstanding (by par value)

of 6.5 trillion US dollars in 2019.12 During our sample period, on average, we observe bond

holdings that collectively account for 45% to 50% of the total par amount outstanding in

11.Note, this eliminates about 1/2 of the firms in the bottom FF25 size quintile since those cutoffs are
based on NYSE breakpoints

12.According to SIFMA total U.S. corporate bond outstanding is $9 trillion as of 2019.
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the corporate bond market (for a detailed year by year statistics see Appendix Table A.1).13

In a final step, we merge each of our two data sets with Compustat to additionally obtain

issuer specific information. Further, we use the CRSP value-weighted index (bond market

index of Bai, Bali, and Quan (2021)) as a proxy for the equity (bond) market factor.

3.2.2 Sample Summary Stats

Panel A of Table 1 reports some of the characteristics of our final equity sample. The

sample period starts with the 13F coverage in 1980. That is, we calculate betas using data

for 9,541 distinct 13F managers and we end up with 1.45 million share x month observations.

Equity investors in our sample hold on average 173 positions, though this is right skewed with

the median fund averaging 73 assets per reporting period. Portfolio returns are positively

correlated with the market. The average R2 in a univariate regression of investor portfolio

returns against the market portfolio is 0.73. The average market capitalization of our sample

firms equals $2.9bn with the median firm being much smaller at $306mm.

[Insert Table 1 Near Here]

Panel B of Table 1 reports analogous statistics for the corporate bond sample. Even

though the bond sample only starts in 2006, we observe 9,520 different investors and about

740 thousands bond x month observations. The average bond investor holds 269 bonds while

the median investors has 113 positions. The average bond in our sample has a face of about

600mm and 7.5 years time to maturity.

Before calculating investor betas, we analyze the extent to which we observe partial

segmentation in equity markets across equity and corporate bond investors. Rather than

looking at the overlap of holdings directly, we can answer this question by examining the

covariance matrix of their returns orthogonalized to the market. We orthogonalize the returns

with respect to the market to be consistent with our baseline specification of investor betas

13. for which we observe holdings for more than 25% of the total amount outstanding. However, all results
remain unchanged if we instead include all the bonds in our sample.
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from equation (9). Figure 3 shows a scree plot of the cumulative percentage of variance

explained from successively increasing the number of principal components used to explain

the return covariance matrix.14 Even 100 PCs explain less than 50% of the total variance,

implying that there is substantial heterogeneity across portfolios. This is important, since

if they were all perfectly correlated, an asset’s covariance with investors’ portfolio returns

could not vary across investors.

[Insert Figures 3 And 4 Near Here]

A high correlation between fund returns and market returns implies that betas measured

in a single factor framework likely conflate the two sources of risk. Figure 4 Panel (A)

illustrates that single factor beta estimates for investor betas and market betas are highly

correlated. The cross-sectional correlation is 56%. However, as shown in Panel (B), the

multi-factor investor beta and single-factor market beta have nearly zero correlation.

To sum up, both equity and bond investors’ portfolio holdings are very segmented. As a

consequence, there is a lot of cross-sectional variation in investor betas. In fact, Panels A.3

and B.3 of Table 1 show that there is as much variation in investor betas as in market betas

both for equities as well as for corporate bonds. Moreover, as expected, the single factor

market and investor betas are each close to one with 1.10 and 1.05 for equities and 0.90 and

0.93 for bonds, respectively.

Further, we examine whether investor betas capture characteristics that are known to

be associated with returns from previous studies. To that end, Table 2 reports time-series

averages of selected WRDS financial ratios for portfolios sorted on investor and market betas,

respectively.15

[Insert Table 2 Near Here]

14.We include funds with at least 180 months of data. Missing correlations are replaced with zero,
approximately the average non-missing value.

15. Table A.2 in the appendix contains the full comparison of all variables.
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Some stark differences among equity investors in Panel A of Table 2 deserve mention.

Whereas market beta is negatively correlated with a firm’s dividend yield, investor beta

is not. A similar pattern holds for the dividend payout ratio, the after-tax return on com-

mon equity, and labor expense to sales ratios. Opposite signed patterns across investor or

market beta quintiles hold for measures of sales and R&D expenses. To summarize, investor

betas are positively correlated with various price and fundamental measures of value which

have been previously shown to be related to anomalous average returns which suggests that

equity investors are decidedly choosy.

Panel B of Table 2 reports that also betas of corporate bond investors are differently

correlated with firm fundamentals compared to bond market beta. For example, as for equity

investors, bond investor betas are positively with dividend payout ratio whereas market betas

are uncorrelated. Similarly the correlation of investor and market betas with total debt to

asset ratio is positive and negative, respectively. Further, the labor expense to sales ratio

and the after-tax return on equity exhibit a similar pattern with opposite signs.

4 Results

The main finding of this paper is reported in Figure 1. For each month, we generate 10

portfolios sorted by multi-factor investor betas as measured according to equations (12) and

(14). We plot the investor beta of each portfolio (x-axis) against the annualized historical ex-

cess returns in excess of the risk-free rate (y-axis). The figure displays a clear, approximately

linear, risk reward relation when risk is measured using investor portfolio betas. The slope

of this “SML” implies additional returns of 6.0% per year per unit increase in a portfolio’s

investor beta for equities and 1.1% per year for bonds.

Controlling for the market return in the first stage regression eliminates any correlation

between investor betas and market betas, as illustrated previously in Figure 4. However,

since investor betas and market betas are correlated when estimating using a single factor

model, and previous research has shown the CAPM SML is too flat, we expect that there
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will be some attenuation of the price of risk estimate using a single factor investor beta in

equities. Figure 5 plots the same relation but using a univariate model to estimate investor

betas (not controlling for the market return in the first stage estimation of these betas).

While higher univariate investor betas appear to yield higher returns, the compensation per

unit of risk in equity markets is substantially lower: 4.41% additional annual return per

unit beta increase (see Panel A). For corporate bonds the opposite is true. That is, as the

corporate bond market factor is priced in the cross-section of bond returns, excluding the

bond market from the first stage results in a higher return compensation per unit of risk. As

reported in Panel B of Figure 5, the additional return from a unit increase in the estimated

single factor investor beta is 3.30% per year.

[Insert Figure 5 Near Here]

In a next step, we augment our analysis by testing the relationship between investor beta

and excess returns in the context of panel regressions. For equities, we start with 25 size

and book to market portfolios as calculated according to Fama and French. Within each

portfolio we subsequently sort on investor beta.16 We then run a panel regression of monthly

portfolio excess returns against either only investor betas or additionally including market

betas. In columns (1) and (2) of Table 3, betas for each fund×CUSIP pair are estimated over

the full sample for which the fund holds that particular security. The estimated premium

on investor beta is 6% per year, and does not substantially change when including market

beta. Consistent with prior literature, we find essentially zero premium associated with

market beta.

[Insert Tables 3 And 4 Near Here]

The panel regression results deliver two important insights beyond the baseline analysis in

Figures 1 and 5. First, we are able to two-way cluster on both portfolio and time dimensions

16. Performing conditional sorts assures that all portfolios are populated, though our results are unchanged
if we sort unconditionally on investor beta.
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which eliminates the possibility that correlation in the errors within portfolio across time

or across portfolios for each time period, both common concerns in asset pricing, artificially

increase the statistical significance of our results. Second, presorting on the FF25 portfolios

helps to eliminate concerns that our main sorts are simply capturing previously documented

risk factors. We discuss the latter further in Section 7.

4.1 Robustness

If returns are not normally distributed then investor betas may be mechanically related to

realized asset returns over the measurement window. Therefore, we calculate two alternative

robust investor betas to rule out any mechanical relationship between returns and investor

betas. First, we modify our first stage estimation according to equation (13) which excludes

the asset of interest from the investor’s portfolio when calculating betas. That is, we remove

the returns of asset i from the portfolio of investor j when estimating the beta of asset i’s

return, ri,t, with respect to investor j’s portfolio return, rj,t. Doing so rules out the possibility

that high realized returns on asset i affect βj,i.

The second approach we take to eliminate concerns of a mechanical investor beta–return

relation is to exclude the month in which we measure the return in the second stage from

the beta estimation. That is, we calculate βj,i,t according to equation (12) based on rolling

windows 12 months prior and 12 months after the return date, excluding the return date

t. Both methods rule out the possibility that our high beta portfolios are mechanically

associated with high, contemporaneous returns.

