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1 Introduction

Differential privacy is a system of methods protecting individual privacy in data sets while

preserving the utility of the data for analysis (Dwork 2006). Differential privacy algorithms

are masking more and more economic data sets over time. Just some examples are the 2020

Census tables and American Community Survey microdata (Ruggles, Fitch, Magnuson and

Schroeder 2019), financial transactions data (Karger and Rajan 2020), and health records

(Allen et al. 2020). To make it difficult to identify individuals in data sets, differential privacy

algorithms commonly add noise to the data, while truncating and censoring low-valued

observations. But these distortions introduce non-classical measurement error into the data,

which hinder traditional econometric methods, such as OLS, from producing consistent

estimates of economic model parameters.

This paper proposes an econometric method to estimate fixed-effects gravity models on

data protected by differential privacy. Since Harrigan (1996) first introduced them, fixed-

effects gravity models are now ubiquitous to the spatial economics and trade literature (Head

and Mayer 2014). These models represent the flows of goods, people, or dollars between

origins and destinations using a log-linear equation. Such an equation consists of origin and

destination fixed effects, which are possibly time-varying, along with a measure of bilateral

“accessibility” between locations. This term is regularly taken to be the physical distances

between locations, but is often appended to include a vector of bilateral cost variables, such

as tariffs, transport costs, or differences in culture, language, currency, or laws.

Methods to address econometric issues when estimating gravity models have been

proposed before. One major issue was how to handle zero flows that are regularly observed in

the data, despite a gravity model representing bilateral relations with strictly positive variables.

In trade, Eaton and Tamura (1994); Helpman, Melitz and Rubinstein (2008); and Westerlund

and Wilhelmsson (2011) suggest clever methods to account for zero flows, including Tobit

procedures, two-step Heckman procedures, and Poisson fixed-effects estimators. Recognizing

potential biases introduced when log-linearizing a gravity equation, Silva and Tenreyro (2006)

suggest a Poisson pseudo-maximum-likelihood (PPML) procedure, which became seminal to

the literature. Extensions of this estimator can handle a large number of fixed effects (Larch,

Wanner, Yotov and Zylkin 2019), which becomes relevant when estimating gravity models

with thousands or hundreds of thousands of origins and destinations. Such a high number of

locations come into play when modeling very localized choices, say, of consumers selecting

establishments to visit (Davis, Dingel, Monras and Morales 2019; Miyauchi, Nakajima and
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Redding 2021), or of firms deciding the regions of foreign countries to export (Bricongne,

Fontagné, Gaulier, Taglioni and Vicard 2012). When the data in a spatial gravity model’s

estimation is subject to differential privacy and many fixed effects require estimation, we

hope this paper’s econometric method can be of use.1

Our approach at estimating fixed-effects gravity models on privacy-protected data adapts

Daniel McFadden’s Method of Simulated Moments (McFadden 1989) to identify a large

volume of fixed effects. The Method of Simulated Moments (MSM) estimates the parameters

of a model by closely matching moments calculated from observed data with moments

calculated from data that is simulated from the model. The parameters of the model iteratively

update until the differences between observed and simulated moments are sufficiently small.

A key insight of our approach is to simulate data from a gravity model and then apply

the same differential privacy algorithm to the simulated data that the data provider used to

privacy-protect the real-world data. The parameters of the gravity model update until the

computed moments from the simulated data (after being made “privacy-protected” per the

algorithm) closely match the computed moments from the privacy-protected real-world data.

The procedure requires researchers to know the differential privacy algorithm that the data

provider adopted, but from our experience, data providers are generally open to sharing this

information because differential-privacy algorithms are fairly standardized in the industry

and revealing them does not undo the data’s privacy protection.

Implementing MSM this way is straightforward in models with no or few fixed effects

(Adda and Cooper 2003). But a fixed-effects gravity model with a very large number of origins

and destinations, potentially generating billions of bilateral relations, severely complicates

the procedure. We address this computational challenge by sampling origin-destination pairs

using stratified sampling and applying probability weights to the sampled observations. The

rest of the procedure involves simulating observations from the sampled pairs, applying

the differential privacy algorithm to the simulated data, iterating the origin and destination

fixed effects estimates until they converge in a Gauss-Siedel-style method (Guimaraes and

Portugal 2010), and finally selecting estimates of the gravity model’s remaining parameters

that minimize the weighted sum of squared errors between the simulated model moments

and the observed data moments.

We illustrate the econometric method by estimating a gravity model of consumer flows to

bank branches using privacy-protected geolocation data from mobile devices. The observed

1For other articles proposing different methods to handle privacy protected data in estimations, see Agarwal
and Singh (2023); Neunhoeffer, Sheldon and Smith (2023); Barrientos, Bowen, Snoke and Williams (2023).
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data are the number of visitors from their home Census block groups to bank branches per

month. We represent the consumer movements over time with a fixed-effects gravity model,

consisting of (1) block group × time fixed effects, (2) bank branch × time fixed effects, and

(3) the distances between pairs of block groups and branches multiplied by a time-varying

gravity coefficient parameter βt. To protect user privacy, the mobile device data provider adds

noise to the number of visitors from a block group to a branch, and the provider truncates

and censors these visitor counts if the number is too low.

We run the econometric procedure month-by-month to account for dynamic branch entry

and exit. The monthly point estimates of the gravity coefficient range from -1.45 to -1.26,

implying that, if a representative branch is located 1% farther away from a representative

block group, the expected number of residents from that block group who travel to that branch

will drop by around 1.26% to 1.45% per month. This range is in line with the gravity coefficient

estimate of -1.05 that Agarwal, Jensen and Monte (2018) find for the average out-of-home

purchase, where the authors evaluate how consumer expenditures in nonfinancial sectors

vary with distances from merchants.

Differential privacy methods introduce non-classical measurement error into the data and

bias the estimates from traditional econometric approaches. To assess the magnitude of the

bias in our setting, we compare the βt parameter estimates from our approach to estimates

computed on the observed privacy-protected data using the two mainstream approaches

in gravity model estimation: OLS regression and PPML estimation. The differences are

stark. The traditional approaches deliver estimates that are roughly an order of magnitude

smaller than the MSM estimates, ranging from -0.331 to -0.038 depending on the specification.

The comparison reveals the downward bias that differential privacy methods introduce to

traditional econometric approaches at estimating gravity models, and it stresses the need for

the alternative MSM procedure.

Overall, we propose an econometric method to estimate gravity models with high-

dimensional fixed effects on data protected by differential privacy, and we illustrate our

method in an application involving privacy-protected geolocation data on consumer trips to

bank branches. In our approach, we adapt the Method of Simulated Moments (MSM) to allow

for the estimation of hundreds of thousands of fixed effects. While our focus is on estimating

gravity models, the econometric approach in this paper extends to a range of applications

where high-dimensional fixed effects require estimation in MSM routines.
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Outline. The paper proceeds as follows. Section 2 presents a fixed-effects gravity model in

the context of our application to banking. Section 3 describes the privacy-protected mobile

device data we use to estimate a gravity model of consumer flows to bank branches. Section 4

details the econometric method for estimation. Section 5 presents the results. Section 6

concludes.

2 A Gravity Model of Branch Visits

In a companion paper (Sakong and Zentefis 2023), we describe how bank branches remain

a vital source of bank participation in the United States, especially for low-income and Black

households. But both types of households, whether banked or unbanked, are significantly

less likely to visit bank branches compared to White and high-income households. In that

paper, we estimate a gravity model of consumer flows to bank branches to better understand

whether differences in access to branches or in demand for branch products and services

explains the disparities. That paper uses the econometric method detailed in this paper.

The fixed-effects gravity model we consider is the log-linear equation:

log
(
No. of visitorsi jt

)
= γit + λ jt − βt log

(
Distancei j

)
+ εi jt. (1)

The left-hand-side of Eq. (1) is the natural logarithm of the number of visitors from Census

block group i to bank branch j in time period t. The right-hand-side of Eq. (1) includes four

terms. The first term, γit, is a block group × time fixed effect that captures all characteristics of

block group i’s residents that contribute to them visiting any branch in the period. Informally,

it represents factors that influence a block group’s “demand” for branch products or services

at any location (e.g., average wealth, income, financial sophistication, trust in banks, flexibility

in time).

The second term, λ jt, is a branch × time fixed effect that captures all characteristics of

branch j that make it a destination for residents of any block group in the period. Informally,

it represents factors that contribute to a branch’s “quality” (e.g., the branch having attractive

deposit or loan rates, higher staff attentiveness, or many ATMs that avoid long customer

queues).

In the third term, the parameter βt is the elasticity of visitor flows with respect to distance

in the period. In many microfounded gravity models, the parameter can be interpreted as

the product of residents’ traveling costs and their elasticity of substitution between branches

(Eaton and Kortum 2002; Ahlfeldt, Redding, Sturm and Wolf 2015). The term Distancei j is
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the geographic distance between block group i and branch j. In the estimation, we measure

distance using the haversine formula, which accounts for the curvature of the Earth, and

we compute the distances between branches and block groups’ centers of population (see

Footnote 8). The fourth term, εi jt, is a mean-zero disturbance.

