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Abstract

Statistical inference with differential privacy is essential and often depends on
bespoke solutions. The combination of sampling and privacy noise for proper infer-
ence is not trivial, especially when sampling and privacy noise come from different
distributions. We propose a general-purpose method combining the bootstrap with
differentially private non-parametric distribution estimation. Our method applies
non-private estimators (e.g., MLE for logistic regression) to differentially private syn-
thetic data or distribution estimates. The advantage of our approach is that the
bootstrap is pure post-processing of a differentially private mechanism—it does not
access the sensitive data multiple times and does not increase the privacy budget.
The joint sampling and privacy distribution of statistical estimators is approximated
through statistical simulation. We present the results of a series of Monte Carlo ex-
periments and show that our method produces valid inferences for a wide range of
data sets (univariate data, multivariate data) and statistical problems (i.e., linear and
non-linear queries). Furthermore, we show that our method produces valid confidence
intervals that are narrower than confidence intervals produced by bespoke methods.
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1 Introduction

Disclosure avoidance technology for statistical data is becoming increasingly sophisticated,
with a wide range of complex algorithms—for example, the TopDown algorithm employed
by the US Census Bureau to create data products from the 2020 decennial census—applied
to the data to generate public-facing releases. This complexity stems from an improved
understanding of possible attacks on statistical releases (e.g., Dick et al. (2023)). These
new algorithms can be analyzed via rigorous frameworks such as differential privacy Dwork
& Rothblum (2016a). A substantial resulting benefit is that the details of the algorithm—
including noise variances, swap rates, and similar parameters—can be made public.

Even though disclosure limitation necessarily restricts what is revealed about a data set,
transparent public descriptions of the algorithms allow, in theory, for principled statistical
inference that incorporates both the uncertainty due to sampling—the traditional concern
of statistical inference—and the additional randomness and distortion introduced for dis-
closure limitation. For example, confidence intervals for a parameter estimate, and tests
of significance, measures of goodness of fit should all be adjusted to account for the extra
processing of the data. The research community has started to develop the methodology
necessary—there is a growing body of work on carefully designing differentially private
algorithms to include information for uncertainty quantification (confidence intervals, or
p-values, for example), usually in ways that are tailored to a particular inference task. This
type of bespoke analysis is challenging, however, for complex algorithms like those used to
generate differentially private synthetic data.

In this paper, we extend a recent parametric approach of Ferrando et al. (2022) to
propose a general-purpose method combining the bootstrap with differentially private non-
parametric distribution estimation. Our method applies to any non-private estimator (e.g.,
MLE for logistic regression) that is run on differentially private synthetic data or distribu-
tion estimates. The advantage of our approach is that the bootstrap is pure post-processing
of a differentially private mechanism—the method does need to access the sensitive data
multiple times and, thus, the approach does not increase the privacy budget and applies
even when the disclosure methodology is designed and run by another party (e.g., when an
outside researcher seeks to use Census-generated data products). The joint sampling and
privacy distribution of statistical estimators is approximated through statistical simulation.

We present the results of a series of Monte Carlo experiments with univariate and
multivariate datasets. Our method produces valid inferences for various statistical problems
(i.e., linear and non-linear queries). Furthermore, we show that our method produces valid
confidence intervals that are narrower than those produced by bespoke methods.
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1.1 Related Work

The problem of statistical inference with differential privacy has been studied for some time.
A first line of work focuses on developing bespoke methods for statistical tests and confi-
dence intervals for specific estimators. For example, Vu & Slavkovic (2009) develop statisti-
cal hypothesis tests and contingency tables under ε-differential privacy. Wang et al. (2015)
develop differentially private likelihood ratio and chi-squared tests. Gaboardi et al. (2016)
develop a differentially private chi-squared test. Karwa & Vadhan (2017) present a method
to estimate confidence intervals of the mean of a normal population. Awan & Slavković
(2018) derive the uniform most powerful hypothesis test for binary data. Canonne et al.
(2019) present optimal hypothesis tests for simple hypotheses under differential privacy
and apply them to change-point detection. Drechsler et al. (2022) develop non-parametric
confidence intervals for the median (and other quantiles) based on a private estimate of the
cumulative distribution function.

