Expertise Overlap and Team Productivity: Evidence from the Hospital Industry

> Danyelle Branco Sao Paulo School of Economics-FGV

> Bladimir Carrillo Sao Paulo School of Economics-FGV

> > Di Fang University of Florida

Wilman Iglesias Vocational Economics

July 27, 2023

How to organize teams to achieve higher productivity?

- Why important? Many organizations use teamwork
- Our focus: should teams consist of heterogeneous specialists or members with similar expertise?

Diversity or shared expertise?

Members with different expertise \implies productive complementarities

- Adam Smith (1776)
 - > The most dissimilar geniuses are of use to one another

But ↑ coordination costs

- Becker and Murphy (1992):
 - poorer coordination of tasks in teams with more separate specialists

What we do?

Teamwork in the context of a heart procedure in Brazil

- Effects of expertise overlap on patient mortality
 - Expertise overlap: share of overlapping medical specialties between doctors

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Policy relevant context:
 - Healthcare is teamwork-intensive
- Preview:
 - expertise overlap \implies mortality \Downarrow

Existing Research and Contributions

What is new here?

- Theory of team composition: Groves (1973), Becker and Murphy (1992), Lazear (1999), Che and Yoo (2001), among others.
 - We empirically investigate some of these ideas
- Cultural and ethnic diversity: (Hjort, 2014; Lyons, 2017; Marx et al 2021)
 - ► demographic diversity ≠ skill or specialized knowledge diversity
- Variation in the quality and cost of care: financial incentives (Clemens and Gottlieb, 2014), medical skill (Chan, Gentzkow, and Yu, 2019), team-specific human capital (Chen, 2021)
 - **our paper:** variation in expertise among team members

Background

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

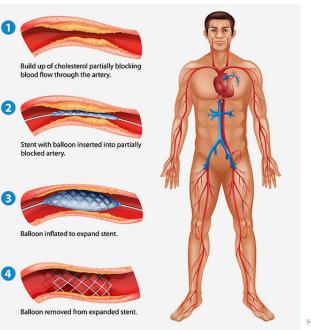
Brazil's unified health system —(SUS)

- Universal health system:
 - largest public health care system in the world
 - covering over 150 million people
 - more than 75% of Brazil's population (SUS, 2021)
 - annual spending is around R290 billion (or USD 58 billion)

- Hospital care through public and affiliated private health hospitals:
 Reimbursement system
 - per procedure
 - standardized nationwide fees

Specialties

- There are about 60 specialties in Brazil
- Doctors complete more than one specialty
 - ► On average, 2-3
- Some specialties are pre-requirement for others


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Percuntaneous Coronary Intervention (PCI)

- Nonsurgical technique to restore the blood flow through the blocked arteries.
 - catheter with a tiny balloon and stent to widen the diseased artery
 - the most recommended procedure for patients with severe clinical conditions

- e.g., heart attacks (≈50% of all cases)
- length of stay is \approx 5 days, depending on the case

Percutaneous Coronary Intervention (PCI)

PCI teams

The team consists of one proceduralist and one or more physicians:

- Proceduralist: a PCI-operator who executes the procedure.
- Physicians: provide pre/post-procedure hospital visits

Communication before/after procedure:

• before procedure \implies decision about timing and strategy

- require inputs from physicians
- after procedure \implies managment of complications

Assigment of Physicians to Teams

- Assigment rule 1: availability
 - limited sorting
 - doctor schedules set well in advance
- Assigment rule 2: need
 - ► Example: heart attack patients with a history of cancer ⇒ oncologist
 - We observe the specialty that motivated the assigned of each physician to cases—focal specialty

Data and Identification

New Dataset on Health Care

Monthly data on doctor background:

- Universe of health professionals (with unique identifiers)
- All specialties are observed
- hospital affiliations

Hospital data on patients:

- dates of admissions and discharges
- All medical procedures
- Identity of all health professionals (with unique identifiers)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Background information (age, gender, race, etc)
- 30-day mortality

Period: 2009-2020

Measuring Expertise Overlap

Expertise overlap between proceduralist j and physician k treating patient i:

$$z_{ijk} = \frac{\# \text{overlapping specialties}}{\# \text{specialties}} \tag{}$$

Example:

Proceduralist: cardiology, and oncology **Physician:** cardiology, and general surgery

