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Abstract
We conduct a field experiment with residential electricity customers to evaluate
the effectiveness of centralized (utility-initiated) vs decentralized (customer-
initiated) demand response. Participants receive dynamic incentives to reduce
electricity use during randomized peak events. Treatment groups differ in the
ease with which they can respond to events in terms of a) provision of tech-
nology to remotely control devices in their home, including hot water heaters,
baseboard thermostats, and electric vehicle chargers, and b) whether the de-
fault response is to reduce consumption during an event (centralized) or requires
customer-initiated action to do so (decentralized). We find centrally-initiated
households reduce consumption by 26% on average during 3-hour demand re-
sponse events, whereas customer-initiated households reduce by only 4% despite
both groups receiving the same financial compensation for the same percentage
demand reduction. Having to take an action, one as small as pushing a button
on an app versus not having to do so, results in a 6-fold difference in response.
We find an additional “manual” decentralized group, one with the same incen-
tives but without remote control technology installed, indistinguishable in their
consumption reduction (5%) to the decentralized group with technology. These
findings speak to the importance of reducing the effort and cognitive burden
on residential customers to unlock flexible electricity demand.
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1 Introduction

A fundamental challenge for electricity markets is the need to balance supply and

demand at every instant despite limited storability and inelastic demand. Historically,

this has been achieved by forecasting demand and adjusting (dispatching) supply.

Going forward, however, the growth of intermittent renewable generation and new

sources of flexible demand (such as electric vehicles) may lead to the prior adage being

flipped upside down, with grid operators forecasting supply and dispatching demand.

Economists have long recognized the benefits of price-responsive demand to im-

prove the efficiency of electricity markets. However, electricity consumers are gen-

erally inattentive to both their electricity price and usage (perhaps rationally so),

and even when made aware, the task of acting on this information can be onerous

relative to the relatively small gains on individual decisions. Put simply, given the

opportunity cost of time and effort, electricity consumers may be reluctant to partic-

ipate in demand response programs that amount to “picking up pennies” in a series

of irregular and relatively low stakes opportunities.

In this paper, we examine the role centrally-initiated demand response can play

in overcoming barriers to unlocking flexible demand from residential electricity cus-

tomers. Partnering with a large electric utility, we recruited approximately 1700

participants to a demand response field experiment, whereby households receive oc-

casional “peak event” notifications and can earn money by reducing their electricity

consumption during the 3 hour window of each event.

The treatment groups differ in the technology they are provided with to assist

in responding to the event and whether consumption reductions are initiated by the

household (decentralized) or by the utility (centralized). Our first treatment group,

the Manual group, receives rewards for consumption reductions during peak events

but is not supplied with any enabling technology to minimize the effort required

to do so. They must, as the name suggests, manually reduce consumption among

their home appliances. Rewards range from $1 to $6 Canadian dollars per 3-hour

event, depending on the level of consumption reduction achieved and whether the

event is specified as a high or regular rewards event type.1 The second treatment

group, the Tech group, receives the same incentives but is also equipped with app-

1The rewards are designed to mimic the cost savings of demand reduction during peak market
conditions when matching supply and demand is challenging. This corresponds to approximately
$1.18 to $2.35 per kWh as compensation for consumption reductions for the average household in
our sample.
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enabled load controllers on devices our Utility partner installs in their home. The

controllable devices include (i) baseboard thermostats, (ii) electric hot water heaters,

and (iii) level 2 electric vehicle (EV) chargers. The Tech group, like the Manual one,

is part of our decentralized demand response—they must actively respond to a peak

event notification by taking an action. In the case of the Tech group, however, the

effort required is less than the Manual group. Finally, our third treatment group,

the Central group, mirrors the Tech group in receiving incentives and having load

control technology installed in their home, but with one crucial difference: their

load controllers’ default response to a peak event notification is to have their devices

automatically reduce their consumption.2 Households in the Central group can opt-

out of consumption reductions during an event but, in contrast to the Tech group,

they must actively make an effort to not reduce consumption by pushing a button on

their app.

We estimate the causal effect of receiving peak event incentives on electricity con-

sumption for each group by comparing household consumption during event and non-

event periods. We randomize events for each household at the household-day-time

of day-incentive level; that is, each household receives their own unique randomized

schedule of peak events over the course of the experiment. Doing so allows for iden-

tification both across and within treatment groups and also ensures events are not

correlated with other drivers of household electricity consumption. In total, we ana-

lyze approximately 10 million hourly household-level consumption observations with

over 15,000 household-event days.

The results are stark. We find the Central group reduces consumption by an

average of 26% during events as compared to only 4% for the Tech group. This

difference speaks to the importance of minimizing the costs of taking action in settings

where both inattention is rife and the incentives per event are relatively small. Having

to take an action, even as small as having to push a button on an app, to “opt-in” to a

demand response event versus being defaulted to opt-in and having to push a button

to “opt-out” results in a six-fold difference in effect. Perhaps more surprisingly, we

see no meaningful difference between the Tech group’s performance (-4%) and that

of the Manual group’s (-5%). This emphasizes that technology alone is not sufficient

to overcome barriers to action; switching the default is imperative.

One possible trade-off for the superior performance of the Central group is that

2There are a number of recently developed programs that include utility-managed load-control
for various appliances including hot water heaters (Wattersaver, 2023), thermostats (PG&E, 2023),
electric vehicles (DTE Energy, 2022), and solar-plus-storage systems (Spector, 2020).

2



households may be less inclined to accept this centrally-managed program compared

to alternatives. Despite our expectations, we find a relatively modest difference in

the take-up rates of the Central and Tech group offers (42% and 48%, respectively).

This surprising result indicates that consumers were not deterred by the idea of the

electric utility managing the consumption of their devices.

The difference in responsiveness to incentives between the Central and Tech groups

remains in our intention-to-treat (ITT) estimates (13% vs 3%), which encompass both

take-up rates and per-event electricity consumption responses by program/group.

These estimates indicate that centralized management of household device electricity

use during peak events is the clear program winner (of those considered here) for

utility companies considering demand-side measures.

A novel feature of our experiment is the inclusion of EV chargers and electric hot

water heaters.3 These two devices represent large shares of household electricity de-

mand. We see stark differences between the event treatment effect estimates by homes

with various controllable devices across the Central and Tech groups. For example, we

find households in the Central group with hot water heaters reduce their demand by

24% during events, as compared to 1% for similar households in the Tech group. This

difference across groups for households with controllable hot water heaters highlights

that there may be potentially undiscovered sources of electricity demand flexibility

in large-consuming household appliances. Tech group households with EV chargers

seem to reduce demand during events more (by 7.5%) than those with hot water

heaters (1%). We suspect this may be driven by consumers’ greater understanding

of, or familiarity with, using EV chargers for altering household electricity demand,

compared to other devices such as hot water heaters. However, utility load control

is still valuable for increasing demand flexibility during events for homes with EV

chargers, given the difference in treatment effects we see between the Central and

Tech groups with EV chargers (14% and 7.5%).

The importance of flexible electricity demand was on display in California in

Summer of 2022, where statewide appeals for conservation narrowly avoided rolling

blackouts (Balaraman, 2022). This event, as well as the February 2021 blackout in

Texas during a cold snap (King et al., 2021), illustrates the urgency of the problem.

A critical policy question is whether greater consumer demand flexibility could be

cheaper to facilitate than costly system upgrades to accommodate changing patterns

3Much of the literature on automated electricity demand response has focused on smart ther-
mostats. See, for example, Bollinger and Hartmann (2020); Blonz et al. (2021); Brandon et al.
(2022).
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in electricity demand and supply. The behavioral question addressed in this paper is

how best to overcome impediments to otherwise beneficial demand response.

Our paper builds on several strands of the literature. First, we add to the rich

set of empirical research estimating household responsiveness to time-varying pricing

in electricity.4 Our experimental design is most similar to the critical peak pricing

(CPP) strand of this literature. The results from our Manual group with no load

control technology nor automation is inline with those observed in prior CPP studies.

Our main estimate of a 5% reduction in the Manual group falls within the range of

past findings.

Second, our paper contributes to a growing strand of literature that explores

automation options for consumers to overcome barriers to demand response. There

is evidence that automation of smart thermostats can assist in facilitating short-run

demand responsiveness when combined with pricing (Harding and Lamarche, 2016;

Bollinger and Hartmann, 2020; Blonz et al., 2021). However, consumers may override

important settings with such technology, reducing the anticipated benefits (Brandon

et al., 2022). Somewhat consistently, we find that our Tech group performs no better

than the Manual group in altering electricity consumption in response to events. That

is, given the ability to remotely control large appliances as well as automate some

aspects of their electricity usage (such as thermostat settings and turning back on

EV chargers and water heaters after events), they fare no better than consumers who

require a more manual action to change electricity consumption. In our setting, smart

assistive technology is not resolving demand-side failures in price coordination.

