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Abstract

We study long-run environmental impacts of trade liberalization on US manufacturing and the
underlying mechanism by exploiting a plausibly exogenous reduction in US trade policy uncertainty:
the conferral of Permanent Normal Trade Relations (PNTR) to China. Using detailed data on
establishment-level pollution emissions and business characteristics—including trade activities and
global subsidiary information—from 1997 to 2017, we show that establishments reduce toxic emissions
in response to a reduction in trade policy uncertainty. Emission abatement is mainly driven by a
decline in pollution emission intensity, and not by establishment exits or a reduction in production
scale. Emission reduction is more pronounced for (i) establishments with foreign sourcing networks,
(ii) those under more stringent environmental regulations, (iii) those operating in more upstream
industries, and (iv) those that belong to a multi-sector firm. We provide further evidence that supports
the pollution haven hypothesis whereby offshoring is central to the mechanism—US manufacturers,
especially those that emit pollutants more intensely, begin to source from abroad and establish more
subsidiaries in China after PNTR.
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1 Introduction

One of the most salient features of global environmental issues since the late 20th century has been

the two divergent paths for manufacturing pollution emissions between developed and developing

countries. Toxic manufacturing emissions have declined in many developed countries, while they

have increased in the industrializing middle- and low-income countries (Copeland et al., 2022). Over

the same time period, there has been a spectacular integration of the global economy, especially

through offshoring (Feenstra, 1998; Hummels et al., 2001). The pollution haven hypothesis provides a

compelling explanation for the tale of the two global trends, which posits that progress toward trade

liberalization induced firms in developed countries to relocate high-pollution activities to developing

countries with laxer environmental regulations (Copeland and Taylor, 2004). Despite active discussions

in policy arena and the plausibility of the mechanism, however, the empirical evidence on whether

and how trade liberalization causally drives such global relocation of pollution-intensive tasks still

remains elusive.1

An important factor that has been often neglected in the discussion of the pollution haven

hypothesis is that, as with any form of investment, foreign direct investment (FDI) or offshoring

activity to relocate dirty production entails a significant investment cost—which is magnified in the

presence of political and economic uncertainty (Dixit and Pindyck, 1994). Cross-country differences

in environmental regulations and trade barriers are critical factors that firms consider but may not

form a sufficient condition for the pollution haven hypothesis to hold. Given the importance of

uncertainty in determining investment decisions made by firms (Aizenman and Marion, 2004; Bloom

et al., 2007; Handley and Limao, 2015), we argue that a comprehensive analysis of the pollution

haven hypothesis requires incorporating how these relocation incentives are shaped by uncertainty.

In particular, the degree of uncertainty surrounding international trade barriers—or trade policy

uncertainty—that firms in developed countries encounter could critically influence these investment

decisions, as forging business relationships to contract on inputs and organizing supply chains is

predicated on stable business environments across borders.

In this paper, we draw on arguably the most significant trade liberalization episode that reduced

trade policy uncertainty in early 2000s—the US granting permanent normal trade relations (PNTR)

status to China—and present new causal evidence on the long-run environmental impacts of trade

liberalization. A priori, it is unclear whether a reduction of trade policy uncertainty will increase or

decrease US establishments’ toxic emissions. For example, the surge of imports from China could

lead US manufacturers to increase emissions by saving costs associated with environment-friendly

1As Copeland and Taylor (2004), and more recently, Cherniwchan et al. (2017) and Copeland et al. (2022) noted,
despite ample theoretical and empirical support on causal linkages between an environmental regulation change and
cross-regional movement of pollution-intensive tasks, whether a reduction of trade barrier triggers such a movement
has relatively received scant support. A notable exception is Cherniwchan (2017), who studies the impact of NAFTA
on US manufacturing toxic emissions.
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practices in order to cope with increasing competitive pressure from Chinese firms, whereas the

same competitive pressure can lead to a reduction of production scale or establishments exits, which

may reduce toxic emissions. Aside from increased competitive pressure, as aforementioned, it could

facilitate the offshoring of pollution-intensive tasks and lead to a decrease in toxic emissions by US

establishments.

To identify the causal impact, we adopt a generalized difference-in-differences identification

strategy in Pierce and Schott (2016) in the context of pollution emissions for US manufacturing

establishments. By exploiting rich longitudinal data from the Toxics Release Inventory (TRI), together

with the National Establishment Time Series (NETS) database, we estimate the long-run effects of

the reduction in trade policy uncertainty on establishment-level pollution outcomes over the two

decades between 1997 and 2017. We find that US establishments reduce toxic emissions in response

to a reduction in trade policy uncertainty. We then explore potential mechanisms behind the effect of

trade policy uncertainty on pollution emissions and reveal that offshoring, not competitive pressure,

played a pivotal role, thereby supporting the pollution haven hypothesis in US manufacturing.

We first present three stylized facts of US manufacturing pollution emissions over the sample

period from 1997 to 2017 at the establishment level. First, US manufacturing exhibits a decline in

aggregate levels of pollution emissions with increased effort in waste management. Second, adopting

the decomposition exercise as in Melitz and Polanec (2015), we find that the aggregate decline in

manufacturing toxic emissions is primarily driven by within-industry adjustments through surviving

establishments. Third, within-establishment decreases in pollution emissions are more pronounced in

industries comprising establishments that engaged intensively in imports, but not in exports.

We then use our main empirical strategy to estimate the causal effects of the conferral of PNTR

on reductions in pollution emissions among US manufacturers. The conferral of PNTR to China

offers a quasi-experimental setting to study the long-run environmental impacts of trade liberalization

and the pollution haven hypothesis. Prior to 2000, the US Congress had voted annually on whether

to raise the low normal trade relations (NTR) tariff rates applied to Chinese imported goods back

to the higher non-NTR rates assigned to non-market economies, which acted as the main source of

trade policy uncertainty between the two countries.2 In October 2000, the US Congress granted

China PNTR status that eliminated such uncertainty by permanently setting US duties on imported

goods from China at low NTR tariff rates. Following Pierce and Schott (2016), we use the NTR gap

to measure the unexpected reduction in trade policy uncertainty.3

Our estimates are both economically and statistically significant: Moving an establishment from

an NTR gap at the tenth (0.138) to the ninetieth percentile (0.424) of the observed distribution

2The non-NTR rates assigned to non-market economies, including China, were set by the Smoot-Hawley Tariff Act
of 1930.

3The NTR gap is defined as the difference between the non-NTR tariff rates to which tariffs would have risen had
annual renewal failed and the low NTR tariff rates. This measure of uncertainty presents substantial variation across
industries.
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increases the implied relative reduction of pollutant emissions within an establishment by 34 percent.

We find that the change in US trade policy had a prolonged effect on pollution emission reductions

in US manufacturing over nearly two decades. Our results are not driven by pre-existing trends and

are robust to a host of robustness checks such as different sample periods, controlling for NAFTA,

excluding entry and exit, dropping outliers, and allowing various weighting schemes. We also confirm

that establishments’ exits or simple reductions of the production scale do not explain the reduction

in pollution emissions, but instead, the results are primarily driven by a decline in pollution emission

intensity within an establishment.

By further exploiting a triple difference-in-differences framework, we estimate heterogeneous

treatment effects depending on various initial characteristics of US manufacturing establishments.

The reductions in pollution emissions are more substantial for US establishments that were more

able and willing to offshore production to China. That is, US manufacturers—(i) having existing

foreign business relationships, (ii) having more incentives to move away from stricter environmental

regulations (i.e., located in nonattainment counties), (iii) operating in upstream industries along the

supply chains, and (iv) belonging to a multi-sector firm—indeed reduced pollution emissions more.

Motivated by the suggestive evidence supporting the offshoring mechanism, we next directly

assess the importance of (i) global sourcing and (ii) FDI, in turn, as channels through which US

establishments adjust and reduce domestic pollutant emissions. First, we use time-varying importing

status at the establishment level from the NETS database to proxy for global sourcing activity, and

test whether PNTR induced US manufacturers to source from abroad. We find that US establishments

initially associated with with high-polluting tasks—(i) those that were located in counties with more

stringent environmental regulations (i.e., nonattainment counties) and (ii) those that initially had

higher pollution intensity—engage more in importing activities than other establishments after PNTR.

Second, by combining Wharton Research Data Services (WRDS) Company Subsidiary Data with our

main dataset, we use foreign subsidiary information of US firms to which US establishments belong.

We find that PNTR induced US manufacturing establishments to begin sourcing from abroad and

to establish more foreign subsidiaries in China, but not in other countries. Moreover, such impacts

of sourcing and outward FDI into China are mostly driven by establishments with high-polluting

activities (measured as above), thereby suggesting that US establishments sent high-polluting tasks

to China and reduced domestic pollution emissions accordingly.

Finally, we directly assess whether US manufacturers increased imports of dirtier products from

China. If US manufacturers shifted high-polluting activities to China after the conferral of PNTR,

and such a shift was driven by the offshoring mechanism, we would expect that US manufacturers

will increase dirty product imports from China relative to other countries. We test this hypothesis

by using HS 10-digit product-by-year-level data from the UN Comtrade database and find that, in

response to the conferral of PNTR to China, the share of US imports from China increased and that
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such an increase is more pronounced for products that are produced by high-polluting industries.

Contributions to the Literature

To the best of our knowledge, our paper is the first to study the impact of trade liberalization

on long-term, nearly two decades of post-2000, US manufacturing toxic emissions using detailed

establishment-level data. The paper contributes to the literature in environmental economics and

international trade in several dimensions.

First, we contribute to the literature in environmental economics regarding the mechanisms

driving the reduction in pollution emissions in US manufacturing. Previous research dates back at

least to Copeland and Taylor (1994) and Grossman and Krueger (1995). In these papers, they describe

three channels (i.e., the scale, composition, and technique effects) through which macroeconomic

changes including international trade may affect the environment.4 More recent studies find that

the reductions in pollution emissions are mostly attributed to the within-industry technique effect

(e.g., Levinson, 2009; Shapiro and Walker, 2018; Holladay and LaPlue III, 2021). Equipped with a

granular dataset at an establishment level from 1997 to 2017, we conduct a decomposition analysis.

We confirm the previous finding that US manufacturing emission reductions are primarily driven

by the within-industry component and further identify that surviving establishments, not the entry

and exit of establishments, account for the majority of the within-industry technique effect. Our

paper contributes to the literature by showing that the within-industry technique effect, which is

primarily driven by surviving establishments’ reduction of pollution emission intensity, is at least in

part driven by trade-related activities (i.e., offshoring).

By adopting the identification strategy in Pierce and Schott (2016) and thus providing a causal

link between international trade and pollution emission reduction, we emphasize the role of trade as

a driving mechanism of the industry-level technique effect in US manufacturing’s pollution emission

dynamics. Our finding provides a new perspective on the role of trade on the environment, which is

different from what economists have typically considered—i.e., international trade simply changes

the composition of clean and dirty industries. Less attention has been paid to the role of trade

in US manufacturing emission reductions because offshoring dirty industries has been considered

to be associated with the between-industry composition effect at the industry level, while most of

the decline in manufacturing emissions was explained by the within-industry effect.5 Unlike the

conventional view, we show that international trade can be an important driver of the within-industry

emission adjustments, especially through the reduction in emission intensity within an establishment.

4The scale effect refers to increases in a country’s total production raising pollution emissions; the composition
effect indicates that changing the share of output from cleaner to dirtier industries can affect pollution emissions; and
the technique effect indicates that pollution emissions per unit of output can change within an industry.

5Instead of international trade, previous studies have regarded advances in production or abatement processes
(Levinson, 2009) and changes in environmental regulation (Greenstone, 2002; Shapiro and Walker, 2018) as the main
economic forces behind the decline in pollution emissions in US manufacturing.
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By doing so, we also contribute to the literature that links international trade to environmental

outcomes.6 A few recent papers use firm-level or establishment-level data to look for a causal effect

of international trade on emissions in India (Martin, 2011), the US (Holladay, 2016; Cherniwchan,

2017), Mexico (Gutiérrez and Teshima, 2018), and China (Bombardini and Li, 2020; Rodrigue et al.,

2020). Our paper contributes to the literature by providing direct establishment-level evidence of

offshoring as an emission reduction mechanism for a developed country (United States). For example,

Martin (2011) and Gutiérrez and Teshima (2018) both leverage tariff changes in developing countries,

not developed countries. This is an important distinction in light of the finding in the literature that

firms in developed economies are more able and prone than those in developing countries to leverage

reduced trade barriers to conduct offshoring activities, which plausibly has environmental relevance.

In this regard, our paper relates most closely to Cherniwchan (2017) who investigates the impact of

NAFTA on US manufacturing emissions between 1994 and 1998.

Our work and Cherniwchan (2017) are complementary to one another but we depart from

his paper in several dimensions. First, we study the environmental impacts of the China trade

shock, which is widely accepted as one of the primary factors behind the massive US manufacturing

employment decline and offshoring since the late 1990s (Autor et al., 2013, 2014; Acemoglu et al.,

2016; Pierce and Schott, 2016). Importantly, we use the episode of eliminating the uncertainty of

tariff hikes, not the actual tariff changes, which also allows us to contribute to the growing literature

on firm-level impacts of trade policy uncertainty. Second, our setting based on PNTR singles out the

impact of changes in import barriers rather than studying the effect of changes in both import and

export barriers. Potentially because of this difference, we find a limited role of trade-induced clean

technology adoption: The nature of our shock liberalizes imports, not exports through which the

technology upgrading channel mainly operates (e.g., Bustos, 2011). Finally, in terms of mechanisms,

we provide more compelling evidence of the pollution haven hypothesis—and more specifically,

the pollution offshoring hypothesis7 (Cherniwchan et al., 2017; Copeland et al., 2022)—by directly

investigating offshoring-related activities by establishments—using various establishment-, firm-, and

county-level measures and linking them to global parent-subsidiary information—and by assessing

dirty product imports from China to US using product-level data.

By providing establishment-level evidence supporting the pollution haven hypothesis, our paper

also contributes to the literature that studies the pollution haven hypothesis or pollution haven effects.8

6While decomposition studies are useful for understanding the role of international trade in affecting the environment,
the decomposition analysis alone cannot identify causality (Cherniwchan et al., 2017). It simply gauges changes in
manufacturing emissions from different channels over time and thus does not shed much light on what has driven these
changes—especially regarding the role of international trade.

7The pollution offshoring hypothesis is closely related to the pollution haven hypothesis and connects trade
liberalization with a firm’s decision to offshore dirty intermediate inputs to a partner country with weaker environmental
regulations. The hypothesis emphasizes the interaction of trade liberalization, environmental regulation, and the
structure of value chains within firms (Copeland et al., 2022).

8Although previous studies have often used the two terms interchangeably, Copeland and Taylor (2004) formally
distinguish the pollution haven hypothesis from pollution haven effects. The pollution haven hypothesis asserts that a
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To date, empirical evidence in this literature has been mixed. When we focus on studies in the US,

some support pollution haven effects (e.g., Greenstone, 2002; List et al., 2003; Levinson and Taylor,

2008; Tanaka et al., 2022; Bartram et al., 2022), whereas others are broadly consistent with weak

pollution haven effects (e.g., Eskeland and Harrison, 2003; Hanna, 2010).9 Unlike previous studies,

we leverage an episode of trade policy uncertainty reduction, neither variations in environmental

regulations nor actual changes in tariffs, to study the pollution haven hypothesis. Our findings

thus underscore the complexities in the relations among trade policy uncertainty, environmental

regulations, and offshoring in determining the level of emissions in US manufacturing.