For equities, columns (3) to (6) of Table 3 report the results for these alternative betas

Importantly, we observe similar price of risk estimates for the investor beta factor across

both robustness methodologies. That is, a unit increase in investor beta risk is associated

with 3-4% higher annual return. The coefficients are all highly statistically significant. The

market price of risk estimates are slightly noisier in these regressions, but lie always within

the 95% confidence bounds of the baseline estimate in column (2).
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Finally, we replicate the monthly analysis for equities using daily return data to estimate

betas. The higher frequency permits us to allow for more time-variation in betas which may

sharpen our estimates. We calculate betas at the asset × fund × quarter level using daily

returns. In order to exclude any possibility of a mechanical relation between returns and

betas, we estimate two separate betas in the spirit of Jegadeesh, Noh, Pukthuanthong, Roll,

and Wang (2019), one during odd days in the quarter and one during even days. We then

project even day returns on odd day betas and vice versa.

[Insert Figure 6 Near Here]

In Figure 6 we plot annualized excess returns (y-axis) vs betas measured over the opposite

days (x-axis). The figure shows a tight fit with a slope of approximately 8% per year, and an

R2 of approximately 90%. The slope is larger than what we observe in our monthly analysis,

likely due to more precise beta measurement at the daily frequency.

Columns (7) and (8) of Table 3 present the analogous panel regression results for the

daily analysis. Again, we observe higher coefficients. This is as expected since monthly betas

contain measurement error which leads to attenuation bias in the second stage estimation of

the price of risk. As with monthly estimation, the estimated price of risk for market beta is

nearly zero.

In summary, our results do not appear to be driven by a mechanical relation between

returns and investor betas. Breaking any possible link between the measurement of beta

and the dependent variable in the regression (either through excluding the stock from the

portfolio estimate or excluding the return date t from the rolling beta measurement window)

yields risk estimates that are stable across methods, though slightly higher when we focus

at higher frequency beta estimation.

4.2 Corporate Bonds

As for equities, we augment the baseline figures by running panel regressions of monthly

corporate bond excess returns on either investor betas alone and including market betas. In
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contrast to our analysis for equities, we do not form portfolios but run the regressions at

the security level and saturate them with either time or time×rating fixed effects.17 Table

4 reports the estimation results. Columns (1) and (2) contain the estimated coefficients of

betas for each fund×CUSIP pair that are estimated over the entire period an investor holds

that particular bond. The estimated premium on investor beta is 1.2% per year, about four

times smaller compared to equities. However, similar to equities, the coefficient does not

substantially change when additionally controlling for the market beta in column (2).

Column (2) allows us to compare the magnitude of Investor Betas with that of Bond

Market betas. We find that a unit increase in investor betas commands about double the

return premium of a unit increase in market betas in the corporate bond market. To put

this magnitude in context, this is approximately the size of moving from a AAA bond to a

BBB bond in terms of expected return differential.

We also run a corresponding analysis to columns (3) to (6) of Table 3 in the bond

universe. There, we eliminate concerns of a mechanical relation between returns and betas

by estimating investor betas in two different ways: i) excluding the specific bond from

the investment portfolio and ii) excluding the return measurement period from the beta

estimation. As with equities, our results remain stable over these specification. In fact,

here the correlation across measures is higher, and the time series stability of monthly beta

measurements allows for a larger variety of rolling windows estimates. Due to the infrequent

nature of bond trading, a daily analysis is not possible with corporate bonds.

4.3 Alternative Beta Measurement

In principal, share weighted investor betas should be approximately proportional to mea-

suring betas for each stock using a two factor model: the market, and the share weighted

17. Forming portfolios at the bond level would inhibit some of the bond-specific analysis we run later in
the paper. Our results are robust to pre-forming rating and maturity based portfolios.
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portfolio returns of the set of investors that hold an asset as defined in equation (15).

rportfoliosi,t =

∑J
j=1 rj,t ∗Xj,i,q∑J

j=1 Xj,i,q

. (15)

Given the ”portfolio” return, rportfoliosit (which differs across assets i), we estimate betas at

the stock level using the traditional first stage time series regression:

ri,t = aj,i + β̂Investor
i rportfoliosi,t + βmkt

i rmkt
t + ei,t. (16)

There are two issues with this approach, one theoretical and one empirical. First, β̂Investor
i

will not be equal to the share-weighted average investor beta. Mathematically, the two will

have the same numerator, but β̂Investor
i has a much smaller denominator due to diversifi-

cation across funds. Hence, the price of risk estimate no longer has the interpretation of

reward per unit of idiosyncratic risk from investors’ perspective. Second, this same diver-

sification leads to a collinearity problem in estimating first stage betas. Calculated at the

asset level, rportfoliosi,t is 95% correlated with the market. In our baseline analysis we exclude

asset/investor pairs that have outlier betas before aggregating. This exclusion does not

meaningfully reduce our sample—all stocks are held by at least a few investors with reason-

able beta estimates. Nevertheless, trimming outlier betas excludes some stocks entirely from

our sample and as such we view this method as inferior.

[Insert Figure 7 Near Here]

However, we find that investor betas calculated using this alternative methodology still

convey meaningful information about both stock and bond returns as can be seen from

Figure 7. That is, we find a similar, robust, upward slope with a high R2 at the portfolio

level both for equities as well as for corporate bonds. Thus, our results are qualitatively

robust to aggregating portfolio returns for each stock and then calculating the price of risk

estimates by means of a traditional two factor time series regression.
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5 Placebo Investor Betas

The model draws a clear connection between the perceived risk of investors that choose

to hold an asset and the expected returns of that asset. Conversely, investors that choose

not to hold an asset should have no impact on the expected returns of that asset.

We test this idea by matching a placebo fund that does not hold a specific asset as

follows. For each investor A that holds asset X we find a set of investors that are similar to

investor A but do not hold asset X. We identify similar investors according to size, market

risk, and number of portfolio positions. That is, the set of investors similar to investor A

consists of all investors that do not hold asset X and belong to the same decile in terms of

market beta (equity market for equity investors, bond market for bond investors), net asset

value, and number of portfolio positions, where the deciles are formed based on time-series

averages of characteristics for each fund. Within this set of possible placebo investors for

the investor asset combination A,X, we select the investor B that has the fewest common

portfolio positions compared to investor A. This process yields a placebo investor B for each

investor that holds asset X. For example, if 100 13f filers indicate they own Netflix, we

determine 100 placebo investors that do not hold Netflix, though those 100 investors may

contain duplicates.

[Insert Figure 8 Near Here]

Across these placebo investors, we estimate placebo investor betas using the exact same

methodology detail in section 3.1. Figure 8 illustrates a flat relationship between placebo

investor betas and returns. That is, low placebo investor beta assets have approximately the

same returns as high placebo investor beta assets.

This placebo test compliments the main insight of the paper. Our primary analysis

demonstrates that assets that add to (reduce) the risk of investors that hold them tend to

have high (low) returns. Conversely, an asset might present a perfect hedge for a set of

portfolios, but if those managers cannot purchase that asset, this low covariance does not
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translate into low returns.

6 Bond Market Specific Results

In the context of corporate bonds, we additionally test whether this very apparent linear

relationship between excess returns and investor betas is driven by one investor group or

whether the relationship holds across all investor groups. That is, we repeat our analysis

from Panel (B) in Figure 1 for the groups of life and P&C insurers, mutual funds, variable

annuities, and foreign investors. Figure 9 reports the results. Remarkably, the risk–return

relationship also holds up within investor groups. The additional return for a unit increase

in investor beta ranges from 0.16% for variable annuities to 0.73% for life insurers. Moreover,

the beta–return relationship seems most apparent for life insurers and mutual funds and is

least obvious for variable annuities.

[Insert Figure 9 And Table 5 Near Here]

In Table 5, we run similar panel regressions as in Table 4, however, our focus is on

companies that have multiple bond issues outstanding.18 Controlling for time × firm fixed

effects allows us to test whether the investor beta return relationship holds for corporate

bonds issued by the same company. As in Table 4 we repeat the analysis for investor betas

computed in three alternative ways. The coefficient on the investor beta is highly statistically

significant throughout all regression specification which include time× firm fixed effects, even

when additionally controlling for market betas.