Third, our paper relates to Fowlie et al. (2021) who look at opt-in vs opt-out de-

fault effects at the extensive margin of selecting time-varying electricity pricing plans.

Our paper complements this work by focussing on default effects at the intensive mar-

gin of the consumption response decision during peak events. Our key contribution

beyond the existing literature is the finding of significantly greater responsiveness

when consumption reductions are made the default, or passive, action in response to

demand response events. Requiring customers to actively take action—even with the

provision of technology that makes the associated cost as minimal as remote control

with a mobile phone app—is no match for the power of demand response that is

managed on the consumer’s behalf.

Our analysis proceeds as follows. Section 2 describes our experimental design.

In Sections 3 and 4, we describe the data we obtain through the experiment and

4See Faruqui and Sergici (2010) and Yan et al. (2018) for surveys of this literature.
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provide descriptive statistics of our sample. We then lay out our empirical framework,

including our estimation strategies and robustness checks, in Section 5. In Section 6,

we present our results, and in Section 7, we conclude.

2 Experimental Design

In this section, we provide an overview of our experimental design. We then summa-

rize our various experimental groups and event categories. We describe our sample

selection criteria and recruitment strategy, and we detail how we randomized house-

holds into the different experimental groups.

2.1 Overview

We explore how centralized decision-making can overcome barriers to customers ex-

pressing demand preferences in electricity markets via a large-scale field experiment.

We partnered with a large regulated Canadian electric utility (hereafter referred to as

the “Utility”) to randomly offer customers one of several programs. One of these pro-

grams involves the Utility remotely controlling customers’ select devices during “peak

events”, times in which customers are offered compensation for reducing electricity

demand. Households that were offered and accepted each program subsequently com-

prise each of our treatment groups, and our sample consists of all treatment and

control groups.5

Notably, we recover causal treatment effects, the average effect of an event house-

hold consumption by treatment group, by randomizing events at the household-day-

time of day-event “type” level. That is, average treatment effects are recovered by

randomizing a treatment (events) within treatments groups. Households within each

treatment group receive a random, independent schedule of events. In our main speci-

fication, identification of our parameters of interest that give us the average household

electricity consumption response to events, by group, relies on comparing event-time

consumption from households that randomly receive events to non-event consumption

from all households that do not receive events at a particular time, conditional on

controls. With this design, we do not need to be concerned about selection affecting

our identification.

5We consider participants in each group as similar to those that would accept many utilities’
offers for “demand-side management” programs. Indeed, they give us more conservative estimates
of consumer responsiveness to these types of programs, as utilities often select and recruit customers
for these programs that they anticipate will be the most responsive.
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2.2 Treatment Groups

Table 1 summarizes our experimental groups. The Central group is our central-

ized decision-making group. This group received load controller equipment that is

controlled by the Utility to turn off the select devices during “peak events”. This

equipment was available for several major electricity-consuming devices: electric base-

board heaters, electric hot water tanks, and/or level 2 electric vehicle chargers. This

equipment allows for enhanced control of the devices via the Utility’s App, allowing

households to turn on and off the devices remotely. Peak events (hereafter “events”)

are times when the Utility offers consumers compensation for reducing electricity

consumption, which are framed as “rewards” or “earnings” in our experiment.

Our Tech group also received load controller equipment. However, households in

this group differ from the Central group in that the Utility does not control the load

controller devices during events. Both the Central and Tech groups can remotely

control the devices on which they have load controllers. However, while the Utility

controls the Central groups’ devices on their behalf, the Tech group must take action

to turn off or adjust their devices.6

The Manual group earns financial rewards for demand reductions during events,

but does not have load controller equipment. If there is an asymmetric response to

events between the Manual and Tech groups, this captures the impact of the load

controller technology in facilitating demand reductions.

All participants in the Central, Tech, and Manual groups receive financial com-

pensation for reducing electricity consumption during peak events. The events are

randomized at the day-household-event time-event type level.7 All participants in

these groups plus a fourth group, our Info group, receive real-time household-level

electricity usage information via the App.8 The Info group is not exposed to events

(so they do not receive rewards for reducing electricity consumption) or load controller

equipment. This allows us to observe and estimate the impact of events independently

from the impact of providing consumers with real-time price information.

6In general, the Tech group must respond to event offers in-the-moment by adjusting their devices;
however, they do have the capability to pre-set their thermostats and make settings that ensure any
device turns back on after events. As described below, all experimental groups receive the first
notifications regarding events 21 hours in advance.

7As described below in Section 2.3, event times were constrained to two periods in the day in
which electricity demand is typically high. Event types reflect two magnitudes of compensation
households could receive for demand reduction, during evening events only.

8Households that received load-controllers also receive real-time information about electricity
consumption from these specific devices on the App.
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Finally, we have a Control group, a group of Utility customers whose electricity

consumption we just observe. This group has never been contacted after they installed

the utility’s App, and they can only view their electricity usage at a one-day lag

through the same App.

Table 1. Summary of Treatment Groups

Groups DR Control Control Tech Price Incentive Usage Info
Central Utility ✓ ✓ ✓
Tech Household ✓ ✓ ✓
Manual Household ✓ ✓
Info Household ✓
Control Household

Notes. DR Control represents whether demand response to events is controlled entirely
by the household (decentralized) or by the Utility for the load-controlled devices (central-
ized). Control Tech denotes whether the household has load controller equipment installed.
Price Incentive reflects if households receive peak events and rewards for reduced demand
during events. Usage Info denotes whether households receive real-time household-level
consumption information. ✓indicates categories that are applicable to each group.

2.3 Events

We use peak events to evaluate households’ responses to financial incentives, and

determine if this response differs across the treatment groups. There are two event

times and two event types. Events occur either in the morning (7 AM - 10 AM)

or evening (5 PM - 8 PM). We consider two event types that have different reward

levels: a “normal” and a “high” peak event. The high peak event receives elevated

compensation for larger demand reductions. We designed high peak events for several

reasons: (1) Incentives for consumers to reduce electricity consumption, even during

peak times, are relatively low on the margin. The peak and high peak event incen-

tive structures capture the range of peak-time pricing that consumers would face if

they had real-time pricing. The peak price schedule allows us to observe behavior

under common peak pricing, and the high peak schedule gives us a view of consumer

behavior under high peak pricing incentives that may occur when electricity demand

approaches the maximum supply available. (2) We hypothesized that while the Cen-

tral group would not need relatively large per-event incentives to make consumption

changes, participants in other groups might. (3) Infrequent, large rewards may keep

consumers engaged in a peak pricing rewards program. All morning events are normal

peak events. Evening events are permitted to be either normal or high-peak events.
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Households receive financial rewards for demand reductions relative to their household-

specific baseline consumption. Baselines reflect the average consumption during the

relevant event time window of the last five weekdays prior to the event. We de-

signed this rolling baseline to evade customer efforts to “game” their baseline by

over-consuming during times when peak events occur. Customers do not know how

the baseline is calculated.9

We consider three reward levels that depend on the reduction in consumption

relative to the household’s baseline. During normal peak events, households receive

$1 for a 10% reduction, $2 for a 30% reduction, or $3 for a 50% reduction. High

peak evening events elevate the incentives to $1 for 10%, $3 for 30%, or $6 for 50%

reductions. These incentives translate to incentive payments ranging from approxi-

mately $1.18 to $2.35 per kWh for the average household.10 These incentives are in

the range of wholesale price caps that are used to limit scarcity pricing in a number

of jurisdictions in North America.11

For households that receive events, we randomly allocate events to households

across all weekdays, excluding holidays. Consequently, households are unable to

predict when they will be exposed to a peak event. In addition, events are not

correlated with other drivers of household electricity consumption. The two event

times and types are randomly assigned to these event slots throughout the month. In

each month, households experience one to five events, with an average of three events.

There is an average of one normal evening event, one high peak evening event, and

one morning event per month. This schedule was altered in the summer months of

July and August when the likelihood of peak events is low in Canada. During these

months, households experience no “high peak” events. Events started on February

22, 2022, and continue for 18 months.

This randomization approach allows us to estimate treatment effects by house-

hold, using households’ own consumption during non-event times as a control. In

9The baseline calculation was adjusted on March 3, 2022 (after 7 treatment days) from the
average of the highest 3 of the past 5 weekdays to the average of the last 5 weekdays. This change
was made to mitigate the impact of outliers on the baseline calculation.