This paper contributes to the growing notion that trade policy uncertainty, even in the absence

of actual changes in tariffs and other barriers, can have significant impacts on the economy (see, e.g.,

Handley and Limao, 2015; Handley and Limão, 2017, 2021; Caliendo and Parro, 2021). However,

the literature devoted little attention to its impact on environmental outcomes. We contribute

to the literature by filling this gap. Moreover, by emphasizing the notion of uncertainty in trade

liberalization and investment decisions, we enrich the discussion on the pollution haven hypothesis

and contribute by providing support for it.

Finally, we contribute to the literature on the China trade shock, which has significant impacts

on labor market outcomes (Autor et al., 2013; Pierce and Schott, 2016; Choi and Xu, 2020; Kim,

2022), innovation (Bloom et al., 2016; Autor et al., 2020a), political outcomes (Che et al., 2016;

Autor et al., 2020b), health (Pierce and Schott, 2020), product scope adjustment (Choi et al., 2022b),

and internal migration (Greenland et al., 2019), among many others. Despite the vast literature on

this topic, our paper is the first to formally explore US establishment-level environmental outcomes

in response to the China trade shock. This is an important gap in the literature in light of the heated

public and academic debates concerning the environmental impacts of globalization. This is also

a curious gap in this vast literature since it is plausible that the labor and health outcomes of the

China shock listed above can have environmental causes and consequences.10

The remainder of the paper is organized as follows. Section 2 provides the institutional

reduction in trade barriers will lead to a shifting of pollution-intensive industry from countries with stringent regulations
to countries with weaker regulations. The pollution haven effect states that a tightening of pollution regulation will
influence plant location decisions and trade flows. Copeland and Taylor (2004), and more recently Cherniwchan et
al. (2017) and Copeland et al. (2022), noted that the pollution haven hypothesis has relatively less theoretical and
empirical support than the pollution haven effect because many other factors—in addition to environmental policy—can
affect trade flows. As we study the impact of trade liberalization (driven by a decline in trade policy uncertainty), our
paper provides evidence in support of the pollution haven hypothesis, and more specifically, the pollution offshoring
hypothesis (Cherniwchan et al., 2017; Copeland et al., 2022).

9Chung (2014) and Cole et al. (2014) find supporting evidence for pollution haven effects in Korea and Japan,
respectively.

10For example, our findings provide a novel perspective on the finding in Pierce and Schott (2020) that the US
regions hit more by the PNTR shock experienced larger declines in the rate of heart attacks. They suggest that safety
in the workplace might have led to fewer heart attacks. Given the scientific findings that airborne toxic chemicals lead
to heart attacks (Kim et al., 2015), however, our findings suggest that PNTR-induced environmental improvements are
likely to have resulted in better heart-related health outcomes among the residents in US counties that experienced a
greater decline in manufacturing toxic emissions.
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background on the TRI program, Section 3 describes the data used for estimation. Section 4 presents

some stylized facts on US manufacturing emission patterns. Section 5 details the empirical strategy

and descriptive patterns. Section 6 presents our main estimation results. Section 7 reports results on

mechanisms and heterogeneous effects. Finally, Section 8 concludes the paper.

2 Institutional Background: Toxics Release Inventory Program

In December 1984, a cloud of methyl isocyanate gas leaked from the Union Carbide India Limited

(UCIL) pesticide plant at Bhopal, India, causing thousands of casualties and severe health effects in

subsequent years. A few months after what is considered to be the worst industrial disaster in history,

a similar accident involving toxic chemical leaks (aldicarb oxime and others) occurred in the US at

another Union Carbide facility in West Virginia. Consequently, public concerns were raised about

the importance of maintaining accurate information on how local facilities manage toxic chemicals

and are prepared for any related emergencies.

In 1986, the US Congress passed the Emergency Planning and Community Right-to-Know

Act (EPCRA). The Toxics Release Inventory (TRI) program was initiated under Section 313 of

the EPCRA, which requires US facilities to report their annual releases of toxic chemicals. Under

the Pollution Prevention Act of 1990, the reporting facilities must also include descriptions of the

measures taken to prevent pollution, such as reducing pollutants at the source (e.g., substituting

materials, modifying production methods), and managing waste in an environment-friendly manner

(recycling, treating, combusting for energy recovery). The reports submitted by these facilities are

compiled and archived as the TRI, which is maintained and publicly shared by the US Environmental

Protection Agency (EPA).

The program is mandatory for facilities that meet the TRI reporting criteria. That is, a facility

must report by July 1 of each year if it (i) operates in a TRI-covered sector (manufacturing, mining,

electric utilities, and waste management) or is a federal facility; (ii) employs at least ten full-time

workers; (iii) manufactures, processes, or otherwise uses more than the specified threshold amount of

TRI-listed chemicals per year.11 Facilities that are noncompliant are subject to further investigation

and possible enforcement actions by the EPA.12 The structure of the TRI program, designed to

provide the public with accurate and timely information about the management of toxic chemicals,

in turn, encourages facilities to move toward adopting environment-friendly and safer practices.

11According to the EPA, "facilities" refers to "all buildings, structures, and other stationary items which are located
on a single site or on contiguous or adjacent sites and which are owned or operated by the same person (or by any person
which controls, is controlled by, or under common control with, such person)", and "full-time employees" includes "all
persons employed by a facility regardless of function (e.g., operational staff, administrative staff, contractors, etc.)."

12The following link provides press releases on TRI-related enforcement actions: https://www.epa.gov/toxics-release-
inventory-tri-program/tri-compliance-and-enforcement
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3 Data

We combine various data sources to assess the effect of the US trade policy change on establishment-

level releases of pollutants. In this section, we describe the sources, data structure, and sample

construction.

3.1 Data Sources

Toxics Release Inventory (TRI) We obtain facility-chemical-level releases of toxic materials

(1987-2020) provided through the EPA’s TRI database. For each reporting facility, we observe detailed

information on the chemical (chemical name, acuteness in human health effects, carcinogenicity,

the severity of environmental effects, etc.) and the chemical-specific amount of production waste

generated on-site and transferred to off-site locations. The data add breakdowns of how each facility

manages this chemical waste. One is the amount “released” (or emitted) to the air, water, (or placed

into) land, which directly affects the environment. The other is the amount recycled, treated, or

combusted for energy recovery, which speaks to facility-level effort in effectively managing waste.

In addition, we also have information on the various types of pollution prevention (P2) activities

that facilities conduct to reduce waste at the source. Detailed descriptions on such activities are

available, which are categorized into the following broad groups: (i) material substitutions and

modifications; (ii) product modifications, process, and equipment modifications; (iii) inventory and

material management; and (iv) operating practices and training.13

The granularity of the data, along with the unique identifiers for facilities and chemicals, allows

us to track changes in the amount of chemical-specific waste produced over time. However, it is

important to note that the EPA has made a number of changes to the TRI program over the years:

(i) expansion of the scope of TRI-covered sectors, chemicals, and geographic areas and (ii) changes

in reporting criteria.14 These updates were intended to better provide data on exposures to toxic

chemicals and the environmental performances of US facilities. From an empirical perspective, the

increasing list of TRI-covered chemicals, a subset of which face lower thresholds, can mechanically

increase the reported amount after these policy changes. Therefore, our analyses carefully address

these issues in the sample construction, and we conduct a series of robustness checks, which we

describe in later sections. After restricting to a list of chemicals of interest, we follow Cherniwchan

(2017); Holladay and LaPlue III (2021) and apply a crosswalk obtained from the National Emissions

Inventory (NEI) to map relevant chemicals to PM10.15 Throughout our analyses, we collapse the

13In 1990, Congress passed the Pollution Prevention Act (P2 Act), which stipulates that the EPA must establish a
source reduction program that collects and disseminates information.

14The following link provides a full list of policy changes in the TRI program: https://www.epa.gov/toxics-release-
inventory-tri-program/history-toxics-release-inventory-tri-program

15The crosswalk is available in Table 12 of the 2008 NEI Technical Support Document available at this link:
https://www.epa.gov/sites/default/files/2015-07/documents/2008_neiv3_tsd_draft.pdf
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data and focus on facility-level waste production of this major pollutant.

National Establishment Time Series (NETS) To understand establishment-level responses

in waste production relative to size (employment and sales) as well as important heterogeneity in the

effects, we obtain establishment-specific characteristics from the NETS database, which is an annual

panel of a near universe of US establishments (1990-2020). In NETS, we observe establishment-level

industry codes (SIC and NAICS codes),16 employment, sales, exporter and importer status, address,

and headquarters identifier. Each establishment in the NETS database is assigned a unique identifier,

thereby allowing us to track establishments consistently over time.

The source data for NETS are created by Dun & Bradstreet, which is among the largest credit

rating companies in the world, and thus, it has a strong incentive and capacity to collect accurate

data through various records.17 A number of studies have demonstrated the accuracy of information

in NETS data (Neumark et al., 2006, 2011; Barnatchez et al., 2017).18 Importantly, our version of

the NETS database provides a match between the NETS establishment identifier (DUNS number)

and the facility identifier in the TRI database. The matching process relies on company names and

addresses and further involves eyes-on-the-records search efforts. Among the 61,907 unique facilities

that are included in the TRI Database between 1987 and 2020, 91% (56,468 facilities) are matched

with NETS’ establishment identifiers. We focus on the one-to-one matches and use establishment

(instead of a facility) as our unit of analysis.19

Wharton Research Data Services (WRDS) Company Subsidiary Data WRDS Company

Subsidiary Data contain the parent company and its subsidiary information for companies filing with

the US Securities and Exchange Commission (1995-2019). For a given parent company, the data

16The SIC and NAICS industry codes have been consistently maintained over time in NETS, so we do not need to
perform any imputations of industry codes.

17To maintain its quality, Dun & Bradstreet conducts an extensive array of analyses. For example, their analysts
make phone calls to reliable sources such as the firms’ legal personnel, CFOs, and CIOs. They also make use of publicly
available government registries, legal filings, yellow pages, news, annual reports, company websites, and so forth. Note
that the US government requires companies to report their information based on their DUNS number for procurement
purposes. This also provides incentives for firms to report accurate information to Dun & Bradstreet.

18For example, Barnatchez et al. (2017) find that the county-level correlation between NETS and the Census
Bureau’s County Business Patterns (CBP) is above 0.99 regarding both employment counts and establishment counts,
and Neumark et al. (2011) document the accuracy of entry and exit information of establishments. For recent studies
that use the NETS database, see, e.g., Gray et al. (2015); Asquith et al. (2019); Rossi-Hansberg et al. (2021); Behrens
et al. (2022); Hyun and Kim (2022); Choi et al. (2022a); Oberfield et al. (2022).

19A small share of the data is not one-to-one matches. In particular, 144 TRI facilities are matched to multiple
NETS establishments, and 2,180 NETS establishments are matched with multiple TRI facilities. These one-to-many
matches most likely come from slightly different definitions of "establishment" in NETS and "facility" in EPA. The
concept of an establishment in NETS is defined as a line of business that has a fixed address so that there can be
multiple NETS "establishments" at a single address under a single firm. On the other hand, a facility in EPA refers to
"all buildings, equipment, structures, and other stationary items which are located on a single site or on contiguous or
adjacent sites and which are owned or operated by the same person (or by any person which controls, is controlled by,
or under common control with, such person)."
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allow us to identify the number of subsidiaries located in each country in a given year.20 In our

empirical analyses, we focus on parent companies located in the US. Thus, we track the number of

subsidiaries in China (or other countries) at a yearly frequency to identify US companies’ subsidiaries

in China (or other countries).

U.S. Historical Tariff Rates We obtain NTR and non-NTR tariff rates provided by Pierce and

Schott (2016), which sources data from Feenstra et al. (2002). We map the HS-level tariff rates to

4-digit-SIC industries using Pierce and Schott (2009) and use industry-level tariff rates in 1999 as in

Pierce and Schott (2016).

3.2 Sample Construction

The matching of the TRI-NETS data between 1987 and 2020 results in 2,809,810 observations with

chemical-specific establishment-level release amounts for 54,224 establishments covering 660 chemicals,

27 of which are mapped to PM10. We describe the detailed steps through which we trim the data and

construct our baseline sample. First, we focus on 24 chemicals mapped to PM10 that have continued

to exist since 1995. As discussed above, the EPA has (i) expanded the list of TRI-covered chemicals

and (ii) changed the reporting criteria over time. In its continued efforts to include chemicals with

adverse effects on human health and the environment, roughly 38 percent of the current list of

chemicals (286 out of 750) were added in November 1994 and required in the reports beginning

with the 1995 calendar year. Therefore, we exclude chemicals—Persistent Bioaccumulative and

Toxic (PBT) chemicals, 1-Bromopropane, and chemicals in the Hexabromocyclododecane (HBCD)

category—introduced in the subsequent years.21

We note that the reporting criteria applied to both PBT and non-PBT chemicals were relaxed

during the period 2007-2009. The TRI Burden Reduction Rule (2006) expanded the use of reporting

through Form A (a simpler form without quantity details on the produced waste); however, the

Omnibus Appropriations Act in 2009 reverted the requirements to those that were effective before

2006. Given the value of understanding the long-run environmental consequences, we choose to keep

these years in our sample but conduct robustness checks on whether our analysis is sensitive to the

exclusion of these years. The final relevant component of the changes to the TRI program is the

expansion in the geographic coverage to increase participation of Native Americans in 2012. To

maintain consistency on this end, we keep establishments that are not located in Indian country.22

20We linked parent companies in WRDS Subsidiary data with headquarters companies in NETS data by using a
probabilistic record linkage algorithm. We exploited company name and address information in the two datasets to
perform record linking. We used the Stata command RECLINK2 to link the two datasets, where we exploited both
the company name and address information. Then, we manually verified the quality of the linkage.

21All additions to and deletions from the TRI chemical list can be found in the following link:
https://www.epa.gov/system/files/documents/2022-03/tri-chemical-list-changes-03-07-2022.pdf

22Appendix Table B.1 provides further details related to these policy changes.
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We exclude periods with prevailing impacts of major events that might have confounded the

effects of our treatment. We do not include the years after 2018 due to the US-China Trade

War and the pandemic, which substantially reshaped global trade flows and domestic production,

thereby affecting manufacturing pollutant emissions. We also exclude a few years after the North

American Free Trade Agreement (NAFTA) agreement (1994), given its impact on the reductions of

establishment-level pollutant emissions (Cherniwchan, 2017). Hence, we restrict our sample period

to years between 1997 and 2017. Note that including a few years (i.e., 1997, 1998, 1999, and 2000)

before the US trade policy change in 2001 allows us to examine the pre-existing trends in our analysis.

We address any remaining concerns related to the lagged responses of NAFTA by directly controlling

for changes in the US tariffs on Mexican imports following Hakobyan and McLaren (2016). Lastly, we

focus on manufacturing establishments that had positive emissions of chemicals of interest mapped

to PM10 at least once during the sample period. Thus, our final sample is an unbalanced panel

of establishment-year-level observations with positive PM10 Emissions. The final sample contains

46,753 establishment-year-level observations with 4,946 unique manufacturing establishments.

4 Stylized Facts

Fact 1. US Manufacturing demonstrates a decline in aggregate levels of PM10 emissions

with increased efforts in waste management.

We begin by checking whether the clean-up of manufacturing found in previous studies (e.g.,

Levinson, 2009; Shapiro and Walker, 2018; Najjar and Cherniwchan, 2021, etc.) is also present in our

data. The solid line in Figure 1 shows the time series of the aggregate levels of PM10 waste released

or emitted into the air from 1997 to 2017, where we find a 30 percent drop. Appendix Figure A.1

reveals that most of these aggregate changes are largely driven by establishments in 2-digit-SICs 28

and 33, which are Chemicals and Allied Products and Primary Metal Industries, respectively.23 In

fact, these two industry categories represent a predominant share of the initial PM10 emissions from

manufacturing establishments.24 However, we also note that there is also an overall decline in PM10

emissions in other industries.