Traditionally, OLS and PPML are used to estimate a fixed-effects gravity model like

in Eq. (1). However, when the underlying data used in the estimation are distorted by

differential privacy methods, the disturbance term εi jt may no longer satisfy the classical

measurement error assumption. For instance, if low-valued branch visitor counts are dropped

or bottom-coded to reduce the chances of identifying a particular visitor, the error term is not

random, but systematically related to the true visitor count. The mobile device data we use in

estimating Eq. (1) are subject to these kinds of distortions, and we describe that data next.

3 Geolocation Data on Branch Visitors

Branch visitors are based on geolocation data from mobile devices between January 2018

and December 2019. The data provider is the firm SafeGraph. The data are monthly and

include both branch locations and information about branch visitors. We do not use the “raw”

pings from individual mobile devices, but rather, we use SafeGraph’s aggregated geolocation

data that try to protect user privacy. Rather than reporting the physical whereabouts of an

individual device through time, this aggregated data report the home Census block groups of

branch visitors and the associated number of visitors from each block group per month. In

essence, the data provide the network of consumer trips from home block groups to bank

branches each month.

The aggregated data are benefited by elaborate algorithms that SafeGraph has developed

to accurately estimate whether a mobile device visits a particular destination and to pinpoint

a mobile device’s home origin, using the device’s reported pings over time. However, the

data do not give the demographic attributes of the mobile device owners, nor their home

addresses or starting points of their trips, nor their duration spent at a branch, nor what they

do at the branch.

A visitor in the SafeGraph data is identified by a mobile device, one device is treated as

one visitor, and a device must spend at least 4 minutes at an establishment to qualify as a

visitor. Appendix A provides background information on the SafeGraph data and a detailed

explanation of how we construct our primary sample. Here, we give a summary.2

2SafeGraph asks all researchers who use the company’s data to include the disclaimer: “SafeGraph is a data
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3.1 Primary Sample

Our primary (core) data set includes bank branches in all 50 states and the District of

Columbia. SafeGraph categorizes businesses by their six-digit NAICS codes. To ensure that we

only analyze depository institutions in the SafeGraph data, we take advantage of information

from the FDIC’s 2019 Summary of Deposits (SOD).

In our core sample, we include only businesses in SafeGraph with NAICS codes equal

to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank

Holding Companies) whose brands are also listed in the SOD. For example, Wells Fargo &

Company and SunTrust Banks, Inc. are two bank brands with branch locations in the SOD.

We therefore include all Wells Fargo and SunTrust Bank branch locations in SafeGraph. We

identify the physical locations of bank branches from SafeGraph’s geographic coordinates,

and not from the SOD’s, as we found that SafeGraph’s coordinates typically were more

accurate.3

Our core sample is confined to bank branches for which SafeGraph has visitor data.

Many bank locations recorded in SafeGraph lack such information, as it is often difficult to

attribute mobile device visits to particular branches. There are two main reasons. First, in

dense environments such as multi-story buildings or shopping malls, SafeGraph might not

be confident about the geometric boundary of a place. Not knowing the boundary makes

it awfully difficult to attribute visitors to a unique place that is part of a shared space. To

reduce false attributions, SafeGraph instead allocates visitors to the larger “parent” space,

such as the encompassing mall. Second, and related, a bank branch might be entirely enclosed

indoors within a parent location (i.e., a customer must enter the parent’s structure to reach the

branch). Because mobile device GPS accuracy deteriorates severely within indoor structures,

SafeGraph is reluctant to assign visitors to an enclosed branch. Instead, those visitors are

aggregated to the level of the parent location. For example, many Woodforest National

Bank branches are enclosed in Walmart Supercenters. (Walmart partners with Woodforest to

provide the retail company’s banking services.) Visitors to these enclosed branches cannot be

separated from visitors to Walmart, and so, these branches are deprived of visitor data.4

company that aggregates anonymized location data from numerous applications in order to provide insights
about physical places, via the Placekey Community. To enhance privacy, SafeGraph excludes census block group
information if fewer than two devices visited an establishment in a month from a given census block group.”
The documentation to the SafeGraph data is here: SafeGraph Documentation.

3For most branches, the geographic coordinates in SafeGraph and the SOD matched. When the two sources
disagreed, a Google Maps search of a branch address in the SOD often confirmed that no physical place existed
at that address. (The place’s absence was not due to a branch closing.)

4Regarding branch openings and closings, if a bank branch closed and SafeGraph were aware of its closure,
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The SOD registers 86,374 bank branch locations as of 2019. While SafeGraph can account

for 71,468 branches according to our core sample definition (83% coverage), only 51,369 of

these places have visitor data and constitute our core sample. Our core sample thus covers

around 60% of bank branches in the United States. Appendix Fig. A.1 presents a time-series

of the number of branches per month in our core sample. Per month, the number of recorded

branches is fairly stable and averages around 38,000.5

3.2 Sampling Bias

Our core sample experiences two types of sampling bias: (i) differential privacy and (ii)

sample selection. We discuss each bias below and describe how we address it.

Differential Privacy. The first bias emerges from SafeGraph’s efforts to preserve user privacy.

The company applies differential privacy methods to avoid identifying people by their home

locations. First, Safegraph adds Laplace noise to all positive counts of visitors to a branch

from each home Census block group of the branch’s visitors. Second, they round each of

these block group × branch visitor counts down to the nearest integer. Third, they drop from

the data all rounded visitor counts less than 2. Fourth, if a rounded visitor count equals 2

or 3, they raise it to 4. These last two data adjustments render our sample subject to both

truncation from below and censoring from below, leading to non-classical measurement error.

Fig. 2 presents the distribution of the observed (raw) visitor counts, which reveals both the

truncation and censoring. Roughly 84% of the observed visitor counts equal 4, which implies

a substantial amount of data distortion. The distortion also appears to vary by demographic

attributes of residents. For example, in block groups with predominately Black residents

(80%+), about 88% of visitor counts equal 4, whereas in the remaining block groups, about

83% equal 4.

Sample Selection. The second bias relates to sample selection, as our data on branch

visitation patterns might not be representative of the true population behavior in the U.S.

Potential sampling bias arises from two sources: our set of branches and our set of visitors.

any visitors to the building (say, if a new business opened there) would no longer be attributed to the branch.
Likewise, if a branch opened and SafeGraph were aware of it, visitors would start being attributed to the branch.
Nevertheless, if SafeGraph is unaware of a branch’s opening or closing, visitors would be incorrectly attributed
and count toward measurement error.

5We focus our analysis on depository institutions in this paper and leave for follow-up work the study of
access to non-depository institutions, like credit unions, and non-traditional financial institutions, like check
cashers and payday lenders.

7



To address potential sampling bias from missing around 40% of U.S. branches, in Section 3.3

we compare the representation of different demographic groups in the areas covered by our

core sample of branches to the areas covered by all branches in the SOD. Overall, differences

in demographic characteristics between the two sets of areas are precisely estimated, but

small.

Regarding our sample of visitors, SafeGraph aggregates data from around 10% of all

mobile devices in the country. We calculate about 30 million unique mobile devices per month

on average visiting all businesses recorded in SafeGraph, and our core sample reports 1.6

million visitors to bank branches per month on average.6 The 2010 U.S. Census records 217,740

Census block groups, and our core sample includes 215,686 unique visitor home block groups,

implying close to complete coverage of U.S. local home areas.

Nevertheless, we cannot rule out non-random sampling of mobile devices based on

unobserved characteristics of visitors. We do not know the precise demographic attributes

of an individual bank branch visitor. The 2019 FDIC Survey reports smartphone ownership

rates by household characteristics. Overall, 85.4% of respondents own smartphones, with

Black respondents reporting slightly lower rates (81.5%) compared to White respondents

(85.4%). Ownership rates decline to 66.4% among those aged 65+, 63.3% for those earning less

than $15,000 per year, and 75.6% for residents living outside Metropolitan areas. Smartphone

ownership rates are also lower among the unbanked (63.7%) compared to the banked (86.6%).

We likely under sample these groups with lower mobile device ownership rates.

Looking at the entire SafeGraph sample, Squire (2019) quantifies the sampling bias in

the company’s mobility data. He documents that the number of devices from SafeGraph’s

identified home locations correlates highly at the county level with 2010 U.S. Census numbers

in terms of population counts (97%), inferred educational attainment (99%), and inferred

household income (99%).7

Despite this strong alignment between the Census and SafeGaph at the county level,

Thaenraj (2021) identifies around 1,000 Census block groups in the SafeGraph data that

register more devices residing there than the number of people living there according to the

Census. Squire (2019) also discusses this feature of the SafeGraph panel, and he interprets

6Appendix Fig. A.1 presents a time-series of the number of branch visitors each month over the sample
period. The number of visitors rises over the sample period, starting from around 900 thousand in January 2018
and ending with 1.85 million in December 2019. The change could reflect a combination of increasing bank
visitation and improving visitor coverage over time.