When a firm has multiple bond issues outstanding that have similar maturity dates and

disagree in their prices, investors can realize close to risk-free arbitrage opportunities. Hence,

in the absence of arbitrage opportunities, controlling for time × firm × maturity fixed effects

18. In our sample, many firms have multiple bonds outstanding. In fact, only 30% of all firm×month
observations are due to firms with only one bond. Among the sample firms with multiple bonds, having two
or three bonds at the same time is the most likely scenario as reported in Appendix Table A.4. Moreover,
Appendix Table A.5 shows that the dispersion in investor betas within firm is similar for firms with more than
ten bonds outstanding is on average slightly higher compared to firms with fewer than 10 bonds outstanding.

24



should render the coefficient on the investor beta insignificant. The results in columns (3),

(6), and (9) confirm this intuition.

7 Relation to Existing Risk Factors

Next we examine the relation between investor betas and a set of risk factors that have

been previously documented in the literature. In Section 3.2.2 we document that portfolio

betas are correlated with a number of firm level characteristics, namely those associated

with “value” strategies. Thus our objective is to analyze whether the priced component of

investor betas is subsumed by other factors that demand a risk premium.

First, we follow the methodology in He, Kelly, and Manela (2017) to test whether the

explanatory power of idiosyncratic investor betas is subsumed by other commonly studied

factors. The alternative factor models we consider are Fama-French 3 factor, Carhart 4

factor, Fama-French 5 factor, He, Kelly, and Manela intermediary factor, and Hue, Xue, and

Zhang q-factor.19

We run the same panel regressions as Table 3, but include the estimated betas for all

factor models we consider according to corresponding methodology. We display the results

in Table 7. Panel A uses the monthly full sample betas while Panel B uses daily odd even

betas, projected onto the opposite return window. The estimated price of investor beta risk

is stable across models and very similar to the estimates for both the monthly samples and

daily instrumented approach. Incorporating betas from alternative risk models does not

meaningfully impact our results. Moreover, while we supress the second stage estimates for

alternative factor models, the associated price of risk appears in line with what those papers

document. Thus, the stability of our coefficient is not a byproduct of noisly measured betas

from other factor models.

Next, we re-estimate our investor betas using a different set of factor models in the

first stage, Equation (9). Our primary analysis orthogonalizes fund by asset returns to the

19. See and Fama and French (1993), Carhart (1997), Fama and French (2016), Fama and French
(2016),and Hou, Xue, and Zhang (2015) respectively.
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appropriate market benchmark when estimating investor betas. In Table 8 we rerun this

beta estimation first by only including the investor portfolio as a single risk factor in the

first stage, and second by replacing the CAPM model with a number of models which have

been shown to drive returns in their respective asset markets.

Table 8 displays the results of this analysis. For each model listed, we report the slope

coefficient, standard error, and adjusted R2s. Aside from two notable exceptions, we find

largely stable coefficients across the set of models used. First, in equity markets, including

the market as a first stage control increases the slope of the coefficient by about 30% relative

to the single factor investor beta. Single factor investor betas are highly correlated with the

market. At the same time, previous research has established that the market factor has a

“too flat” slope in second stage regressions. Thus, orthogonalizing to the market increases

the return for risk measured using investor betas.

Second, the opposite effect appears to be true in the bond market. There, as shown by

Bai, Bali, and Quan (2021), the bond market does appear to be a priced factor. We show

that including the bond market diminishes the second stage slope coefficient considerably.

However, the price of investor beta risk in the bond market is still about three times as large

as the price of bond market risk.

8 Conclusion

Essentially all equilibrium asset pricing models imply a basic risk-return relation; ex-

pected returns should be increasing in beta with respect to the return on investors’ wealth.

Empirically, using the aggregate market as a proxy for wealth, the estimated relation between

beta and returns is flat. However, many investors’ holdings substantially deviate from the

market portfolio. We propose a simple model which predicts a linear relationship between

expected returns and the idiosyncratic beta of a stock with respect to active investors’ port-

folio returns. Empirically, we find that a unit increase in investor betas is associated with a

5-10% increase in annual expected returns. The estimated risk premium is robust across a
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variety of empirical specifications. In sum, institutional investors appear to be compensated

for holding stocks that have a high covariance with the idiosyncratic component of their

portfolio.

Our findings compliment a growing literature that argues that the market is not the

correct proxy for wealth when investors systematically deviate from holding the market

portfolios. The approach of these papers has, heretofore, been to model the behavior of the

constrained investors and determine an appropriate factor that captures their wealth process.

This approach has been highly successful across a number of dimensions, most notably the

intermediary asset pricing factors. However, the aggregate portfolio of “active” managers

is not a successful factor in the cross section. Measuring betas at the portfolio×asset level,

a method that implicitly accounts for specific constraints investors face, yields a clear risk-

reward trade off.
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Fig. 1. Multi-Factor Investor Betas and Returns

Panel A: Equities Panel B: Corporate Bonds

Note: This figure displays the beta–return relationship for 10 portfolios of stocks in
Panel (A) and corporate bonds in Panel (B) sorted on multi-factor investor betas.
Annualized excess returns are along the y-axis and the estimated beta of each portfolio
are along the x-axis. Betas are calculated over the full sample for each investor–stock
pair (investor–bond pair, respectively) using a multi-factor first stage with investor
portfolio returns and equity market (bond market) returns as the factors as in Section
3.1. Betas are aggregated using share (market value) weights to the stock x month
(bond x month) observation level.
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Fig. 2. α vs Average Investor β

Panel A: Market Betas
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Note: This figure displays the equilibrium α on the vertical axis against average market
beta (panel A) and investor beta (panel B) on the horizontal axis. α and β in both
figures are both computed under the model where investors face holding constraints.
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Fig. 3. Scree Plot of Residual Covariance

Note: This figure displays a scree plot of the cumulative percent of variance explained
by successively more principal components of covariance matrix of market-neutral in-
vestor returns. We include investors with at least 180 months of return data. Missing
correlations are replaced with zero, approximately the average non-missing value.
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Fig. 4. Correlation: Investor Beta and Market Beta

Panel A: Single Factor Panel B: Multi-Factor CAPM

Note: This figure plots the average Investor Beta (x-axis) against the Market Beta
(y-axis) for each firm in our sample. Panel (A) plots the average single factor betas
while Panel (B) plots the multi-factor investor beta estimated using the methodology
detailed in Section 3.1. Investor Betas are calculated by dropping any fund×CUSIP
betas that exceed the first or 99th percentile (approximately 0 to 3) for the single factor
investor beta. To preserve scale, outliers are trimmed at the 0.1% level.
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Fig. 5. Single Factor Investor Betas and Returns

Panel A: Equities Panel B: Corporate Bonds

Note: This figure displays the beta–return relationship for 10 portfolios of stocks in
Panel (A) and corporate bonds in Panel (B) sorted on single factor investor betas.
Annualized excess returns are along the y-axis and the estimated beta of each portfolio
are along the x-axis. Betas are calculated over the full sample for each investor–stock
pair (investor–bond pair, respectively) using the investor’s portfolio return as a single
factor at the stock (bond) by investor level. Betas are aggregated using share (market
value) weights to the stock x month (bond x month) observation level.
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Fig. 6. Daily Instrumented Portfolios

Note: This figure displays the investor beta–return relationship for ten portfolios of
stocks sorted on multi-factor investor betas. Two betas are calculated for each quarter:
one using odd days and one using even days. Ten portfolios are formed based on odd day
betas, but we retain the corresponding even day return and even day “post-ranking”
investor beta for those portfolios. Another ten are formed using the even day betas,
but we retain corresponding the odd day returns and betas. Finally, we average the
returns and post-ranking betas by decile. Excess returns are along the y-axis and the
post-ranking betas are along the x-axis.

36



Fig. 7. Alternative Method: Investor Betas Calculated Using Average Returns of Holders

Panel A: Equities Panel B: Corporate Bonds

Note: This figure displays the investor beta–return relationship for ten portfolios of
stocks sorted on investor betas estimated in the following first stage regression:

rit = asf + βinv
i rportfoliosit + βmkt

i rmt + eit

where rit are the returns for stock i at time t, rportfoliosit is the share weighted average
returns in time t for all 13f filing funds that hold stock i, and rmt is the returns on the
market at time t. Excess returns are along the y-axis and investor betas are along the x-
axis. Due to high covariance between average holding portfolio returns and the market,
this regression produces extreme outlier beta estimates, thus we truncate investor betas
between -3 and 3 for this picture.