Specialties: 3 (cardiology, oncology, general surgery) Overlapping specialties: 1 (cardiology)

$$z_{ijk} = \frac{1}{3} = 0.33$$

Measuring Expertise Overlap

when multiple physicians:

Expertise overlap_{*ij*} =
$$Z_{ij} = \sum_{k \in \mathcal{K}(i)} \left(\underbrace{\frac{q_k}{\sum\limits_{k \in \mathcal{K}(i)} q_k}}_{\text{share of visits}} \right) \times \underbrace{\frac{z_{jk}}{\sum\limits_{k \in \mathcal{K}(i)} q_k}}_{\text{expertise overlap}}$$
(2)
It is a weighted mean, where the number of hospital visits by physicians is

It is a weighted mean, where the number of hospital visits by physicians is used as weights

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Identification

Overview - I

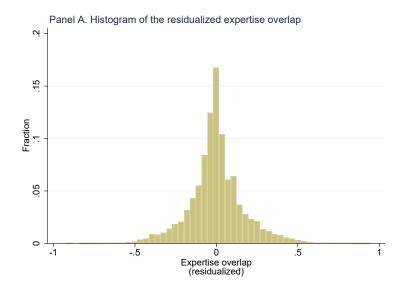
Within-proceduralist approach —proceduralist-time fixed effects:

• Patients treated by the same proceduralist but by different physicians

- Sample limited to emergency health conditions
- Conditioning on focal specialty fixed effects

Identification

Overview - II


Variation caused by institutional features:

- Residency programs: limited supply
- Multiple paths to specialize in a given area. Example:
 - Pediatrics \implies intensive care medicine; or
 - general surgery \implies intensive care medicine; or
 - Anesthesiology \implies intensive care medicine; or
 - ▶ Among others ⇒ intensive care medicine; or
- Pre-requisites can differ across institutions (and regions)
 - Some institutions could have zero pre-requirements for some specialties

What does this mean?

- Idiosyncratic variation in expertise overlap
 - Identical individulas could follow different paths for a same specialty

Identifying Variation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Estimating Equation

イロト 不得 トイヨト イヨト

3

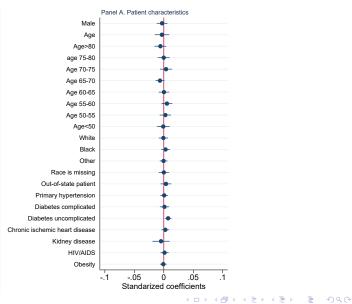
i indexes patient, j proceduralist, and t year

parameter of interest is β

OBS: standard errors clustered by hospital

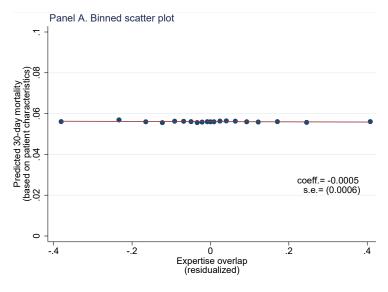
Identifying Assumptions

Condition 1. (Independence)


Conditional on proceduralist-time and focal specialty fixed effects, patient potential outcomes are independent of the expertise overlap

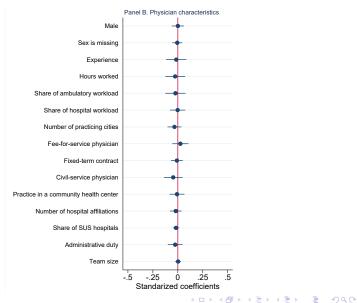
Condition 2. (Exclusion)

Conditional on proceduralist-time and focal specialty fixed effects, unobserved doctor characteristics are independent of the expertise overlap

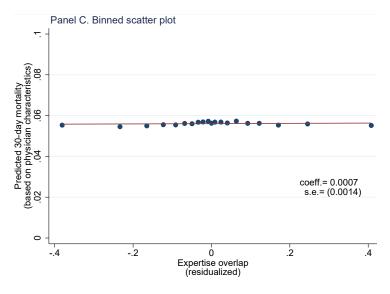

Condition 1. Covariate Balance

(patient characteristics)

Condition 1. Predicted Mortality


(based on patient characteristics)