7Couture, Dingel, Green, Handbury and Williams (2022) analyze mobile device data from the provider
PlaceIQ, and the authors find that it too is broadly representative of the general population based on assigned
household attributes and movement patterns.
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these outlier Census block groups as most likely representing errors or technical limits in

SafeGraph’s attribution of devices to home block groups. Less extreme misattributions are

also possible, but any misattribution is likely between neighboring block groups with similar

demographics because the SafeGraph representation lines up well at the county level.

3.3 Descriptive Statistics

Table 1 reports descriptive statistics of our core sample. The typical branch has 40 unique

visitors per month on average, but there is wide dispersion across branches, as the standard

deviation of visitors is over twice as high at 94. For each branch, SafeGraph provides both the

median distance visitors travel to get there and the median time they spend there. On average,

the median distance traveled is 5 miles, but the standard deviation is 16 miles. The median

dwell time is 49 minutes on average, but for half the branches in the sample, the median

dwell time is 9 minutes or less. Finally, of the 36.5 million total mobile devices recorded in

our core sample with information on the type of device, 52% are iOS and 46% are Android.

Table 2 compares demographic characteristics of residents living in the geographic areas

covered by our core sample of bank branches with those in the areas covered by the full set

of branches in the SOD. Demographic attributes in the table are taken from the 2019 5-year

ACS and are averaged at the Census Bureau’s zip code tabulation area (ZCTA). In ZCTAs

having branches in the SOD, the fraction of White households is 80.5%, which aligns closely

with the 79.9% share of White households in ZCTAs having branches in our core sample.

The SOD and core sample are also similar according to the percentage of Black households

(9.5% in SOD vs. 10.3% in our core sample) and the percentage of Hispanic households

(10.6% vs. 10.9%). Median household income in areas covered by our sample is just over $500

(1%) higher on average than median household income in areas covered by the SOD. Urban

areas in our core sample are over-represented by about 3% compared to the SOD, which

coincides with greater smartphone ownership rates in urban over rural areas. The differences

in demographic attributes between the two samples are precisely estimated, but overall, the

economic magnitudes of the differences are small relative to the mean values across areas.

4 Econometric Method

Here, we layout the steps of the econometric method we use to estimate the parameters of

the fixed effects gravity model of Eq. (1) using the privacy-protected geolocation data. The
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approach adapts the Method of Simulated Moments (MSM) to identify high-dimensional

fixed effects. A key insight of the approach is to simulate data from the gravity model and then

apply the same differential privacy algorithm to the simulated data that the data provider

used to privacy-protect the geolocation data. We run the method separately per year-month

of our sample period (January 2018 - December 2019).

4.1 Specify the DGP for visitors

The data generating process (DGP) we simulate is the number of visitors from block

groups to branches through time. We assume that the true number of visitors from block

group i to branch j in year-month t, denoted V∗i jt, is Poisson distributed. Using the gravity

model from Eq. (1), we express the true visitor count as obeying

V∗i jt ∼ Pois
(
exp

(
γit + λ jt − βt log Distancei j

))
. (2)

We measure distance in miles between branches and the population-weighted center of

visitors’ home block groups. We use the haversine formula to calculate distance, which

accounts for the curvature of the Earth.8

To account for the differential privacy algorithm in the simulation, we let Li jt denote the

Laplace noise that SafeGraph adds to V∗i jt to protect user privacy. Noise is added only if

SafeGraph observes a visitor (i.e., V∗i jt > 0). The noise Li jt ∼ Laplace (0, b), where b is the scale

of the distribution, and SafeGraph informed us that b = 10
9 . Let V+

i jt denote the number of

visitors after the noise is added, giving:

V+
i jt = V∗i jt + Li jt. (3)

8 The centers of population are computed using population counts from the 2010 Census and are found
here: 2010 Census Centers of Population. The haversine distance between two latitude-longitude coordi-
nates

(
lat1, long1

)
and

(
lat2, long2

)
is 2r arcsin

(√
h
)
, where r is the Earth’s radius and h = hav (lat1 − lat2) +

cos (lat1) cos (lat2) hav
(
long2 − long2

)
. The haversine function hav (θ) = sin2

(
θ
2

)
. We take the Earth’s radius to

be 3,956.5 miles, which is midway between the polar minimum of 3,950 miles and the equatorial maximum
of 3,963 miles. The haversine formula treats the Earth as a sphere and is less precise than other measures that
consider the Earth’s ellipticity, such as Vincenty’s formula. Yet another alternative that is more representative
of actual travel is the road driving time between locations. Even so, the haversine formula is simple, fairly
accurate, and convenient to compute. In Online Appendix Table A.1, we regress the driving times between about
1 million random block groups and bank branches onto the corresponding haversine distances. Driving times
are computed using the Origin-Destination Cost Matrix of ArcGIS Pro under the default settings. Regressions
are run across the entire 1 million sample and over parts of the sample associated with various demographic
attributes, such as including only block groups with Black population shares exceeding 80% from the 2019 5-yr.
American Community Survey. Across the samples, the regressions produce very high R2, ranging from 0.972
to 0.993. Haversine distance is computationally easier to calculate, and these regression results suggest that it
correlates highly with driving time.
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Let bV+
i jtc denote the integer floor to which SafeGraph rounds the noisy visitor count. To

accommodate SafeGraph’s truncation and censoring, we denote zi jt as an indicator for whether

a block group × branch visitor count is present in the sample. The selection equation is

zi jt =

 1

0

if bV+
i jtc ≥ 2,

otherwise.
(4)

Let Vi jt denote the visitor count observed in the sample, subject to SafeGraph’s censoring.

The observation equation is

Vi jt = max
{
4, bV+

i jtc
}
, (5)

In the simulation, we implement Eqs. (2) to (5).

4.2 Sample block group × branch pairs

Technically speaking, every possible block group i and branch j pair should enter Eq. (2).

But our data of over fifty-thousand branches, over two-hundred-thousand block groups,

altogether spanning twenty-four months, makes it computationally impractical to have the

billions of possible block group × branch pairs enter the MSM estimation. Instead, we sample

pairs using stratified sampling.

In each year-month, block group × branch pairs in the SafeGraph data register either

positive (and ≥ 4) or missing observed visitor counts. If a block group × branch pair has a

positive visitor count, then we know that residents of the block group visited the branch in the

period, and we sample this block group × branch pair in our simulation with probability 1. If a

block group × branch pair has a missing visitor count in the year-month, then either residents

of the block group did not visit the branch in the period, or the visitor count was left out of the

data from SafeGraph’s differential privacy methods. In each year-month, we sample from this

alternative set of missing block group × branch pairs such that (i) every pair in the alternative

set has the same probability of being sampled, and (ii) each block group and each branch is

part of at least one block group × branch pair in the alternative set. The second condition

ensures that each block group and branch is represented in the stratified sampling. We set

the sampling probability to 1/2000, which implies that, on average, the randomly sampled

alternative set of block group × branch pairs represents slightly higher than a 0.05% sample

size of all possible block group × branch pairs with missing visitor counts.

To establish notation for the stratified sampling of block group × branch pairs, we let

nt denote the stratified sample of block group × branch pairs in year-month t. This set is
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the union of the set of pairs with positive observed visitor counts that are sampled with

probability 1, denoted n1
t , and the alternative set of pairs with missing observed visitor counts

that are sampled with probability 1/2000, denoted n0
t . Let N0

it denote the population of the block

group × branch pairs with missing observed visitor counts that are associated with block

group i. (We use lowercase notation for the stratified sample of pairs and uppercase notation

for the population of pairs.)

We implement the stratified sampling in the following manner to satisfy conditions (i)

and (ii) above. To satisfy (ii), we pick 1 pair randomly from N0
it for each block group i. Notice

that we could have chosen more than one pair per block group i to satisfy (ii), but choosing

just one reduces the estimation time. Next, to satisfy (i), we draw a uniform random variable

ui jt ∼ U [0, 1] for each pair in N0
it. We include the pair in the sample if ui jt ≤

p − m
|N0

it|

1 − m
|N0

it|

, where

p = 1 −
√

1 − 1/M, and 1/M is our target sampling probability of 1/2000, and | · | is cardinality of a

set. We loop this procedure through each block group i. We then repeat the process for each

branch j (i.e., draw a uniform random variable for each pair again in N0
it, but looping through

all branches).