What these papers have in common is that developing a differentially private statistical
test requires careful analysis of the sampling and privacy noise. This means that each
test requires a novel analysis, and even if an analysis exists, practical implementations for
applied researchers often still need to be developed.

That is why more general methods based on the bootstrap have also found favor in
the literature of statistical inference with differential privacy. Brawner & Honaker (2018)
present a bootstrap method to estimate the mean and standard deviation of a distribution
by splitting up the data into disjoint subsets and applying a private estimator to each of
the subsets. Wang et al. (2022) present a tighter analysis of this bootstrap idea on disjoint
subsets. A limitation of this idea is that the privacy budget of the private estimator needs
to be distributed among the disjoint subsets. Covington et al. (2021) and Evans et al.
(2020) present methods that are based on the bag of little bootstraps. Covington et al.
(2021) still split the privacy budget across the different subsets. The method in Evans et al.
(2020) is limited to scalar estimands.

A limitation that these approaches have in common is that they require a lot of data.
After all, each of the disjoint subsets must contain enough information. For example,
Covington et al. (2021) present their results based on experiments where each subset of the
data had at least 200 observations (and the full dataset had at least 100000 observations).

A more recent line of work looks at post-processing differentially private distribution
estimates or synthetic data for statistical inference. Räisä et al. (2023) offer a Bayesian
noise-aware method combined with techniques from multiple imputation to produce valid
inferences from differentially private synthetic data. Ferrando et al. (2022) is the closest
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relative to the method we propose in this paper. They propose a parametric bootstrap
based on privately learned parameters of the assumed underlying data-generating process.

2 Preliminaries

2.1 Differential Privacy

Differential privacy Dwork et al. (2016) is a formal definition of privacy for statistical data
analyses, which limits the amount of information that can leak about any individual. Given
a space of datasets X n, we say that two datasets X,X ′ are neighboring if they differ in one
individual’s information. There are a few variants of differential privacy, but they all aim
to formalize the same intuition, namely:

A randomized algorithmM is differentially private if every pair of neighboring
datasets X,X ′ ∈ X n, the random variables M(X) and M(X ′) are similarly
distributed.

The different variants of DP use different measures of “similarly distributed”. They are
typically parametrized by a positive real number, the privacy parameter, which determines
how similar the distributions should be. They share a similar interpretation: because the
change of one record does not significantly affect the output distribution, little is revealed
about any one individual. Consider an outside observer who is trying to learn about a
particular data subject (say, Alice). Then, no matter what the observer knows ahead of
time about Alice, they will draw similar conclusions whether or not Alice’s true data were
used to computeM(X). Kasiviswanathan & Smith (2008) elaborate a Bayesian formulation
of this idea.

There are many different ways to design differentially private algorithms. A typical
approach is to add Gaussian noise to some statistic computed from the data, where the
variance of the noise is chosen based on the privacy parameter and the “sensitivity” of the
function (see the Matrix Mechanism below).

Zero-concentrated differential privacy (zCDP) (Dwork & Rothblum 2016b, Bun & Steinke
2016) is a particular variant of differential privacy that quantifies the closeness of distribu-
tions via Renyi divergences and is especially useful to analyze the Gaussian mechanism.

Definition 2.1 (Zero-Concentrated Differential Privacy (zCDP) Bun & Steinke (2016)).
A randomized algorithm M : X n → R is ρ-zCDP if for every pair of neighboring datasets

4



W
or

ki
ng

Pap
er

X,X ′ ∈ X n, and for all α ∈ (1,∞),

Dα(M(X)||M(X ′)) ≤ ρα,

where Dα denotes the Rényi divergence of order α.

To a first approximation, zCDP provides a meaningful privacy guarantee when ρ ≤ 1,
with the guarantee getting stronger as ρ goes to 0. A good way to understand this guarantee
is by considering how it applies when the outputs of the algorithm are distributed as
Gaussians. The condition imposed by zCDP on M(X) and M(X ′) is, very roughly, that
they are no more distinguishable than two univariate Gaussian distributions of variance 1
with means of 0 and

√
2ρ, respectively.