10The average household consumes 1.7 kWh in each hour in our sample. A 10%, 30%, and 50%
reduction translates to a 0.51, 1.53, and 2.55 kWh reduction over the three-hour event, respectively.
Consequently, for a 1 kWh reduction in consumption, we are compensating households on the lower
bound 3

2.55 = 1.18 per kWh (i.e., $3 for a 2.55 kWh reduction over three hours) for a 50% reduction
during a normal peak event to a higher bound of 6

2.55 = 2.35 for a 50% reduction during a high peak
event. The other percent reductions lie between these two cases.

11Examples include the wholesale price cap of $1.00/kWh in Alberta (Brown and Olmstead, 2017),
$3.50/kWh in the Mid Continent Independent System Operator that operates in the Midwest United
States (IRC, 2017), and $5/kWh in Texas (Smith, 2022).
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contrast to other common experimental approaches in the literature estimating con-

sumer demand responses to electricity prices, we have unique identifying variation:

Households do not all receive the events at the same time.

Households that are exposed to events receive event notifications 21 and 2 hours

prior to the event. These event notifications provide information on the time of the

event and the financial incentives for the different demand reduction levels. When

consumers receive the 21-hr notifications, they are also able to see event details in

the App itself. See Appendix B.1 for examples of the notification and in-App event

messages.

Households’ rewards for consumption reduction during events are displayed in the

App at a two-to-three day lag. The App also provides households with a summary

of their total rewards to date. See Appendix B.2 for details.

2.4 Sample Selection, Recruitment, and Assignment

2.4.1 Phase I Recruitment: Onto the App

The study sample was drawn from the population of residential customers in the

Utility’s service territory in and near a large metropolitan city. We employed a

two-step recruitment strategy. First, starting in August 2021, the Utility invited

households to join a home electricity consumption management App operated by a

third-party company, in partnership with the Utility. The App provides households

with household-level hourly consumption posted at 11 AM the following morning.

The App can be coupled with other devices to provide more detailed information

on real-time usage and device control. Households were recruited to the App using

several marketing strategies, including advertisements on the Utility’s website, social

media posts, the Utility’s newsletter, website notifications when users logged into their

Utility accounts, and emails sent to approximately 306,000 residential households.12

12Emails were sent only to customers who had indicated prior to the recruitment that they could
be contacted via email. One portion of the App Recruitment campaign targeted a set of customers
in an energy-savings program consisting of regular communication from the Utility regarding energy-
saving tips and incentives. We consider these customers sophisticated users. Approximately 64% of
the households in our final sample (all groups combined) consists of these sophisticated users (639
out of 1005). The share of these users across groups is fairly even: 70% of each of the Central and
Tech groups, 63% of the Manual group, and 57% of the Info and Control groups (combined). We
conduct a robustness check when estimating Equation 1 that interacts our coefficients of interest with
sophisticated user status. We find no evidence that sophisticated users in the Central or Tech groups
have a different response to events than others. Further, we find no evidence that the Manual group
participants who are sophisticated users reduce demand more during events than non-sophisticated
users. We are not concerned that this set of customers is driving our main treatment effects.
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The recruitment onto the Utility’s App provided us with a pool of 9,020 households

to draw from. When households signed up to join the App, they were required to

answer a six question survey. The survey asked households about their motivation for

joining the App and whether the household rents or owns their home. It asked about

devices eligible for load control in our experiment, including whether the household

has an electric hot water tank, an electric vehicle (EV), and electric baseboard heaters

as the primary heat source. Households with EVs were asked what type of charger

(level 1 or 2) they use. It also asked whether households have air conditioning, a

major source of demand flexibility.

We applied several selection criteria to this pool of households. Customers had

to be in and near a large metropolitan city in the province for which it was feasible

for Utility-partnered electricians to install load control equipment, as needed. Only

homeowners were permitted to participate. Condos and apartments were removed,

leaving primarily single-family homes, duplexes, and row homes as eligible. House-

holds must have at least one month of historical consumption data as of September

2021, and the customers must have at least one controllable electric device. The

set of controllable electric devices include a level 2 electric vehicle charger, electric

baseboard heaters used as the primary heat source, and an electric hot water heater

tank. This left us with a sample of 1,661 potential households that we used for our

randomized assignment to experimental groups.

2.4.2 Phase II Recruitment: Group Offers

We randomized eligible households into our treatment and control groups.13 Starting

in October 2021, we sent group-specific emails to households inviting them to join a

new “Trial” program. These emails provided details about the specific experiences

households would face in the group to which they were being invited, including a

summary of the expected rewards they could earn over the course of the Trial, equip-

ment they would receive and its estimated value, and future peak events. Households

13Specifically, we used a randomization procedure designed to balance important observable char-
acteristics over groups. We first used the machine learning algorithm “kmeans” to group households
based on observable characteristics. These included cumulative household electricity consumption
(in kWh) and load factor by season (Fall, Spring, Winter, and Summer), variables that indicate if
a household has an electric vehicle, electric baseboard heating, or air conditioning, and census data
on median household income. Load factor is average electricity consumption divided by maximum
consumption over a specific time period; it is a way to capture the relative utilization rate of con-
sumption at the household-level. We then randomized group assignment with the condition that
households within cluster were balanced across groups.
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were also randomly offered a small sign-on incentive of the amounts $10 or $20, or no
incentive. Recall that all households faced a yes/no decision regarding whether they

would accept our group-specific offer. The Control group that receives no equipment,

price incentives, nor real-time usage information (recall Table 1) received no further

communication beyond joining the App in the first phase of recruitment.

Households had to actively accept the invitation to join the relevant experimental

group. After selecting to join, households were mailed a device called the “Hub” that

facilitates monitoring real-time energy usage via the App. Households in the Central

and Tech groups were contacted by installers to install the load controller equipment.

This two-phase recruitment process occurred over the months August 2021 -

February 2022. The second phase of recruitment occurred in fives waves starting

in October 2021. As additional households joined the App, we collected the survey

responses, identified eligible households, randomized households into groups, and sent

the second-phase recruitment emails. This process was used to facilitate the time re-

quired to schedule and install the load controllers, as well as to achieve the targeted

sample size.

3 Data and Validation of Randomization

3.1 Data Description

Our analysis uses hourly household-level consumption (in kWh) for all households in

our experiment. Specifically, we have hourly electricity consumption data starting

on October 1, 2020. We complement this household-level data with device-level con-

sumption data on devices that receive load controllers during our trial. These data

will allow us to identify changes in consumption behavior during events and evaluate

if there are specific changes to the use of particular devices.

We have information on a number of household characteristics that were provided

through survey responses as a necessary condition to enter the first phase of our

recruitment process. In addition, the Utility provided supplementary household in-

formation including the type of household (e.g., single-family/duplex, row home) and

whether the household is enrolled in any other Utility programs.

We complement the detailed household-level data with information from the 2016

Canadian Census (Statistics Canada, 2021). We are provided a household’s Census

Dissemination Area (CDA) identifier; the CDA is the most granular geographical

unit for which all Census information is provided publicly. We collect hourly weather
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information to control for environmental factors that impact electricity consumption,

including temperature and humidity at three stations that are geographically rep-

resentative of the households located in our study.14 These data were accessed at

Environment and Climate Change Canada.

3.2 Validation of Randomization

We evaluate if there are differences in pre-treatment observable characteristics across

our various groups to assess the quality of our randomization. Table 2 provides

summary statistics by group for a number of variables, including those used in the

clustering procedure during randomization (recall Section 2.4). The sample presented

in this Table represents all 1,661 households invited to participate in the experiment.

For all variables, we report the results of a one-way ANOVA test to evaluate if there

are statistical differences in means across the groups.15

Table 2 demonstrates that the majority of households in our sample have elec-

tric hot water heating and use baseboard heating as the primary heat source, while

electric vehicles are less common representing approximately 30% of households. The

majority of households are single-family homes or duplexes, with the remainder being

primarily row homes. The households consume considerably more electricity during

the winter, with the lowest consumption arising during the summer. This demon-

strates the potential for larger opportunities for load shifting during these months.

4 Descriptive Results

In this section, we present information on program adoption rates by group. We pro-

vide initial descriptive evidence that households reduce their electricity consumption

during peak events and demonstrate that this response differs across our treatment

groups. We also use detailed device-level data to illustrate how households adjust

their load controlled devices during peak events. These descriptive results will be

supplemented by a formal econometric model below.