Notice that we rely on the uniform random variable draw falling short of a threshold

to determine whether a block group × branch pair is sampled because the number of pairs

in each set N0
it is discrete, but we want the sampling probability to be the same across all

block group × branch pairs with missing visitor counts. The probability of a pair being

sampled when looping through block groups is the union of the initial 1 random pair choice

satisfying condition (ii) and the threshold condition on the uniform draw. That probability is

the following:

1
|N0

it|
+

p − 1
|N0

it|

1 − 1
|N0

it|

−
1
|N0

it|

p − 1
|N0

it|

1 − 1
|N0

it|

, (6)

which is simply the probability of the union of the two independent events, where we have

used the relation P (A
⋃

B) = P (A) + P (B) − P (A
⋂

B) for independent events A and B. Some

algebra reveals that Eq. (6) equals p. Because we repeat the process across all branches, the

probability of a block group × branch pair being sampled either from the loop through block

groups or the loop through branches is

p + p − p2 =
1
M
,

which matches our target sampling probability, as desired.

The stratified sampling requires that we apply probability weights to any variable

12



measured at the block group × branch level, such as visitor counts or pairwise distances, so

as to rebalance the data and make it represent the target population as closely as possible. We

assign probability weights equaling 1 to the sampled pairs in the set n1
t because these pairs

were sampled with probability 1. We assign probability weights denoted ωt to the sampled

pairs in the set n0
t . These probability weights satisfy:

ωt|n0
t |+1|n1

t | = Total no. of block groups in year-month t×Total number of branches in year-month t.

(7)

Rearranging Eq. (7) shows that the probability weight ωt per year-month is the number of

population pairs with missing observed visitor counts divided by the number of sampled pairs

with missing observed visitor counts. Following standard practice, we have the probability

weights equal the reciprocal of the likelihood of being sampled (M = 2000), but they can

deviate slightly from M by chance because of the random sampling.

4.3 Initialize the fixed effects routine

In each year-month of the sample period, the MSM uses the visitor data v and the model

parameters ψ ≡
{
βt, γit, λ jt

}
to minimize the distance between simulated model moments and

data moments. With the very large number of block groups and branches in our sample,

the model of visitor counts in Eq. (2) requires hundreds of thousands of fixed effects to be

estimated. Estimating all these parameters from the MSM minimization problem alone would

be computationally impractical. Instead, we adopt an iterative routine to identify the fixed

effects
{
γit, λ jt

}
and let the minimization problem identify βt. Holding fixed an estimate of βt

and given initial estimates of the fixed effects, the routine updates the fixed effects estimates

until they converge. After the fixed effects converge per estimate of βt in the year-month, the

MSM minimization problem then chooses the optimal βt estimate that satisfies the moment

conditions in the year-month. We initialize the fixed effects routine with guessed estimates

γ̂0
it = λ̂0

jt = 1 for all i and j and t.

4.4 Simulate visitor counts

We run S = 10 simulations of the visitor counts per block group × branch pair. The S

simulations are run per year-month of the sample. We differentially simulate visitor counts

from the two sets of sampled block group × pairs, n0
t and n1

t , because of their different

probability weights.

13



Consider first the set n1
t of pairs with positive observed visitor counts that were sampled

with probability 1. Per year-month, we begin the simulation by drawing |n1
t | × S Laplace

random variables having mean zero and scale 10/9, and we draw |n1
t |×S independent Uniform

random variables over the unit interval. We draw these random variables only once at the

beginning of each year-month’s run so that the MSM does not have the underlying sample

change for every guess of the model parameters. Given an estimate β̂t of the gravity coefficient

and the initial guessed estimates
{
γ̂0

it, λ̂
0
jt

}
of the fixed effects, we then apply the inverse Poisson

CDF to transform the Uniform random variables into Poisson random variables with distinct

means given in Eq. (2).

Each Poisson draw is a “true” block group × branch visitor count. To replicate SafeGraph’s

differential privacy methods in the simulations, we (i) add a Laplace draw to all non-zero

true visitor counts to form a “noisy” block group × branch visitor count, (ii) round each noisy

visitor count down to the nearest integer, (iii) set to 0 all noisy visitor counts below 2, and (iv)

replace all noisy visitor counts that equal 2 or 3 with 4 (see Eqs. (2) to (5)). Simulated visitor

counts are 0 if either the true visitor count (from the Poisson draw) is 0 or the noisy visitor

count (from the Poisson draw plus the Laplace draw) falls below 2. This way, simulated visitor

counts that equal 0 arise in the same two ways as would 0 visitor counts in the observed

SafeGraph data. Let ṽ = {ṽ1, ṽ2, . . . , ṽS} be the S simulated visitor counts in year-month t,

where we have excluded a t subscript to simplify notation.

Consider next the set n0
t of block group× branch pairs with missing visitor counts that were

sampled with probability 1/2000. If an extra |n0
t | × S pairs of visitor counts were simulated in the

same manner described in the previous two paragraphs, those simulated visitor counts would

have disproportionate impact on any computed moments because of the high probability

weights that would multiply them. Noise from the simulation would be amplified and make

the estimation unstable. Rather than simulating visitor counts for the block group × branch

pairs in n0
t , we construct their implied empirical probability distribution according to the

parameter estimate of ψ in each iteration. If an infinite number of visitor counts from the pairs

in n0
t were in fact simulated, their distribution would coincide with this constructed empirical

distribution. Notice that we cannot apply this approach to the set n1
t of sampled block group

× branch pairs because each pair in that set is drawn from a distinct distribution, due, in

part, to the block group- and branch-specific fixed effects. For those pairs, we simulate draws.

However, the sampled pairs in the set n0
t are meant to represent the remaining block group ×

branch pairs in the population with missing observed visitor counts, which are very high in

number. One stratified sampled observation is meant to represent 2,000 observations from the
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same distribution. We construct the empirical distribution that these sampled pairs represent.

Because the Laplace noise is added after the Poisson draw, this empirical distribution is a

truncated and censored Laplace distribution whose mean is the realization of the Poission

draw. With this in mind, let G
(
y, k

)
be the CDF of a Laplace distribution with mean k and

scale 10/9. And let µ̂i jt denote the estimated mean of the Poisson distribution of visitor counts

in Eq. (2). Namely,

µ̂i jt ≡ exp
(
γ̂it + λ̂ jt − β̂t log Distancei j

)
. (8)

Finally, let the probability that the Poisson distribution draws a visitor count of k, given

its estimated mean µ̂i jt be denoted p
(
k, µ̂i jt

)
. Notice that the parameters of the empirical

distribution update with every iteration of the estimated fixed effects and guess of βt.

We construct 7 components of the empirical distribution that we use in the moments of

the estimation. Because both the Laplace and Poisson distributions have infinite support, we

must insert an upper bound to both supports when constructing the empirical distribution.

We bound the Poisson support at K = 20 and the Laplace support at L = 30. The upper bounds

imply that the 7 components of the empirical distribution hold approximately. As K→∞ and

L→∞, they would hold exactly. The 7 components of the empirical distribution we compute

are:

1. Probability that the visitor count equals 0:

Pr
(
Ṽi jt = 0|µ̂i jt

)
≈ p

(
0, µ̂i jt

)
+

K∑
k=1

p
(
k, µ̂i jt

)
× G (2, k) . (9)

The probability that a simulated visitor count is zero equals the probability that the

Poisson draw equals zero, represented by the first term in Eq. (9), plus the cumulative

probability that the Poisson draw has a positive value but the Laplace draw reduces

that positive value to the lower bound of 0. That cumulative probability is represented

by the second term in Eq. (9). In that term, the Laplace draw has mean k to adjust for

different possible positive draws of the Poisson. Moreover, the CDF value of the Laplace

distribution given that mean, G (2, k), is positioned at 2 because SafeGraph truncates

any visitor count below 2. Thus, the second term is the cumulative probability that

the simulated visitor count falls below 2 after the Laplace noise is added to a positive

Poisson draw. The Laplace probability multiplies the Poisson probability because the

two draws are independent. Notice that no Laplace piece enters the first term because

SafeGraph adds Laplace noise only to positive observed visitor counts.
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2. Probability that the visitor count exceeds 0:

Pr
(
Ṽi jt > 0|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (1 − G (2, k)) . (10)

This probability is simply the complement of the previous one. Because the visitor count

exceeds 0 in this scenario, Laplace noise is always added to the Poisson draw, and hence,

the “survival function” of the Laplace, given by 1 − G (2, k), multiplies each Poisson

probability. The survival value is the probability that the visitor count avoids truncation.

3. Probability that the visitor count equals 4:

Pr
(
Ṽi jt = 4|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (G (5, k) − G (2, k)) . (11)

The probability that the visitor count equals 4 is the probability that the Poisson draw

lands at or above 1 visitor count times the probability that the Lapalace draw pushes

the visitor count to a value in the interval between 2 and 4 inclusive (i.e., the censoring

region). Because SafeGraph rounds visitor counts down to the nearest integer, the

probability that the Laplace draw carries the visitor count into the censored region is

G (5, k) − G (2, k). For example, a Poisson draw plus a Laplace draw that equaled 4.
−→
9

would round down to 4.