The detailed breakdown of waste management in TRI allows us to understand the clean-up

process from an alternative perspective: the extent to which establishments transition toward more

environment-friendly waste management practices. The long dashed line in Figure 1 shows that the

non-disposal share, which is the total PM10 waste recycled, treated, or combusted for energy recovery

(therefore, not released or emitted into the air) relative to total PM10 waste, increases from 71 to 83

23Appendix Table B.2 shows that the top 5 industries in PM10 emissions all belong to 2-digit-SICs 28 and 33.
24Appendix Figure A.2 provides the industry distribution of our data using employment and total PM10 emissions.
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Figure 1: Aggregate Levels of PM10 Emissions and Non-Disposal Shares, 1997 - 2017

Notes: The solid line shows the aggregate levels of PM10 waste released or emitted to the air. The long dashed line
shows the non-disposal share, which is the total PM10 waste recycled, treated, or combusted for energy recovery
(therefore, not released or emitted to the air or water) relative to total PM10 waste. The short dashed line shows the
recycled share, which is the total PM10 waste recycled relative to total PM10 waste.

percent.25 The EPA notes that the most sustainable and environmentally preferred management

practice is to reduce waste at the source; however, for waste that has already been generated, recycling

is the next best option (followed by combustion for energy recovery and treatment).26 In sum, Figure

1 reveals that the aggregate emissions from manufacturing establishments declined during the past

two decades, while the share of non-disposal (predominantly through recycling), which captures

waste management efforts, steadily increased over time. In Section 7, we explore how the conferral

of PNTR to China interacts with various initial characteristics and affects establishments’ waste

management efforts and PM10 emissions.27

Fact 2. The aggregate decline in PM10 emissions from manufacturing establishments is

25By construction, the share of PM10 waste released decreases from 29 to 17 percent.
26Further details on the non-hazardous materials and waste management hierarchy developed by EPA can be

found at this link: https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-
management-hierarchy

27We explore whether the main effects we find are entirely driven by establishments in SIC-2-digit 28 and 33 given
their importance in our sample. Appendix Table B.5 shows that, while the effects are stronger in these industries, we
also estimate a significant impact for other industries.
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primarily driven by within-industry adjustments through surviving establishments.

Figure 2: Decomposition of Aggregate Manufacturing PM10 Emissions, 1997 - 2017

Notes: The graph illustrates changes in the aggregate manufacturing PM10 Emissions using equations (4.2) and (4.5).
Line (1) shows the magnitude of the scale factor. The distances between lines (1) and (2), (2) and (4) show the
magnitude of the composition and technique factors, respectively. The distances between lines (2) and (3), (3) and (4)
capture the magnitude of the within-industry intensive and extensive margins, respectively.

Next, we further quantify the extent to which the changes in aggregate PM10 emissions are due

to (i) changes in the size of the manufacturing sector (scale), (ii) changes in the mix of manufacturing

industries (composition), and (iii) changes in the production technology employed within-industry

(technique). The analysis below combines the approaches in Levinson (2009) and Melitz and Polanec

(2015). Aggregate PM10 emissions in the manufacturing sector in year t, Pt equal the sum of PM10

emissions from each of the (SIC 4-digit) manufacturing industries, pi,t. Defining industry shares

using industry sales (θi,t = νi,t/Vt) and emission efficiency zi,t as the emission amount per dollar

value of sales (pi,t/νi,t), we express the total PM10 emissions in a given year as the scale of the sector

(Vt) times the weighted-average emission efficiency (
∑

i θi,tzi,t).

Pt =
∑
i

pi,t =
∑
i

νi,tzi,t = Vt

∑
i

θi,tzi,t (4.1)

The last part of Equation (4.1) can be represented in vector notation, P = V θ′z, which we totally
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differentiate and obtain

dP = θ′zdV + V z′dθ + V θ′dz. (4.2)

Leveraging our establishment-level data, we further decompose the within-industry channel to

examine the magnitude of the intensive and extensive margins following the methods in Melitz and

Polanec (2015). That is, the extent to which within-industry changes are explained by changes in the

way surviving establishments produce goods and emit PM10 pollutants and those that are attributed

to the entry and exit of establishments. This part of the exercise requires identifying establishments

that survive (s), enter (n), and exit (x) between the baseline year t0 and year t.28 Thus, the average

emission efficiency of industry i in the baseline year and in year t are given as follows:

zi,t0 = θs,t0zs,t0 + θx,t0zx,t0 (4.3)

zi,t = θs,tzs,t + θn,tzn,t (4.4)

where θs,t0 is the share of survivors in year t0; and θx,t0 is the share of exiters in year t0.29 Finally,

changes in the average emission efficiency for industry i between year t0 and year t is

∆z = zi,t − zi,t0 = zs,t − zs,t0︸ ︷︷ ︸
surviving

+ θn,t(zn,t − zs,t) + θx,t0(zs,t0 − zx,t0)︸ ︷︷ ︸
entry and exit

(4.5)

where zG,t =
∑

p∈G (θp,t/θG,t)× zp,t is the average efficiency for each group (G = s, n, x) of establish-

ments and θG,t =
∑

p∈G θp,t is the aggregate market share of group G. As discussed in Melitz and

Polanec (2015), one can further decompose the surviving firm channel into the within-establishment

and reallocation across surviving establishments by applying the decomposition methods of Olley

and Pakes (1996). As our focus is to compare the magnitude of the extensive and intensive margins

of adjustments, we conduct our analysis based on Equation (4.5).

Figure 2 shows the decomposition results tracking changes in total manufacturing emissions of

PM10 relative to 1997 for 20 years and the contribution of each channel. The aggregate change, which

exhibits a downward trend in total manufacturing emissions of PM10 over time, is captured using line

(4). Line (1) isolates the change attributed to the scale factor. Line (2) adds the composition factor

to the first factor. The sum of these two channels makes limited contributions in the downward

aggregate trend in PM10 Emissions we observe in Figure 1. The remaining two lines add the technique

factor, which explains most of the decline in PM10 emissions over time. Consistent with previous

studies (e.g., Levinson, 2009; Holladay and LaPlue III, 2021, etc.), the magnitude of change due to

the adjustments that occur through surviving establishments (intensive margin) is larger than those

caused by the entry and exit of establishments (extensive margin). According to our calculations,

28We categorize firms that enter and exit between year t0 and year t in the exit group.
29By construction, θs,t0 + θx,t0 = 1 and θs,t + θn,t = 1 hold.
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roughly two-thirds of the 30 percent decline in 2017 relative to 1997 is due to surviving establishments.

Fact 3. Within-establishment decreases in PM10 emissions are more pronounced in

industries with establishments that actively engaged in imports, not exports.

Figure 3: Correlations between Changes in Average PM10 Emissions and Initial Trade Status

Notes: The graph on the left (right) illustrates the correlations between the industry-level averages of changes in the
within-establishment log(emissions) of PM10 from 1997 to 2017 and the industry-level averages of import (export)
intensity in 1997. Import (export) intensity is defined as an employment share of importing (exporting) establishments
within a firm. The sizes of the circles are proportional to the industry-level log(employment) in 1997.

To understand the clean-up of manufacturing establishments in the context of globalization,

we examine how the initial trade status relates to changes in PM10 emissions. Figure 3 plots the

industry-level average growth of PM10 emissions against measures of industry-level import intensity

(left panel) versus export intensity (right panel). Specifically, from the establishment-year-level

data, we calculate for each industry (i) the growth in the average PM10 emissions between 1997

and 2017; (ii) the average initial within-firm employment share of importing establishments (import

intensity); and (iii) the average initial within-firm employment share of exporting establishment

(export intensity). We observe a stark asymmetry between import-intensive and export-intensive

industries on their PM10 emission dynamics. That is, we find a clear negative correlation between

the changes in average PM10 emissions and the measure of import intensity, while such a correlation

does not exist for the measure of export intensity.30 A possible interpretation of such asymmetry is

30Appendix Figure A.3 robustly demonstrates a similar asymmetry between import-intensive and export-intensive
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that offshoring of manufacturing associated with importing activities led to emission declines. We

revisit such relationships in a formal regression setting in Section 7.

5 Empirical Strategy and Descriptive Statistics

5.1 Empirical Strategy

Our empirical approach builds on the pioneering work of Pierce and Schott (2016), which exploits

a sudden US trade policy change—PNTR to China in October 2000—to investigate the impact

of trade liberalization on US manufacturing employment. The conferral of PNTR to China (i)

eliminated uncertainty associated with the tariff rates faced by Chinese exporters and (ii) allowed

China guaranteed access to NTR tariffs, which were primarily applied to World Trade Organization

(WTO) members. Prior to 2000, Chinese firms received NTR tariff rates based on the US president

granting NTR (US Trade Act of 1974), which also required annual renewals by the US Congress.

The outcomes of these reviews were sensitive to political tensions between the two countries and,

therefore, highly uncertain. In the event of unsuccessful outcomes, which potentially resulted in

the withdrawal of China’s Most Favored Nations (MFN) status, Chinese imports were subject to

non-NTR rates—substantially higher rates applied to nonmarket economies. The policy uncertainty

also imposed challenges for US firms doing business with China because they faced an excessively

risky environment for trade and investment.31

The change in China’s PNTR status generated heterogeneous implications across different

manufacturing industries: Those that experienced a larger expected drop in the tariff rates also

benefited more from a reduction in trade policy uncertainty. As in Pierce and Schott (2016), we

define NTR Gap, the magnitude of the trade policy shock faced by industry i, using the difference

between the observed NTR rates and the potential non-NTR rates for each industry i in 1999,

NTR Gapi = Non NTR Ratei −NTR Ratei. (5.1)

As summarized in Panel (B) of Appendix Table B.3, we observe sufficient variation in industry-level

NTR Gap in our sample.32 Note that the differences in the tariff rates faced by Chinese firms due

to the policy change are mainly driven by the initial rates set under the Smoot-Hawley Tariff Act of

1930. We thus mitigate endogeneity concerns related to the NTR Gap responding to the rate at

which establishment-level emissions changed across industries during the period 1997-2017.

We leverage industry-level variations in NTR Gap’s to examine the impact of the trade

policy shock on establishment-level PM10 emissions in a difference-in-differences research design.

industries by using industry-level import-to-value-added and export-to-value-added ratios as measures of import and
export intensities.

31See Pierce and Schott (2016, 2020) for a comprehensive description of the policy background.
32The average is 0.329 and the standard deviation is 0.142.
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Conceptually, the first difference compares establishments in high-NTR Gap industries versus low-

NTR Gap industries. The second difference compares years before and after 2001 when Congress

passed the bill that granted China’s PNTR status and the change in US trade policy became effective.

Figure 4 visualizes our identification strategy where we demonstrate trends in the log of average

establishment-level PM10 emissions for industries in the 75th percentile (solid line) and the 25th

percentile (dashed line) of NTR Gap. We show that the high-exposure industries exhibit a larger

decline in their PM10 emissions compared to the low-exposure industries. The differences between

the two groups substantially increase after the policy change relative to the observed differences in

the pre-shock period.

Figure 4: Research Design: Difference-in-Differences

Notes: The graph illustrates the trends in the log of average establishment-level PM10 emissions for industries in the
25th (dashed line) and 75th percentile (solid line) of NTR Gap’s. The vertical line indicates the timing of the shock,
October 2000, which is when Congress passed the bill that granted PNTR status to China.

We now formally estimate the impact of the US trade policy change on establishment-level

PM10 Emissions using the following empirical specification:

yp,t = β0 + β1NTR Gapi × Postt + δZi × Postt + γXi,t + ηp + ηc,t + εp,t, (5.2)

where the dependent variable is the log of PM10 emissions from establishment p in industry i in year
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t.33 The second term interacts our measure of the shock NTR Gapi with Postt, an indicator for the

post-PNTR period (years from 2001 forward). The third term is an interaction of time-invariant

industry-level characteristics (Zi) with the post-PNTR period. As in Pierce and Schott (2016,

2020), these variables include Chinese policy variables—exposure to changes in Chinese import

tariffs from 1996 to 2005 and exposure to changes in Chinese domestic production subsidies from

1998 to 2005—and initial industry characteristics, including capital intensity (capital-to-labor ratio)

and skill intensity (the proportion of non-production workers in total employment) in 1997. The

fourth term controls for time-varying industry characteristics (Xi,t)—the phasing out of Multi-Fiber

Arrangement (MFA) quotas and the US import tariff rates. We also include establishment fixed

effects (ηp) to control for time-invariant establishment characteristics. We add county-by-year fixed

effects (ηc,t), which are the most flexible way of controlling for the time-varying local environmental

regulatory conditions and unobserved local demand or supply shocks that potentially generate

confounding effects on the outcome variable. We allow for arbitrary correlations in the error term

across establishments and years within the same 4-digit industry and county—thus, standard errors

are two-way clustered at the industry level and the county level. The coefficient of interest is β1,

which captures the within-establishment effects of the change in trade policy on pollutant emissions.

Identification rests on the assumption that manufacturing industries that face a greater NTR Gap

do not show differential trends in PM10 emissions in the pre-shock period. To check for parallel

trends, we estimate

yp,t = β0 +
∑
t

βt1{year = t}×NTR Gapi +
∑
t

δt1{year = t}×Zi + γXi,t + ηp + ηc,t + εi,t, (5.3)

where the second term now interacts NTR Gap with a full set of year dummies excluding 2000.

Therefore, each βt coefficient estimates the effect in year t relative to 2000. The full sequence of the

estimated parameters not only allows us to examine pre-existing trends but also to further examine

the dynamic effects and the persistence of trends in PM10 emissions caused by the trade policy shock.

As discussed above, our sample period overlaps with major events that possibly confound the

effects of the shock. We address this concern in the following way. First, we include county-by-year

fixed effects to control for lagged responses from the 1990 Clean Air Act Amendments (CAAA), the

stringency of the regulatory enforcement of which varied across counties and time.34 Second, we

mitigate concerns related to the confounding effects of NAFTA in two ways. One is to restrict our

sample to begin in 1997, dropping a few years that are immediately affected by the trade liberalization

with Canada and Mexico. Another is to directly control for the change in US import tariffs from

Mexico and check whether our main estimates are sensitive to the inclusion of this control. Finally,

33Appendix Table B.6 also considers emissions of sulfur dioxide (SO2) and volatile organic compounds (VOC). We
find a negative impact of PNTR on these emissions, although the estimated coefficients are not statistically significant.

34The EPA classifies US counties into attainment and nonattainment based on the ambient concentrations of
pollutants, and counties in the nonattainment category face stricter regulation (Hanna, 2010).
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we repeat our main specification using alternative sample periods to assess whether the estimated

effects are robust to a shorter sample period that excludes the financial crisis (2007-2009), which also

coincides with the period when the TRI reporting criteria temporarily changed.35

5.2 Descriptive Statistics

Table 1 presents the summary statistics of the key variables used in our analyses at the establishment-

year level. The sample consists of 46,753 establishment-year-level observations, which include a total

of 4,946 unbalanced establishments and 3,666 unbalanced firms between 1997 and 2017. Subscripts t,

p, f , i, and c indicate year, establishment, firm, SIC-4-digit industry, and county, respectively. For

the summary statistics at various aggregation levels (i.e., industry-year, industry, firm, establishment,

and county), see Appendix Table B.3.

A first notable feature is that there exists significant variation in PM10 emissions across

manufacturing establishments and years. The average establishment-year-level emissions are 50,838

pounds with a standard deviation of 450,609 pounds. The emissions are highly skewed. The median

emissions are only 719 pounds, which implies that some establishments produce extreme amounts of

emissions.36 Another notable feature is that the NTR gap also has substantial variation—with an

average of 0.294 and a standard deviation of 0.119. This provides a source of variation that allows us

to identify the impact of the conferral of PNTR to China on environmental outcomes.