14We match the households in our sample with their closest weather station.
15The seasonal cumulative consumption and load factor data only contain households with a full

year’s worth of historical consumption. We computed analogous statistics using only data from
September 2021, the month in which all households have complete pre-treatment consumption data.
We find no evidence of statistically significant differences in means across the groups using this data.
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4.1 Program Adoption and Comparability Between Groups

Table 3 summarizes acceptance rates for each group offer. Acceptance rates among

all groups were high. The acceptance rate for the Central offer, 42%, was quite high

and only marginally statistically different than the acceptance rate for the Tech offer

(48%).16 The acceptance rates of the Central and Tech groups were lower than the

others due to in part to the need for load controllers to be successfully installed in

households that accepted these offers.17

We take the similarity among final acceptance rates between the Central and Tech

groups as the first set of evidence that we can confidentially compare our estimated

treatment effects between these groups. While the Manual group had a higher final

acceptance rate, concerns that the Manual group systematically differs from the other

two groups are mitigated based on a comparison of observable characteristics across

groups in our final groups.

Table A1 in the Appendix compares average pre-treatment household characteris-

tics by group for households that were in the final treatment groups. Consistent with

Table 2, we observe limited statistically significant differences in these characteristics

across groups. One difference across groups is in the proportion of households that

live in single-family homes/duplexes. There is a larger proportion of households in

this building type in the Manual group than other groups, in particular. We observed

differential attrition across groups between households’ initial acceptance of group

offers and final participation in each group program that was driven by technical

challenges of participants connecting the smart Hubs, which transmit real-time me-

ter data to participants’ App, to their meters. Participants in row homes, the other

house type, could not connect Hubs to meters at a higher rate than participants in

detached homes or duplexes. The reason for this is the nearness of one’s unit to the

meter area in a row home setup, which is likely random in relation to a household’s

electricity consumption decisions. We also observe a difference across groups in the

proportion of households that have EVs, but this difference is only marginally statis-

tically significant. Overall, these results suggest that the balance on observables that

arose as a result of the initial randomization remains in the final treated sample.

Finally, during the invitations to join each group, we randomized upfront incen-

tives. While we find a higher rate of initial acceptance with higher upfront incentive

16A difference in means test between these two values yielded a p-value of 0.072.
17We observed unsuccessful installation at households that initially accepted these offers due to,

for example, households never responding to subsequent inquiries to receive and install equipment
or households not being in compliance with local electrical codes.
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payments, the differences are small and not statistically significantly different.18

4.2 Descriptive Consumption Patterns

Figures 1 – 3 provide average hourly household-level consumption for the Central,

Tech, and Manual groups for March 2022 during non-event and event days. The

shaded regions reflect the relevant event hours. These figures are illustrative of the

broader patterns we observe throughout our sample.

Figure 1 demonstrates that the Central group has a large reduction in average

consumption during events regardless of the event type. After each event, we observe

a large spike in consumption. This “snap-back” is consistent with the devices turning

on immediately after the event (e.g., to reheat the water tank and/or home).19

Figure 1. Average Household Consumption - Central (March 2022)

Figures 2 and 3 show that the Tech and Manual groups exhibit substantially

smaller responses to events. Despite the fact that the Tech group has access to the

same equipment as the Central households, its average consumption changes by a con-

siderably smaller amount during events. The Manual group shows a relatively limited

change in its average consumption outside of the high evening events for this month.

Neither group experience the same snap-back effect immediately following the events.

Taken together, these results suggest that the Central group has a considerably larger

response to each event type.

18Households that received a $0, $10, and $20 upfront incentive accepted the initial invitation
with a 63%, 67%, and 68% probability, respectively.

19The observed snap-back could be mitigated by the Utility by staggering the beginning and/or
end of the load controlled event.
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Figure 2. Average Household Consumption - Tech (March 2022)

Figure 3. Average Household Consumption - Manual (March 2022)

We use the device-level data for devices that have load controllers to begin to

evaluate if households in the Central group allows control of devices and if households

in the Central and Tech groups use the devices during events. Figures 4 and 5 present

the average hourly consumption of hot water heaters on non-event days and on the

three different event day types for the Central and Tech groups in March 2022. We

observe a large reduction in average hot water use during the event windows for the

Central group. Consistent with the household-level results above, there is a sizable

snap-back after the event. Alternatively, Figure 5 provides limited evidence that

households in the Tech group are using the hot water heater load controllers during

events. It is important to note that for the Tech group, households can adjust their

15



hot water usage during an event by pushing a button in the Utility’s App.

Figure 4. Average Hot Water Consumption - Central (March 2022)

Figures A1 – A4 in the Appendix provide analogous figures for the load controllers

installed on electric baseboard heaters and level 2 EV chargers.20 We continue to ob-

serve a distinct reduction in consumption during events for the Central group for both

the baseboard heater(s) and level 2 EV chargers.21 In particular, average consumption

from level 2 EV chargers decreases to essentially zero during events. Alternatively,

for households in the Tech group, we observe relatively limited differences in con-

sumption patterns on baseboard heaters during events. In contrast, there is some

evidence that these households are adjusting their level 2 EV consumption during

events. This provides suggestive evidence that these households may be using the EV

load controllers.

20For the level 2 EV chargers, we present the average hourly EV consumption (i.e., charging) across
all months in 2022. We take this approach because of the relatively small number of households
that have level 2 EV chargers in our sample. Focusing on one month can lead to higher variability
in charging patterns because there is (typically) only one day of each event type for each household.

21For the baseboard heaters, the consumption does not decrease to zero during the events. This
is driven in part by the fact that the thermostats do not completely turn off these devices during
events, but the temperature set points are reduced.
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Figure 5. Average Hot Water Consumption - Tech (March 2022)

These descriptive results provide initial evidence that the Central group expe-

riences large reductions in consumption during events. This contrasts with house-

holds in the Tech and Manual groups which have considerably smaller adjustments

in hourly consumption patterns. The device-level data provide suggestive evidence

that the Tech group does not use the full capability of the load controllers to achieve

larger demand reductions during events, with the exception of the use of the level

2 EV load controllers. We undertake a formal empirical analysis to quantify these

effects and control for potentially confounding factors.

5 Empirical Framework

5.1 Treatment effects by group

We begin by estimating the following specification to identify the average treatment

effect of events on electricity consumption, by group, for the population of customers

that participate in our experiment.

We model the effect of peak events on a household i’s consumption cit (in log
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kWh) in hour t using the following model:

ln(cit) = α + β Di Eit + θi + γt + δXt + εit (1)

where α is a constant, Di is a vector of treatment group dummies that each equal one

if household i is in the Central, Tech, or Manual groups and zero otherwise. Eit is the

household-specific event indicator that equals one if the household is (randomly) as-

signed an event in hour t. We use the log of household electricity consumption on the

left hand side to normalize the right-skewed variable.22 We include θi, household fixed

effects, which control for time-invariant household characteristics. We also include

γt, a vector of time fixed effects that includes hour, day-of-week, and year-month,

which control for time-varying factors that impact consumption. In our main speci-

fication, we include household consumption data on all groups (experimental groups

and control groups).

Consumer responsiveness to events (especially with thermostat settings) may vary

in local weather conditions. To capture this variation, we include Xt, a vector of

hourly weather controls that include the relative humidity and cooling degrees and

heating degrees above and below 65◦ F (18.33◦ C). Since consumer responsiveness

may vary in weather conditions in a nonlinear way, we include a flexible functional

form with a polynomial up to the third degree for each weather-related covariate. εit

is the error term. We cluster standard errors at the household-level.

Our parameters of interest are β, which measure the change in household-level

electricity consumption during peak events for each of the Central, Tech, and Manual

groups. Identification of our parameters of interest relies on comparing event-time

consumption from households that randomly receive events to non-event consumption

from all households (treatment and control households) that do not receive events at

a particular time, conditional on average consumption in each hour of day, average

household-level consumption over all hours, and other controls. The identifying as-

sumption behind Equation (1) recovering a causal effect of events on consumption is

that events are not correlated with other drivers of household electricity consump-

tion. This is met via our randomization of events.23 As discussed in Section 2.1,

22Our results are robust to functional form; we observe similar results with a linear-linear specifi-
cation.

23One may be concerned, for the sake of external validity, that non-event consumption among
treatment group households is not a good control for event-time behavior, if participation in a
program with events leads people to alter non-event time behavior. To some extent, non-event
consumption among treated households changing after people enter such a program is expected and
part of the overall program effect we want to capture; in particular, people shifting consumption out
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our randomization of events within treatment groups allows us to causally identify

treatment effects without employing common selection-correction techniques, such as

estimation of local average treatment effects (LATE) parameters.

We report the average marginal effect of an event on households’ electricity con-

sumption by group, which is a group-specific function of β̂, f(β̂). Because of our log-

linear specification, f(β̂) is a semi-elasticity. We transform this function to report the

percentage change in hourly consumption during an event via 100× (exp(f(β̂))− 1).