4. Probability that the visitor count exceeds 4:

Pr
(
Ṽi jt > 4|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (1 − G (5, k)) . (12)

This probability is simply the complement of the previous one. The survival function

of the Laplace above 4, given by 1 − G (5, k), multiplies each Poisson probability. The

survival value is the probability that the visitor count avoids censoring.

5. Expected visitor count:

E
(
Ṽi jt|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

) 4 × {G (5, k) − G (2, k)} +
L∑

l=5

l × {G (l + 1, k) − G (l, k)}

 . (13)

The formula for the mean visitor count is broken up into two parts. Both parts are

multiplied by the probability, p
(
k, µ̂i jt

)
, that the Poisson draw lands at or above 1 visitor

count so that the observation enters the support of the empirical distribution. The first

part is the probability that the Laplace draw pushes the visitor count to a value in
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the interval between 2 and 4 inclusive (the censoring region) multiplied by 4 visitors.

The second part is the probability that the Laplace draw pushes the visitor count to a

value of 5 or higher, multiplied by that value. Because SafeGraph rounds visitor counts

down to the nearest integer, the probability of each value in this second part is the CDF

of the Laplace distribution at 1 above that value less the CDF at the value, given by

G (l + 1, k) − G (l, k).

6. Expected log visitor count, conditional on the visitor count exceeding 0:

E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)
≈

∑K
k=1 p

(
k, µ̂i jt

) [
log 4 × {G (5, k) − G (2, k)} +

∑L
l=5

{
log l × (G (l + 1, k) − G (l, k))

}]
Pr

(
Ṽi jt > 0|µ̂i jt

) .

(14)

The formula for the mean of the natural logarithm of the visitor count is very similar to

that of the mean of the visitor count from Eq. (13). The only adjustments are that the

natural logarithm is taken as needed and that the mean is re-weighted to account for the

positive visitor count requirement. That re-weighting is exhibited via the division by

Pr
(
Ṽi jt > 0|µ̂i jt

)
, defined in Eq. (10), which is the way to compute the mean of a truncated

random variable.

7. Expected log visitor count, conditional on the visitor count exceeding 4:

E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)
≈

∑K
k=1 p

(
k, µ̂i jt

) [∑L
l=5

{
log l × (G (l + 1, k) − G (l, k))

}]
Pr

(
Ṽi jt > 4|µ̂i jt

) . (15)

This conditional mean is even simpler to compute than the one in Eq. (14). The formula

consists of just the second component in the numerator of Eq. (14), and the re-weighting

in the denominator is the probability of the visitor count exceeding 4, given in Eq. (12).

4.5 Iterate the fixed effects until convergence

Under a fixed estimate β̂t, the next step is to iterate the estimated fixed effects until they

converge. Because the fixed effects are measured at the block group or branch level, and not

the block group × branch level like the visitor counts, we need two other sets of probability

weights for the fixed effects estimation due to the stratified sampling. The block group and

branch weights are defined similarly as the block group × branch weights in Eq. (7), but they

are measured from the perspective of a block group or branch.

Notice that the stratified sample of block group × branch pairs also creates a stratified

sample of block groups and branches separately. With this in mind, we let bit denote the
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stratified sample of branches for block group i in year-month t. This set is the union of

the set of branches from the pairs sampled with probability 1, denoted b1
it, and the set of

branches from the pairs sampled with probability 1/2000, denoted b0
it. Likewise, let h jt denote

the stratified sample of home block groups for branch j in year-month t. This set is the union

of the set of block groups from the pairs sampled with probability 1, denoted h1
jt, and the set

of block groups from the pairs sampled with probability 1/2000, denoted h0
jt. The block groups

in h1
jt and branches in b1

it have probability weights equal to 1. The block groups in h0
jt have

probability weights denoted ω j
t, and the branches in b0

it have probability weights denoted ωi
t.

These probability weights are defined as:

ω j
t |h

0
jt| + 1|h1

jt| = Total no. of block groups in year-month t, ∀
(
i, j

)
∈ nt, (16)

ωi
t|b

0
it| + 1|b1

it| = Total no. of branches in year-month t, ∀
(
i, j

)
∈ nt. (17)

We use the block group- and branch-specific probability weights from Eqs. (16) to (17) only

in the fixed effects iteration routine. We iterate the estimated fixed effects sequentially. We

begin with the estimated branch fixed effects
{
λ̂ jt

}
, while holding constant the estimated block

group fixed effects
{
γ̂it

}
at γ̂0

it = 1, ∀i and ∀t.

To estimate the branch fixed effects, we take advantage of another data field in SafeGraph:

a branch’s total number of visitors. The SafeGraph name for this field is RAW_VISITOR_COUNT.

Unlike the number of visitors from a block group to the branch, a branch’s total number of

visitors is unaffected by SafeGraph’s differential privacy methods. Because we presume that

block group residents can visit any branch cross-country in the year-month, we can take

advantage of a branch’s total visitors to uniquely pin down the estimate of the branch’s fixed

effect. Let VT
jt denote branch j’s total visitors in year-month t.

The iteration process for estimating the branch fixed effects is as follows. Suppose we are

on the k-th iteration. From Eq. (2), the expected number of visitors to branch j from block

group i in year-month t based on the k-th iteration estimates of the fixed effects is

V̂k
i jt = exp

(
λ̂k

jt

)
exp

(
γ̂k

it

)
d−β̂t

i j . (18)

Summing across block groups, and adjusting for the probability weights defined in Eq. (16),

we obtain a branch’s expected total visitor count:

V̂k
jt = exp

(
λ̂k

jt

) ∑
i∈h1

jt

exp
(
γ̂k

it

)
d−β̂t

i j +
∑
i∈h0

jt

ω j
t exp

(
γ̂k

it

)
d−β̂t

i j

 (19)
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Given β̂t and the k-th iteration of the estimated block group fixed effects,
{
γ̂k

it

}
, we determine

the k-th iteration of each branch’s estimated fixed effect, λ̂k
jt, by solving for the value that

equates the branch’s expected total visitor count, V̂k
jt from Eq. (19), with the branch’s observed

total visitor count, VT
jt. Mathematically speaking, the branch’s fixed effect estimate satisfies:

λ̂k
jt = log VT

jt − log

∑
i∈h1

jt

exp
(
γ̂k

it

)
d−β̂t

i j +
∑
i∈h0

jt

ω j
t exp

(
γ̂k

it

)
d−β̂i j

 . (20)

Per iteration, Eq. (20) pins down each branch’s estimated fixed effect as a function of the

estimated block group fixed effects (and the estimate of βt). The estimated block group fixed

effects will iterate until they converge, and by Eq. (20), once the estimated block group fixed

effects converge, so too do the estimated branch fixed effects, given an estimate of βt.

The iteration process for estimating the block group fixed effects is as follows. Suppose

we are on the k-th iteration. For each block group i in the year-month, we divide the average

observed visitor counts Vi jt across the branches in set bit, by the average simulated visitor

counts across all branches in set bit and all simulations S. With this in mind, we let the average

observed visitor count of block group i be

Vit =
1
|bit|

∑
j∈bit

Vi jt. (21)

Let the simulated visitor counts from simulation s in iteration k be denoted Ṽk
i jt (s). The average

simulated visitor count of block group i in simulation s is

Ṽ
k

it (s) =

∑
j∈b1

it
Ṽk

i jt (s) +
∑

j∈b0
it
ωi

tE
(
Ṽk

i jt|µ̂i jt

)
∑

j∈b1
it

1 +
∑

j∈b0
it
ωi

t

, (22)

where E
(
Ṽk

i jt|µ̂i jt

)
is provided in Eq. (13). Because the calculation is at the block-group level,

the probability weights we use are from the block-group perspective, and they either equal 1

or satisfy Eq. (17). Averaging across simulations delivers the mean simulated visitor count of

block group i as

Ṽ
k

it =
1
S

∑
s

Ṽ
k

it (s) . (23)

The ratio of block group i’s average observed visitor count to average simulated visitor

count is thus:

χk
it =

Vit

Ṽ
k

it

(24)
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We take ratios of averages rather than differences of averages because the fixed effects in

the visitor count model in Eq. (2) are exponentiated. These block group-level ratios then

multiplicatively update each block group’s estimated fixed effect:

γ̂k+1
it = γ̂k

it ×
(
χk

it

)g
, (25)

where g is a modifying term to avoid oscillating estimates, and we set its value to 0.5. Notice

that if block group i’s average simulated visitor count is higher than its average observed

visitor count in the data, then χk
it < 1, and the block group’s estimated fixed effect is revised

downward.