Turning to initial firm characteristics, the average unconditional import intensity in 1997 is 13.5

percent, which is measured as the within-firm employment share of establishments that engaged in

import activities in 1997.37 After conditioning on having at least one establishment that engaged in

import activities, the average conditional import-establishment share in 1997 is 25.0 percent. We

observe a slightly higher value for export activities within a firm, where the average unconditional

(conditional) export-establishment share in 1997 is 27.6 percent (34.6 percent).

Regarding the size of sample firms, consistent with the TRI’s reporting threshold of 10 or more

full-time employees, the sample firms are relatively large compared to the entire distribution (see

Appendix Table B.4 for the comparison of our final sample distribution with the manufacturing

sample distribution from the original NETS data).38 For the establishment-year-level observations,

the average number of firm employees in 1997 is 21,655 with a median of 1,870, meaning that the

firm size distribution is also highly right-skewed.39

35Section 6.2 includes results for the second and third points.
36Appendix Table B.10 shows that our results are not driven by these extreme observations.
37This measure captures the importance of import activities within a firm. We cannot weight by import values

since the NETS provides information on whether an establishment engages in import activities (a dummy variable)
but not import values.

38Based on Appendix Table B.4, the firm-level summary statistics of our final sample show that the mean and
median number of firm employees are 5,566 and 388, respectively, while those of the entire NETS manufacturing
sample are only 74 and 5, respectively.

39A similar pattern holds for the establishment size distribution. The distribution is highly right-skewed. Based on
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Table 1: Summary Statistics

Establishment-Year Level

Variable Obs. Mean Std. Dev. P10 P50 P90

PM Emissionsp,t (lb) 46753 50838 450609 10 719 36605

NTR Gapi,99 46753 0.294 0.119 0.138 0.304 0.424

NTRi,t 46753 2.480 2.037 0.000 2.342 5.162

MFA Exposurei,t 46753 0.098 1.493 0.000 0.000 0.000

NPi,95/Empi,95 46753 0.281 0.096 0.176 0.259 0.435

Ki,95/Empi,95 46753 137 150 37 81 324

∆Chinese Tariffi 46753 -0.097 0.083 -0.175 -0.077 -0.029

∆Chinese Subsidiesi 46753 -0.000 0.002 -0.002 -0.000 0.001

Import Intensity (Unconditional)f,97 37763 0.135 0.203 0.000 0.028 0.404

Import Intensityf,97 17373 0.250 0.218 0.034 0.196 0.514

Export Intensity (Unconditional)f,97 37763 0.276 0.331 0.000 0.132 0.965

Export Intensityf,97 28347 0.346 0.337 0.033 0.202 1.000

Firm Employmentf,97 37763 21655 76745 82 1870 41640

Num. Establishmentf,97 37763 164 472 1 19 402

Num. 4-digit Sectorsf,97 37763 24 37 1 8 73

Agep,97 37763 57 42 9 52 110

PM Emissionsp,97 37763 59213 514114 0 254 38195

PM Emissionsp,97/Salesp,97 (lb/million dollar) 37763 3145.4 38071.1 0.0 5.1 960.4

I(Num. P2p,95−97>0) 37763 0.282 0.450 0 0 1

I(Num. P2 Clean-Techp,95−97>0) 37763 0.146 0.353 0 0 1

Establishment Employmentp,97 37763 477 1050 34 185 1000

Establishment Salesp,97 (million dollar) 37763 113 286 4 29 239

CAA Nonattainmentc,95−97 37763 0.118 0.323 0 0 1

Notes. This table presents the summary statistics of the key variables used in our analyses. The sample consists
of 46,753 establishment-year-level observations, which include a total of 4,946 unbalanced establishments and 3,666
unbalanced firms between 1997 and 2017. Subscripts t, p, f , i, and c indicate year, establishment, firm, SIC-4-digit
industry, and county, respectively.

the establishment-level summary statistics in Appendix Table B.4, the mean and median numbers of establishment
employees are 410 and 160, respectively, whereas those of the entire NETS manufacturing sample are 31 and 5,
respectively. This is because NETS includes a near-universe of US establishments with no size threshold including
individual proprietors without any paid employee.
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6 Main Results

6.1 Within-Establishment Emission Adjustment

Difference-in-Differences Table 2 presents the estimates of Equation (5.2). Column (1) includes

the DID term and simple two-way fixed effects, i.e., establishment and year fixed effects. Columns (2)

through (4) replace year fixed effects with county-by-year fixed effects. Column (3) adds time-varying

industry characteristics. Column (4), which is our baseline specification, includes an interaction

between the post-PNTR dummy variable and time-invariant industry characteristics.

Table 2: PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) (3) (4)

Log(PM Emissions)
Postt×NTR Gapi,99 -1.161∗∗∗ -1.049∗∗ -1.031∗∗ -1.191∗∗∗

(0.428) (0.422) (0.425) (0.387)

NTRi,t -0.019 -0.008
(0.034) (0.036)

MFA Exposurei,t -0.011 -0.009
(0.016) (0.016)

Postt×Log(NPi,95/Empi,95) 0.305∗∗

(0.118)

Postt×Log(Ki,95/Empi,95) 0.050
(0.054)

Postt ×∆Chinese Tariffi -0.740
(0.459)

Postt ×∆Chinese Subsidiesi -33.097
(27.109)

Establishment FE ✓ ✓ ✓ ✓

Year FE ✓ - - -
County x Year FE - ✓ ✓ ✓

Observations 46753 46753 46753 46753

Notes. This table shows how the conferral of PNTR to China affected the establishment-year-level pollution emissions.
The dependent variable is the log of establishment-year PM10 Emissions (Log(PM Emissions)) and the independent
variable representing the effect of PNTR is the interaction of a post-PNTR indicator and the NTR gap (Postt×NTR
Gapi,99). Subscripts t and i indicate year and SIC-4-digit industry, respectively. Additional controls include time-
varying variables—NTR tariff rates (NTRi,t), MFA exposure (MFA Exposurei,t)—as well as interactions of the
post-PNTR indicator with time-invariant controls including the industry-level log of 1995 skill and capital intensity
(Log(NPi,95/Empi,95) and Log(Ki,95/Empi,95), respectively), changes in Chinese import tariffs from 1996 to 2005
(∆Chinese Tariffi), and changes in Chinese production subsidies per total sales from 1999 to 2005 (∆Chinese Subsidiesi).
The sample period is from 1997 to 2017. Standard errors (in parentheses) are two-way clustered at the industry level
and county level. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Across all columns, we find negative coefficients with statistical significance at the 5 percent

(or 1 percent) level. The results suggest that the change in China’s PNTR status induced US

manufacturing establishments to reduce emissions of particulate matter (PM10). Quantitatively, the

coefficients are highly stable across columns, ranging from -1.19 to -1.03. The baseline specification

in Column (4) indicates that moving an establishment from an NTR gap at the tenth (0.138) to the

ninetieth percentile (0.424) of the observed distribution increases the implied relative reduction of

emissions of particulate matter (PM10) within an establishment by 0.341 (= -1.191 × (0.424 - 0.138))

log points—or 34 percent.

In Column (4), while most control variables are statistically insignificant, the coefficient of the

interaction of the post-PNTR dummy variable and industries’ initial skill intensity (defined as the

ratio of non-production workers to total employment) is positive and statistically significant. This

indicates that less skill-intensive industries reduce relatively more emissions after 2000. The result

is somewhat related to the finding in Pierce and Schott (2016) such that skill-intensive industries

more in keeping with US comparative advantage perform relatively well in terms of employment after

2000. If less skill-intensive industries perform more poorly in terms of employment partly due to

offshoring and simultaneously those industries entail more emissions, then we would expect to see a

larger decline in pollution emissions in less skill-intensive industries as in Column (4).

Pre-Existing Trends and Dynamic Treatment Effects Figure 5 plots the coefficient estimates,

along with their 95 confidence intervals, from the regression in Equation (5.3). We do not detect any

differential pretrends in that point estimates are statistically indistinguishable from zero leading up

to 2000. This pattern is in line with the parallel trends assumption, giving further credence to our

identification strategy.

The point estimate for 2001 is negative but statistically insignificant, but it becomes significant

from 2002 forward. Note that while Congress passed the bill in October 2000, the change in PNTR

status became effective in January 2002. The estimated coefficient declined by -0.983 log points in

2002 (the first year PNTR became effective) and remained stable until 2005. There is an overall

downward trend in the estimated coefficients for the subsequent years with an uptick from 2007 to

2009.40 The magnitude of estimates increased over time from -1.419 log points in 2010 to -2.541 log

points in 2017. Overall, the dynamic treatment effects indicate that trade policy had a prolonged

effect on the reductions of pollution emissions in US manufacturing establishments.

Establishment Survival Pierce and Schott (2016) note that the change in trade policy may

induce Chinese producers to invest in entering or expanding into the US market, thereby increasing
40Please refer to Section 3 regarding the reporting criteria change during the years 2007-2009 for further details. We

cautiously interpret that the upticks shown in this period because they may be attributed to the change in reporting
chemicals or the global financial crisis. In the following, we further subject our empirical specification to an alternative
approach that excludes the years 2007, 2008, and 2009 to determine whether the results remain robust.
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Figure 5: Dynamic Treatment Effects at the Establishment Level

Notes: This figure displays the estimated difference-in-differences (DID) dynamic coefficients with their 95 percent
confidence intervals, for interactions of year dummies with the NTR gap from Equation (5.3). The dashed vertical line
denotes October 2000, in which the conferral of PNTR status to China was passed by the US Congress. All controls in
Column (4) of Table 2 are included in the regression. Standard errors are two-way clustered by industry and county.

competition for US manufacturers. If so, less competitive domestic manufacturers would be squeezed

out of the market by heightened import competition, meaning that pollution emissions would decrease

from the exit of establishments, in addition to the within-establishment emission adjustment. To

assess this possibility, we use the following empirical specification to compare the evolution of

establishment survival in industries facing large NTR gaps to those in industries facing smaller NTR

gaps:41

yp,t = βtNTRGapi + αVp + γXi + δZi + ηc + εp,t. (6.1)

The sample is restricted to establishments that release positive amounts of PM10 in 2000 (the

reference year in the analysis). We estimate this equation separately for each year t ∈ [2001, 2017].

The dependent variable, yp,t, is an indicator variable that equals one if establishment p exists in year

t and 0 otherwise. βt measures the cumulative effect of the imposition of PNTR on establishment

survival by year t. Vp captures establishment- and firm-level initial characteristics (measured in 2000),

including the log of establishment employment, the log of firm employment, and firm age. Xi and Zi

41The empirical specification is similar to that of Dix-Carneiro and Kovak (2017) in which they study the evolution
of trade liberalization’s effects on Brazilian local labor markets.
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capture industry-level characteristics, which are analogous to Xi,t and Zi, respectively, in our main

difference-in-differences specification in Equation (5.2).42 ηc is the county to which establishment

p belongs in 2000. As in Dix-Carneiro and Kovak (2017), each year’s βt captures one point on the

empirical impulse response function describing the cumulative effects of the imposition of PNTR as

of each post-PNTR year.

Figure 6: PNTR and Establishment Survival, 2001 - 2017

Notes: This figure shows the cumulative effect of the imposition of PNTR on establishment survivals, conditional
on positive PM10 Emissions in 2000. Each point reflects an individual regression coefficient, βt, following Equation
(6.1). The estimated coefficients are displayed with their 95 percent confidence intervals. The dependent variable,
yp,t, is an indicator variable that equals one if establishment p exists in year t and 0 otherwise. Note that we restrict
the sample to establishments that had positive PM10 Emissions in 2000, so yp,2000 = 1 holds for all establishments.
The independent variable is the industry-level NTR Gap (NTRGapi). All regressions include county fixed effects and
control for the log of establishment employment in 2000, the log of firm employment in 2000, firm age in 2000, the
industry-level NTR tariff rates in 2000, the industry-level MFA exposure in 2000, the industry-level log of 1995 skill
and capital intensity, changes in Chinese import tariffs from 1996 to 2005, and changes in Chinese production subsidies
per total sales from 1999 to 2005. Standard errors are two-way clustered by industry and county.

Figure 6 plots the coefficients on NTRGapi for each year. The survival rates initially increased

in the early 2000s; showed a downward trend until the year 2008; rebounded during the period

2008-2010; and then slightly declined thereafter. However, all the coefficients are statistically insignif-

icant, meaning that the imposition of PNTR did not induce US manufacturers that reported positive
42These industry controls include the industry-level NTR tariff rates in 2000 (NTRi,00), the industry-level MFA

exposure in 2000 (MFA Exposurei,00), the industry-level log of 1995 skill and capital intensity (Log(NPi,95/Empi,95)
and Log(Ki,95/Empi,95), respectively), changes in Chinese import tariffs from 1996 to 2005 (∆Chinese Tariffi), and
changes in Chinese production subsidies per total sales from 1999 to 2005 (∆Chinese Subsidiesi).
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amounts of PM10 in 2000 to exit the market. Therefore, establishment exits do not appear to explain

the reduction in pollution emissions in US manufacturing.43

Emission Intensity Adjustment The emission reduction effects could be explained simply

by a scale effect within an establishment. In other words, the observed emission effects could be

interpreted as reductions in production, not abatements in emissions. To check for this possibility, we

construct an establishment-level emission intensity, which is defined as the ratio of PM10 Emissions

to sales. Using this new dependent variable, we repeat the baseline analysis in Table 2.

Table 3: PNTR and Establishment-level Pollution Emission Intensity, 1997 - 2017:
Log(PM Emissions/Sales)

(1) (2) (3) (4)

Log(PM Emissions/Sales)
Postt×NTR Gapi,99 -1.743∗∗∗ -1.621∗∗∗ -1.595∗∗∗ -1.635∗∗∗

(0.514) (0.597) (0.544) (0.535)

NTRi,t 0.013 0.041
(0.042) (0.045)

MFA Exposurei,t -0.010 -0.008
(0.018) (0.018)

Postt×Log(NPi,95/Empi,95) 0.312∗∗

(0.155)

Postt×Log(Ki,95/Empi,95) 0.172∗∗∗

(0.062)

Postt ×∆Chinese Tariffi -0.855
(0.572)

Postt ×∆Chinese Subsidiesi -74.688∗∗

(30.637)
Establishment FE ✓ ✓ ✓ ✓

Year FE ✓ - - -
County x Year FE - ✓ ✓ ✓

Observations 46751 46751 46751 46751

Notes. This table repeats the specifications in Columns (1)-(4) of Table 2, where we use a measure of establishment-
year-level pollution emission intensity—measured by log of PM10 emissions-to-sales ratio—as a dependent variable. *,
**, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

43Note that this result does not necessarily mean that the imposition of PNTR did not induce US manufacturers
to leave the market because the manufacturing establishments in our sample (i.e., NETS-TRI matched dataset with
positive emissions) are far larger in size (e.g., employment, sales) than the manufacturing establishments in the NETS
data (see Appendix Table B.4). The question—whether the imposition of PNTR induced US manufacturers to exit the
market—is indeed important to understand; however, it is beyond the scope of this paper.
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Table 3 reports the estimation results. Across all columns, we find negative coefficients with

statistical significance at the 1 percent level. This means that establishments that are more exposed

to the change in trade policy reduce not only pollution but also pollution per unit of sales within

an establishment. Quantitatively, the coefficients range from -1.74 to -1.60. The magnitudes of

emission intensity reduction are much larger than those of emission reduction. This implies that the

results go against the scale effect channel within an establishment. Therefore, we can rule out the

hypothesis that trade liberalization simply drives down the scale of output and reduces pollution

emissions among surviving US manufacturers accordingly. Appendix Figure A.8 plots the dynamic

treatment effects using emission intensity as a dependent variable. Reassuringly, we do not detect

any differential pretrends. Furthermore, as in the emission variable, we also find a lingering effect

of the imposition of PNTR on emission intensity. Unlike Figure 5, in the case of emissions, we do

not detect any uptick during the period between 2007 and 2009:44 The emission intensity declines

substantially in 2002 and thereafter exhibits a smooth, downward trend until 2017.