The most widely used variant of differential privacy, often dubbed approximate DP, is
implied by zCDP. Specifically, Bun & Steinke (2016) show that ifM satisfies ρ-zCDP, then

M satisfies (ρ + 2
√
ρ log(1

δ
), δ)-approximate differential privacy for any δ > 0. (Readers

unfamiliar with the parameters of approximate DP may ignore the specifics.)
Most standard notions of differential privacy, including zCDP, satisfy a sort of data-

processing property, generally known as closure under post-processing. Specifically, if M
is ρ-zCDP, then for every (possibly randomized) algorithm A the composed mechanism
A(M(·)) is also ρ-zCDP.

The differentially private mechanisms we use in this paper are based on Gaussian noise.
Suppose the universe of possible data records is partitioned into d disjoint bins. We may
represent a data set X as a histogram hX—a vector of d counts indicating how many
data records fell into each bin. Suppose further that we wish to release an approximation
to the vector MhX where M is a fixed, known matrix. For example, M could be the
lower-triangular matrix describing cumulative sum queries :

Msums =

1 · · · 0
...

. . .

1 · · · 1


(In this case, the ith entry of MsumshX is the sum of the first i entries of hX .)

Consider the mechanism which simply adds isotropic Gaussian noise to the desired
output: M(X) = MX + Z, where Z ∼ N (0, σ2I) and I is the identity matrix. To satisfy

ρ-zCDP, it suffices to set σ2 =
‖M‖21→2

2ρ
, where ‖M‖1→2 is the maximum `2 norm of any

column of M .
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In many cases, one can introduce substantially less error by adding non-isotropic noise.
Specifically, suppose we have a factorization M = LR, where L,R are arbitrary matrices.

Then we can satisfy ρ-zCDP by releasing MhX+LZ where Z ∼ N (0, σ2I) and σ2 =
‖R‖21→2

2ρ
.

The mean squared error (i.e. expected squared `2 norm of the noise) is 1
2ρ

tr(LTL)‖R‖21→2.

The idea of the matrix mechanism (Li et al. 2015) is to optimize over L and R to minimize
the mean squared error. Our algorithm for approximating a CDF differentially privately
uses this approach to release cumulative sums via a recent, explicit factorization Msums of
Fichtenberger et al. (2022).

2.2 Bootstrap Estimation of Confidence Intervals

Suppose we have a data set sampled i.i.d from an unknown probability distribution P (the
population):

xi
iid∼ P for i = 1, 2, . . . , n.

In order to estimate some real-valued population-level quantity f(P ), we compute an
estimate θ̂ = f(X) by evaluating the functional f on X = (x1, ..., xn). 1 For example,
if f is the median, then f(X) and f(P ) are the empirical and true population medians,
respectively. The sampling distribution of θ̂ at P is the distribution of θ̂ = s(X) when X
is indeed sampled according to P .

P
iid→ X

f→ θ̂

Suppose we wish to quantify the variability of our estimate by deriving a confidence in-
terval for f(P ). Under mild assumptions, a good strategy for building a confidence interval
is to base it on the variability of the sampling distribution at P . Since P is unknown, a
common and widely successful approach is to estimate that sampling distribution via the
bootstrap: specifically, in the non-parametric boostrap, we consider the sampling distribu-
tion of f on data drawn from the empirical distribution P̂ of X; in the parametric (a.k.a.
model-based)bootstrap, we assume a specific form for the distribution P and look at the
sampling distribution of f at some estimate P̂ (e.g., derived from estimated parameters).
Either way, we can then estimate the sampling distribution at P̂ by repeated sampling.

P̂
iid→ X∗

f→ θ̂∗

1For convenience, we use the same symbol f to denote the estimator evaluated on the data set and
the statistical functional defined on distributions; by assumption, f(P̂ ) = f(X) when P̂ is the empirical
distribution on X.
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2.3 Privacy and the Bootstrap

The bootstrap methodology does not directly lend itself to a setting where we insist on
differentially private outputs. The problem is that we must account for the information
leaked not only in the initial estimate θ̂, but also the information leaked by the description
of the confidence interval. Running a standard nonparametric bootstrap involves using the
data set many times which complicates the privacy analysis considerably.