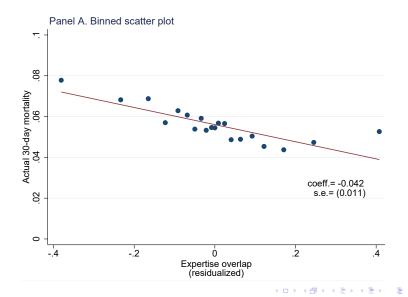
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Condition 2. Covariate Balance

(physician characteristics)

Condition 2. Predicted Mortality

(based on physician characteristics)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results

Main Finding

actual 30-day mortality

9 a C

Effects on Mortality

	Dependent variable is 30-day mortality						
	(1)	(2)	(3)	(4)	(5)		
Expertise overlap	-0.0419	-0.041	-0.0415	-0.0425	-0.041		
	[0.0107]***	[0.0107]***	[0.0107]***	[0.0107]***	[0.0106]***		
Mean of dep. variable	0.056	0.056	0.056	0.056	0.056		
Observations	176108	176108	176108	176108	176108		
Proceduralist × year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Focal specialty FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Hospital × time FE		\checkmark			\checkmark		
Patient characteristics			\checkmark		\checkmark		
Physician characteristics				\checkmark	\checkmark		

Notes: standard errors clustered at the hospital level.

* p < 0.1;** p < 0.05;*** p < 0.01.

10 p.p increase in expertise overlap \implies 0.41 p.p (or \approx 7.3%) \Downarrow in mortality

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Major Concerns

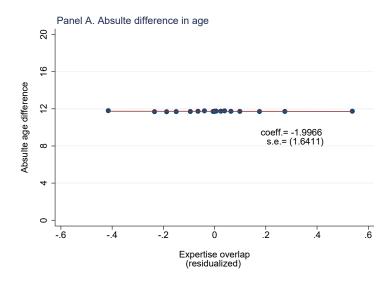
Two obvious concerns:

• Similarity in other individual characteristics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

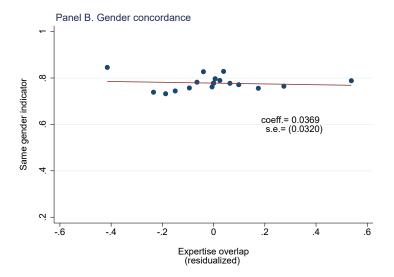
• Correlation with number of specialties

Concern 1: Similarity in other characteristics

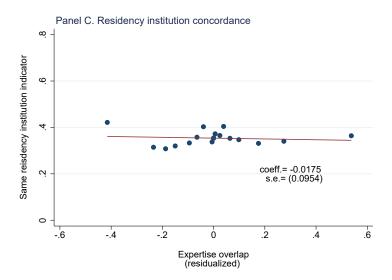

Specialty overlap could be correlated with similarities in other characteristics between proceduralists and physicians:

- doctors of the same gender or of adjacent birth cohorts could be more likely to choose the same specialties
- doctors with the same specialties could come from the same training institution
- teammates with the same gender or similar ages or from the same training institution may be able to work together more efficiently

Institutional characteristics make these stories less likely:


- multiple paths to specialize; hard to get in residency programs; variation in pre-required specialties across training institutions
- individuals with identical preferences may end up with different specialties

No correlation between expertise overlap and ...


◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

No correlation between expertise overlap and ...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

No correlation between expertise overlap and ...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

Expertise overlap and number of specialties are correlated by construction

Number of specialties could have an independent effect on patient outcomes

• More cardiologists in the team could actually be good for patients with heart issues

In practice, correlation is weak, negative, and only marginally significant

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

correlation coefficient = -0.12

Results robust to controlling for number of specialties

	Dependent variable is 30-day mortality					
	(1)	(2)	(3)	(4)		
Expertise overlap	-0.041	-0.0414	-0.0421	-0.0392		
	[0.0106]***	[0.0106]***	[0.0108]***	[0.0109]***		
Mean of dep. variable	0.056	0.056	0.056	0.056		
Observations	176108	176108	176108	176108		
Number of specialties		\checkmark	\checkmark	\checkmark		
Number of cardiovascular-related specialties			\checkmark	\checkmark		
Basic controls	√	\checkmark	✓	\checkmark		

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Notes. Standard errors are clustered at the hospital level.

* p < 0.1;** p < 0.05;*** p < 0.01.

Other concerns

Selection into procedure

- What if patients select into procedure depending on teams?
 - No evidence that is is the case

Case severity

- What if case severity ⇒ team composition?
 - Control for diagnosis FE

Expertise overlap or shared work experience?