Non-Disposal Activities As discussed in Section 3, production waste can be either disposed of or

managed through non-disposal activities. To understand whether the establishment-level adjustments

to reduce PM10 emissions are mechanically driven by increases in non-disposal activities, we use the

log amount of PM10 that is recycled, treated, or combusted for energy recovery as the dependent

variable and repeat the baseline analysis in Table 2. We separately construct the waste amount

transferred to off-site facilities and processed on-site. Note that recycling, which the EPA ranks

as the most environmentally preferred among the available non-disposal methods, accounts for the

vast majority of non-disposal shares in our sample: 99 percent of off-site and 64 percent of on-site

non-disposal. The first columns of Appendix Tables B.15 (off-site non-disposal) and B.16 (on-site

non-disposal) present the estimation results. Here, we do not find statistically significant effects of

PNTR on off-site or on-site non-disposal activities. That is, we find limited evidence that PNTR-led

within-establishment adjustments are mechanically driven by establishments increasingly resorting to

these waste-management methods. Instead, the results imply that establishments are responding by

potentially reducing waste production at the source through, for example, adopting green technology,

relocating high-polluting tasks abroad, etc. We revisit this discussion in Section 7 where we study

mechanisms in detail.

44It appears that the TRI Burden Reduction Rule and the Great Recession may have differentially affected
US manufacturing establishments in terms of emissions and sales, respectively. However, we conjecture that the
normalization (i.e., pollution per unit of sales) may have addressed the differential impacts. This may be why we
observe a smooth, downward trend in Appendix Figure A.8.
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6.2 Robustness Checks

In this section, we conduct several robustness tests to corroborate our main difference-in-differences

results in Section 6.1: (i) alternative sample periods; (ii) controlling for NAFTA; (iii) excluding entry

and exit; (iv) dropping outliers; and (v) weighted regressions and toxicity-weighted emissions.

Alternative Sample Periods We alter the sample period beyond the baseline setting (from

1997 to 2017). First, we add two earlier years (i.e., 1995 and 1996). Initially, we excluded those

two years to avoid the potentially confounding effects of NAFTA (Cherniwchan, 2017), which came

into force on January 1, 1994. Column (1) of Appendix Table B.7 shows the estimated results using

the sample period from 1995 to 2017. They are nearly indistinguishable from our baseline results.

While the magnitude of the coefficient increases, i.e., from -1.19 to -1.32, we continue to reject zero

emission effects. Appendix Figure A.4 illustrates corresponding dynamic treatment effects in the

sample period from 1995 to 2017, confirming the robustness of the baseline results summarized in

Figure 5: We again reject differential pretrends in emissions; the long-term effects we find in the

main results are robust to including the two earlier years.

Next, we check the robustness of our results by excluding three years (2007, 2008, and 2009)

from our baseline sample. As discussed above, there was a major change in reporting criteria in 2007,

which was revoked in 2009.45 Another related concern about this period is the overlapping of our

sample with the Great Recession. If US manufacturing establishments were differentially affected by

the Great Recession, the observed emission effects could be ascribed to the Great Recession instead

of trade policy. For instance, this would be the case if unobserved demand or supply shocks caused

by the Great Recession are also correlated with our shock, which we might fail to address through

the set of control variables including the county-year fixed effects.

Column (2) of Appendix Table B.7 repeats the baseline analysis when dropping years from

2007 to 2017; Column (3) drops from 2007 to 2017 and adds two earlier years (1995 and 1996);

Column (4) drops from 2007 to 2009. The magnitude of coefficients remains quantitatively similar,

i.e., ranging from -1.22 to -0.98, further solidifying our baseline results. Appendix Figures A.5 and

A.6 present corresponding dynamic treatment effects for the sample periods (i) from 1995 to 2006 and

(ii) from 1997 to 2006, respectively. Once again, the results confirm the robustness of the baseline

results summarized in Figure 5, verifying the validity of the parallel trends assumption. In addition,

the observed emission reductions are noticeable from 2002 onward, indicating that a structural

change may have happened between 2001 and 2002—the timing overlaps well with China becoming

a member of the WTO on December 11, 2001, and with PNTR becoming effective on January 1, 2002.

Controlling for NAFTA A more direct way to address concerns related to the lagged responses

45See Section 3 for further details regarding the TRI Burden Reduction Rule and the Omnibus Appropriations Act.
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to NAFTA is to control for changes in US tariffs on imports from Mexico in our baseline regression.

In particular, we include an interaction term of industry-level changes in US tariffs on imports from

Mexico from 1990 to 2000 and the post-PNTR dummy variable.46 Appendix Table B.8 presents the

estimation results.47 Column (1) of Appendix Table B.8 includes the interaction of the post-PNTR

indicator and the industry-level NAFTA tariff changes with US total imports as trade value weights,

whereas Column (2) uses US imports from Mexico as trade value weights. The estimated coefficients

remain negative and statistically significant but decrease slightly in magnitude in comparison with

the main DID coefficient in Column (4) of Table 2. Appendix Figure A.7 plots the dynamic treatment

effects after controlling for the NAFTA tariff changes. Again, we obtain quantitatively similar effects

to our main results presented in Section 6.1.

Excluding Entry and Exit Due to the entry and exit of establishments, our main empirical

specification in Equation (5.2) may not fully capture within-establishment emission adjustment. If

the observed emission effects are entirely driven by reallocations along the extensive margin, then the

imposition of PNTR should have no impacts on establishments that had operated throughout the

entire sample period (i.e., 1997 - 2017). To alleviate this concern, we restrict establishments that had

positive employment for the entire sample period from 1997 to 2017. Appendix Table B.9 presents

the estimation results using the restricted sample. The estimated coefficients are all negative with

statistical significance at the one percent level. In addition, the magnitudes of the coefficients become

even larger, ranging from -1.57 to -1.43. These results reject the hypothesis that the emission effects

are fully driven by the entry and exit of establishments, whereas they support the within-establishment

emission reductions as a consequence of the imposition of PNTR.

Dropping Outliers As discussed in Section 5.2, the distribution of PM10 emissions is highly

skewed such that there are a small number of establishments that produce extreme emissions. A

similar pattern holds for the firm size and establishment size distributions, which are also well-

documented in the literature (e.g., Gabaix 2011; Haltiwanger et al. 2013). To ensure that these

extreme observations are not driving our results, we perform a robustness check by dropping extreme

values. Specifically, in Columns (1)-(3) of Appendix Table B.10, we drop observations from the

top and the bottom 2.5 percent of the distribution of (i) PM10 emissions, (ii) firm size, and (iii)

establishment size, respectively. The results are barely affected by dropping those outliers.

46Following Hakobyan and McLaren (2016), we construct the industry-level tariff changes as follows: first, we
collect HS-8-digit-level US tariffs on imports from Mexico in 1990 and 2000; second, we obtain trade-value-weighted
(in 1990) average tariffs for each 4-digit-industry using within-industry product shares; and third, we then compute
the industry-level average US tariffs on imports from Mexico between 1990 and 2000. Note that the within-industry
product shares are constructed in two different ways: using trade flows between (i) the US and the rest of the world;
(ii) the US and Mexico.

47Note that all controls in Column (4) of Table 2, our baseline specification, are included in these regressions.
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Weighted Regressions and Toxicity-Weighted Emissions We also show that our results

are robust to allowing alternative weighting schemes. Column (1) of Appendix Table B.11 considers

a weighted regression weighted by the establishment’s initial PM10 emissions. In Column (2), we

instead weigh each observation by an establishment’s initial employment. Last, in Column (3), we use

the log of toxicity-weighted PM10 emissions as a dependent variable and run a weighted regression

weighted by initial emissions.48 Our results are robust to the alternative specifications.

7 Offshoring and Pollution Haven Hypothesis

In this section, we present evidence in support of the offshoring mechanism that explains our main

findings on the PNTR-induced reductions in the PM10 emissions within US manufacturing. We

begin by examining the heterogeneity in the effects of the PNTR across establishments. We then

conduct additional analyses to directly assess the importance of two competing hypotheses: (i) global

sourcing and FDI activities, and (ii) the adoption of environment-friendly practices.

Heterogeneous Treatment Effects We extend Equation (5.2) to a triple difference-in-differences

design to investigate heterogeneous responses across establishment groups defined by their initial

characteristics. We consider firm-level import and export intensities (measured using the within-

firm employment share of establishments that engaged in import and export activities), counts of

4-digit sectors, counts of establishments, and size. We also consider establishment-level exposure

to environmental regulation stringency using the county-specific nonattainment status designated

through the 1990 Clean Air Act Amendments, age of establishment, and establishment-level adoption

of environment-friendly practices in production and waste management (or green technology) using

pollution prevention (P2) activities.49 Finally, we consider industry-level upstreamness (constructed

using Input-Output tables on US production linkages as in Antras et al. (2012)). Following Burchardi

et al. (2019), we work with a binary indicator that takes value one if the upstreamness index is

larger than 2. Table 4 presents estimates of the triple-difference estimator. Columns (1) through

(9) separately examine the differential effects across these initial characteristics, and Column (10)

combines all eight of them.50

48We use toxicity weights that the EPA constructed using the Risk-Screening Environmental Indicators (RSEI)
Methodology. These measures are useful in terms of understanding our results with respect to potential long-term
health risks associated with the pollutants.

49Under the 1990 Clean Air Act Amendments, the EPA established a minimum level of air quality standard that all
US counties are required to meet for four pollutants: carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), and
particulate matter (PM). Each year, if a county exceeds the minimum level for a specific pollutant, then it receives
a nonattainment designation for that pollutant. Otherwise, a county receives an attainment designation. In our
analysis, we define nonattainment counties designated specifically for particulate matter (PM). See Hanna (2010) for
comprehensive coverage of the institutional details.

50We consider the log of PM10 Emissions as a dependent variable in Table 4, but we find broadly consistent results
with the log of pollution emission intensity. See Appendix Table B.12.
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Table 4: Heterogeneous Treatment Effects:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017: Log(PM Emissions)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(PM Emissions)
Postt×NTR Gapi,99 -0.221 -1.090∗∗∗ 0.350 -2.392 -1.252∗∗ -1.588∗∗ -1.986 -1.274∗ -1.664∗∗∗ 4.611

(0.969) (0.393) (0.887) (1.751) (0.629) (0.676) (1.340) (0.688) (0.421) (5.360)

Postt×NTR Gapi,99 -4.452∗ -10.944∗∗∗

×Import Intensityf,97 (2.365) (3.081)

Postt×NTR Gapi,99 -2.316∗∗∗ -3.995∗∗∗

×Nonattainmentc,95−97 (0.772) (0.986)

Postt×NTR Gapi,99 -2.187∗∗ -3.172∗∗

×Upstreami,97 (0.959) (1.596)

Postt×NTR Gapi,99 -0.105 -2.934∗∗

×Log(Num. 4-digit Sectorsf,97) (0.486) (1.355)

Postt×NTR Gapi,99 -0.454 -5.922
×Export Intensityf,97 (1.358) (4.367)

Postt×NTR Gapi,99 0.057 0.397
×Log(Num. Establishmentf,97) (0.179) (1.125)

Postt×NTR Gapi,99 0.076 0.786
×Log(Firm Employmentf,97) (0.170) (0.860)

Postt×NTR Gapi,99 -0.002 0.007
×Agep,97 (0.009) (0.010)

Postt×NTR Gapi,99 0.532 0.977
×I(Num. P2p,95−97 > 0) (0.663) (0.952)
Establishment FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
County x Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 17373 37763 37701 37763 28347 37763 37763 37763 37763 15611

Notes. This table shows how the conferral of PNTR to China heterogeneously affected the establishment-level pollution
emissions depending on various initial characteristics by including triple interactions of a post-PNTR indicator, the
NTR gap, and a given initial characteristic. Column (1) considers a firm’s initial import intensity—measured as a
within-firm employment share of establishments that engaged in import activities in 1997—conditional on the firm
being an importer (Import Intensityf,97>0) to capture the intensive margin of intensity. Column (2) considers a
county-level measure of strict regulatory oversight under the Clean Air Act Amendments (CAAA). Specifically, we
consider a nonattainment dummy variable that takes value one if a given county has a record of nonattainment during
1995-1997 to achieve the national standards for PM emissions under CAAA. Column (3) considers an industry-level
upstreamness dummy as in Burchardi et al. (2019), which takes value one if the upstreamness index (Antras et al.,
2012) is larger than 2. Column (4) considers the log of the initial number of SIC-4-digit sectors within a firm. Column
(5) considers a firm’s initial export intensity—measured as a within-firm employment share of establishments that
engaged in export activities in 1997—conditional on the firm being an exporter (Export Intensityf,97>0) to capture
the intensive margin of intensity. Columns (6)-(8) consider the log of the initial number of establishments within a
firm, the log of initial firm employment, and the initial age of establishment. Column (9) considers a measure of an
establishment’s initial pollution prevention-related activities (P2), which equals one if there were at least one toxic
chemical between 1995-1997 that the establishment had taken any pollution prevention-related activities. Column
(10) includes all triple interactions simultaneously. All columns include interactions of the column-specific initial
characteristic(s) with (i) post-PNTR indicator and (ii) NTR gap, respectively. The rest of the specifications are
identical to those in Column (4) of Table 2: We include all set of controls and fixed effects as in Column (4) of Table 2.
The sample is restricted to establishments whose initial firm characteristics are well defined (i.e., establishments whose
parent firms existed in 1997), which results in 37,763 observations. *, **, and *** denote significance at the 10%, 5%,
and 1% levels, respectively.
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There are four notable results in Table 4, which, for visibility, we placed in the first four columns

in the table (i.e., Columns (1)-(4) and (10)). First, the estimated coefficient for import intensity

(Import Intensityf,97) is negative and statistically significant while that of export intensity (Export

Intensityf,97) is also negative but lacks statistical precision. Consistent with Fact 3 of the stylized

facts in Section 4, establishments of firms that are initially more engaged in import activities have

substantially more reduced emissions than others.51 We have limited information on the nature

of these import (or export) activities since we do not observe the type of products establishments

import (or export) or their trading partners in the data. However, as long as manufacturing firms do

not purchase goods from abroad to resell to consumers, it is most likely that these imports consist

of intermediate goods (Hummels et al., 2014), thereby possibly capturing offshoring activities. In

this context, one plausible mechanism is that PNTR encourages establishments leveraging existing

foreign sourcing networks to import instead of produce intermediate goods that require high-polluting

activities and end up reducing pollutant emissions domestically.52

Second, the estimated coefficient for the initial nonattainment status of the county in which

each establishment is located (Nonattainmentc,95−97) is negative and statistically significant. That is,

in response to PNTR, establishments that were initially facing tougher environmental regulations

decreased emissions by a greater magnitude than others facing more lenient standards. In fact, Hanna

(2010) finds that strengthened US environmental regulations, proxied by nonattainment county status

of establishment locations, induce US-based multinationals to increase their FDI activities. Consistent

with this finding, a possible interpretation of our result is that establishments in nonattainment

counties, in search of ways to reduce abatement costs, leveraged the PNTR-induced opportunities for

FDI, including offshoring high-polluting tasks abroad.

Third, the estimated coefficient for upstream industries (Upstreami,97) is negative and statisti-

cally significant. In response to PNTR, establishments operating in industries that produce goods

considered as intermediate inputs in the final goods production process reduced emissions by a greater

amount than those operating in more downstream industries. Together with the first result using

import intensities, this result offers complementary evidence in support of the offshoring mechanism.