We include data from before the events started as well as after (from September 1,

2021 through October 31, 2022), which gives more precision to our estimates. (Recall

events started on February 22, 2022.)

5.2 Treatment effects by group: Heterogeneous treatment effects by event

type and installed devices

We consider additional specifications to test for the presence of heterogeneous treat-

ment effects across multiple dimensions. First, we consider a specification that inter-

acts our treatment group indicator Di by a vector of Event Typeit indicator variables

for each of the morning, evening, and high evening event types. This allows us to

evaluate if there are asymmetric responses to events both by the treatment group

and event-type. In particular, we anticipate a large response during the high evening

events, which offer consumers greater incentives for demand reductions.

Second, we focus on the Central and Tech groups to investigate how the responses

to events vary by the installed load controller devices. For these groups, we run

separate regressions that interact the event indicator Eit with a vector of indicator

variables that are device-specific and equal one if the household has a load controller

installed on a given device and zero otherwise.24

of event windows may lead to shifting consumption to other times. Additionally, we imagine that our
program, including the frequency of events, mimics the experience households may have in coming
years due to the variety of factors impacting electricity markets. Event-level estimates are net of
consumption shifting to other hours, which is ultimately of interest to a utility concerned about event-
time consumption only. Additionally, we took several measures customers to prevent customers from
“gaming” their baseline to earn rewards which may result in over-estimates of treatment effects: We
use only recent data in the baseline and did not communicate the baseline calculation method to
consumers. (Note that the random timing of events mitigates gaming as well.) Ultimately, however,
we run a version of Equation (1) without the Info and Control groups and obtain similar results.
This suggests that non-event consumption of the treatment groups during the months after events
started is not appreciably different than that of households who do not receive events at all.

24Note that these indicators do not precisely capture consumption reductions due to load con-
trollers on devices; they capture household consumption reductions from households during events
with particular installed devices. However, we observe a low rate of opt-outs among the Central
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5.3 Intention-to-treat

We estimate a regression specification that allows us to estimate an effect similar to

an intention-to-treat (ITT) estimate. A classic ITT estimate is a treatment effect

that includes all households (or other units) that were invited to participate in an ex-

periment, yielding an “overall program” effect estimate (Athey and Imbens, 2017). In

our setting, this is of particular interest, as we anticipated a lower take-up rate of the

Central program offer but, conditional on take-up, large household-level reductions in

electricity demand during events. In contrast, we anticipated a larger take-up of the

Tech program offer with smaller household-level reductions in electricity consumption

during events. The net result of these extensive- and intensive-margin effects deter-

mines the ultimate event-level demand flexibility from the pool of customers that

were offered each program. This is of particular interest to electric utility companies

and balancing authorities which are weighing options for demand flexibility in the

changing electricity landscape with system upgrade costs.

Unlike many experimental settings, our treatment (events) are randomized within

experimental groups and are not assigned globally by group. Therefore, unlike stan-

dard ITT specifications, we cannot have a binary treatment indicator that turns on

for all households assigned to a specific experimental group, regardless of whether

they accept that program. Because we have periodic events that are randomly as-

signed to only those households that chose to participate in our trial, we create an

analogous environment in our setting for all households invited to each group. To do

this, we assign households that were randomized to receive the Central, Tech, and

Manual group offers but did not accept the offer a distribution of randomized events

that is the same as the households that participated. This creates a new variable Êit

that includes the observed events for households in our experiment and a synthetic

distribution of events for households that were invited to the Central, Tech, or Manual

groups but did not accept our offer.

We specify the following estimating equation:

group households: Households opt-out from about 1.8% of device-event observations. Opt-outs,
when done, are for thermostats about 88% of the time and for hot water heaters about 9% of the
time. Additionally, households in our sample can have a combination of one or more of the eligible
load-controlled devices. We run additional specifications where we interact the event indicator with
each possible load controller device combination. This allows us to evaluate if there are potential
“synergies” associated with having different device combinations. We did not find evidence of such
synergies, indicating that the marginal effects we report from this specification can be interpreted as
the marginal impact of a household with a given load controller receiving an event on consumption.
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ln(cit) = α + ω Ii Êit + θi + γt + δXt + εit (2)

where Ii represents a vector of indicator variables that equal one if household i was

invited to participate in the Central, Tech, or Manual groups and zero otherwise. Êit

is the household-specific event indicator that equals one if household i experiences

an event in hour t (or is assigned a synthetic event). This regression is estimated on

the full sample of household hourly consumption cit, including the households that

did not participate in our experiment. Similar to our main specification in (1), we

include household fixed effects, a vector of time fixed effects, and Xt hourly weather

controls. We cluster standard errors at the household-level.

5.4 Removing Info and Control Groups

To estimate our parameters of interest, Equation (1) compares event-time consump-

tion to non-event time consumption (conditional on controls). Non-event time con-

sumption includes that from treatment groups when they do no experience events

as well as that of the Info and Control groups (who never receive events). One may

be concerned that non-event time consumption of the treatment groups may be al-

tered once they start to receive events. Notably, we see no appreciable difference in

non-event time consumption between the treatment and control groups when plot-

ting average, hourly non-event time consumption by month for each group. Still, we

estimate a version of Equation (1) without the Info and Control groups included.

Put another way, only the Central, Tech, and Manual groups are included, and the

estimation of treatment effects is from comparing the event to non-event time con-

sumption using treatment group data only. If the results of this estimation strategy

are similar to those obtained from our main estimation, it implies that the “control”

behavior of treatment group participants during non-event times is similar enough to

the control groups’ to not be of concern.

6 Empirical Results

In this section, we present the results of our econometric model. We begin by pre-

senting the average treatment effect for the population of households that participate

in our experiment. We then describe heterogeneous treatment effects by event type

and installed household devices as well as our ITT results. Finally, we present the

results of when we remove the Info and Control households from the sample.
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6.1 Treatment effects by group

Figure 6 provides the estimated average response to events by group as a percentage

change in household-level consumption. (See Appendix Table A2 for more detail.)

We observe an average 26% reduction in consumption during events for the Central

group. In contrast, the Tech and Manual group have an approximate 4% and 5%

reduction in demand, respectively. All of these effects are statistically significantly

different from zero. Despite the fact that the Tech group has the same equipment

as the Central group, it has a statistically significantly lower response to events. In

particular, the average response for the Tech and Manual group are not statistically

significantly different. These results are consistent with the descriptive data analysis

presented in Section 4.2 that suggest that households in the Tech group were not

broadly using the load controller equipment to the same extent as the Central group.

Figure 6. Average Treatment Effect of Participants by Group

Notes: The reported results are group-specific marginal effects calculated from estimating β̂ in (1).

We adjust marginal effects f(β̂) to be a percentage change in consumption using the transformation

100× (exp(f(β̂))−1). Vertical lines indicate 95% confidence intervals. Standard errors are clustered
at the household level.

6.2 Treatment effects by group: Heterogeneous treatment effects by event

type and installed devices

Figure 7 presents the estimated response to events allowing for differential responses

by event type and group. (See Appendix Table A3 for detailed results.) For the Cen-
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tral group, we see a large demand reduction for all event types, with an approximate

26% reduction during both morning and evening events and a 28% average reduction

during high evening events.

The Tech and Manual groups exhibit different patterns of event-time consumption

changes across event type, compared to the Central group. The Tech group has a

response to morning events that are not statistically significantly different from zero.

This differs (statistically significantly) from the Manual group, which has an average

estimated reduction of 8% during the morning events. This is a counter-intuitive

result, as the Tech group has all the same information, incentives, and abilities as the

Manual group in making electricity consumption reductions during events, with the

added ability to remotely control thermostats, EV chargers, and hot water heaters on

which they have load controllers installed. The evening and high evening Tech and

Manual group effects are not significantly different from each other, when compared

within each event type. This suggests that the Tech group’s tech is not facilitating a

response to the price incentive.

During the evening and high evening events, the Tech group reduces its demand by

6% and 7%, while the Manual group has 4% and 3% estimated reductions during these

event types, respectively. These effects are statistically different from zero, except for

the Manual group’s behavior during high evening events. The Tech and Manual group

do not reduce consumption more during high evening than regular evening events,

which suggests the increased financial incentives for reduced electricity consumption

during these times is not enough for participants in these groups to make greater

reductions in usage.

Figure 8 presents the results of the device-specific treatment effects for the Central

and Tech groups. We observe no responses to events from households in the Tech

group that have load controllers on their hot water heater or thermostat. These

results suggest that these households are not using the load controller technology on

these devices, during events. We do observe a 7% reduction in consumption among

Tech group households with EV load controllers installed. Though this effect is not

statistically significant, we observe a subset of high-performing Tech group households

with EV chargers that do appear to be reducing consumption during events, but there

is high variability in behavior in this group.