- what if repeated team experience \implies team composition?
 - No evidence and control for team-specific experience

Physician Availability Design

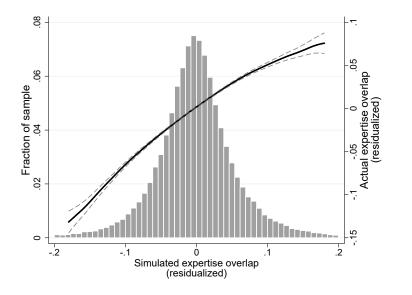
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Intent-to-Treat Framework

Idea. Simulate team composition based on the physicians available at patient arrival

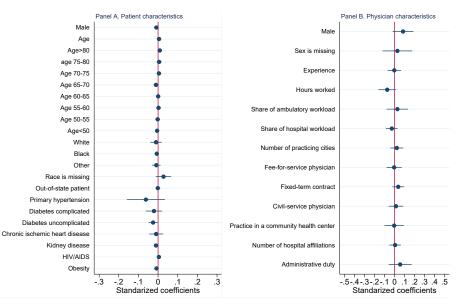
• Simulted overlap as instrument for actual overlap

Available physicians: Based on whether they provided any care on that date.


Simulated overlap:

$$= \sum_{k \in \mathcal{K}(d)} w_{kd} \times z_{jkd} \quad \text{with} \quad w_{kd} = \frac{h_{kd}}{\sum_{k \in \mathcal{K}(d)} h_{kd}}$$
(4)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


where h is the number of hours worked per week.

First Stage

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Covariate Balance

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results

	Dependent variable is:					
	Expertise overlap	30-day moi	rtality			
	(First Stage)	(Reduced-Form)	(2SLS)			
	(1)	(2)	(3)			
Expertise overlap			-0.0447			
			[0.0199]**			
Simulated expertise overlap	0.5399	-0.0241				
	[0.0588]***	[0.0113]**				
kleibergen2006generalized F statistics			84.1518			
Mean of dep. variable	0.4288	0.056	0.056			
Observations	175349	175349	175349			
Patient characteristics	\checkmark	\checkmark	\checkmark			
Physician characteristics	\checkmark	\checkmark	\checkmark			
Hospital × month FE	\checkmark	\checkmark	\checkmark			
Hospital × day-of-week FE	\checkmark	\checkmark	\checkmark			
Date-of-admission FE	\checkmark	\checkmark	\checkmark			
Proceduralist FE	\checkmark	\checkmark	\checkmark			

Notes. Standard errors are clustered at the hospital level.

Mechanisms

・ロト・(型ト・(三ト・(三ト))
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

Two classes of mechanisms:

- Increased effort
 - more motiviated when working with similar "co-workers"

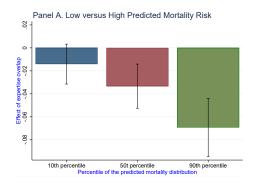
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- costs of engaging in moral hazard are higher
- Improved team coordination
 - better communication
 - doctors familiar with each other practice's style

No Evidence of Increased Effort

	Dependent variable is							
		Number of exam tests						
	length of stay (1)	biochemical tests exams (2)	hematology tests exams (3)	laboratory tests exams (4)	radiology exams (5)	electro- cardiogramas (6)	Medical input index (7)	Hospital spending (in R\$) (8)
Expertise overlap	-0.5847 [0.2551]**	-5.4217 [1.3773]***	-1.2111 [0.3720]***	-0.5671 [0.1732]***	-0.5422 [0.1729]***	-0.3499 [0.1594]**	-0.1341 [0.0367]***	-651.8722 [258.9633]**
Mean of dep. variable Observations	5.7428 176108	18.8877 176108	5.0055 176108	1.5795 176108	1.1702 176108	2.5858 176108	1.40e-09 176108	10619.0879 176108
Proceduralist × year FE Focal specialty FE	۲ ۲	4	4	\$ \$	4	1	1	4
Hospital times time FE Patient characteristics	۲ ۲	4	4	۲ ۲	4	√ √	√ √	<i>√</i>
Physician characteristics	~	~	1	~	~	~	√	√

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

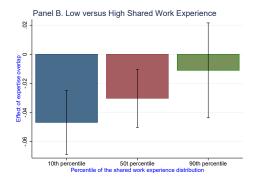

Notes. Standard errors are clustered at the hospital level.