If PNTR facilitated firms with available sourcing networks to purchase inputs from abroad, then by

virtue of the same mechanism, establishments in upstream industries may reduce pollution-intensive

production of intermediate goods as PNTR induces domestic firms to switch to Chinese suppliers.

For multi-establishment firms operating in both upstream and downstream industries, this speaks to

51In this exercise, we condition on firms being importers (i.e., Import Intensityf,97>0) to capture the intensive margin
of intensity. In Appendix Table B.13, we consider the unconditional import intensity that includes non-importers. We
obtain negative coefficients, but the estimate is less precise.

52Note that we find qualitatively similar results when using the log amount of PM10 processed through off-site
non-disposal methods as the dependent variable (See Column (11) of Appendix Table B.15). While we did not find
any significance in the main effects, we report important complementarity between an establishment’s access to foreign
sourcing networks and off-site non-disposal activities. Appendix Table B.16 presents the results for on-site non-disposal,
where we do not find analogous patterns.
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a scenario in which firms offshore dirty tasks previously performed through their own establishments

in upstream industries, thereby reducing emissions.

Finally, the estimated coefficient for multi-sector establishments (Num. 4-digit Sectorsf,97) is

negative and statistically significant, conditional on other interactions (Column (10)). Establishments

that belong to a multi-establishment firm operating in different sectors are more diversified and might

be more resilient to shocks through flexible reallocation of resources across establishments (Hyun et

al., 2022). Together with the third result, it is possible that such flexibility allows these multi-sector

firms to easily offshore upstream and dirty production and reallocate their resources toward cleaner

production, resulting in reduced pollution emissions.

Global Sourcing and FDI Activities Motivated by the suggestive evidence in support of the

offshoring mechanism in the heterogeneous treatment effect analyses, we now directly assess the

importance of (i) global sourcing and (ii) FDI, in turn, as channels through which US manufacturers

adjust and reduce domestic pollutant emissions. Conceptually, offshoring occurs when parts of the

multi-stage production process are performed abroad. Such offshoring activities involve sourcing

foreign intermediate inputs (Hummels et al., 2001), creating vertical production networks to perform

offshored tasks, and establishing foreign affiliates to serve the market of the host country or to export

to other markets outside the host country (Hanson et al., 2005; Garetto, 2013; Tintelnot, 2017). In

the data, however, it is challenging to construct a single measure that comprehensively captures

these offshoring activities. Therefore, we use two separate measures constructed from NETS and

WRDS Company Subsidiary data as proxies.53

Specifically, we first use time-varying importing status at the establishment level from the NETS

database to proxy for global sourcing activity, and test whether PNTR induced US manufacturers to

source from abroad. Next, we use WRDS Company Subsidiary data linked to our main dataset and

count the number of foreign subsidiaries in China (or other countries) to measure US multinationals’

FDI activities at the establishment-year level. Using these two measures—importing status and FDI—

as dependent variables, we estimate the main equation (5.2). In each case, we further use the triple

difference-in-differences framework to test whether such offshoring activities are more pronounced

for establishments associated with high-polluting tasks—measured as whether establishments were

located in nonattainment counties or whether establishments had higher initial pollution intensity.

Given that a nonattainment designation for a given pollutant is granted to counties whose air

pollution concentrations of that pollutant exceed federal standards (Hanna, 2010), establishments

located in these counties are likely those that heavily emitted pollutants during the initial period.

Table 5 reports the estimates for global sourcing activities. We begin by focusing on firms with at

53While the coverage of the WRDS Company Subsidiary Data is confined to publicly listed companies, it is the best
available dataset that enables us to directly test the offshoring mechanism via FDI activities. Refer to Section 3.1 for
more detailed descriptions of WRDS Company Subsidiary Data.
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Table 5: PNTR and Import Status, 1997 - 2017

(1) (2) (3)

Import Import Import

Postt×NTR Gapi,99 0.288∗∗ 0.154 1.183∗∗∗

(0.119) (0.115) (0.444)

Postt×NTR Gapi,99×Nonattainmentc,95−97 0.731∗∗∗

(0.278)

Postt×NTR Gapi,99×Log(PM Emissions/Salesp,97) 0.090∗∗

(0.040)

Establishment FE ✓ ✓ ✓

County x Year FE ✓ ✓ ✓

Controls ✓ ✓ ✓

Margin Intensive Intensive Intensive

Observations 13760 13760 9164

Notes. This table investigates the average and heterogeneous treatment effects of the conferral of PNTR to China
on establishment-level import status. The dependent variable, Import, is a dummy variable that equals to one if
establishment p engages in importing activities in year t. We focus on the intensive margin adjustment of importing
activities within a firm by restricting the sample to establishments that belonged to an importing firm in 1997
(i.e., Import Intensityf,97 > 0). Column (1) shows the average treatment effect. Columns (2) and (3) investigate
the heterogeneous treatment effects depending on (i) a county-level initial measure of strict regulatory oversight
under the Clean Air Act Amendments (CAAA) and (ii) a measure of the establishment’s initial pollution emission
intensity—measured by the log of PM10 emissions-to-sales ratio. Specifically, we include triple interactions of a
post-PNTR indicator, the NTR gap, and a given initial characteristic. Columns (2)-(3) also include interactions of the
column-specific initial characteristic with (i) post-PNTR indicator and (ii) NTR gap, respectively. The rest of the
specifications in Columns (1)-(3) are identical to Column (4) of Table 2. *, **, and *** denote significance at the 10%,
5%, and 1% levels, respectively.

least one foreign sourcing network (i.e., Import Intensityf,97 > 0) because the emission reduction effects

were most pronounced at the intensive margin of importing activities in Table 4. Column (1) of Table 5

indicates that PNTR induced US manufacturing establishments to begin importing.54 Conversely,

Column (1) of Appendix Table B.14 shows that PNTR had no such effect for establishments that did

not initially belong to an importing firm (i.e., Import Intensityf,97 = 0). Both results suggest that

establishments with existing foreign networks, which had already paid sunk investment costs, played a

major role in global sourcing activities after PNTR, underscoring the importance of intensive margin

adjustment.55 Columns (2) and (3) of Table 5 further show that establishments that are most likely

associated with high-polluting tasks engage more in importing activities than other establishments

54In other words, non-importing establishments that belong to a firm with foreign sourcing networks began to
source from abroad after PNTR.

55Similarly, we examine whether exporting activities respond to the conferral of PNTR to China. Columns (2) and
(3) of Appendix Table B.14 reveal that the imposition of PNTR does not bring about new exporting activities at the
establishment level. This is also consistent with the nature of the trade shock that liberalizes imports, not exports.
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after PNTR. Collectively, the results indicate that US manufacturers sent (or sourced) a set of dirty

tasks abroad within establishments and thus were able to reduce toxic emissions.

Table 6: PNTR and FDI into China vs. Other Countries, 1997 - 2017

(1) (2) (3) (4)

Z = Num. Subsid. in China

I(Z> 0) Log(Z)
Postt×NTR Gapi,99 0.265 0.188 1.073∗ 1.173

(0.260) (0.193) (0.611) (0.920)
Establishment FE ✓ ✓ ✓ ✓

County FE ✓ - ✓ -
Year FE ✓ - ✓ -
County x Year FE - ✓ - ✓

Controls ✓ ✓ ✓ ✓

Observations 12608 8346 6384 3067

(5) (6) (7) (8)

Z = Num. Subsid. in Other

I(Z> 0) Log(Z)
Postt×NTR Gapi,99 0.126 0.090 -0.124 -0.005

(0.215) (0.148) (0.682) (0.654)
Establishment FE ✓ ✓ ✓ ✓

County FE ✓ - ✓ -
Year FE ✓ - ✓ -
County x Year FE - ✓ - ✓

Controls ✓ ✓ ✓ ✓

Observations 12608 8346 11442 7298

Notes. This table investigates the effect of the conferral of PNTR to China on FDI activities. For each establishment-
year pair, we assign yearly measures of FDI activities by its parent firm as dependent variables. Specifically, columns
(1)-(2) consider a dummy variable that equals one if the establishment’s parent firm has at least one subsidiary in China
in year t (extensive margin). Columns (3)-(4) consider the log of the number of subsidiaries (of the establishment’s
parent firm) in China in year t (intensive margin). Columns (5)-(8) repeat Columns (1)-(4), where we consider the
number of subsidiaries in other countries. Columns (1), (3), (5), and (7) separately include county fixed effects and
year fixed effects, and columns (2), (4), (6), (8) include county-by-year fixed effects. The rest of the specifications are
identical to those in Column (4) of Table 2: We include all controls and establishment fixed effects as in Column (4) of
Table 2. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table 6 reports the estimates for FDI activities.56 Columns (1)-(2) investigate whether the

imposition of PNTR induced US manufacturers to set up more subsidiaries in China at the extensive

margin, while columns (3)-(4) explore the intensive margin. We find that the imposition of PNTR

induced US manufacturing establishments to set up more subsidiaries, mainly at the intensive

56In Columns (1)-(2) and (5)-(6), we consider a dummy variable that equals one if firm f has at least one subsidiary
in China (or other countries) in year t, thereby measuring the extensive margin; in Columns (3)-(4) and (7)-(8), we
measure the log of firm f ’s number of subsidiaries in China (or other countries) in year t, thereby capturing the
intensive margin.
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margin.57 We further conduct a placebo test in Columns (5) through (8). As the change in PNTR

status only concerns China, we do not expect the FDI effect to be significant for other destination

countries. Consistent with this conjecture, the coefficients are all statistically insignificant and small

in magnitude. In Table 7, we further find that establishments that are most likely associated with

high-polluting tasks increase their subsidiaries in China more than other establishments, which

operated mainly along the intensive margin (see Columns (2) and (4)), not the extensive margin.

Table 7: Heterogeneous Treatment Effects:
PNTR and FDI into China, 1997 - 2017

(1) (2)
Z = Num. Subsid. in China

I(Z> 0) Log(Z)
Postt×NTR Gapi,99 0.161 0.735

(0.200) (0.871)

Postt×NTR Gapi,99×Nonattainmentc,95−97 0.440 5.169∗∗∗

(0.461) (1.102)
Establishment FE ✓ ✓

County x Year FE ✓ ✓

Controls ✓ ✓

Observations 8346 3067

(3) (4)
Z = Num. Subsid. in China

I(Z> 0) Log(Z)
Postt×NTR Gapi,99 0.872 12.871∗∗∗

(0.940) (3.946)

Postt×NTR Gapi,99×Log(PM Emissions/Salesp,97) 0.057 0.938∗∗∗

(0.080) (0.323)
Establishment FE ✓ ✓

County x Year FE ✓ ✓

Controls ✓ ✓

Observations 4399 1372

Notes. This table investigates the heterogeneous treatment effects of the conferral of PNTR to China on FDI decisions
in China. Specifically, Columns (1)-(2) and Columns (3)-(4) in this table, respectively, repeat the specifications in
Columns (2) and (4) of Table 6, where we include triple interactions of a post-PNTR indicator, the NTR gap, and a
given initial characteristic. Columns (1)-(2) consider a county-level measure of strict regulatory oversight under the
Clean Air Act Amendments (CAAA). Specifically, we consider a nonattainment dummy variable that takes value one if a
given county has a record of nonattainment during 1995-1997 to achieve the national standards for PM emissions under
CAAA. Columns (3)-(4) consider a measure of the establishment’s initial pollution emission intensity—measured by the
log of PM10 emissions-to-sales ratio. All columns also include interactions of the column-specific initial characteristic
with (i) post-PNTR indicator and (ii) NTR gap, respectively. *, **, and *** denote significance at the 10%, 5%, and
1% levels, respectively.

57Due to the reduced number of observations in Column (4), we lose statistical power; nevertheless, the p-value is
0.204 and thus is statistically significant at the 21 percent level.
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Taken together, we have provided multiple pieces of evidence of the offshoring channel through

which US manufacturers shifted high-polluting activities to China after the conferral of PNTR

to China, thereby reducing emissions domestically. Our results corroborate the pollution haven

hypothesis in that progress toward trade liberalization induces firms in developed countries to avoid

stringent environmental regulations by locating production in countries, typically developing countries,

with laxer environmental standards.

Dirty Product Imports from China to US We directly test whether US manufacturers, in fact,

increased imports of dirty products from China. If US manufacturers shifted high-polluting activities

to China after the conferral of PNTR, and such a shift was driven by the offshoring mechanism, we

would expect that US manufacturers will increase dirty product imports from China relative to other

countries. We test this hypothesis by using HS 10-digit product-by-year-level data from the UN

Comtrade database. Specifically, we test whether the share of US imports from China increased more

for products produced by high-polluting industries.58 Table 8 shows the result. Column (1) confirms

that, following the conferral of PNTR to China, the share of US imports from China increased.

Column (2) shows the heterogeneity across products in the dirtiness of products. We find that such

an increase is more pronounced for products that are produced by high-polluting industries. In

Column (3), albeit only with a p-value of 0.258, we further find that the increase in the share of US

imports from China is more noticeable in upstream industries.

We emphasize that our findings do not necessarily imply that the level of pollution in China

increased due to US manufacturers’ offshoring activities. For example, it is possible that high-

polluting tasks that the US offshored to China are still less pollution-intensive compared to those

in local Chinese firms. In this case, the toxic emissions in both countries may as well decline.59

Also, Chinese exporters may adopt environment-friendly technologies to comply with international

environmental standards. In fact, there is mixed documentation on whether the expansion of Chinese

exports resulted in higher pollution in China. For example, Bombardini and Li (2020) show that the

rapid expansion of Chinese exports between 1990 and 2010 caused increases in local pollution and

mortality in China, whereas Rodrigue et al. (2020) find that Chinese exporters are significantly less

emission-intensive compared to non-exporters. Our results suggest that the conferral of PNTR to

China—followed by the offshoring of high-polluting tasks to China—resulted in increased reliance on

imports from China, especially for products that are produced by dirty industries according to US

58We use the industry-level pollution emission intensity in the US to measure the “dirtiness” of each industry.
59This idea is reminiscent of Feenstra and Hanson (1996) where outsourcing by Northern multinationals toward the

South leads to an increase in South’s capital stock relative to that in the North, which may increase the relative wage
of skilled labor in both North and South simultaneously. In their model, the manufacturing activities outsourced to the
South are ones that rely more on unskilled labor from the North’s perspective, but are ones that rely more on skilled
labor from the South’s perspective, so that offshoring leads both countries to experience an increase in skilled labor
premium. Likewise, it may be the case that the activities outsourced to the South are ones that rely more on dirty
processes from the North’s perspective, but are ones that rely more on clean processes from the South’s perspective.
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standards.