Fig. 8. Placebo Investor Betas

Panel A: Equities Panel B: Corporate Bonds

Note: This figure displays the placebo investor beta–return relationship for 10 portfo-
lios of stocks (Panel A) and bonds (Panel B) sorted multi-factor placebo investor betas.
Excess returns are along the y-axis and the estimated beta of each portfolio are along
the x-axis. Placebo funds are matched to each fund x stock pair using market beta,
average number of holdings and assets under management. Placebo investor betas are
calculated over the full sample for each placebo fund–stock pair using a multi-factor
first stage with investor fund returns and market returns as the factors as in Section
3.1. Betas are aggregated using share weights to the stock x month observation level.
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Fig. 9. Investor Group Specific Corporate Bond Investor Betas and Returns

Panel A: Life Insurers
Multi-Factor Investor Betas: Slope = 0.73%

Panel B: P&C Insurers
Multi-Factor Investor Betas: Slope = 0.50%

Panel C: Mutual Funds
Multi-Factor Investor Betas: Slope = 0.32%

Panel D: Variable Annuities
Multi-Factor Investor Betas: Slope = 0.16%

Panel E: Foreign Investors
Multi-Factor Investor Betas: Slope = 0.55%

Note: This figure displays the beta–return relationship for 10 portfolios of corporate
bonds sorted on multi-factor investor betas. That is, betas are calculated over the full
sample for each investor–bond pair using a multi-factor first stage with investor bond
portfolio returns and bond market returns as the factors. Annualized excess returns are
along the y-axis and the estimated beta of each portfolio are along the x-axis. Panels
(A) to (E) plot the results for five investor types including life insurers, property and
casualty insurers, mutual funds, variable annuities, and foreign investors. Betas are
aggregated for each investor type subsample using market value weights to the bond x
month observation level.
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Table 1. Summary Statistics

Mean 25th Pct Median 75th Pct StDev N

A: Equities

A.1. Fund Characteristics
Fund R-Squared with Market 0.71 0.58 0.80 0.91 0.25 8,720
Number of Positions 171.05 26.33 71.71 165.46 327.88 8,720

A.2 Stock Characteristics
Firm Size ($mm) 3022.52 143.32 402.87 1429.85 14011.29 1,530,430
Excess Return (% Ann) 9.16 -66.20 4.81 77.02 170.47 1,535,646

A.3 Betas
Single Factor Market Beta 1.11 0.70 1.04 1.42 0.88 1,535,469
Single Factor Investor Beta 0.81 0.57 0.85 1.07 0.35 1,508,040
Multi-factor Investor Beta 0.47 0.21 0.47 0.73 0.41 1,535,646

B: Corporate Bonds

B.1. Fund Characteristics
Fund R-Squared with Market 0.65 0.50 0.71 0.84 0.23 9,520
Number of Positions 269 36 113 299 468 257,332

B.2 Bond Characteristics
Face Value (mm) 613.72 300.00 475.00 750.00 553.13 797,683
Average Return (% Ann) 4.93 -6.04 3.41 15.85 32.06 797,683
Time to Maturity (Years) 9.72 3.98 6.77 11.62 8.19 797,683

B.3 Betas
Single Factor Market Beta 0.91 0.52 0.83 1.19 0.53 795,713
Single Factor Investor Beta 0.97 0.74 0.94 1.20 0.29 797,683
Multi-factor Investor Beta 0.98 0.63 0.95 1.32 0.47 796,447

Note: Panel A reports summary statistics for equities and describes the sample of firms
that i) have investor betas calculated as in Section 3.1; ii) match with the constituents of
FF25 portfolios; iii) are not in the bottom quintile of market cap one year prior to their
FF25 portfolio formation date. For stock and beta statistics, we report the number of
firm×month observations. Panel B reports corresponding results for corporate bonds. That
is, fund characteristics statistics are reported at the fund and at the fund×quarter level,
respectively. Moreover, bond and beta statistics are reported at the bond×month level.
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Table 2. Selected Characteristics by Beta Quintile

βinvQ1 βinvQ5 Q5-Q1 βmktQ1 βmktQ5 Q5-Q1

A. Equities

Market Beta 1.2 1.0 -0.2 0.4 1.9 1.4
Investor Beta 0.1 0.8 0.7 0.4 0.3 -0.1
Dividend Yield % 3.0 2.8 -0.2 3.8 2.2 -1.6
Book/Market 0.7 0.7 0.0 0.8 0.6 -0.2
Price/Sales 2.4 1.7 -0.7 1.8 2.8 1.0
Dividend Payout Ratio % 19.1 25.0 5.9 29.1 10.7 -18.4
A.T. ret on Common Equity % -1.6 6.6 8.2 8.0 -5.4 -13.4
Total Debt/Total Assets % 21.7 21.0 -0.6 22.7 20.9 -1.7
R&D Expense/Sales % 6.5 2.8 -3.6 1.3 10.0 8.7
Labor Expense/Sales % 4.8 5.9 1.1 8.3 2.5 -5.8

B. Corporate Bonds

Market Beta 0.8 1.0 0.2 0.2 2.0 1.8
Investor Beta 0.4 1.3 0.8 0.8 0.9 0.1
Dividend Yield % 2.1 2.6 0.5 2.4 2.4 0.0
Book/Market 0.6 0.8 0.2 0.7 0.7 0.0
Price/Sales 1.7 1.7 0.0 1.7 1.7 0.0
Dividend Payout Ratio % 47.8 80.1 32.3 58.9 58.3 -0.6
A.T. ret on Common Equity % 7.9 5.2 -2.7 14.5 15.5 0.9
Total Debt/Total Assets % 31.4 34.2 2.8 34.7 29.9 -4.9
R& D Expense/Sales % 1.5 1.3 -0.3 1.5 1.2 -0.2
Labor Expense/Sales % 5.4 2.8 -2.6 2.8 6.2 3.4

Note: Panel A reports time-series averages of various firm characteristics by investor and
market beta quintile for equities. All values are averaged each quarter by quintile and then
a time-series average is taken over the period. Panel B displays corresponding values for
corporate bonds. For firms which have mutliple bonds outstanding contemporaneously, we
consider the average investor and market beta, respectively. All firm characteristics are
averaged each quarter by quintiles and then a time-series average is taken over the sample
period between 2006 and 2020.
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Table 3. Panel Regressions

Main Excluded Rolling Daily

(1) (2) (3) (4) (5) (6) (7) (8)

Investor Beta 6.042∗∗∗ 5.258∗∗∗ 4.460∗∗ 3.960∗∗ 3.517∗∗∗ 3.457∗∗∗ 7.349∗∗∗ 8.657∗∗∗

(3.03) (3.29) (2.04) (2.30) (3.29) (3.47) (3.54) (4.65)
Market Beta -4.154 -2.601 -2.812 -3.338

(-0.71) (-0.39) (-0.43) (-0.91)

Fixed Effects T T T T T T T T
Adjusted R2 0.704 0.704 0.652 0.653 0.663 0.664 0.645 0.645
Observations 54,969 54,968 54,960 54,959 54,831 54,830 54,967 54,967

Note: This table estimates the OLS panel regression using 125 portfolios. We first sort
stocks each month into 25 portfolios formed on size and value then within each such portfolio
sort into quintiles based on investor beta. The dependent variable is excess return and the
independent variables are investor and market betas. All columns include a month fixed
effect. Columns (1-2) correspond to our baseline estimation of investor betas. Columns
(3-4) of the table calculate investor betas by excluding the reference firm from the fund
portfolio returns Columns (5-6) use rolling four year window betas but exclude the reference
month from each beta calculation. Lastly, Columns (7-8) measures separate daily betas
within each holding quarter for odd and even days. We match odd return days to even
day betas and vise versa to estimate the second stage price of risk. Reported t-statistics
in parentheses are heteroskedasticity-robust and double clustered by month and portfolio.
***p<0.01, **p<0.05, *p<0.1.