The simplest way around this challenge is to use the composition properties of dif-
ferential privacy to account for many data accesses that come with bootstrapping (as in
Honaker (2015), Brawner & Honaker (2018)). Unfortunately, the upper bound on the
privacy parameter ρ that one gets via composition increases quickly with the number of
bootstrap samples; in most situations, this significantly decreases the accuracy at a given
final parameter ρ.

Another approach is based on the subsample-and-aggregate framework of Nissim et al.
(2007), in which the dataset is randomly split into k subsamples of smaller size n′ = n/k, the
statistic f is computed (without noise) on each subsample and the k resulting estimates
are aggregated differentially privately. This approach fares well in the asymptotic limit
(see, e.g., Smith (2011)) or, in practice, on large data sets Evans et al. (2020), Covington
et al. (2021). However—as discussed in the Introduction—it generally performs poorly on
modest samples sizes.

Finally, Ferrando et al. (2022) take a different approach, which we build on in this
paper. They assume a parametric model for the true population distribution and consider a
mechanismM that outputs a (noisy, differentially private) estimate θ̃ of the full parametric
description of the population. This can be interpreted as a (parametric) estimate of a
synthetic population P̃ = Pθ̃. They propose sampling fresh data sets from P̃ and running
the private estimator M on them to estimate the (quantiles of) the sampling distribution
of θ̃ at P̃ . The hope—borne out by their experiments—is that the variance of the sampling
distributions at the synthetic population P̃ will be similar to the variable at the true
population P when the data size is sufficiently large to have P̃ ≈ P .

2.4 Bayesian Methods for Inference from Private Outputs

A very different approach to principled inference from noisy releases is a Bayesian one.
Briefly: if we posit a prior distribution on the true population P , then we can meaningfully
ask to construct the posterior distribution on P (or its parameters) given the output of
the mechanism M(X). This approach has been used successfully for inference based on
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outputs generated by several specific mechanisms (generally ones based on the addition of
unbiased noise), as in (e.g, Bernstein & Sheldon 2018, Kulkarni et al. 2021).

There are two drawbacks of the Bayesian approach: First, the formulation of the prior
may influence the results of inference. This problem is not specific to privacy, however, and
there are standard solutions (e.g., using minimally informative priors or comparing results
obtained with several different priors). More fundamentally, the Bayesian approach requires
a detailed understanding of the likelihood function for the differentially private mechanism
M, which might be difficult to write analytically or hard to work with computationally (for
example, in the case of noisy gradient-based optimization methods, or the Census Bureau’s
TopDown algorithm).

We focus on bootstrap-based methods because of their simplicity, generality, and their
familiarity among practictioners.

3 Description of the Methodology

The starting point for our paper is the observation that the parametric approach of Fer-
rando et al. (2022) can be adapted to nonparametric settings: The bootstrap methodology
applies to any private mechanism whose output can be viewed as a synthetic population
P̃ . Crucially, confidence interval generation entails no changes to the mechanism itself and
no additional privacy cost, making it ideally suited to settings where the mechanism is
designed and run by another entity (a government agency or another research group, for
example).

Suppose our differentially private mechanism M, on input X, outputs a population
estimate P̃ . This population could take any form—for example, a list of parameters for a
parametric model, a nonparametric density estimate, a CDF, or a synthetic data set. From
P̃ , we compute a statistic θ̃ = f(P̃ ), which we view as an estimate of a true population
quantity f(P ).

Given θ̃ and P̃ , we simulate many runs of the entire process—sampling plus private
estimation—to understand the sampling distribution of θ̃ on data drawn from P̃ . When
P̃ is close to P , this gives us a good bound on the sampling distribution of θ̃ on the true
population P . Absent privacy constraints, we could take P̃ to be the empirical distribution
P̂ on X, in which case the method would be the same as the standard non-parametric
bootstrap.

The method is described in Algorithm 1, and illustrated in Figure 1.