Figure 8 shows that the households in the Central group respond to events with

statistically significant reductions in consumption across all device types. The largest

effect arises from households with load-controlled hot water heaters, resulting in an
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Figure 7. Average Treatment Effect of Participants by Group and Event Type

Notes: The reported results are group- and event type-specific marginal effects calculated from esti-
mating β̂ in (1), adjusted to allow for event-type interactions with the group indicator variables Di.

We adjust marginal effects f(β̂) to be a percentage change in consumption using the transformation

100× (exp(f(β̂))−1). Vertical lines indicate 95% confidence intervals. Standard errors are clustered
at the household level.

estimated reduction in consumption of 24%. Households with thermostats and EVs

have reductions equal to about 12% and 14%, respectively. The results in Figure 8

are consistent with the descriptive results presented in Section 4.2.

Figure 8. Average Treatment Effect of Participants by Group and Technology

Notes. The reported results are group- and household-type specific marginal effects, obtained from
estimating specification (1) run separately for the Central and Tech groups and interacting an
indicator for whether a household has each device type with the event indicator Eit. We adjust
marginal effects f(β̂) to be a percentage change in consumption using the transformation 100 ×
(exp(f(β̂)) − 1). Vertical lines indicate 95% confidence intervals. Standard errors are clustered at
the household level.
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6.3 Intention-to-treat

Overall, we find statistically significant event-time reductions in electricity consump-

tion among households in the Central, Tech, and Manual groups, when including

households who declined the offer to participate. Figure 9 shows group-specific ef-

fects: On average, households in the Central invitee group have reduced consumption

by about 13% during events. (See Tables A5 and A6 for details.) The Tech and Man-

ual invitee groups have reduced consumption during events by about 3% each. These

effects are about half as large as the treatment effects estimated from participants

only, as one might anticipate from our take-up rates of 42% and 48%, respectively,

for the Central and Tech groups. The Central group response is significantly different

from the responses of the Tech and Manual groups, as in the effects estimated from

participants. The Tech and Manual group responses do not significantly differ from

each other.

Figure 9. ITT Results by Group

Notes. The reported results reflect group-specific marginal effects computed from estimates of ω̂
from specification (2). We adjust marginal effects f(ω̂) to be a percentage change in consumption
using the transformation 100 × (exp(f(ω̂)) − 1). Vertical lines indicate 95% confidence intervals.
Standard errors are clustered at the household level.

Figure 10 shows ITT results by group and event type. As with the treatment effect

estimates from participants, effects are statistically significant, except for the Tech

group during morning events, and the Manual group during high evening events.
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The results continue to show the qualitative conclusions and pattern in our main

specification, but with reduced magnitudes.

Figure 10. ITT Results by Group and Event Type

Notes. The reported results reflect group- and event-type specific marginal effects computed from
estimates of ω̂ from a version of specification (2) that included event-type interactions with the event

indicator Êit. We adjust marginal effects f(ω̂) to be a percentage change in consumption using the
transformation 100 × (exp(f(ω̂)) − 1). Vertical lines indicate 95% confidence intervals. Standard
errors are clustered at the household level.

6.4 Removing Info and Control Groups

Tables A7 and A8 show the results of estimating Equation (1) with group and group-

by-event type indicators, respectively, and calculating marginal effects without the

Info and Control groups included in the data. These tables are comparable to Tables

A2 and A3. The results are remarkably similar, suggesting that non-event type be-

havior between these groups (which never receive events) and the Central, Tech and

Manual treatment groups are similar. This indicates that using non-event consump-

tion from treatment groups as a control in our main estimation is valid.25

25We also run a robustness check using the opposite approach: We run independent regressions of
Equation (1) with group and group-by-event type indicators using data of only one treatment group
(such as the Central group) at a time as well as the Info and Control group data. These regressions
identify the coefficients of interest by comparing the sole treatment group’s event-time behavior
to that of their non-event time behavior and that of the Info and Control groups’, conditional
on controls. Therefore, treatment effects are estimated using fewer non-event time behavior from
treatment groups as in our main estimation. We obtain very similar results. In short, our results
are robust to the specific comparison group we use; the non-event-time comparison group has little
effect on the main results.
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7 Conclusion

We explore the potential for centralized decision-making to resolve consumers’ ability

to respond to incentives in a relatively small stakes yet complex market environment.

Retail electricity markets are one such context, and we conduct a novel, large-scale

field experiment in partnership with an electricity Utility company. We find several

important results.

First, though we did not expect consumers to be as comfortable with utility-

controlled electricity consumption as a consumer-controlled arrangement, we find

only a marginally statistically significant difference in the take-up rate of such a

utility-controlled demand response program with a comparable program that of-

fers consumers the same consumption reduction incentive structure, technology, and

device-specific electricity consumption information but permitting self-directed re-

mote control of device consumption. This surprising result indicates that consumers

may recognize the potential that centralized decision-making offers in reducing costs

of action.

Second, we find that the Central group in our experiment reduces electricity con-

sumption by a large 26% (on average) when incentivized to do so with “peak events”

from their utility company. In contrast, the Tech group only makes, on average,

about a 4% reduction in consumption during events. We find that the Tech group

responds to events on par with our Manual group, which receives the same incentives

as the Central and Tech groups but does not have the ability to remotely control

device electricity consumption or view device-specific consumption data. This strik-

ing result indicates that the tech adopted by the Tech group provides little, if any,

resolution of consumers’ perhaps rational inattention to dynamic electricity prices.

The difference in responsiveness to incentives between the Central and Tech groups

remains in our intention-to-treat (ITT) estimates (13% vs. 3%), indicating that

utility-controlled management of household device electricity use during peak events

is the clear program winner for utility companies looking to address potential peak

market conditions with demand-side measures. It demonstrates that, when consid-

ering program take-up rates and per-event electricity consumption responses by pro-

gram/group, centralized decision-making in the winner.

We also uncover an important device-specific results: We observe the Central

group households with hot water heater load controllers making large (24%) per-event

reductions in electricity usage during events, on average. (The Tech group households

with hot water heater load controllers, in contrast, do not reduce consumption during
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events.) We suspect there is “untapped potential” in consumer electricity consump-

tion flexibility that is embedded in similar devices, those with which consumers can

be flexible in usage but about which there is little consumer familiarity of electricity

usage flexibility. Centralized decision-making may overcome a variety of consumer

barriers in shifting usage of these devices, including informational barriers and fears

over adjusting their usage.

We interpret the large difference in the response to incentives by the Central

and Tech group as indicating that in-the-moment actions needed to respond to the

incentives involve large costs for consumers (relative to the benefits of taking action),

and centralized decision-making can resolve these costs. In particular, consumers in

these groups face a difference in the default electricity consumption of the devices they

have with load-controllers: The Central group, by default, has the utility managing

these devices’ consumption during events (though they can opt-out), and the Tech

group, by default, has their normal usage of these devices that they must take action

to alter during events. We suspect that “taking the load off” of customers’ shoulders

with decision-making in settings with large costs of action relative to gains can lead to

new choice outcomes, and centralized control is one policy option that accomplishes

this in electricity markets.
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Table 2. Comparison of Means by Group

Central Tech Manual Info Control ANOVA
Cumul. kWh

Winter 5,279 5,268 5,442 4,859 5,265 1.29
(2,694) (3,032) (3,076) (2,748) (2,950)

Spring 3,760 3,773 3,818 3,503 3,712 0.87
(1,924) (2,112) (1,911) (2,116) (1,974)

Summer 2,845 2,836 2,708 2,614 2,729 0.77
(1,742) (1,872) (1,539) (1,861) (1,710)

Fall 3,633 3,670 3,700 3,458 3,623 0.60
(1,663) (1,945) (1,974) (1,796) (1,860)

Load Factor
Winter 24.66 24.98 25.41 24.73 24.67 0.40

(8.20) (8.15) (8.80) (8.29) (8.63)
Spring 19.52 20.12 20.01 19.28 19.91 0.62

(7.25) (6.97) (6.70) (7.73) (7.41)
Summer 16.82 16.55 16.73 16.12 16.32 0.38

(7.89) (6.30) (5.93) (8.11) (8.29)
Fall 18.56 18.90 19.34 18.42 19.06 0.97

(5.89) (6.23) (6.00) (6.48) (6.50)
Electric Vehicle 0.27 0.27 0.27 0.33 0.27 0.99

(0.44) (0.45) (0.45) (0.47) (0.45)
Baseboard Heating 0.61 0.64 0.61 0.63 0.63 0.17

(0.49) (0.48) (0.49) (0.48) (0.48)
Air Conditioning 0.52 0.51 0.50 0.51 0.54 0.17