Table 4. Panel Regressions - Corporate Bonds

Main Excluded Rolling

(1) (2) (3) (4) (5) (6)

Investor Beta 1.338∗∗ 1.908∗∗ 1.270∗ 1.848∗∗ 1.128∗∗∗ 1.380∗∗∗

(0.656) (0.744) (0.648) (0.739) (0.348) (0.380)
Market Beta 0.672∗∗∗ 0.671∗∗∗ 0.513∗∗∗

(0.192) (0.191) (0.169)

Fixed Effects T x R T x R T x R T x R T x R T x R
Adjusted R2) 0.33 0.33 0.33 0.33 0.33 0.33
Observations 791,248 791,248 791,214 791,214 588,708 588,708

Note: This table estimates the OLS panel regression using monthly observations. The
dependent variable is monthly bond excess returns and the independent variables are investor
and market betas. Columns (1-2) correspond to our baseline estimation of investor betas.
Columns (3-4) of the table calculate investor betas by excluding the reference firm from
the fund portfolio returns Columns (5-6) use rolling five year window betas but exclude
the reference month from each beta calculation. Investor betas are aggregated using market
value weights to the bond×month observation level. The two panel regressions specifications
estimated for each investor beta include time x bond rating groups (from Standard & Poor’s),
T x R, fixed effects. Reported standard t-statistics in parentheses are heteroskedasticity-
robust and clustered at the time by letter rating group level. ***p<0.01, **p<0.05, *p<0.1.
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Table 5. Panel Regressions with Firm Fixed Effects - Corporate Bonds

Main Excluded Rolling

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Investor Beta 1.828∗∗∗ 2.272∗∗∗ 0.305 1.745∗∗ 2.208∗∗∗ 0.293 1.240∗∗∗ 1.379∗∗∗ 0.100
(0.691) (0.796) (0.564) (0.680) (0.788) (0.539) (0.407) (0.439) (0.238)

Market Beta 0.599∗∗∗ 0.037 0.594∗∗∗ 0.035 0.410∗∗∗ 0.016
(0.185) (0.097) (0.186) (0.099) (0.154) (0.108)

Fixed Effects T x ID T x ID T x ID x M T x ID T x ID T x ID x M T x ID T x ID T x ID x M
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 0.51 0.51 0.62 0.51 0.51 0.62 0.51 0.51 0.64
Observations 638,021 638,021 452,907 638,066 638,066 452,864 472,413 472,413 328,282

Note: This table estimates the OLS panel regression using monthly observations. The
dependent variable is monthly bond excess returns and the independent variables are investor
and market betas. Columns (1-3) correspond to our baseline estimation of investor betas.
Columns (4-6) of the table calculate investor betas by excluding the reference firm from
the fund portfolio returns Columns (7-9) use rolling five year window betas but exclude the
reference month from each beta calculation. Investor betas are aggregated using market value
weights to the bond×month observation level. The three panel regressions specifications
estimated for each investor beta include either time x firm, T x ID, or time x firm x maturity
bucket, T x ID x M, fixed effects. That is, every month, all available bonds are sorted in 6
equally populated quantiles according to the bonds’ remaining time to maturity. Reported
t-statistics in parentheses are heteroskedasticity-robust and clustered at the time and letter
rating group level. ***p<0.01, **p<0.05, *p<0.1.
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Table 6. Correlation with Commonly Priced Factors

FF-3 Carhart FF-5 HKM HXZ-q

I-Beta Rm-Rf SMB HML Rm-Rf SMB HML UMD Rm-Rf SMB HML RMW CMA Rm-Rf HKM Rm-Rf Size Invest. Prof.

Investor Beta 1.00
Rm-Rf 0.25 1.00
SMB 0.03 0.21 1.00
HML -0.05 0.21 0.10 1.00
Rm-Rf 0.21 0.89 0.20 0.17 1.00
SMB 0.02 0.17 0.97 0.08 0.23 1.00
HML -0.08 0.15 0.10 0.86 0.18 0.12 1.00
UMD 0.04 0.00 -0.04 -0.03 -0.05 -0.06 0.04 1.00
Rm-Rf 0.21 0.90 0.20 0.22 0.85 0.18 0.17 0.01 1.00
SMB 0.01 0.17 0.95 0.11 0.19 0.94 0.11 -0.04 0.25 1.00
HML -0.02 0.20 0.09 0.79 0.17 0.07 0.72 -0.03 0.23 0.12 1.00
RMW -0.05 -0.06 -0.03 0.08 -0.00 -0.02 0.04 0.08 0.13 0.16 0.25 1.00
CMA -0.04 -0.10 0.01 0.08 -0.05 0.02 0.05 0.02 0.03 0.03 -0.34 0.08 1.00
Rm-Rf 0.38 0.51 0.29 -0.23 0.49 0.27 -0.21 0.04 0.48 0.28 -0.14 -0.05 -0.09 1.00
HKM -0.03 0.04 -0.08 0.24 -0.00 -0.09 0.19 -0.16 0.03 -0.08 0.21 -0.04 -0.05 -0.50 1.00
Rm-Rf 0.23 0.81 0.06 -0.04 0.77 0.05 -0.05 0.05 0.80 0.05 -0.07 -0.05 0.03 0.53 0.04 1.00
Size 0.03 0.15 0.93 -0.00 0.16 0.92 0.03 -0.01 0.16 0.92 -0.01 -0.02 0.02 0.32 -0.09 0.11 1.00
Invest. -0.05 -0.00 0.02 0.44 0.03 0.03 0.39 0.04 0.09 0.04 0.14 0.07 0.61 -0.16 0.11 0.08 0.02 1.00
Prof. 0.01 -0.10 -0.24 -0.26 -0.06 -0.21 -0.22 0.34 -0.04 -0.17 -0.17 0.30 -0.04 -0.03 -0.15 0.02 -0.10 -0.07 1.00

Note: This table estimates the correlation matrix between the Investor Beta and other commonly priced factors. We consider factors from
Fama-French 3 factor, Carhart, Fama-French 5 Factor, He, Kelly, and Manela Intermediary. Investor betas are calculated using a 90 day
rolling window sample for each fund–stock pair using a two-factor first stage with investor fund returns and market returns as the factors.
Investor betas are aggregated using share weights to the stock x month observation level. Betas from other factor models are estimated over
the same windows. In all cases, we instrument for odd day betas using even day betas and vise versa. To form portfolios, we first sort stocks
each month into 25 portfolios formed on size and value then within each such portfolio sort into quintiles based on investor betas, for a total
of 125 portfolios.
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Table 7. Comparison with Commonly Priced Factors

A: Monthly Full Sample

(1) (2) (3) (4) (5)

Investor Beta 4.876∗∗∗ 4.206∗∗ 6.479∗∗∗ 5.563∗∗∗ 5.265∗∗∗

(2.78) (2.59) (3.83) (3.10) (3.37)

Model FF3 Carhart FF5 HKM HXZ-q
R2 0.707 0.707 0.707 0.706 0.707
Observations 54,969 54,969 54,969 54,969 54,969

B: Daily Odd-Even

(1) (2) (3) (4) (5)

Investor Beta 7.599∗∗∗ 6.925∗∗∗ 8.199∗∗∗ 10.951∗∗∗ 7.620∗∗∗

(4.46) (3.55) (4.57) (3.17) (4.19)

Model FF3 Carhart FF5 HKM HXZ-q
R2 0.648 0.649 0.648 0.660 0.648
Observations 54,967 54,967 54,967 25,500 54,967

Note: This table estimates the OLS panel regression using market and investor beta sorted
portfolios. The dependent variable is excess returns and the independent variables are in-
vestor betas and the betas measured from a variety of other factor models (Fama-French 3
factor, Carhart, Fama-French 5 Factor, He, Kelly, and Manela Intermediary, and Hue, Xue,
and Zhang q factor). Investor betas are calculated using a 90 day rolling window sample for
each fund–stock pair using a two-factor first stage with investor fund returns and market re-
turns as the factors. Investor betas are aggregated using share weights to the stock x month
observation level. Betas from other factor models are estimated over the same windows at
the stock level. In all cases, we instrument for odd day betas using even day betas and vise
versa. To form test portfolios, we first sort stocks each month into 25 portfolios formed on
size and value then within each such portfolio sort into quintiles based on investor betas, for
a total of 125 portfolios. Reported t-statistics in parentheses are heteroskedasticity-robust
and double clustered by return date and portfolio. ***p<0.01, **p<0.05, *p<0.1.
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Table 8. Investor Betas and Risk Models

A. Equities

Slope SE Adj. R2

Single Factor 4.755 0.789 0.797
CAPM 5.997 0.912 0.824
FF3 4.276 0.793 0.757
Carhart 4.573 0.738 0.806
FF5 3.748 0.598 0.809
HKM 4.48 0.836 0.755
HXZQ 3.767 0.835 0.682

B. Corporate Bonds

Slope SE Adj. R2

Single Factor 3.300 0.072 0.996
(Bond)-CAPM 1.082 0.081 0.951
FF3 3.140 0.166 0.975
FF5 2.985 0.141 0.980
Carhart 2.631 0.091 0.989
HKM 3.679 0.191 0.976
PS 3.006 0.186 0.967
BBW 1.060 0.070 0.962

Note: This Table presents slopes, standard errors, and adjusted R2s
from regressing ten portfolios sorted on investor betas on portfolio
excess returns when controlling for various well-known risk models in
the first stage (i.e., calculation of investor beta). First stage betas are
share-weighted as outlined in equation (14).