Table 8: Dirty Industries and Heterogeneity in Product-level Response of
US Import Share from China, 1997 - 2017

(1) (2) (3)
Share of US Imports from China

Postt×NTR Gapi,99 0.092∗∗ 0.090∗∗ 0.048
(0.043) (0.040) (0.052)

Postt×NTR Gapi,99×Log(Emissions of PM/Salesi,97) 0.074∗∗

(0.036)

Postt×NTR Gapi,99×Upstreami,97 0.078
(0.069)

Product FE ✓ ✓ ✓

Year FE ✓ ✓ ✓

Controls ✓ ✓ ✓

Observations 198716 170020 197905

Notes. This table investigates the heterogeneous treatment effects of the conferral of PNTR to China on product-level
US import share from China, depending on (i) initial PM emission intensity and (ii) upstreamness. Observations
are defined at HS 10-digit product-by-year level. The dependent variable is the share of imports from China to the
US relative to total US imports. Column (1) considers the interaction of (i) post-PNTR indicator and (ii) NTR gap.
Column (2) considers a triple interaction of (i) post-PNTR indicator, (ii) NTR gap, and (iii) log of initial PM10

emissions-to-sales ratio defined at the SIC 4-digit level, Log(PM Emissions/Salesi,97). Column (3) considers a triple
interaction of (i) post-PNTR indicator, (ii) NTR gap, and (iii) upstreamness dummy as in Column (3) of Table 4.
To facilitate coefficient interpretation, we standardized Log(PM Emissions/Salesi,97) so that the sample mean equals
zero and the sample standard deviation equals one. Columns (2)-(3) also include interactions of the column-specific
initial characteristic with (i) post-PNTR indicator and (ii) NTR gap, respectively. Additionally, all columns include
time-varying industry-by-year variables—NTR tariff rates (NTRi,t), MFA exposure (MFA Exposurei,t)—as well as
interactions of the post-PNTR indicator with time-invariant controls including the industry-level log of 1995 skill
and capital intensity (Log(NPi,95/Empi,95) and Log(Ki,95/Empi,95), respectively), changes in Chinese import tariffs
from 1996 to 2005 (∆Chinese Tariffi), and changes in Chinese production subsidies per total sales from 1999 to 2005
(∆Chinese Subsidiesi). The sample period is from 1997 to 2017. Standard errors (in parentheses) are clustered at the
SIC 4-digit industry level. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Pollution Prevention Efforts We now examine the importance of the technology channel in

understanding the PNTR-led reductions in PM10 emissions. If US manufacturers adopted clean

technologies in response to PNTR, then the observed decline would reflect trade-induced advances

in production or abatement processes rather than offshoring activities. Levinson (2009) finds that

the majority of the pollution emission reductions in the US from 1987 to 2001 were attributable

to technology adoption. Consequently, technology adoption is indeed crucial for understanding the

emission reductions in the US and furthermore may be confounded with the offshoring channel.

To test for this possibility, we estimate Equation (5.2) using establishment-level pollution

prevention (P2) activities—covering any practice that “reduces, eliminates, or prevents pollution at

its source before it is created"—to construct outcome variables. Specifically, among the four broad
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categories of pollution prevention (P2) activities—(i) material substitutions and modifications; (ii)

product modifications, process and equipment modifications ; (iii) inventory and material management ;

and (iv) operating practices and training, we focus on (i) and (ii) to proxy for clean technology

adoption. Appendix Table B.17 presents the estimated results. Column (1) uses an indicator variable

for whether any clean-technology-related P2 activity is reported in a given year, and column (2)

considers the number of chemicals that are associated with these P2 activities.60 We find that neither

the extensive nor intensive margin of pollution prevention (P2) activities respond to PNTR. That is,

we do not find support for the PNTR-induced clean technology adoption channel.

Note that this result does not necessarily contradict the existing literature that emphasized

the role of clean technology adoption. Our result implies that the trade liberalization associated

with the conferral of PNTR might have had a limited role in inducing clean technology adoption in

the post-2000s period.61 Aside from the trade-induced channel, it is still possible that a nationwide

trend of green technology adoption is responsible for the emission reductions in US manufacturing.

Moreover, even if there exists a mechanism of trade-induced clean technology adoption, there

might be a counteracting force in our context, leading to the null result that we obtain. One such

possibility is that clean technology adoption and offshoring were substitutes in our context, in a

similar manner in which general process innovation and offshoring were found to be substitutes in

Bena and Simintzi (2022). They find that a policy change that allows US firms to produce in China

at lower costs, such as PNTR, decreases their process innovations intended to reduce production costs.

Since clean technology adoption can be considered a form of cost-reducing process innovation when

environmental regulations are present, the substitution channel might apply to our environmental

context to neutralize any potential positive impact of PNTR on clean technology adoption.

8 Conclusion

Using the conferral of PNTR status to China as a quasi-natural experiment, we investigate the

long-run environmental impacts of trade liberalization and provide support for the pollution haven

hypothesis in US manufacturing. Data from TRI and NETS give us a unique longitudinal perspective

over nearly two decades of the post-2000 period to observe how US manufacturers adjust pollution

emissions to a reduction in trade policy uncertainty. The main driver of the reductions in pollution

emissions was the abatement within an establishment, primarily a reduction in emission intensity. US

establishment that were more able and willing to offshore production to China—in terms of (i) having

60Appendix Table B.18 shows that the results are similar using overall P2-related activity as a dependent variable.
61Cherniwchan (2017) finds a positive impact of NAFTA on clean technology adoption in the pre-2000 period. One

key difference is that our setting based on PNTR singles out the impact of changes in import barriers rather than
changes in both import and export barriers. Given that the technology upgrade channel mainly operates through
export liberalization (e.g., Bustos, 2011), this may explain the limited role of trade-induced clean technology adoptions
in our setting.
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existing foreign business relationships, (ii) moving away from stricter environmental regulations, (iii)

operating in more upstream industries, and (iv) belonging to a multi-sector firm—indeed reduced

pollution emissions more. We provide further evidence that supports the pollution haven hypothesis

whereby US manufacturers, especially those that emit pollutants more intensely, begin to source

from abroad and establish more subsidiaries in China after PNTR.

The finding that reduced trade barriers induce US manufacturers to engage in offshoring

activities implies that the extent to which differential environmental regulation between developed

and developing countries creates a pollution haven depends on additional economic factors. In

other words, US manufacturers take many other business environments into consideration when they

decide to locate production facilities abroad. In our context, those were trade policy uncertainties

that US firms would have faced had they decided to invest in China. More broadly, it could be

institutional barriers that impede FDI, especially in developing countries. Thus, our work highlights

the importance of nontrivial interactions among trade policy uncertainty, environmental regulations,

and offshoring in teasing out the pollution haven hypothesis.

While our work exploits a specific trade liberalization episode between the US and China, it

could have broader implications for jointly explaining two salient global patterns since the late 20th

century, namely, (i) the divergent paths of pollution emissions between developed and developing

countries and (ii) offshoring production tasks from developed to developing countries. Our results

indicate that these two global trends could be interpreted as a cause-and-effect relationship such that

multinationals in developed countries relocated high-pollution production activities to low-income

destination countries across the globe.

Finally, our work implies that in devising a trade policy, the environmental impact should not

be considered lightly given the recent studies that report significant adverse impacts of pollution

on health and productivity (Chang et al., 2016; Deryugina et al., 2019). Despite the importance of

adverse environmental consequences, however, the China trade shock literature has largely overlooked

its impact on environmental outcomes in the US, let alone on the global distribution of pollution.

This paper moves one step further in this direction and sheds light on the pros and cons of the effects

of the China trade shock and, more broadly, trade liberalization. Further work along this line will

deepen our understanding of the nexus between trade and the environment.
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Appendix A Additional Figures

Figure A.1: PM10 Emissions Trends: 2-digit-SIC 28, 33 versus Other Industries

Notes: This figure displays PM10 emissions trends for (i) 2-digit-SIC 28 and 33 and (ii) all other industries for
1997-2017.
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Figure A.2: Employment and PM10 Emissions Shares by 2-digit-SIC Industry

Notes: This figure displays employment (navy bars) and PM10 emissions (red bars) shares in 1997 by 2-digit-SIC
industry.
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Figure A.3: Correlations between Changes in Average PM10 Emissions and Initial Industry Trade
Intensity

Notes: The graph on the left (right) illustrates the correlations between the industry-level averages of changes in the
within-establishment log(emissions) of PM10 from 1997 to 2017 and the industry-level import (export) intensity
constructed using the value of imports (exports) relative to value-added in 1997. The sizes of the circles are
proportional to the industry-level log(employment) in 1997.
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Figure A.4: Robustness: Dynamic Treatment Effects at the Establishment Level, 1995-2017

Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we consider an extended sample period from 1995 to 2017. All other specifications are identical to
those in Equation (5.3).
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Figure A.5: Robustness: Dynamic Treatment Effects at the Establishment Level, 1995-2006

Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we consider the sample period from 1995 to 2006. All other specifications are identical to those in
Equation (5.3).
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Figure A.6: Robustness: Dynamic Treatment Effects at the Establishment Level, 1997-2006

Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we consider an extended sample period from 1997 to 2006. All other specifications are identical to
those in Equation (5.3).

A-6



Figure A.7: Controlling for NAFTA: Dynamic Treatment Effects at the Establishment Level

Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we additionally control for the interaction of the post-PNTR indicator and the industry-level NAFTA
tariff changes. Blue dots use US total imports as trade value weights in measuring industry-level NAFTA tariffs; red
dots use US imports from Mexico as trade value weights. All other specifications are identical to those in Equation
(5.3).
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Figure A.8: Dynamic Treatment Effects of Pollution Emission Intensity at the Establishment Level

Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we use a measure of establishment-year-level pollution emission intensity—measured by log of PM10

emissions-to-sales ratio—as a dependent variable. All other specifications are identical to those in Equation (5.3).
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Appendix B Additional Tables

Table B.1: Important Changes to TRI Program over Time

Time Changes

Dec 1993 21 Chemicals and 2 Chemical Categories added

Nov 1994 286 Chemicals added

May 1997 Seven Industry Sectors (metal and coal mining facilities, electric power
generators, commercial hazardous waste treatment operations, solvent
recovery facilities, petroleum bulk terminals, and wholesale chemical
distributors) added

Oct 1999 7 PBT Chemicals and 2 chemical categories added

Jan 2001 Lead and Lead Compounds designated as PBT chemicals

Dec 2006 TRI Burden Reduction Rule allowed the expansion of eligibility for
using Form A

May 2007 TRI Dioxin Toxic Equivalency Rule

April 2009 Omnibus Appropriations Act restored the TRI reporting requirements
that were effective before 2006

Nov 2010 National Toxicology Program Chemicals added

April 2012 Increasing Tribal Participation in the TRI Program

Nov 2015 1-Bromopropane added

Nov 2016 Hexabromocyclododecane (HBCD) Category added

Notes: The table mainly lists institutional changes that are relevant to our analysis. See the following link
for a comprehensive list of changes to the TRI program: https://www.epa.gov/toxics-release-inventory-tri-
program/history-toxics-release-inventory-tri-program
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Table B.2: Top and Bottom 5 Industries in PM10 Emissions

Top 5 Industries in PM10 Emissions Bottom 5 Industries in PM10 Emissions

3313 Electrometallurgical Products, except Steel 2254 Knit Underwear and Nightwear Mills

3321 Gray and Ductile Iron Foundries 2591 Household Furniture, N.E.C.

2816 Inorganic Pigments 2047 Dog and Cat Food

2819 Industrial Inorganic Chemicals, N.E.C. 3489 Ordnance and Accessories, N.E.C.

3312 Steel Works, Blast Furnaces, and Rolling Mills 2043 Cereal Breakfast Foods

Notes: The table lists top and bottom five industries in PM10 emissions in 1997. Each industry title is preceded by the
corresponding 4-digit-SIC code
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Table B.3: Additional Summary Statistics

(A) Industry-Year Level

Variable Obs. Mean Std. Dev. P10 P50 P90

NTR Gapi,99 5008 0.319 0.131 0.138 0.336 0.450

NTRi,t 5008 2.457 2.658 0.000 2.122 5.067

MFA Exposurei,t 5008 0.432 3.349 0.000 0.000 0.000

(B) Industry Level

Variable Obs. Mean Std. Dev. P10 P50 P90

NTR Gapi,99 287 0.329 0.142 0.135 0.339 0.473

NPi,95/Empi,95 287 0.295 0.115 0.173 0.266 0.452

Ki,95/Empi,95 287 94 102 27 60 218

∆Chinese Tariffi 287 -0.122 0.105 -0.264 -0.092 -0.020

∆Chinese Subsidiesi 287 -0.000 0.002 -0.002 -0.000 0.001

(C) Firm Level: A Total of 3666 Unbalanced Firms

Variable Obs. Mean Std. Dev. P10 P50 P90

Import Intensity (Unconditional)f,97 2294 0.096 0.211 0.000 0.000 0.346

Import Intensityf,97 703 0.289 0.275 0.029 0.200 0.762

Export Intensity (Unconditional)f,97 2294 0.337 0.387 0.000 0.144 1.000

Export Intensityf,97 1485 0.501 0.374 0.049 0.422 1.000

Firm Employmentf,97 2294 5566 70366 40 388 8636

Num. Establishmentf,97 2294 50 407 1 4 84

Num. 4-digit Sectorsf,97 2294 9 17 1 2 24

(D) Establishment Level: A Total of 4946 Unbalanced Establishments

Variable Obs. Mean Std. Dev. P10 P50 P90

PM Emissionsp,97 3858 41262 472714 0 15 17422

PM Emissionsp,97/Salesp,97 (lb/million dollar) 3858 2354.7 33172.9 0.0 0.6 577.9

I(Num. P2p,95−97>0) 3858 0.260 0.439 0 0 1

I(Num. P2 Clean-Techp,95−97>0) 3858 0.130 0.336 0 0 1

Establishment Employmentp,97 3858 410 916 28 160 900

Establishment Salesp,97 3858 91 245 4 25 189

Agep,97 3858 55 42 9 50 109

(E) County Level

Variable Obs. Mean Std. Dev. P10 P50 P90

CAA Nonattainmentc,95−97 841 0.045 0.208 0 0 0

Notes. This table groups each variable based on its observation level and separately presents summary statistics
by each group. Panel (A) presents summary statistics of industry-year-level variables; panel (B) presents summary
statistics of industry-level variables; panel (C) presents summary statistics of firm-level variables; panel (D) presents
summary statistics of establishment-level variables; panel (E) presents summary statistics of county-level variables.
Subscripts t, p, f , i, and c indicate year, establishment, firm, SIC-4-digit industry, and county, respectively.
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Table B.4: Summary Statistics: Compare Final Sample with NETS Manufacturing

(A) Establishment Level (1997)

1. Final Sample 2. NETS (Manufacturing)

Variable Obs. Mean Std. Dev. P50 Obs. Mean Std. Dev. P50

Establishment Employmentp,97 3858 410 916 160 748519 31 174 5

Establishment Salesp,97 3858 91 245 25 748519 5 47 0.4

(B) Firm Level (1997)

1. Final Sample 2. NETS (Manufacturing)

Variable Obs. Mean Std. Dev. P50 Obs. Mean Std. Dev. P50

Import Intensity (Unconditional)f,97 2294 0.096 0.211 0.000 649439 0.008 0.086 0.000

Import Intensityf,97 703 0.289 0.275 0.200 8496 0.648 0.387 0.857

Export Intensity (Unconditional)f,97 2294 0.337 0.387 0.144 649439 0.079 0.262 0.000

Export Intensityf,97 1485 0.501 0.374 0.422 58484 0.874 0.261 1.000

Firm Employmentf,97 2294 5566 70366 388 649439 74 4551 5

Num. Establishmentf,97 2294 50 407 4 649439 2 47 1

Num. 4-digit Sectorsf,97 2294 9 17 2 649439 1 2 1

Notes. This table compares a snapshot of the 1997 distribution of establishment- and firm-level variables between
the final sample (the NETS+TRI with positive emissions) and the original NETS data. We restrict establishments
to those operating in manufacturing establishments (i.e., SIC-4-digit 2000-3999). Firm-level variables are calculated
by including all establishments (i.e., manufacturing and non-manufacturing) within each firm that has at least one
manufacturing establishment. Panel (A) presents summary statistics of establishment-level variables in 1997; panel
(B) presents summary statistics of firm-level variables in 1997. Subscripts p and f indicate establishment and firm,
respectively. P50 denotes 50th percentile (median).
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Table B.5: SIC-2-digit 28, 33 versus Others:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2)

Log(PM Emissions)
Postt×NTR Gapi,99 -3.379∗∗ -1.334∗∗∗

(1.397) (0.441)

NTRi,t -0.099 -0.017
(0.146) (0.039)