Lemma 3.1. If M is ρ-zCDP, then for every choice of f , B, and α, Algorithm 1 is also
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Algorithm 1

Inputs: Dataset X of size n, differentially private algorithm M, functional f , number
of bootstrap replicates B, significance level α.
Output: 100 · (1− α)% Confidence Interval for θ̃: CI1−α

θ̃

P̃ ←M(X)
θ̃ ← f(P̃ )
for b = 1, 2, . . . , B do

Sample X̃∗b of size n from P̃
P̃ ∗b ←M(X̃∗b)
θ̃∗b ← f(P̃ ∗b)

end for
return CI1−α

θ̃
←
(

quantileEstimate
α
2

(
θ̃∗1, . . . , θ̃∗B

)
, quantileEstimate1−

α
2

(
θ̃∗1, . . . , θ̃∗B

))

P X P̃ X̃∗b P̃ ∗b

θ θ̃ θ̃∗b

f

sample M

f

sample M

f

b = 1, . . . , B

Figure 1: A diagram of our proposed methodology.

ρ-zCDP.

Proof. We only access the sensitive data X in the first line, when we obtainM(X). Every
subsequent step in the algorithm is post-processing.

The same output P̃ maybe be used for different functionals f and significance levels α
(subject to the usual caveats about multiple hypothesis testing and adaptive data analysis).

This flexibility and generality has a few specific benefits:

• In many cases, the functional f we wish to understand is specified by an estimator s
which is only defined on finite data sets, rather than on distributions. For example, s
might be a particular estimator for logistic regression. In such cases, one can extend
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s to a functional fs defined on arbitrary distributions P : to evaluate fs(P ), sample a
sufficiently large data set Ỹ from P and return s(Ỹ ). The functional fs is not always
deterministic, but in most cases of interest, its value will be sufficiently concentrated
to essentially be deterministic.

• In Algorithm 1, we summarize the list of θ̃∗b by applying a quantileEstimate function
to get a confidence interval for θ. There are several choices for how to perform this
estimation, just as in the classical bootstrap (see, e.g., Efron & Hastie (2021)). To
construct a 100 · (1 − α)%-confidence interval, where α is the desired significance
level, the quantileEstimate function could, for example, directly use the (α

2
, 1 − α

2
)

quantiles of the resulting bootstrap distribution, this is the so-called percentile method
(Efron & Hastie 2021, p. 185). By comparing the initial estimate θ̃ to the median of
the bootstrap distribution, we can also construct bias-corrected percentile confidence
intervals by shifting the quantiles of the percentile method to account for median
bias (this is called the bias-corrected percentile method (BC) (Efron & Hastie 2021, p.
190)). Alternatively, we can use a normal approximation to construct a confidence
interval using the mean and the standard deviation of the bootstrap distribution. In
our applications, we compare the percentile method and the bias-corrected percentile
method.

4 Confidence Intervals for Univariate Data

To show how our method works, we start with a simple case. We want to calculate confi-
dence intervals for functionals f calculated on univariate data. I.e., the data X is a vector
where each individual contributes one entry, and each entry is drawn i.i.d. from an under-
lying population distribution P . In our example, we use the median as our functional f , to
compare our method to the bespoke method for differentially private confidence intervals
for the median presented in Drechsler et al. (2022). However, as we release a full distribu-
tion estimate P̃ with differential privacy, we can calculate other statistics of interest, e.g.,
the mean. going beyond the median.

We further compare the confidence intervals generated by our method to non-private
confidence intervals calculated on the same sample and a naive differentially private con-
fidence interval that uses a synthetic data representation of P̃ as if it were the original
data sample. We compare the confidence intervals on two dimensions—the length and the
coverage rate. The best confidence interval is the shortest interval with at least nominal
coverage of the true population value.
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Table 1: The experimental conditions for the univariate Monte Carlo experiments.

Data-generating processes
P

standard normal: N (µ = 0, σ2 = 1)
lognormal: Lognormal(µ = 0, σ2 = 1)
bimodal
adult age

Sample size
n

10, 25, 50, 100, 500

Privacy parameter
ρ

0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1

Noise addition mechanism
Tree-based mechanism as in Drechsler et al. (2022).
Matrix mechansim with ρ-zCDP as in Fichtenberger et al. (2022).