After each update of the estimated block group fixed effects, we re-transform the |n1
t | × S

Uniform random variables into Poisson random variables using (i) the estimate β̂t; (ii) the

updated block group fixed effect estimates,
{
γ̂k+1

it

}
; and (iii) the updated branch fixed effect

estimates,
{
λ̂k+1

jt

}
, based on Eq. (20). We then apply differential privacy methods to the “updated”

simulated data. The process iterates until the estimated block group fixed effects converge.9

While the estimated fixed effects are updated using ratios of the averages between observed

and simulated values, we found that the estimates converged faster under a convergence

criterion that uses differences in the averages instead. We define convergence as the squared

change between iterations in the mean squared difference between average observed and

simulated visitor counts of a block group being sufficiently small. The criterion is similar in

spirit to a GMM minimization problem in which the moments are the difference in means

between the observed and simulated visitor counts of each block group i, using an identity

weighting matrix. Minimization is reached when the change in the GMM objective function

becomes sufficiently small. In the calculation of the average squared difference, we assign

more weight to block groups with branch goers to more branches (higher |bit|). Mathematically,

the convergence condition is 1
|nt|

∑
i

|bit|

(
Ṽ

k+1

it − Vit

)2

−
1
|nt|

∑
i

|bit|

(
Ṽ

k

it − Vit

)2
2

< ε (26)

for small ε, which we set to 1e−9.

After the condition in Eq. (26) is met, we have converged fixed effects estimates, denoted{
γ̂∞it

}
and

{
λ̂∞jt

}
, for a given estimated β̂t. The final piece of the estimation is to select the optimal

β̂t that minimizes the distance between simulated and data moments in the year-month.

9The iterative process we use to identify the fixed effects is similar in spirit to the “zig-zag” algorithm,
or Gauss-Seidel method, that is commonly used to identify high-dimensional fixed effects in linear models
(Guimaraes and Portugal 2010).
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4.6 Select the moments

To identify βt, we choose 6 unconditional moments of the distribution of visitor counts. We

select moments that describe important parts of the distribution. The moments are computed

per year-month across all block groups and branches. Denote the vector of the data moments

in the year-month as m (v), and denote as m
(
ṽs|ψ

)
the analogous vector of simulated moments

from simulation s.

Recall that nt is the set of stratified sampled block group × branch pairs in year-month t.

The set is the union of the set of pairs in n1
t that were sampled with probability 1 and the set

of pairs in n0
t that were sampled with probability 1/2000. Recall also that ωt are the probability

weights assigned to the pairs in the set n0
t , given in Eq. (7). Both the data and simulated

moments only include block group × branch pairs from the stratified sample. The 6 data and

simulated moments are:

1. Percent of visitor counts equal to 0:

m1 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 0

)
+

∑
(i, j)∈n0

t
I
(
Vi jt = 0

)
ωt∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

, (27)

m1
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 0

)
+

∑
(i, j)0

t
Pr

(
Ṽi jt = 0|µ̂i jt

)
ωt∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

, (28)

where I (·) stands for the indicator function and Pr
(
Ṽi jt = 0|µ̂i jt

)
is from Eq. (9). The data

moment m1 (v) is straightforward, separating pairs in the two sampled sets, n0
t and n1

t ,

and applying the different probability weights. The simulated moment m1
(
ṽ|ψ

)
adds

the fraction of the simulated visitor counts from the sampled set n1
t equaling 0 to the

probability of the visitor counts from the sampled set n0
t equaling 0, adjusted by the

probability weights.

2. Percent of visitor counts equal to 4:

m2 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 4

)
+

∑
(i, j)∈n0

t
I
(
Vi jt = 4

)
ωt∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

, (29)

m2
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 4

)
+

∑
(i, j)∈n0

t
Pr

(
Ṽi jt = 4|µ̂i jt

)
ωt∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

, (30)

where Pr
(
Ṽi jt = 4|µ̂i jt

)
is from Eq. (11).
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3. Average log distance, in cases where Vi jt, Ṽi jt = 0:

m3 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 0

)
log di j +

∑
(i, j)∈n0

t
I
(
Vi jt = 0

)
ωt log di j∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

, (31)

m3
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 0

)
log di j +

∑
(i, j)∈n0

t
Pr

(
Ṽi jt = 0|µ̂i jt

)
ωt log di j∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

. (32)

4. Average log distance, in cases where Vi jt, Ṽi jt = 4:

m4 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 4

)
log di j +

∑
(i, j)∈n0

t
I
(
Vi jt = 4

)
ωt log di j∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

, (33)

m4
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 4

)
log di j +

∑
(i, j)∈n0

t
Pr

(
Ṽi jt = 4|µ̂i jt

)
ωt log di j∑

(i, j)∈n1
t
1 +

∑
(i, j)∈n0

t
ωt

. (34)

5. OLS coefficient from regressing log visitor counts onto their associated log distances,

in cases where Vi jt, Ṽi jt > 0:

First, using the observed data, we define the regression’s dependent and indepen-

dent variables, respectively, as

yi jt =
〈
log Vi jt

〉
(i, j)∈n1

t
, (35)

Xi jt =
[
〈1〉(i, j)∈n1

t
,

〈
log di j

〉
(i, j)∈n1

t

]
. (36)

Here, 〈·〉(i, j)∈n1
t

denotes a vector with length equaling the number of elements in the set

n1
t . The dependent variable yi jt consists of a vector of log visitor counts, whereas the

independent variables are a vector of ones and a vector of log distances. With these

variables established, the data moment is

m5 (v) ≡ Second element of
(
X′i jtXi jt

)−1 (
X′i jtyi jt

)
(37)

Notice that, because the data moment reflects only positive observed visitor counts

from the set n1
t of sampled block group × branch pairs, the probability weights all equal

1 and do not appear in the data moment.

The corresponding simulated moment uses a weighted least squares (WLS) coeffi-

cient because the probability weights do not all equal 1. With this in mind, we define
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the observation weights of the WLS as

η̃i jt ≡

 〈1〉(i, j)∈n1
t :Ṽi jt>0〈

ωt Pr
(
Ṽi jt > 0|µ̂i jt

)〉
(i, j)∈n0

t

 , (38)

where Pr
(
Ṽi jt > 0|µ̂i jt

)
is from Eq. (10). The observation weights consist of (1) a vector

of ones with length equaling the number of block group × branch pairs in n1
t that also

have positive simulated visitor counts, and (2) a vector of weighted probabilities that

the simulated visitor counts from the pairs in the sampled set n0
t exceed 0.

The dependent variable in the WLS is defined as

ỹi jt ≡
√
η̃i jt �


〈
log Ṽi jt

〉
(i, j)∈n1

t :Ṽi jt>0〈
E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)〉
(i, j)∈n0

t

 , (39)

where � is the element-wise product and E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)
is from Eq. (14). The

dependent variable consists of (1) a weighted vector of log simulated visitor counts

with length equaling the number of block group × branch pairs in n1
t that also have

positive simulated visitor counts, and (2) a weighted vector of mean log simulated

visitor counts from the pairs in the sampled set n0
t , conditional on the simulated visitor

counts exceeding 0.

The independent variable in the WLS is defined as

X̃i jt ≡

 √
η̃i jt,

√
η̃i jt �


〈
log di j

〉
(i, j)∈n1

t :Ṽi jt>0〈
log di j

〉
(i, j)∈n0

t


 . (40)

The independent variable consists of (1) the square root of the weights from Eq. (38),

and (2) the element-wise product of the square root of the weights and log distances.

With these terms established, we set the simulated moment as

m5
(
ṽ|ψ

)
≡ Second element of

(
X̃′i jtX̃i jt

)−1 (
X̃′i jt ỹi jt

)
. (41)

6. OLS coefficient from regressing log visitor counts onto their associated log distances,

where Vi jt, Ṽi jt > 4:
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The sixth data moment is similar to the fifth data moment, except that it conditions on

the visitor count exceeding 4 rather than 0. Specifically, let

qi jt =
〈
log Vi jt

〉
(i, j)∈n1

t :Vi jt>4
(42)

Zi jt =
[
〈1〉(i, j)∈n1

t :Vi jt>4 ,
〈
log di j

〉
(i, j)∈n1

t :Vi jt>4

]
. (43)

The data moment is then

m6 (v) ≡ Second element of
(
Z′i jtZi jt

)−1 (
Z′i jtqi jt

)
. (44)

The sixth simulated moment is also similar to the fifth simulated moment, just now

conditioning on Ṽi jt > 4. Thus, let the WLS observation weights be

ξ̃i jt ≡

 〈1〉(i, j)∈n1
t :Ṽi jt>4〈

ωt Pr
(
Ṽi jt > 4|µ̂i jt

)〉
(i, j)∈n0

t

 , (45)

where Pr
(
Ṽi jt > 4|µ̂i jt

)
is from Eq. (12). The dependent variable in the WLS is defined as

q̃i jt ≡

√
ξ̃i jt �


〈
log Ṽi jt

〉
(i, j)∈n1

t :Ṽi jt>4〈
E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)〉
(i, j)∈n0

t

 , (46)

where E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)
is from Eq. (15). Likewise, the independent variable in the

WLS is defined as

Z̃i jt ≡

 √
ξ̃i jt,

√
ξ̃i jt �


〈
log di j

〉
(i, j)∈n1

t :Ṽi jt>4〈
log di j

〉
(i, j)∈n0

t


 . (47)