45



Internet Appendix For “Investor Betas”

A Additional Tables

Table A.1. Summary of Corporate Bond Holdings

Year Number of Investors % of Market Held
AUM (USD Million) Number of Bonds

Median 90th Percentile Median 90th Percentile

2006 1,281 49.0 53.7 628.5 48 162
2007 1,360 44.9 54.7 622.9 51 168
2008 1,570 44.7 54.7 617.6 53 182
2009 1,972 46.4 58.6 639.3 57 212
2010 2,036 49.6 63.5 725.5 58 216
2011 2,172 48.4 64.8 756.7 60 229
2012 2,444 49.2 67.8 769.8 64 236
2013 2,486 47.9 70.8 831.3 68 252
2014 2,622 46.6 70.4 852.6 67 258
2015 2,676 45.5 70.1 872.4 69 278
2016 3,260 45.2 66.7 792.0 68 282
2017 3,666 48.0 68.8 847.8 74 305
2018 3,297 44.6 71.6 878.9 79 331
2019 3,960 45.4 68.2 805.7 78 328
2020 3,478 44.1 76.1 983.4 86 377

Note: This table reports the summary statistics of the quarterly corporate bond holdings
in our sample. Each cell is the time-series mean of the quarterly summary statistic within
the given year. The sample period includes 55 quarters from 2006:Q1 to 2020:Q3.
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Table A.2. Part I: WRDS Characteristics by Beta Quintile

βinvQ1 βinvQ5 Q5-
Q1

βmktQ1 βmktQ5 Q5-
Q1

Market Beta 1.2 1.0 -0.2 0.4 1.9 1.4
Investor Beta 0.1 0.8 0.7 0.4 0.3 -0.1
Market Cap. 2.3 2.4 0.1 3.3 1.6 -1.7
Cyclically Adjusted P/E 12.6 17.8 5.2 17.7 12.2 -5.5
Book/Market 0.7 0.7 0.0 0.8 0.6 -0.2
Enterprise Value Multiple 7.4 8.9 1.5 9.3 7.2 -2.1
P/Oper. Earn. (Basic) 9.0 13.1 4.1 14.1 6.8 -7.3
P/Oper. Earn (Diluted) 9.9 14.3 4.4 16.0 7.5 -8.5
P/E (Diluted, Excl. EI) 9.0 12.9 3.9 13.5 7.5 -6.0
P/E (Diluted, Incl. EI) 8.7 12.6 3.8 13.2 7.3 -6.0
Price/Sales 2.4 1.7 -0.7 1.8 2.8 1.0
Price/Cash flow 5.8 8.4 2.6 7.7 6.2 -1.5
Dividend Payout Ratio % 19.1 25.0 5.9 29.1 10.7 -18.4
Net Profit Margin % -8.2 1.7 9.9 5.1 -14.0 -19.1
Op. Margin Before Depr % 7.2 14.0 6.8 20.0 1.3 -18.7
Op. Margin After Depr % 0.1 8.9 8.8 14.3 -6.5 -20.8
Gross Profit Margin % 36.0 36.1 0.0 39.0 34.8 -4.2
P.T. Profit Margin % -6.3 4.7 11.0 8.9 -12.8 -21.7
Cash Flow Margin -0.0 0.1 0.1 0.1 -0.1 -0.2
Return on Equity % 6.4 10.4 4.0 9.3 5.8 -3.5
Return on Equity -1.6 6.2 7.8 7.3 -5.4 -12.6
Return on Capital Employed % 5.0 11.0 6.0 11.2 2.5 -8.7
Effective Tax Rate % 31.0 32.4 1.3 32.3 29.8 -2.5
A.T. ret on Common Equity % -1.6 6.6 8.2 8.0 -5.4 -13.4
A.T. ret on Invested Capital % 1.9 6.2 4.3 5.8 0.6 -5.2
A.T. ret on Total Equity % -1.3 6.7 8.0 8.1 -5.0 -13.0
P.T. ret on Net Op. Assets % 5.4 15.1 9.8 15.9 2.7 -13.3
P.T. ret on Total Earning Assets % 2.8 9.9 7.1 10.5 1.0 -9.5
Gross Profit/Total Assets % 25.8 28.6 2.8 21.1 30.1 9.0
Common Equity/Invested Capital % 70.0 70.6 0.6 65.8 72.8 7.0
LT Debt/Invested Capital % 28.2 28.1 -0.2 32.4 25.6 -6.9
Capitalization Ratio % 41.1 40.1 -1.0 47.1 35.2 -11.9
Capitalization Ratio 28.3 28.1 -0.2 32.5 25.7 -6.8
Interest/LT Debt % 15.0 13.2 -1.8 11.9 16.3 4.4
Interest/Total Debt % 9.0 8.3 -0.7 7.9 9.3 1.4

Note: This table displays time-series averages of various firm characteristics by investor
and market beta quintile. All values are first averaged each quarter by quintile and then a
time-series average is taken over the period 1980-2018.
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Table A.2. Part II: WRDS Characteristics by Beta Quintile

βinvQ1 βinvQ5 Q5-
Q1

βmktQ1 βmktQ5 Q5-
Q1

Cash/Total Liabilities % 64.2 40.7 -23.5 28.6 88.2 59.5
Inventory/Current Assets % 20.2 26.2 6.1 23.4 19.9 -3.5
Receivables/Current Assets % 33.7 37.7 4.0 38.5 31.4 -7.1
Total Debt/Total Assets % 21.7 21.0 -0.6 22.7 20.9 -1.7
Total Debt/EBITDA 2.4 2.5 0.1 3.0 2.0 -1.1
LT Debt/Total Liab. % 29.4 27.7 -1.7 27.8 28.5 0.7
Current Debt/Total Liab. % 54.2 51.6 -2.6 43.3 58.6 15.4
Long-term Debt/Total Liabilities 29.0 28.5 -0.5 29.0 29.3 0.3
Profit Before Depr./Current Liab. % 31.1 61.0 29.9 74.1 21.0 -53.1
Oper. CF/Current Liab. % 17.6 40.2 22.6 49.8 8.6 -41.2
Cash Flow/Total Liab. % 6.6 14.9 8.3 12.6 4.9 -7.8
Free Cash Flow/Oper. CF % 4.6 18.5 13.9 16.1 -2.5 -18.6
Total Liabilities/Total Tangible Assets 14.7 13.9 -0.8 20.5 8.7 -11.8
LT Debt/Book Equity % 60.1 55.3 -4.7 62.9 55.9 -7.0
Total Debt/Total Assets % 55.0 56.0 1.0 63.3 48.2 -15.1
Total Debt/Total Capital % 45.3 45.1 -0.2 53.9 38.0 -15.9
Total Debt/Equity 2.9 2.7 -0.1 3.7 2.0 -1.7
After-tax Interest Coverage 2.7 8.8 6.1 8.5 0.5 -8.0
Interest Coverage Ratio 7.6 14.1 6.4 12.5 6.3 -6.3
Cash Ratio 1.4 0.9 -0.5 0.7 1.6 0.9
Quick Ratio (Acid Test) 2.3 1.8 -0.5 1.6 2.6 1.0
Current Ratio 2.8 2.5 -0.3 2.1 3.1 1.1
Cash Conversion Cycle (Days) 100.4 100.8 0.3 82.6 105.9 23.4
Inventory Turnover 17.4 14.3 -3.1 19.6 13.5 -6.1
Asset Turnover 0.8 0.9 0.1 0.7 0.9 0.2
Receivables Turnover 7.2 7.2 0.0 7.1 7.4 0.2
Payables Turnover 10.2 10.5 0.4 9.1 10.7 1.6
Sales/Invested Capital 1.4 1.5 0.2 1.2 1.4 0.2
Sales/Stockholders Equity 2.2 2.3 0.1 2.0 2.3 0.3
Sales/Working Capital 7.2 8.2 1.0 11.5 5.6 -5.9
R&D Expense/Sales % 6.5 2.8 -3.6 1.3 10.0 8.7
Advertising Expense/Sales % 0.8 0.7 -0.1 0.7 0.8 0.1
Labor Expense/Sales % 4.8 5.9 1.1 8.3 2.5 -5.8
Accruals/Assets % 4.9 4.0 -0.9 3.4 5.5 2.1
Price 19.4 26.1 6.7 26.7 18.1 -8.6
Price/Book 2.5 2.2 -0.3 1.9 2.9 0.9
Trailing PEG ratio 1.0 1.3 0.3 1.6 0.7 -0.9
Dividend Yield % 3.0 2.8 -0.2 3.8 2.2 -1.6
Forward PEG ratio 0.1 0.4 0.2 0.6 -0.0 -0.6
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Table A.3. Part I: WRDS Characteristics by Beta Quintile - Corporate Bonds