MFA Exposurei,t 0.198 -0.019
(0.475) (0.015)

Postt×Log(NPi,95/Empi,95) 0.576∗∗∗ 0.116
(0.191) (0.150)

Postt×Log(Ki,95/Empi,95) 0.161 0.010
(0.204) (0.066)

Postt ×∆Chinese Tariffi -3.547∗ -0.448
(1.891) (0.557)

Postt ×∆Chinese Subsidiesi 45.575 -17.617
(196.566) (22.921)

Establishment FE ✓ ✓

County x Year FE ✓ ✓

Sample SIC2: 28,33 SIC2: Others
Observations 9882 31414

Notes. This table repeats the specification in Column (4) of Table 2, where we run separate regressions for two sample
groups. Column (1) considers establishments that operate in SIC-2-digit 28 or 33, whereas Column (2) considers the
rest of the manufacturing establishments. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.6: PNTR and Establishment-level Pollution Emissions, 1997 - 2017:
Other Chemicals - SO2 and VOC

(1) (2)
Log(SO2 Emissions) Log(VOC Emissions)

Postt×NTR Gapi,99 -0.388 -0.151
(0.580) (0.375)

NTRi,t 0.010 0.008
(0.025) (0.036)

MFA Exposurei,t 0.009 0.012
(0.028) (0.026)

Postt×Log(NPi,95/Empi,95) -0.278 0.282∗∗

(0.187) (0.140)

Postt×Log(Ki,95/Empi,95) -0.061 0.087
(0.113) (0.061)

Postt ×∆Chinese Tariffi 1.990 0.681
(1.221) (0.595)

Postt ×∆Chinese Subsidiesi 46.444 -3.514
(36.400) (18.700)

Establishment FE ✓ ✓

County x Year FE ✓ ✓

Observations 10567 22036

Notes. This table repeats the specification in Columns (4) of Table 2, where we consider emissions of SO2 and VOC,
respectively, as dependent variables. Column (1) uses the log of establishment-year-level emissions of SO2 and Column
(2) considers the log of emissions of VOC. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.7: PNTR and Establishment-level Pollution Emissions, Alternative Sample Periods

(1) (2) (3) (4)

Log(Emissions of PM)
Postt×NTR Gapi,99 -1.321∗∗∗ -0.979∗∗∗ -1.092∗∗∗ -1.222∗∗∗

(0.375) (0.339) (0.343) (0.382)

NTRi,t -0.012 -0.014 -0.017 -0.008
(0.030) (0.033) (0.030) (0.036)

MFA Exposurei,t -0.005 -0.005 -0.003 -0.009
(0.016) (0.011) (0.011) (0.016)

Postt×Log(NPi,95/Empi,95) 0.314∗∗∗ 0.087 0.064 0.306∗∗∗

(0.110) (0.121) (0.116) (0.114)

Postt×Log(Ki,95/Empi,95) 0.043 0.027 0.023 0.043
(0.058) (0.042) (0.048) (0.052)

Postt ×∆Chinese Tariffi -0.629 -0.552 -0.436 -0.756∗

(0.476) (0.428) (0.449) (0.457)

Postt ×∆Chinese Subsidiesi -37.084 -10.981 -11.668 -29.125
(30.062) (22.370) (24.058) (27.151)

Establishment FE ✓ ✓ ✓ ✓

County x Year FE ✓ ✓ ✓ ✓

Period 95-17 97-06 95-06 97-17 (drop 07-09)
Observations 51187 23071 27498 39913

Notes. This table repeats the specification in Column (4) of Table 2, where we consider alternative sample periods.
Column (1) extends the pre-shock period and considers 1995-2017; Column (2) restricts the sample period after 2007
and considers 1997-2006, which allows us to exclude the Global Financial Crisis and the Great Trade Collapse period
as well as the relaxation in reporting criteria during 2007 and 2009; Column (3) considers 1995-2006 as a robustness
check; Column (4) considers 1997-2017, where we drop years corresponding to 2007, 2008, and 2009. *, **, and ***
denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.8: Controlling for NAFTA:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2)

Log(PM Emissions)
Postt×NTR Gapi,99 -1.016∗∗∗ -1.024∗∗∗

(0.356) (0.379)

NTRi,t -0.027 -0.026
(0.036) (0.035)

MFA Exposurei,t -0.003 -0.005
(0.016) (0.016)

Postt×Log(NPi,95/Empi,95) 0.235∗∗ 0.266∗∗

(0.115) (0.116)

Postt×Log(Ki,95/Empi,95) 0.080 0.073
(0.055) (0.057)

Postt ×∆Chinese Tariffi -0.995∗∗ -0.883∗

(0.469) (0.463)

Postt ×∆Chinese Subsidiesi -31.365 -31.691
(27.075) (27.074)

Postt ×∆NAFTA Tariffi (Tot.Imp.Wt) 5.205∗∗

(2.537)

Postt ×∆NAFTA Tariffi (MEX.Imp.Wt) 3.074
(2.191)

Establishment FE ✓ ✓

County x Year FE ✓ ✓

Observations 46644 46644

Notes. This table repeats the specification in Column (4) of Table 2, where we additionally control for the interaction
of the post-PNTR indicator and the industry-level NAFTA tariff changes. Column (1) uses US total imports as trade
value weights in measuring industry-level NAFTA tariffs, and Column (2) uses US imports from Mexico as trade value
weights. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.9: Excluding Establishment Entry and Exit:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) (3) (4)

Log(PM Emissions)
Postt×NTR Gapi,99 -1.430∗∗∗ -1.478∗∗∗ -1.440∗∗∗ -1.569∗∗∗

(0.442) (0.487) (0.491) (0.520)

NTRi,t -0.012 0.003
(0.041) (0.044)

MFA Exposurei,t -0.017 -0.015
(0.019) (0.019)

Postt×Log(NPi,95/Empi,95) 0.196
(0.157)

Postt×Log(Ki,95/Empi,95) 0.070
(0.067)

Postt ×∆Chinese Tariffi -0.342
(0.574)

Postt ×∆Chinese Subsidiesi -49.783∗∗

(25.214)
Establishment FE ✓ ✓ ✓ ✓

Year FE ✓ - - -
County x Year FE - ✓ ✓ ✓

Observations 29049 29049 29049 29049

Notes. This table repeats the specifications in Columns (1)-(4) of Table 2, where we exclude establishments that
entered or exited between 1997 and 2017. Therefore, the sample consists of establishments that existed throughout the
sample period. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.10: Dropping Outliers:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) (3)

Log(PM Emissions)
Postt×NTR Gapi,99 -1.152∗∗∗ -1.044∗∗∗ -1.102∗∗∗

(0.371) (0.400) (0.401)

NTRi,t 0.012 0.008 -0.008
(0.033) (0.036) (0.036)

MFA Exposurei,t -0.010 -0.009 -0.006
(0.014) (0.017) (0.017)

Postt×Log(NPi,95/Empi,95) 0.222∗ 0.359∗∗∗ 0.294∗∗

(0.116) (0.128) (0.128)

Postt×Log(Ki,95/Empi,95) 0.041 0.057 0.056
(0.053) (0.058) (0.058)

Postt ×∆Chinese Tariffi -0.489 -0.705 -0.915
(0.498) (0.584) (0.573)

Postt ×∆Chinese Subsidiesi -45.713∗ -32.888 -34.000
(26.913) (27.369) (26.585)

Establishment FE ✓ ✓ ✓

County x Year FE ✓ ✓ ✓

Drop Extreme Emissions Firm Size Estab. Size
Observations 43925 44012 44260

Notes. This table repeats the specification in Column (4) of Table 2, where we drop outliers. Columns (1)-(3) drop the
top and the bottom 2.5 percent of the distribution of (i) PM10 emissions, (ii) firm size, and (iii) establishment size,
respectively. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.11: PNTR and Establishment-level Pollution Emissions, 1997 - 2017:
Allowing Various Weighting Schemes

(1) (2) (3)

Log(PM Emissions) Log(Toxic-Wt. PM)
Postt×NTR Gapi,99 -2.347∗∗∗ -1.652∗∗∗ -3.582∗∗

(0.558) (0.589) (1.566)

NTRi,t -0.047 -0.009 0.259∗∗

(0.063) (0.064) (0.105)

MFA Exposurei,t -0.054∗∗∗ -0.012 -0.014
(0.011) (0.021) (0.018)

Postt×Log(NPi,95/Empi,95) 0.670∗∗ 0.232 0.049
(0.328) (0.172) (0.324)

Postt×Log(Ki,95/Empi,95) 0.180∗ 0.064 0.197
(0.104) (0.081) (0.169)

Postt ×∆Chinese Tariffi -1.293 -0.836 2.170
(1.135) (0.534) (2.025)

Postt ×∆Chinese Subsidiesi -99.705 -49.568 -134.935∗∗

(79.902) (34.185) (63.394)
Establishment FE ✓ ✓ ✓

County x Year FE ✓ ✓ ✓

Weights Init. Release Init. Employment Init. Release
Observations 21783 37763 21573

Notes. This table repeats the specification in Columns (4) of Table 2, where we consider various weighting schemes in
the regression. In Columns (1)-(2), we run weighted regressions weighted by establishment’s initial PM10 emissions
and initial employment, respectively. In Column (3), we consider as a dependent variable the log of establishment-
year-level toxicity-weighted PM Emissions10 (Log(Toxic-Wt. PM)), and further weight the regression using the initial
toxicity-weighted PM10 emissions. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.12: Heterogeneous Treatment Effects:
PNTR and Establishment-level Pollution Emission Intensity, 1997 - 2017,

Log(PM Emissions/Sales)

(1)
Log(PM Emissions/Sales)

Postt×NTR Gapi,99 -0.895
(7.233)

Postt×NTR Gapi,99×Import Intensityf,97 -14.448∗∗∗

(4.649)

Postt×NTR Gapi,99×Nonattainmentc,95−97 -3.801∗∗

(1.706)

Postt×NTR Gapi,99×Upstreami,97 -3.841∗

(2.301)

Postt×NTR Gapi,99×Log(Num. 4-digit Sectorsf,97) -2.801
(2.127)

Postt×NTR Gapi,99×Export Intensityf,97 -6.305
(5.472)

Postt×NTR Gapi,99×Log(Num. Establishmentf,97) -1.289
(1.509)

Postt×NTR Gapi,99×Log(Firm Employmentf,97) 2.271∗

(1.207)

Postt×NTR Gapi,99×Agep,97 -0.001
(0.013)

Postt×NTR Gapi,99×I(Num. P2p,95−97 > 0) 2.434∗∗

(1.162)
Establishment FE ✓

County x Year FE ✓

Controls ✓

Observations 15611

Notes. This table repeats the specification in Column (10) of Table 4, where we use an establishment-year-level
pollution emission intensity—measured by the log of PM10 emissions-to-sales ratio—as a dependent variable. *, **,
and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.13: Heterogeneous Treatment Effects and the Unconditional Import Intensity:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1)
Log(PM Emissions)

Postt×NTR Gapi,99 -1.147∗∗∗

(0.427)

Postt×NTR Gapi,99×Import Intensity (Unconditional)f,97 -1.732
(1.767)

Establishment FE ✓

County x Year FE ✓

Controls ✓

Observations 37763

Notes. This table repeats the specification in Column (1) of Table 4, where we consider unconditional import intensity
that incorporates non-importers. The regression includes all controls in Column (1) of Table 4, including the interactions
of import intensity with the post-PNTR indicator and the NTR gap (where, in fact, the latter is automatically dropped
due to a perfect multicollinearity). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table B.14: PNTR, Import Status, and Export Status, 1997 - 2017

(1) (2) (3)

Import Export Export

Postt×NTR Gapi,99 -0.027 -0.022 -0.028

(0.131) (0.170) (0.085)

Establishment FE ✓ ✓ ✓

County x Year FE ✓ ✓ ✓

Controls ✓ ✓ ✓

Margin Extensive Extensive Intensive

Observations 15525 8206 20189

Notes. This table investigates the effect of the conferral of PNTR to China on establishment-level import status
(extensive margin) and export status (extensive and intensive margins). The dependent variable, Import (Export), is a
dummy variable that equals to one if establishment p engages in importing (exporting) activities in year t. Column (1)
focuses on the extensive margin adjustment of importing activities within a firm by restricting sample to establishments
that did not belong to importing firm in 1997 (i.e., Import Intensityf,97 = 0). Column (2) focuses on the extensive
margin adjustment of exporting activities within a firm by restricting sample to establishments that did not belong
to exporting firm in 1997 (i.e., Export Intensityf,97 = 0). Column (3) focuses on the intensive margin adjustment of
exporting activities within a firm by restricting sample to establishments that belonged to exporting firm in 1997 (i.e.,
Export Intensityf,97 > 0). The rest of the specifications in Columns (1)-(3) are identical to Column (4) of Table 2. *,
**, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.17: PNTR and Establishment-level Number of Chemicals with
Clean Technology Adoption-Related Pollution Prevention (P2) Activities, 1997 - 2017

(1) (2)
Z = Num. P2 Clean-Tech

I(Z> 0) Log(Z)
Postt×NTR Gapi,99 -0.060 0.453

(0.071) (0.518)

NTRi,t -0.011∗∗ 0.002
(0.005) (0.019)

MFA Exposurei,t -0.000 -0.003
(0.004) (0.003)

Postt×Log(NPi,95/Empi,95) -0.041∗∗ 0.078
(0.019) (0.188)

Postt×Log(Ki,95/Empi,95) -0.020∗ 0.128∗

(0.010) (0.066)

Postt ×∆Chinese Tariffi 0.117∗ -0.026
(0.068) (0.881)

Postt ×∆Chinese Subsidiesi -2.386 -17.978
(2.917) (36.547)

Establishment FE ✓ ✓

County x Year FE ✓ ✓

Observations 46753 605

Notes. This table investigates the effect of the conferral of PNTR to China on establishments’ clean technology
adoption-related pollution prevention (P2) activities. Specifically, the table repeats the specification in Column (4) of
Table 2, where we consider establishment-year-level measures of clean technology adoption-related P2 activities as
dependent variables. Column (1) uses a dummy variable that equals one if there is at least one toxic chemical in year t
that establishment p has taken any clean technology adoption-related P2 activities (extensive margin). Column (2) uses
the log of the number of toxic chemicals in year t that establishment p has taken any clean technology adoption-related
P2 activities (intensive margin). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.18: PNTR and Establishment-level Number of Chemicals with
Overall Pollution Prevention (P2) Activities, 1997 - 2017

(1) (2)
Z = Num. P2

I(Z> 0) Log(Z)
Postt×NTR Gapi,99 -0.118 -0.047

(0.080) (0.481)

NTRi,t -0.009 -0.014
(0.006) (0.025)

MFA Exposurei,t 0.005∗∗ 0.027∗∗∗

(0.002) (0.006)

Postt×Log(NPi,95/Empi,95) -0.019 -0.138
(0.028) (0.107)

Postt×Log(Ki,95/Empi,95) -0.028∗∗ 0.005
(0.011) (0.068)

Postt ×∆Chinese Tariffi 0.069 0.103
(0.091) (0.768)

Postt ×∆Chinese Subsidiesi 1.033 -11.791
(4.241) (21.659)

Establishment FE ✓ ✓

County x Year FE ✓ ✓

Observations 46753 2727

Notes. This table investigates the effect of the conferral of PNTR to China on establishments’ overall pollution
prevention (P2) activities. Specifically, the table repeats the specification in Column (4) of Table 2, where we consider
establishment-year-level measures of P2 activities as dependent variables. Column (1) uses a dummy variable that
equals one if there is at least one toxic chemical in year t that establishment p has taken any P2 activities (extensive
margin). Column (2) uses the log of the number of toxic chemicals in year t that establishment p has taken any P2
activities (intensive margin). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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