(0.50) (0.50) (0.50) (0.50) (0.50)
Electric Hot Water 0.70 0.66 0.70 0.66 0.72 1.06

(0.46) (0.47) (0.46) (0.47) (0.45)
House/Duplex 0.77 0.76 0.81 0.78 0.84 1.61

(0.42) (0.43) (0.39) (0.42) (0.37)
Median Income 86,376 88,291 85,931 87,470 85,948 0.87

(19,503) (22,227) (19,255) (21,574) (21,541)
Households 423 382 409 259 188

Notes. This table compares pre-treatment average values across the five different groups. Paren-
theses contain the standard deviations. Cumul. kWh and Load Factor represent the cumulative
household-level consumption and load factor by season. The seasonal cumulative consumption
and load factor data only contain households with a full year’s worth of historical consumption.
(See text.) Electric Vehicle, Baseboard Heating, Air Conditioning, and Electric Hot Water are
indicator variables denoting the presence of each device. House/Duplex is an indicator variable
that equals one if the home type is a single-family home or duplex and zero otherwise. ANOVA
reports the F-statistic from one-way ANOVA tests for differences in means across groups. Sta-
tistical significance: * p < 0.10, ** p < 0.05, and *** p < 0.01.
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Table 3. Program Acceptance by Group

Central Tech Manual Info Control
Invited 423 382 409 259 188
Accepted 177 184 242 177 188

Pct. Accepted (42%) (48%) (59%) (68%) (100%)

Notes. “Invited” reflects the number of households invited to participate
in the experiment, by group. “Accepted” is the number of households
that accepted our offer and made it through equipment installation pro-
cess (as applicable, by group). “Pct. Accepted” displays acceptance
rates relative to the number of households invited.
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A Supplementary Tables and Figures

Table A1 shows observables across groups for the final set of households in each group.

Table A1. Comparison of Means by Group - Final Accepted Households

Central Tech Manual Info Control ANOVA
Cumul. kWh

Winter 5,507 5,302 5,422 5,037 5,265 0.54
(2,706) (2,737) (3,240) (2,768) (2,950)

Spring 3,900 3,739 3,797 3,642 3,712 0.34
(1,934) (1,791) (1,939) (2,159) (1,974)

Summer 2,851 2,672 2,766 2,702 2,729 0.22
(1,869) (1,759) (1,547) (1,849) (1,710)

Fall 3,754 3,550 3,677 3,547 3,623 0.32
(1,733) (1,659) (1,992) (1,788) (1,860)

Load Factor
Winter 24.62 25.56 24.93 24.93 24.67 0.26

(8.68) (8.21) (9.04) (7.76) (8.63)
Spring 19.33 20.48 19.80 19.59 19.91 0.52

(7.43) (6.30) (6.45) (7.05) (7.41)
Summer 16.33 16.87 16.95 16.61 16.32 0.25

(8.54) (6.02) (5.95) (7.80) (8.29)
Fall 18.17 18.97 19.11 18.53 19.06 0.61

6.27 5.78 6.29 6.11 6.50
Electric Vehicle 0.25 0.21 0.30 0.34 0.27 2.20∗

(0.43) (0.41) (0.46) (0.47) (0.45)
Baseboard Heating 0.68 0.70 0.60 0.59 0.63 1.83

(0.47) (0.46) (0.49) (0.49) (0.48)
Air Conditioning 0.46 0.46 0.51 0.51 0.54 0.99

(0.50) (0.50) (0.50) (0.50) (0.50)
Electric Hot Water 0.75 0.74 0.68 0.65 0.72 1.66

(0.43) (0.44) (0.47) (0.48) (0.45)
House/Duplex 0.82 0.77 0.89 0.84 0.84 2.89∗∗

(0.39) (0.42) (0.32) (0.37) (0.37)
Median Income 84,978 88,274 86,718 89,504 85,948 1.41

(19,647) (20,432) (19,494) (21,079) (21,541)
Households 177 184 242 177 188

Notes. This table compares pre-treatment average values across the five different
groups for households that were in our final treatment groups. Parentheses contain
the standard deviations. Cumul. kWh and Load Factor represents the cumulative
household-level consumption and load factor by season. Electric Vehicle, Baseboard
Heating, Air Conditioning, and Electric Hot Water are indicator variables denoting
the presence of each device. House/Duplex is a indicator variable if the home type
is a single-family home or duplex. ANOVA reports the F-statistic from one-way
ANOVA tests for differences in means across groups. Statistical Significance * p <
0.10, ** p < 0.05, and *** p < 0.01.
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Figure A1. Average Baseboard Heater Consumption - Central (March 2022)

Figure A2. Average Baseboard Heater Consumption - Tech (March 2022)
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Figure A3. Average Level 2 EV Consumption - Central (Year 2022)

Figure A4. Average Level 2 EV Consumption - Tech (Year 2022)
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Table A2. Regression Results: Event - Group Interactions

Marginal Effect Standard Error P-Value Marginal Effect (%)
Central -0.3078 0.0202 0.0000 -26.4903
Tech -0.0431 0.0164 0.0085 -4.2192

Manual -0.0539 0.0126 0.0000 -5.2511
Adj. R2 0.4751

N 11,716,985

Notes. The reported results are group-specific marginal effects calculated from esti-
mating β̂ in (1), with their associated standard errors and p-values to indicate sta-
tistical significance. Standard errors are clustered at the household level. We adjust
marginal effects f(β̂) to be a percentage change in consumption using the transformation

100× (exp(f(β̂))− 1). Adj. R2 reflects the adjusted R-squared value and N denotes the
number of observations.

Table A3. Regression Results: Event Type - Group Interactions

Marginal Effect Standard Error P-Value Marginal Effect (%)
Morning -0.2992 0.0225 0.0000 -25.8593

Central Evening -0.3004 0.0228 0.0000 -25.9477
High Evening -0.3323 0.0254 0.0000 -28.2749

Morning 0.0018 0.0207 0.9293 0.1837
Tech Evening -0.0628 0.0198 0.0015 -6.0901

High Evening -0.0699 0.0213 0.0011 -6.7507
Morning -0.0874 0.0168 0.0000 -8.3655

Manual Evening -0.0426 0.0154 0.0058 -4.1714
High Evening -0.0290 0.0180 0.1072 -2.8536

Adj. R2 0.4751
N 11,716,985

Notes. The reported results are group- and event type-specific marginal effects calculated from estimating
β̂ in (1), adjusted to allow for event-type interactions with the group indicator variables Di. The associated
standard errors and p-values are reported to indicate statistical significance. Standard errors are clustered
at the household level. We adjust marginal effects f(β̂) to be a percentage change in consumption using

the transformation 100× (exp(f(β̂))− 1). Adj. R2 reflects the adjusted R-squared value and N denotes the
number of observations.
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Table A4. Regression Results: Event Type - Group - Device Interactions

Marginal Effect Standard Error P-Value Marginal Effect (%)
Thermostat -0.1284 0.0267 0.0000 -12.0499

Central EV -0.1474 0.0512 0.0042 -13.7053
Water Heater -0.2753 0.0258 0.0000 -24.0670

Adj. R2 0.4727
N 6,511,846

Marginal Effect Standard Error P-Value Marginal Effect (%)
Thermostat -0.0338 0.0251 0.1791 -3.3243

Tech EV -0.0776 0.0728 0.2866 -7.4674
Water Heater -0.0144 0.0263 0.5844 -1.4288

Adj. R2 0.4765
N 6,629,249

Notes. The reported results are group by event by device marginal effects calculated from estimating β̂ in
(1), adjusted to allow for device-type interactions with the group indicator variables Di. The regressions are
run separately for the Central and Tech groups compared to the Info and Control groups. The associated
standard errors and p-values are reported to indicate statistical significance. Standard errors are clustered
at the household level. We adjust marginal effects f(β̂) to be a percentage change in consumption using

the transformation 100 × (exp(f(β̂)) − 1). Adj. R2 reflects the adjusted R-squared value and N denotes
the number of observations.
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Table A5. Regression Results: Event - Group Interactions - Intention-to-Treat

Marginal Effect Standard Error P-Value Marginal Effect (%)
Central -0.1404 0.0144 0.0000 -13.0973
Tech -0.0319 0.0112 0.0046 -3.1442

Manual -0.0318 0.0100 0.0015 -3.1288
Adj. R2 0.4760

N 17,750,713

Notes. The reported results are group-specific marginal effects computed from estimates
of ω̂ from specification (2), as well as their associated standard errors and p-values to
indicate statistical significance. Standard errors are clustered at the household level.
We adjust marginal effects f(ω̂) to be a percentage change in consumption using the
transformation 100× (exp(f(ω̂))−1). Adj. R2 reflects the adjusted R-squared value and
N denotes the number of observations.