To empirically evaluate the performance of the different methods, we set up several
Monte Carlo simulations. First, we set a true population distribution P from which we draw
1000 samples each of size n. We consider both synthetic populations—specified by mixtures
of Gaussians—and “real” populations corresponding to the empirical distribution on a large
real data set. We then use the different methods to generate confidence intervals for each
sample. With this, we can evaluate and compare the performance of the different methods.
To make the results comparable across different population distributions, we calculate the
confidence interval length relative to the non-private confidence interval (calculated on the
same data X). This allows us also to understand the relative contributions of sampling
and privacy noise to the length of the confidence intervals (as in Drechsler et al. (2022)).
A relative confidence interval length between 1 and 2 means, roughly, that the sampling
noise is at least as influential as variability due to privacy. A relative length larger than 2
indicates that the distortion due to privacy noise is more significant.

4.1 Experimental Setup

To show how our method works, we set up 280 experiments—we evaluate four different
data-generating processes, seven values of the privacy parameter ρ, five sample sizes, and
two noise addition mechanisms. Table 1 summarizes these experimental conditions, we run
all 280 permutations of these conditions.
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4.2 Results

In this section, we highlight some main observations about the CIs generated by the
bootstrap-based approach from our experiments. We include additional results in the
Supplementary Materials. The generality of our conclusions is, of course, limited by the
experiments we performed. We hope they are representative of many basic inference tasks.

Shorter confidence intervals than bespoke methods. In Figure 2, we look at con-
fidence intervals for the median of a standard normal distribution with a sample size of
100 across the different levels of the privacy parameter ρ. We show the confidence interval
length relative to the non-private intervals for the same sample size. The different col-
ors indicate the different methods (naive, bootstrap, bespoke) to get differentially private
confidence intervals. The blue symbols indicate our proposed method, the purple symbols
indicate the naive method, and the green symbols indicate the bespoke method for confi-
dence intervals of the median described in Drechsler et al. (2022). The shapes indicate the
two noise addition mechanisms, with circles indicating the matrix mechanism described in
Fichtenberger et al. (2022) and triangles indicating the tree-based noise addition mechanism
described in Drechsler et al. (2022).

First, both the bootstrap-based method and the bespoke method produce confidence
intervals of at least nominal coverage across all values of ρ. Accounting for both privacy
and sampling noise means that the length of the confidence intervals should depend on
ρ. This is the case for both the bootstrap-based method and the bespoke method. The
naive method neglects the additional privacy noise, therefore, the length of the confidence
intervals is independent of the values of ρ, which leads to invalid confidence intervals.

Using the same noise addition mechanism, the confidence intervals produced by our
bootstrap-based method are always shorter than the confidence intervals produced by the
bespoke method.

In Figure 3, we look at confidence intervals for the median of a log-normal distribution
with a fixed value of ρ = 0.05 across different sample sizes. Again, using the same noise
addition mechanism, the confidence intervals produced by our bootstrap-based method are
always shorter than the confidence intervals produced by the bespoke method. Further-
more, the confidence intervals produced by our bootstrap-based method have good coverage
properties independent of the sample size.

Adaptability to different noise addition mechanisms. Both Figure 2 and Figure
3 show that the coverage properties of the bootstrap-based method are independent of
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Coverage vs Relative Length of Confidence Intervals for the Median
Standard Normal,  N = 100

Figure 2: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with N = 100 drawn from a standard normal
distribution. The symbols indicate the average relative length across 1000 repetitions in
our Monte Carlo simulation. The horizontal bars indicate the range between the 2.5- and
97.5-percentile of relative length in these simulations. Each panel shows the results for
a different value of the privacy parameter ρ. Hollow symbols indicate that the method
did not achieve empirical coverage of at least 0.938 (the nominal confidence level is 0.95,
accounting for Monte Carlo error. Any empirical coverage of less than 0.938 is statistically
significantly less than 0.95).

a particular noise-addition mechanism M. While the length of the confidence intervals
depends on a particular noise-addition mechanism (as different amounts of noise have to be
added for the different mechanisms), as long as the same mechanism is used on the original
sample and for the bootstrap samples, the bootstrap method produces valid confidence
intervals.