With these terms established, we set the simulated moment as

m6
(
ṽ|ψ

)
≡ Second element of

(
Z̃′i jtZ̃i jt

)−1 (
Z̃′i jtq̃i jt

)
. (48)

In the procedure, we take the mean of the simulated moments by averaging values across

the S simulations. Let m̂
(
ṽ|ψ

)
be the estimate of the model moments from the S simulations:

m
(
ṽ|ψ

)
=

1
S

∑
S

m
(
ṽs|ψ

)
. (49)

The final step of the MSM procedure is to find the estimated β̂t that minimizes the distance

between the data moments and simulated model moments.
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4.7 Construct the MSM estimator

The MSM estimator β̂t,MSM minimizes the weighted sum of squared errors between the

simulated model moments and data moments. So that all errors are expressed in the same

units and the minimization problem is scaled properly, we compute the error er
(
ṽ, v|ψ

)
per

moment r, which is the percent difference between a data moment and its corresponding

model moment:

er
(
ṽ, v|ψ

)
≡

mr
(
ṽ|ψ

)
−mr (v)

mr (v)
, ∀r. (50)

Let e
(
ṽ, v|ψ

)
denote the vector of moment errors. The MSM estimator is then

β̂t,MSM = argmin
βt

e
(
ṽ, v|ψ

)′We
(
ṽ, v|ψ

)
, (51)

where W is a 6 × 6 weighting matrix that controls how each moment is weighted in the

minimization problem. Notice that each candidate βt in Eq. (51) is associated with a different

set of converged fixed effects estimates
{
γ̂∞it , λ̂

∞

jt

}
.

We use the identity matrix I for the weighting matrix W. We also implemented a two-step

procedure to select an optimal weighting matrix W, but that approach produced unstable

estimates. This is not surprising, given evidence in the literature of the underperformance of

the two-step procedure when there is uncertainty in the estimation of the weighting matrix

(Arellano and Bond 1991; Hwang and Sun 2018).

Under this identity weighting matrix, one can derive the variance-covariance matrix of

the MSM estimator β̂t,MSM as

V̂ar
(
β̂t,MSM

)
=

(
1 +

1
S

) [∂m
(
ṽ|ψ

)
∂βt

′∂m
(
ṽ|ψ

)
∂βt

]−1

, (52)

where
∂m(ṽ|ψ)
∂βt

is the derivative of the vector of simulated moments, evaluated at β̂t,MSM. We

calculate the derivatives numerically by taking a central difference around β̂t,MSM.

5 Estimation Results

Fig. 2 compares the distribution of observed “raw” visitor counts (in black) to simulated

“true” visitor counts (in blue) according to the month-by-month MSM estimation of the

Poisson model in Eq. (2). The simulated visitor counts include all positive draws from all

simulations across every year-month in the sample period. The numbers of 0 visitor counts in

both distributions are very large and are omitted for clarity. The black distribution reveals
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the effects of the differential privacy on the raw visitor counts, having a large mass at 4. The

MSM does a reasonable job spreading out the mass of visitors into the lower portion of the

distribution that is lost in the observed data. The two distributions line up fairly well at the

right tail, where we have censored the visitor counts at 10 in the figure for clarity. The “true”

visitor distribution in blue obeys our assumed Poisson structure, which may not coincide with

the true data generating process of visitor counts known only to SafeGraph. Nevertheless,

as with standard MSM, potential misspecification of the simulating distribution does not

interfere with the consistency of the estimates (McFadden 1989). Also displayed in the figure

is the distribution of simulated “manipulated” visitor counts in red, which is the distribution

of the “true” visitor counts after they are manipulated by the differential privacy methods in

Eqs. (3) to (5).

Fig. 3 compares the observed number of visitors from each Census block group to their

expected (i.e., predicted) counterparts from the simulation. It presents a binned scatter plot

of the log observed number of branch goers from each block group versus the log expected

number of branch goers from the block group based on the MSM estimates. If SafeGraph

applied no differential privacy methods to their geolocation data, all dots in the figure would

line up neatly on the red 45◦ line. The single caveat is that the expected number of visitors

might not be whole numbers, whereas the observed number of visitors must be. The censoring

levels off the log observed visitor counts at 1.4, which corresponds to 4 visitors. The truncation

causes the observed visitor counts to enter below the expected visitor counts, and the gap

between observed and expected counts is largest for block groups with few branch goers,

which are areas where the truncation has the largest impact. The gap shrinks as the number

of branch goers from a block group increases. In block groups with many branch goers, the

observed and expected number of visitors nearly match. This implies that the MSM generates

estimates that fit the geolocation data well in regions least affected by the differential privacy

distortions, which one would hope for.

Fig. 4, Panel A presents the gravity coefficient estimates through time, along with 95%

confidence intervals. The monthly point estimates of the gravity coefficient range from

about -1.45 to -1.26, and they are fairly stable month-to-month. Thus, across the country, if a

representative branch were located 1% farther away from a representative block group, the

number of residents from that block group who travel to that branch would drop by around

1.26-1.45% per month. As for comparison, Agarwal et al. (2018) estimate a gravity model of

consumer expenditures in nonfinancial sectors. They find a gravity coefficient of -1.05 for the

average out-of-home purchase, but they document significant heterogeneity across sectors,
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with Food Stores, for example, observing an estimate of -0.85; and Health Services, -0.33.

Fig. 4, Panels B and C present histograms of the estimated Census block group and bank

branch fixed effects across all months of the sample period. A block group’s fixed effect can

be interpreted as the average log number of residents from that block group who visit any

branch in the year-month, controlling for branch fixed effects and transportation costs. The

bulk of the distribution of block group fixed effects range from exponentiated values around

0.01 to 20. Similarly, a branch’s fixed effect can be interpreted as the branch’s average log

number of visitors in the year-month, controlling for visitors’ block group fixed effects and

their transportation costs. Most of the mass is within a range of exponentated values between

0.01 and 30. In an unreported regression, roughly 77% of the variation in a branch’s fixed

effect over time can be explained by the branch itself, suggesting that branch quality is fairly

stable over time.

SafeGraph’s differential privacy methods bias traditional methods of estimating the

gravity model and prompts an alternative econometric method like the MSM. But computing

estimates from the traditional methods is still useful to informally assess the magnitude of

the bias. To this end, Online Table 3 presents gravity coefficient estimates and standard errors

from the MSM estimation, along with estimates and standard errors from OLS and PPML

estimations. The PPML and OLS estimates are computed on the observed, “raw” visitor

counts. We run each estimation approach per year-month of the sample. PPML and OLS

estimations are also run over the full sample panel period (January 2018 - December 2019). In

addition, we run the OLS estimation on block group × branch pairs with more than 4 visitors

(which avoid SafeGraph’s censoring). PPML and OLS standard errors are two-way clustered

by both Census block groups and bank branches.

The gravity coefficient estimates from the MSM range from -1.45 to -1.26. The estimates

from OLS range from -0.062 to -0.038, roughly twenty to thirty times smaller in magnitude.

The OLS estimate over the full panel is -0.053, still an order of magnitude below the MSM

estimates. When the sample is limited to block group × branch pairs with greater than 4

visitors, the OLS estimates rise in magnitude, ranging from -0.33 to -0.27, which is still roughly

four to five times smaller in magnitude than the MSM estimates. Computed over all block

group × branch pairs, the PPML estimates register higher magnitudes than the OLS ones,

ranging in values from -0.108 to -0.066. But they still are roughly ten to twenty times smaller

in magnitude than the MSM estimates. The PPML gravity coefficient estimate over the full

panel is -0.091.

Overall, Online Table 3 reveals the downward bias that SafeGraph’s differential privacy
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methods introduce to traditional methods of estimating the gravity equation, and it stresses

the need for the alternative MSM procedure.