βinvQ1 βinvQ5 Q5-
Q1

βmktQ1 βmktQ5 Q5-
Q1

Market Beta 0.8 1.0 0.2 0.2 2.0 1.8
Investor Beta 0.4 1.3 0.8 0.8 0.9 0.1
Book/Market 0.6 0.8 0.2 0.7 0.7 0.0
Enterprise Value Multiple 11.7 14.9 3.2 14.4 12.7 -1.7
P/E (Diluted, Excl. EI) 15.9 15.1 -0.8 13.2 18.8 5.6
P/E (Diluted, Incl. EI) 15.8 13.6 -2.2 12.3 18.2 5.9
Price/Sales 1.7 1.7 0.0 1.7 1.7 0.0
Dividend Payout Ratio % 47.8 80.1 32.3 58.9 58.3 -0.6
Net Profit Margin % 7.7 5.1 -2.7 6.1 8.5 2.4
Op. Margin Before Depr % 21.6 24.8 3.2 23.1 23.6 0.5
Op. Margin After Depr % 16.4 15.1 -1.3 14.9 17.9 3.0
Gross Profit Margin % 39.2 38.0 -1.3 40.0 38.7 -1.2
P.T. Profit Margin % 11.3 8.0 -3.3 8.9 12.4 3.4
Cash Flow Margin 0.1 0.2 0.0 0.2 0.2 0.0
Return on Equity % 15.5 9.6 -5.8 12.4 15.0 2.6
Return on Capital Employed % 16.9 13.4 -3.4 14.1 16.0 1.9
Effective Tax Rate % 26.2 26.6 0.4 21.0 25.1 4.1
A.T. ret on Common Equity % 7.9 5.2 -2.7 14.5 15.5 0.9
A.T. ret on Invested Capital % 12.1 8.9 -3.2 10.1 11.7 1.6
A.T. ret on Total Equity % 10.1 0.0 -10.1 13.9 14.4 0.4
P.T. ret on Net Op. Assets % 39.4 3.5 -35.9 25.3 28.0 2.8
P.T. ret on Total Earning Assets % 20.2 14.6 -5.7 17.0 20.0 3.0
Gross Profit/Total Assets % 27.2 23.3 -3.9 28.0 22.4 -5.6
Common Equity/Invested Capital % 48.9 45.2 -3.8 45.5 47.9 2.4
LT Debt/Invested Capital % 49.4 52.7 3.3 52.7 50.5 -2.2
Capitalization Ratio % 49.7 49.9 0.2 49.8 50.6 0.8
Interest/LT Debt % 6.8 8.9 2.1 7.8 8.5 0.7
Interest/Total Debt % 5.9 6.0 0.1 6.1 5.6 -0.6

Note: This table displays time-series averages of various firm characteristics by investor and
market beta quintile. For firms which have multiple bonds outstanding contemporaneously,
we consider the average investor and market beta, respectively. All firm characteristics are
averaged each quarter by quintiles and then a time-series average is taken over the full sample
period between 2006 and 2020.
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Table A.3. Part II: WRDS Characteristics by Beta Quintile - Corporate Bonds

βinvQ1 βinvQ5 Q5-
Q1

βmktQ1 βmktQ5 Q5-
Q1

Cash/Total Liabilities % 16.2 14.1 -2.1 15.1 14.8 -0.3
Inventory/Current Assets % 24.6 23.2 -1.4 23.4 23.6 0.2
Receivables/Current Assets % 37.6 35.9 -1.7 37.8 36.9 -0.8
Total Debt/Total Assets % 31.4 34.2 2.8 34.7 29.9 -4.9
Total Debt/EBITDA 3.5 5.4 2.0 4.6 4.6 -0.1
LT Debt/Total Liab. % 40.9 44.5 3.6 46.6 36.8 -9.7
Current Debt/Total Liab. % 34.3 29.1 -5.2 31.3 33.8 2.5
Profit Before Depr./Current Liab. % 87.4 98.0 10.6 93.3 87.5 -5.8
Oper. CF/Current Liab. % 62.2 73.6 11.4 69.9 63.7 -6.2
Cash Flow/Total Liab. % 15.5 14.8 -0.7 16.6 13.1 -3.4
Free Cash Flow/Oper. CF % 37.8 -28.3 -66.2 11.2 19.4 8.3
Total Liabilities/Total Tangible Assets 26.7 27.6 0.8 21.8 44.8 23.0
LT Debt/Book Equity % 120.7 160.9 40.2 164.3 116.9 -47.3
Total Debt/Total Capital % 59.5 59.3 -0.2 57.8 61.9 4.1
Total Debt/Equity 2.7 8.8 6.1 2.7 3.9 1.2
After-tax Interest Coverage 7.8 25.9 18.1 7.6 24.6 17.0
Interest Coverage Ratio 11.2 41.1 29.9 11.4 38.8 27.3
Cash Ratio 0.5 0.5 0.0 0.5 0.5 0.0
Quick Ratio (Acid Test) 1.3 1.2 -0.1 1.3 1.3 -0.1
Current Ratio 1.8 1.6 -0.2 1.7 1.7 -0.1
Cash Conversion Cycle (Days) 106.0 222.4 116.4 124.4 185.6 61.2
Inventory Turnover 31.9 91.1 59.2 17.7 107.7 90.0
Asset Turnover 0.9 0.7 -0.2 0.9 0.7 -0.1
Receivables Turnover 19.6 17.3 -2.3 17.1 20.4 3.3
Payables Turnover 12.6 9.8 -2.9 12.0 10.0 -2.0
Sales/Invested Capital 1.6 1.4 -0.2 1.6 1.4 -0.2
Sales/Stockholders Equity 4.1 8.1 4.0 5.8 3.4 -2.4
Sales/Working Capital 32.9 60.1 27.1 45.4 21.9 -23.5
R& D Expense/Sales % 1.5 1.3 -0.3 1.5 1.2 -0.2
Advertising Expense/Sales % 1.1 1.0 -0.1 1.2 1.1 -0.1
Labor Expense/Sales % 5.4 2.8 -2.6 2.8 6.2 3.4
Accruals/Assets % -4.1 -5.6 -1.5 -5.4 -3.7 1.7
Price/Book 3.0 2.7 -0.2 3.0 2.8 -0.2
Trailing PEG ratio 2.1 2.5 0.4 2.1 2.2 0.1
Dividend Yield % 2.1 2.6 0.5 2.4 2.4 0.0
Forward PEG ratio 0.4 0.1 -0.3 0.2 0.6 0.3
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Table A.4. Number of Bonds per Company

Number of Bonds Firm Months Relative Frequency (in %)
1 45,715 31.05
2 24,709 16.78
3 15,908 10.81
4 11,836 8.04
5 8,678 5.89
6 to 10 18,869 12.81
More than 10 21,502 14.62

Total 147,217 100.00

Table A.5. Dispersion in Bond Investor Betas within Company

A.Within Firm Standard Deviation in Investor Betas

mean p25 median p75 sd N
2 to 5 Bonds 0.21 0.11 0.19 0.29 0.13 57,478
5 to 10 Bonds 0.26 0.20 0.26 0.32 0.08 22,841
more than 10 Bonds 0.28 0.24 0.29 0.32 0.06 17,505

B. .Within Firm Standard Deviation in Investor Betas (excluded)

mean p25 median p75 sd N
2 to 5 Bonds 0.21 0.11 0.19 0.30 0.13 57,323
5 to 10 Bonds 0.26 0.20 0.27 0.32 0.08 22,839
more than 10 Bonds 0.28 0.25 0.29 0.32 0.06 17,505
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B General Equilibrium

We model a multi-asset market similar to that in Merton (1987), with two key general-

izations. First, we allow risk, even after it has been residualized against a common factor,

to be correlated across stocks rather than uncorrelated. Second, we do not assume strict

rationality of all investors. Rather, traders in our economy feature, “group rationality”, a

weaker condition. In what follows, uppercase letters are matrices, bold lowercase are vectors,

and all else are scalars.