13



W
or

ki
ng

Pap
er

0 5 10 15 20 25

0.75

0.80

0.85

0.90

0.95

1.00

N = 10

Relative CI length

C
ov

er
ag

e Nominal Coverage = 0.95

0 10 20 30 40

0.6

0.7

0.8

0.9

1.0

N = 25

Relative CI length

C
ov

er
ag

e

Nominal Coverage = 0.95

0 10 20 30 40

0.5

0.6

0.7

0.8

0.9

1.0

N = 50

Relative CI length

C
ov

er
ag

e

Nominal Coverage = 0.95

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0

N = 100

Relative CI length

C
ov

er
ag

e

Nominal Coverage = 0.95

0 1 2 3 4

0.80

0.85

0.90

0.95

1.00

N = 500

Relative CI length

C
ov

er
ag

e Nominal Coverage = 0.95

dp naive exact (prefix sums)

dp naive exact (tree)

dp percentile bootstrap (prefix sums)

dp percentile bootstrap (tree)

dp dgmss (prefix sums)

dp dgmss (tree)

dp dgmss projected (prefix sums)

dp dgmss projected (tree)

Coverage vs Relative Length of Confidence Intervals for the Median
Log−normal,  ρ = 0.05

Figure 3: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different sample sizes drawn from
a log-normal distribution. The symbols indicate the average relative length across 1000
repetitions in our Monte Carlo simulation. The horizontal bars indicate the range between
the 2.5- and 97.5-percentile of relative length in these simulations. Each panel shows the
results for a different sample size. Hollow symbols indicate that the method did not achieve
empirical coverage of at least 0.938 (the nominal confidence level is 0.95, accounting for
Monte Carlo error. Any empirical coverage of less than 0.938 is statistically significantly
less than 0.95).

Appropriate coverage, independent of the privacy parameter and the signifi-
cance level α. In Figure 4 we plot the significance level α against the observed empirical
coverage. The different line types indicate different values of the privacy parameter ρ. The
purple lines show our bootstrap-based method and the teal lines show the bespoke method.
The diagonal indicates the perfect relationship between the significance level and empirical
coverage. Our bootstrap-based method is close to the diagonal independent of the signifi-
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cance level α and independent of the level of privacy protection. In contrast, the bespoke
method is underconfident, i.e., the empirical coverage is larger than would be expected by
the significance level α.
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Figure 4: Significance level plotted against the empirical coverage rate. Comparing the
bootstrap-based method and the bespoke method proposed by Drechsler et al. (2022) for
different values of ρ.

5 Confidence Intervals for Multivariate Data

In this section, we show that our method can also be used with multivariate data, as long as
a good differentially private mechanism M to estimate the multivariate data distribution
P̃ exists. We start with a simple multivariate case where such a mechanism exists.

Consider a dataset with three binary variables X1, X2, Y , where X1 and X2 are inde-
pendently drawn from a Bernoulli distribution and Y depends on X1, X2, and the true
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regression coefficients β. For our experiments, we set the true regression coefficients to
β0 = −2, β1 = 1, and β2 = 1.

The data-generating process can be described as follows:
X1 ∼ B(n, p = 0.5). X2 ∼ B(n, p = 0.5). Y ∼ B(n, p = pi), where pi = 1

1+e−Xβ
,

with X =


1 X11 X21

1 X12 X22
...

...
...

1 X1i X2i

 and β =

β0β1
β2

. The data matrix D =


Y1 X11 X21

Y2 X12 X22
...

...
...

Yi X1i X2i

 has

dimensions n× k.
With three binary variables, the full data distribution can be summarized by a histogram

with eight bins that describes a multinomial distribution2.
To get a differentially private distribution estimate P̃ , we produce a noisy histogram

by adding independent zero-centered Gaussian noise to each histogram bin. The variance
of the Gaussian distribution depends on the privacy parameter ρ such that σ2 = 1

2ρ
, as the

sensitivity of the histogram is 13.

5.1 Experimental Setup

Our goal is to produce valid confidence intervals for the coefficients of a logistic regression
model. To evaluate the effect of the privacy noise we vary ρ and set it to the same values
as in the univariate experiments in section 4.2 (0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1). We also
vary the sample size n and evaluate our method for samples with 100, 500, and 1000
observations. We compare our bootstrap-based confidence intervals to naive4 differentially
private and non-private confidence intervals for the same data.