Table A6. Regression Results: Event Type - Group Interactions - Intention-to-Treat

Marginal Effect Standard Error P-Value Marginal Effect (%)
Morning -0.1449 0.0164 0.0000 -13.4849

Central Evening -0.1328 0.0162 0.0000 -12.4375
High Evening -0.1478 0.0181 0.0000 -13.7418

Morning 0.0017 0.0148 0.9100 0.1674
Tech Evening -0.0491 0.0140 0.0005 -4.7936

High Evening -0.0473 0.0153 0.0021 -4.6245
Morning -0.0466 0.0137 0.0007 -4.5552

Manual Evening -0.0312 0.0123 0.0111 -3.0729
High Evening -0.0130 0.0141 0.3566 -1.2948

Adj. R2 0.4760
N 17,750,713

Notes. The reported results reflect group- and event-type specific marginal effects computed from estimates
of ω̂ from a version of specification (2) that included event-type interactions with the event indicator Êit.
The associated standard errors and p-values are reported to indicate statistical significance. Standard
errors are clustered at the household level. We adjust marginal effects f(ω̂) to be a percentage change in
consumption using the transformation 100× (exp(f(ω̂))−1). Adj. R2 reflects the adjusted R-squared value
and N denotes the number of observations.
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Table A7. Regression Results: Event - Group Interactions - Removing Info and
Control

Marginal Effect Standard Error P-Value Marginal Effect (%)
Central -0.3133 0.0201 0.0000 -26.8999
Tech -0.0487 0.0160 0.0025 -4.7576

Manual -0.0596 0.0122 0.0000 -5.7871
Adj. R2 0.4764

N 7,344,863

Notes. The reported results are group-specific marginal effects calculated from esti-
mating β̂ in (1), with their associated standard errors and p-values to indicate sta-
tistical significance. Standard errors are clustered at the household level. We adjust
marginal effects f(ω̂) to be a percentage change in consumption using the transforma-
tion 100× (exp(f(ω̂))−1). Adj. R2 reflects the adjusted R-squared value and N denotes
the number of observations.

Table A8. Regression Results: Event Type - Group Interactions - Removing Info and Control

Marginal Effect Standard Error P-Value Marginal Effect (%)
Morning -0.2993 0.0225 0.0000 -25.8673

Central Evening -0.3092 0.0225 0.0000 -26.5985
High Evening -0.3398 0.0253 0.0000 -28.8069

Morning 0.0017 0.0198 0.9304 0.1728
Tech Evening -0.0718 0.0194 0.0002 -6.9261

High Evening -0.0775 0.0209 0.0002 -7.4577
Morning -0.0876 0.0160 0.0000 -8.3861

Manual Evening -0.0514 0.0149 0.0006 -5.0144
High Evening -0.0366 0.0173 0.0344 -3.5975

Adj. R2 0.4764
N 7,344,863

Notes. The reported results are group- and event type-specific marginal effects calculated from estimating
β̂ in (1), adjusted to allow for event-type interactions with the group indicator variables Di. The associated
standard errors and p-values are reported to indicate statistical significance. Standard errors are clustered
at the household level. We adjust marginal effects f(ω̂) to be a percentage change in consumption using
the transformation 100 × (exp(f(ω̂)) − 1). Adj. R2 reflects the adjusted R-squared value and N denotes
the number of observations.
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B Treatment details

B.1 Group-specific event notifications

Each treatment group experienced event notifications tailored to their treatment. We

describe these below. Each group received a notification 21 hours before an event as

well as 2 hours before the event. As a function of the App company’s load control

system, the Central group was sent an additional, generic notification at 2 hours

before the event.

All participants are shown a short notification, according to their device and in-

app notification settings. If participants touch and press the notification, they are

shown the long notification specific to their group, featured below, with event incen-

tive details. )

Figure C1. Long Notification for Central group
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Figure C2. Long Notification for Tech group

Figure C3. Long Notification for Manual group
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Note that all group participants in the three groups below are able to locate event

details in the “Advisor” tab of the App, a centralized location for information from

the App company, once they receive an event notification. The “Learn More” button

at the bottom right of this information card takes participants to the “FAQs” section

of the group-specific experiment website.

Figure C4. Event info in App

B.2 Treatment group-specific app functionality

Each group in our experiment had an App experience and functionality that differed

according to their group assignment. We detail that here and walk through how

participants in each group could have responded to peak events, given the options in

the App.

B.2.1 Central Group

The Central group participants receive 21-hr and 2-hr notifications regarding upcom-

ing events, as described in Appendix B.1. These notifications allow them to see the

timing of the event and the magnitude of rewards for electricity consumption reduc-

tions. They also remind participants that their devices with load controllers would

be altered by the Utility to reduce consumption, unless they opted-out of the event.
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There are several ways that Central group participants can opt-out of events. Be-

fore an event starts, they can push an “Opt-out” button in the “My Devices” tab

of the App. (This tab is a central App location that allows App users to remotely

control devices that have load controllers and see the individual electricity consump-

tion of those devices.) This button removes the participant from the event globally

by removing all of their load-controlled devices from the event.

Figure C5. Central group Opt-out functionality

If they do not opt-out in this way, they see a series of screens in the “My Devices”

tab. These indicate the progression of the event to the participant and signal when

their devices’ electricity consumption is being controlled by the utility. The first screen

has an orange icon above the text “You are Opted in”, as shown below in Figure C6.

This occurs before an event starts. When the event is underway and participants’

devices are being controlled, they see the icon above “Event” turn orange. The icon

above “Completed” turns orange after an event is completed.

During an event, participants can cancel Utility device control in a device-specific

way. For EV chargers and hot water heaters, they can remotely opt-out their device

from being controlled, or they can physically turn off the load controller at the device
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Figure C6. Central group event experience
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itself. For thermostats, participants can opt-out of load control by adjusting them

physically or remotely through the App, during an event.

Note that the Central group has remote and manual control of all devices with

load controllers, just like the Tech group. Central group households can also change

anything else in the house to alter their electricity consumption during events.

B.2.2 Tech Group

The Tech group participants receive 21-hr and 2-hr notifications regarding upcoming

events, as described in Appendix B.1. These notifications allow them to see the timing

of the event and the magnitude of rewards for electricity consumption reductions.

They also remind participants that they need to “take action” to make consumption

changes to receive the rewards offered.

The Tech group can remotely control any device that has an installed load con-

troller through the App. Tech group participants can “opt-in” these devices, in ways

that differ by device. For EV chargers and hot water heaters, they can turn them off

via two clicks from the My Devices section of the App. (See Figure C7 below for the

instructions sent to participants that explain these actions.) Tech group participants

cannot make a schedule to turn off these devices before events start and must turn

them off before or during events to reduce consumption this way. (They must also

remember to turn them on unless they set up a turn-on schedule.)

For thermostats, the Tech group can set up schedule for their thermostat set-point

before events, using the App. They can also adjust their thermostats remotely during

events with the App.

B.2.3 Manual Group

The Manual group participants receive 21-hr and 2-hr notifications regarding up-

coming events, as described in Appendix B.1. These notifications allow them to see

the timing of the event and the magnitude of rewards for electricity consumption

reductions. They also remind participants that they need to “take action” to make

consumption changes to receive the rewards offered.

Manual group participants do not load controllers given to them as part of this

experiment or Utility control of any devices. They therefore only observe these noti-

fications as well their aggregate, real-time household consumption through the App.

If Manual group participants install their own smart home devices, they may be able

to link them to the smart electricity consumption technology ecosystem used in this
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Figure C7. Controller guide for Tech group
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experiment. If so, they may have the capabilities of the Tech group to observe the

real-time consumption of those devices/devices individually and adjust them remotely

through the App. (So far we only see two households in the Manual Group that have

done this, with smart thermostats.)

B.2.4 Central, Tech, and Manual groups

After each event, all three of the Central, Tech, and Manual groups receive a result

on their performance, as depicted below. This appears in the “Advisor” tab of the

App, a central location for information from the App company. This result card

reminds participants of the event type (reward magnitudes being “high” or not) and

the day and time of the event. It shows the incremental reward the participant earned

from the event as well as their cumulative rewards throughout the entire experiment,

including the reward from the prior event. The text below the reward for the last

event is variable and depends on whether a participant met one of the reward tiers.

The rewards screen with one of these text options is shown below in Figure C8.

From this rewards screen, participants can select “Event History” and see their

recent history of event rewards, as shown in Figure C9.
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Figure C8. Rewards screen
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Figure C9. Event history
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