B.1 Model Environment

We assume a two period economy with discrete time t = 0, 1. There are N stocks in

the economy, indexed by s = 1, ..., N , each in unit supply. A risk-free bond is available in

perfectly elastic supply with a gross interest rate of rf . Stock s earns time-1 dividends of

ds per share. We collect the individual-stock dividends in the column vector d and assume

that d ∼ N (µd,Γ).

Let Rm ≡ q′D − PmRf denote the dollar excess return on the market. Similarly, let

R̃ ≡ D−P Rf denote the vector of dollar excess returns on theN stocks and let r ≡ R̃−βmRm

be the vector of market-neutral returns.20

Since prices are observable, the covariance matrix of returns equals the covariance ma-

trix of dividends, Γ, with eigenvalue decomposition Γ = QΛQ′. We assume that the first

eigenvector (associated with largest eigenvalue) is proportional to market weights, ι.

Since the market portfolio is the first PC of Γ, we have that

Σ ≡ cov (r) = QΛ−1Q
′, (C.1)

where Λ−1 equals Λ with the (1,1) element set to zero. The variance of returns on the market

20.βm is the vector of market betas.
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portfolio is

σ2
m = Var(Rm) = ι′q1q

′
1ιλ1 = Nλ1, (C.2)

where λ1 is the first eigenvalue of Λ.

B.2 Investors

There are K masses of investors (“funds”) with exponential utility and mass Wk, which

we refer to as wealth. Let W =
∑

Mk be the total wealth of investors. Their problem is

max Ek [−exp (−ρWk1)] (C.3)

s.t. Wk1 =(Wk0 − Ck0)RF + yRm + wk (R1) , (C.4)

where Ek represents an expectation taken under investor ks beliefs. Each investor k may

only hold a subset Sk ⊆ {1 . . . N} of the universe of assets, as well as the risk-free asset and

market ETF.21 This constraint is equivalent to the “knowledge” limitation in Merton (1987).

It is further motivated by He and Xiong (2013), who show that narrow mandates can arise

as optimal contracts for delegated asset management. We assume investors know objective

covariances, Σ, and then aggregate, but may disagree about the market risk premium, µm,

and CAPM deviations, α. Let νk = αk − α be the vector of cross-sectional belief distortions

of fund k. We use the convention that if asset s is not in Sk (not allowed to be held by

investor k) then νks = 0. Note that since we deal with dollar returns, disagreement about

expected cash flows and returns are equivalent.

As is well known, an investor’s problem can be separated into two parts; choosing an

optimal quantity of the market ETF and independently, choosing how much of each market-

neutralized stock to hold. Let Sk be a diagonal matrix with entries equal to 1 if the asset is

in Sk and 0 otherwise. Sk is called a “selector” matrix. Fund k’s optimal portfolio is given

21. Equivalently, investors face fixed holding costs for individual stocks, which may vary by asset i×
investor k. Then Sk can be interpreted as the set of assets the investor chooses to hold.
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by

yk =
µm,k

ρσ2
m

(C.5)

θk =
1

ρ
(SkΣSk)

+ αk, (C.6)

where (·)+ indicates the Moore-Penrose pseudo-inverse.

In addition, there may be traders with inelastic demand vector δ̃. These traders can

be viewed as sentiment investors, or investors with un-modeled hedging demands. Linearly

projecting δ on to the market portfolio weights, we have δ̃ = δm + δ where δm =
(
q′δ̃
)
q.

B.3 Equilibrium

First, for the aggregate index, market clearing gives

1 =
1

ρσ2
m

∑
Wkµm,k + δm. (C.7)

Since we make no assumption regarding µm,k, the model is silent about the objective market

risk premium, µm.

From this point, we can “solve” the model in two ways. First, we briefly show the

explicit solution for α, which turns out to be somewhat ugly. Next, we exploit the first

order condition in eq. (C.6) to obtain each investor’s subjective risk-return relationship and

then aggregate. This analysis yields an empirically useful characterization of the equilibrium

without providing a direct construction for expected returns.

B.3.1 Explicit Solution

Start with eq. (C.6) and aggregate across funds. Market clearing implies

α = −Ω−1δ −
K∑
1

Wk [SkΣSk]
+ νk (C.8)
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Ω =
K∑
1

Wk [SkΣSk]
+ . (C.9)

If investors are unconstrained (can hold all assets), the solution simplifies to

α = −Σδ −
K∑
1

Wkνk. (C.10)

Eq. (C.8) shows that in the constrained model, investors’ belief errors, νk, affect equilib-

rium prices unless the share-weighted average error is zero. Eq. (C.10) shows that in the

unconstrained model, investors’ belief errors, νk, affect equilibrium prices unless the wealth-

weighted average error is zero. In our empirical analysis, we use both weighting schemes and

obtain similar findings.

B.3.2 Risk-Return

Let zk = θ′kr be investor k’s portfolio return orthogonalized with respect to the market.

Start with the optimal portfolio weights eq. (C.6), compute the covariance of any stock

rs ∈ Sk with zk to obtain the investor’s subjective risk-return trade off for market-neutral

betas

αs,k = ρ cov (rs, zk) , (C.11)

which resembles a subjective “idiosyncratic CAPM.” Note that the wealth of each investor

type, Wk, does not explicitly show up in this expression. Of course the distribution of wealth

affects the equilibrium, but the investor optimization adjusts her portfolio weights so that

her Euler equation holds for all assets she can trade.

Combined with group rationality we obtain the objective pricing relation

αs = ρ
∑
κs

ωkcov (rs, zk) = ρ cov

(
rs,
∑
κs

ωkzk

)
. (C.12)

Notice that the above representation makes no assumptions about νk or δ, and thus holds
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no matter what values these distortions take.

B.4 An Example

We now present a simple example of the model to highlight the main mechanism. The

model environment conforms to the above general framework. The specific configuration

of covariance, constraints, and noise trading are stark in order to clearly demonstrate the

possible consequences of partial segmentation. There are four assets, (1, 2, 3, 4) and four

unit masses of investors, (A, B, C, D), each of whom can invest in only two of the four assets

and have unit risk aversion. A can invest in assets 1 and 2, B in 2 and 3, and C in 3 and 4

and D in 1 and 4. In addition, each investor can invest in the market ETF.

Recall Γ is the covariance matrix of returns, with eigen decomposition Γ = QΛQ′. We

assume Q and Λ are

Q =



1
2

1√
2

0 1
2

1
2

0 1√
2

−1
2

1
2

− 1√
2

0 1
2

1
2

0 − 1√
2

−1
2


, Λ =



Ξ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ξ


, (C.13)

where Ξ ≫ 1 and ξ ≪ 1. The residual correlation matrix (after orthogonalizing with respect

to the market) is

corr (r) =



1 − 1
2ξ

−1 + 1
2ξ

− 1
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− 1
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2ξ

− 1
2ξ

1 − 1
2ξ

− 1
2ξ

−1 + 1
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− 1
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1


≈



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


, (C.14)

Finally, we assume δ′ ∝ [1− ε 1 + ε 1− ε 1 + ε] where ε ≈ 0. Immediately one can see

that as ξ → 0 the model admits strict arbitrage. However, no investor is able to exploit this
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Fig. B.1. Unconstrained and Constrained Equilibria
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Note: This figure displays equilibrium CAPM αs from the unconstrained model on
horizontal axis and αs from the constrained model on the vertical axis.

opportunity.

Using the constrained and unconstrained solutions given in B.3.1, we obtain equilibrium

CAPM-αs under both settings. The figure shows that constraints can change the relative

ordering of αs, can cause some αs to change sign, and other αs to increase in magnitude. In

short, measuring the average investor β rather than β with respect to the aggregate investor

portfolio is key. Looking at the scale of the axes, the cross-sectional dispersion in α is almost

zero in the unconstrained setting. In contrast, the constrained setting generates two orders

of magnitude greater dispersion. This obtains because no investor can take advantage of the

approximate arbitrages available due to the Merton-style holding restrictions.
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