* p < 0.1;** p < 0.05;*** p < 0.01

Teams with shared expertise become more productive

• Consistent with improved team coordination

Case Complexity and Expertise Overlap



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

more complex cases require better coordination

higher returns to expertise overlap

Previous Team Experience and Expertise Overlap

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

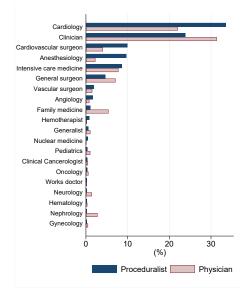
less shared experience, higher returns to learning each other style

higher returns to expertise overlap

Next step

Considering other medical procedures.

- Other heart procedures:
 - Pacemaker implantation
 - Coronary Artery Bypass Graft Surgery
- Non-heart procedures:
 - Treatments for intracerebral hemoerragies


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Emergency surgeries

Thank You!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Top 20 specialties

Potential Expertise Overlap and PCI probability

	Dependent variable is PCI treatment			eatment
	(1)	(2)	(3)	(4)
Simulated expertise overlap	0.0338	0.0587	0.0304	0.0302
	[0.0986]	[0.0969]	[0.0386]	[0.0385]
Mean of dep. variable	0.4507	0.4507	0.4507	0.4507
Observations	1847482	1847482	1847463	1847463
Day-of-admission FE		\checkmark	\checkmark	\checkmark
Hospital × (day-of-week, month, and year) FE			\checkmark	\checkmark
Patient characteristics				\checkmark

Notes. Standard errors are clustered at the hospital level. * p < 0.1;** p < 0.05;*** p < 0.01.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Actual Expertise Overlap and Predicted PCI Probability

	Dependent variable is predicted PCI treatment				
	(1)	(2)	(3)	(4)	(5)
Expertise overlap	-0.000185	0.000005	-0.0002	-1.3E-05	0.000028
	[0.000587]	[0.000598]	[0.000140]	[0.000607]	[0.000081]
Mean of dep. variable	0.4529	0.4530	0.4529	0.4529	0.4530
Observations	174934	173893	174934	174934	173893
Proceduralist × year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Physician's case-related specialty FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Hospital × time FE		\checkmark			\checkmark
Patient characteristics			\checkmark		\checkmark
Physician characteristics				\checkmark	\checkmark

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notes. Standard errors are clustered at the hospital level.

Accounting for Selection into PCI

	Dependent variable is 30-day mortality						
		Cor	ntrol for predic	ted PCI treatn	nent	Control for inverse	Sample limited to high PCI
	Baseline (1)	Linearly (2)	Quadraticly (3)	Cubicly (4)	Quarticly (5)	Mills ratio (6)	prob. patients (7)
Expertise overlap	-0.041 [0.0106]***	-0.0409 [0.0106]***	-0.0409 [0.0106]***	-0.0409 [0.0106]***	-0.0409 [0.0106]***	-0.0408 [0.0106]***	-0.0407 [0.0258]
Mean of dep. variable	0.056	0.0555	0.0555	0.0555	0.0555	0.0555	0.0573
Observations	176108	174934	174934	174934	174934	174934	36103
Sample	All			Common	diagnosis for P	CI	
Basic controls	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Notes. Standard errors are clustered at the hospital level.

* p < 0.1;** p < 0.05;*** p < 0.01.

4

Controlling for Diagnosis Fixed Effects

	Dependent variable is 30-day mortality				
		Controlling for			
	Baseline	patient primary diagnosis			
	(1)	(2)			
Expertise overlap	-0.041	-0.0384			
	[0.0106]***	[0.0098]***			
Mean of dep. variable	0.056	0.056			
Observations	176108	176108			
Primary diagnosis FE		\checkmark			
Basic controls	\checkmark	\checkmark			

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Notes. Standard errors are clustered at the hospital level.

Team-Specific Experience

	Dependent variable is:					
	Shared work experience					
	(in days)	30-day mortality				
	(1)	(3)				
Expertise overlap	8.8064	-0.041	-0.0364			
	[6.3490]	[0.0106]***	[0.0097]***			
Mean of dep. variable	51.44	0.056	0.0526			
Observations	168238	176108	168238			
Shared work experience			\checkmark			
Basic controls	\checkmark	\checkmark	\checkmark			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Notes.

1