5.2 Results

Our bootstrap-based method has good coverage properties for multivariate
statistics of interest, independent of the privacy level ρ. In Figure 5 we show the
empirical coverage for differentially private confidence intervals for the logistic regression

2Without privacy, this is P̂
3As histogram bins can be negative after noise addition, we truncate any negative values to 0 to get a

valid multinomial distribution. This introduces bias.
4For the naive method, we generate a synthetic dataset Ỹ deterministically from the noisy histogram

and calculate the confidence intervals as if the differentially private synthetic data Ỹ were the original
sample X.
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coefficients across different values of the privacy parameter ρ. The significance level α is
0.05. Circles indicate our bootstrap-based confidence intervals, and triangles indicate naive
differentially private confidence intervals. As in the univariate experiments in section 4.2,
our bootstrap-based method produces confidence intervals with good empirical coverage
(close to the nominal level) independent of ρ. The naive method does not produce valid
confidence intervals for small values of ρ.
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Figure 5: The privacy parameter ρ plotted against the empirical coverage of confidence
intervals for logistic regression coefficients with a sample size of 1000. The colors indicate
the three regression coefficients, and the shapes show two different methods to produce
confidence intervals (circles our bootstrap-based method, and triangles a naive method).

Finally, in Figure 6, we evaluate the width of the confidence intervals of the bootstrap-
based method relative to the non-private confidence interval for n = 1000.

As there is no bespoke method for confidence intervals of logistic regression coefficients,
we compare the effect of the privacy noise to a decrease in the sample size in a non-private
setting. For example, a ρ = 0.5 has a similar effect as having about 400 observations
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instead of 1000 observations in a non-private setting.
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Figure 6: Left Panel: Confidence interval width relative to the width of non-private confi-
dence intervals with n = 1000 for different values of the privacy parameter ρ. Right Panel:
Effective sample size as a function of ρ. The colors indicate the three regression coefficients
(and most of them overlap).

6 Conclusion

In this paper, we adapt a parametric bootstrap-based method to generate differentially pri-
vate confidence intervals, showing that it applies in more general, nonparatmetric settings.

We show that our proposed method produces valid confidence intervals across a range of
data-generating processes and settings of the privacy parameters ρ. Furthermore, compar-
ing the confidence intervals from our method to a bespoke method for confidence intervals
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of the median with univariate data, we show that our method produces tighter confidence
intervals at a given nominal coverage.

Our method assumes that the mechanism M produces an reasonable estimate P̃ of
the underlying data-generating process P . While we show that such mechanisms exist for
univariate data and simple multivariate data, we leave it to future research to evaluate the
performance of more general differentially private distribution estimators (or synthesizers)
such as graphical-model based approaches (McKenna et al. 2019).

References
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SUPPLEMENTARY MATERIAL

A Additional Results: Univariate Data

A.1 Standard Normal DGP
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Figure 7: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different sample sizes drawn from a
standard normal distribution with ρ = 0.05.
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Figure 8: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different values of ρ drawn from a
standard normal distribution with n = 100.
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A.2 Log-normal DGP
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Figure 9: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different sample sizes drawn from a
log-normal distribution with ρ = 0.05.
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Figure 10: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different values of ρ drawn from a
log-normal distribution with n = 100.

25



W
or

ki
ng

Pap
er

A.3 Bimodal DGP
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Figure 11: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different sample sizes drawn from a
bimodal distribution with ρ = 0.05.
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Figure 12: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different values of ρ drawn from a
bimodal distribution with n = 100.
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A.4 Adult Age DGP
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Coverage vs Relative Length of Confidence Intervals for the Median
Adult Age,  ρ = 0.05

Figure 13: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different sample sizes drawn from the
adult age population with ρ = 0.05.
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Adult Age,  N = 100

Figure 14: Relative confidence interval length plotted against the empirical coverage of
confidence intervals for the median of samples with different values of ρ drawn from the
adult age population with n = 100.
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