6 Conclusion

We propose an econometric method to estimate fixed-effects gravity models on data

protected by differential privacy. The method adapts the Method of Simulated Moments

to identify high-dimensional fixed effects. We illustrate the method by estimating a gravity

model of consumer flows to bank branches using privacy-protected geolocation data from

mobile devices. We find significant differences between the estimates obtained from the

proposed method and those obtained from standard gravity model estimation methods. We

hope the method can be useful in a range of other applications relying on big data that are

affected by differential privacy methods.
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(A) All Block Group × Branch Pairs

(B) Block Group × Branch Pairs with >4 Visitors, with
Fixed Effects

Figure 1
Number of Visitors from Block Groups to Bank Branches by Distance

The figure presents binned scatter plots of the log number of visitors from home Census block groups to bank
branches according to the log mile distance between the block groups and branches. Visitor information is
from our core SafeGraph sample ranging from January 2018 to December 2019. The core sample includes only
businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions),
or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands are also
listed in the FDIC’s 2019 Summary of Deposits. Distance is computed from the population-weighted center of a
block group to a branch. Centers of population are from the 2010 Census, and we use the haversine formula
to compute distance (see Footnote 8). Panel A presents the observed (raw) geolocation data and includes all
block group × branch pairs, including those with visitor counts of 2 or 3 that SafeGraph rounds up to 4. Panel B
only includes block group × bank branch pairs with greater than 4 visitors. In that panel, the log numbers of
visitors are residualized by block group × year-month fixed effects and branch × year-month fixed effects. The
log distances are residualized by the same set of fixed effects. To construct the binned scatter plots, we divide
the x-axis values into 100 equal-sized (percentile) bins. We then calculate the mean of the y-axis values and the
mean of the x-axis values within each bin. In addition, for Panel B we add back the unconditional mean of the
log numbers of visitors and the unconditional mean of the log distances to re-scale values.
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Figure 2
Distributions of Visitor Counts

The figure presents distributions of observed visitor counts, simulated “true” visitor counts, and simulated
“manipulated” visitor counts from visitors’ home Census block groups to bank branches. Observed visitor counts,
denoted Vi jt from Eq. (5), are the raw geolocation data from our core SafeGraph sample ranging from January
2018 to December 2019. The core sample includes only businesses in SafeGraph with NAICS codes equal to
522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for
which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits. Simulated
“true” visitor counts, denoted V∗i jt from Eq. (2), are draws from the underlying “true” distribution of visitors,
which we assume to be Poisson. Simulated ”maniputed” visitor counts are the ”true” visitor counts after being
manipulated via differential privacy methods presented in Eqs. (3) to (5). The simulated values are computed
from the month-by-month Method of Simulated Moments estimation described in Section 4. The distribution of
simulated visitor counts includes all positive draws from all simulations across every year-month in the sample
period. To enhance the depictions of the distributions, we censor them at 10 visitors. That is, the number of
block group × branch pairs with visitor counts exceeding 10 is assigned to 10+ visitors in the figure.

31



Figure 3
Observed vs. Expected Branch Visitors per Census Block Group

The figure presents a binned scatter plot of the log observed number of branch visitors from each Census
block group (i.e., log Vit ≡ log

∑
j Vi jt, where Vi jt is given in Eq. (5)) versus the log expected number of branch

visitors from each block group based on the month-by-month Method of Simulated Moments (MSM) estimates

(i.e., log V̂a
it ≡ γ̂it + log Φ̂a

it, where the access measure Φ̂a
it ≡

∑
j∈bit

ωi
t exp

(
λ̂ jt

)
d−β̂t

i j reflects the branch probability
weights used in the stratified sampling and defined in Eq. (17)). The observed and expected number of visitors
range over the full sample period from January 2018 to December 2019. Each dot represents a Census block
group in a year-month. The red solid line is a 45◦ line and the light grey solid line cuts the y-axis at 1.4, which
corresponds to SafeGraph’s censoring at 4 visitor counts. The steps of the MSM procedure that generate the
expected number of branch goers are in Section 4. To construct the binned scatter plot, we divide the x-axis
values into 1,000 equal-sized bins. We then calculate the mean of the y-axis values and the mean of the x-axis
values within each bin.
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(A) Time Series of −β̂t,MSM

(B) Census Block Group Fixed Effects (C) Bank Branch Fixed Effects

Figure 4
Method of SimulatedMoments Parameter Estimates

The figure presents the parameter estimates from the month-by-month Method of Simulated Moments (MSM)
estimation of the visitor count gravity relation in Eq. (2). Panel A illustrates the monthly time series of the
−β̂t,MSM gravity coefficient estimates, along with 95% confidence intervals. Panel B presents a histogram of the
estimated Census block group fixed effects,

{
γ̂∞it

}
, and Panel C presents a histogram of the estimated bank branch

fixed effects,
{
λ̂∞jt

}
. In each histogram, the fixed effects are grouped into 50 equally-sized bins, and the estimated

fixed effects for all months in the sample period are presented. A summary of the MSM estimation is provided
in Section 4.
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Table 1
Descriptive Statistics - Core SafeGraph Sample

Mean Std. Dev. P10 P25 P50 P75 P90 N

No. of Visits 67 180 6 14 35 78 147 919,076
No. of Visitors 40 94 5 10 23 48 90 919,076
Med. Dist. from Home (mi) 5 16 2 3 4 6 9 822,569
Med. Dwell Time (min) 49 102 6 7 9 30 152 919,076
Device Type - iOS 52% 19,238,792
Device Type - Android 46% 17,207,356

The table reports descriptive statistics of key variables related to bank branch visitation. All values are based on
our core sample of geolocation data, which consists of businesses in SafeGraph with NAICS codes equal to
522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies)
for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits. Data
are monthly, at the branch level, and range from January 2018 - December 2019. No. of Visits is the total number
of visits to a typical bank branch in a month. No. of Visitors is the total number of visitors (i.e., mobile devices)
to a typical branch in a month. Med. Dist. from Home (mi) is the median distance in miles that visitors travel
to a branch from their home (among visitors whose home is identified). Med. Dwell Time (min) is the median
amount of time in minutes that visitors stay at a branch. Device Type is the fraction of total branch visitors using
Google Android vs. Apple iOS mobile devices. The number of observations N used in the first four rows is the
total number of branch-year-months. The number of observations used in the last two rows is the total number
of mobile devices with device-type information over the core sample period.
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Table 3
Comparing Gravity Equation EstimationMethods

MSM PPML OLS OLS where ≥ 4

Year Month β s.e. β s.e. β s.e. β s.e.

2018 1 -1.26 (0.035) -0.066 (0.003) -0.038 (0.001) -0.331 (0.030)
2 -1.31 (0.227) -0.072 (0.004) -0.042 (0.001) -0.319 (0.023)
3 -1.32 (0.019) -0.076 (0.003) -0.046 (0.001) -0.295 (0.018)
4 -1.33 (0.033) -0.073 (0.002) -0.045 (0.001) -0.287 (0.016)
5 -1.32 (0.011) -0.075 (0.003) -0.045 (0.001) -0.297 (0.017)
6 -1.30 (0.007) -0.072 (0.002) -0.045 (0.001) -0.288 (0.017)
7 -1.27 (0.043) -0.069 (0.002) -0.043 (0.001) -0.278 (0.018)
8 -1.29 (0.053) -0.079 (0.003) -0.047 (0.001) -0.317 (0.018)
9 -1.34 (0.304) -0.082 (0.002) -0.049 (0.001) -0.340 (0.022)
10 -1.37 (0.090) -0.086 (0.003) -0.051 (0.001) -0.303 (0.016)
11 -1.31 (0.032) -0.086 (0.003) -0.051 (0.001) -0.293 (0.014)
12 -1.31 (0.035) -0.091 (0.003) -0.053 (0.001) -0.269 (0.014)

2019 1 -1.40 (0.018) -0.089 (0.003) -0.053 (0.001) -0.300 (0.014)
2 -1.43 (0.030) -0.089 (0.002) -0.053 (0.001) -0.286 (0.015)
3 -1.37 (0.035) -0.096 (0.003) -0.056 (0.001) -0.279 (0.014)
4 -1.39 (0.016) -0.098 (0.003) -0.056 (0.001) -0.268 (0.012)
5 -1.40 (0.023) -0.106 (0.003) -0.061 (0.001) -0.258 (0.010)
6 -1.38 (0.177) -0.096 (0.002) -0.057 (0.001) -0.274 (0.010)
7 -1.35 (0.106) -0.095 (0.003) -0.056 (0.001) -0.261 (0.011)
8 -1.40 (0.039) -0.103 (0.003) -0.061 (0.001) -0.270 (0.010)
9 -1.41 (0.034) -0.108 (0.003) -0.060 (0.001) -0.290 (0.011)
10 -1.45 (0.031) -0.102 (0.003) -0.059 (0.001) -0.291 (0.012)
11 -1.43 (0.015) -0.099 (0.003) -0.058 (0.001) -0.290 (0.013)
12 -1.41 (0.033) -0.105 (0.003) -0.062 (0.001) -0.285 (0.010)

Panel -0.091 (0.002) -0.053 (0.001) -0.283 (0.008)

The table reports estimates and standard errors of the gravity coefficient βt from the fixed-effects gravity
model in Eq. (1):

log
(
No. of visitorsi jt

)
= γit + λ jt − βt log

(
Distancei j

)
+ εi jt.

Columns (3) and (4) present estimates from the Method of Simulated Moments estimation described
in Section 4. Columns (5) and (6) present estimates from an unweighted Poisson pseudo-maximum-
likelihood (PPML) estimation, as in Silva and Tenreyro (2006), run using ppmlhdfe in Stata. Columns
(7)-(10) present estimates from an unweighted OLS regression. The PPML and OLS estimations use the
raw number of visitors from home Census block groups to bank branches based on our core sample
of geolocation data, which consists of businesses in SafeGraph with NAICS codes equal to 522110
(Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies)
for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of
Deposits. Columns (9) and (10) restrict the sample to visitor counts of at least 4, which circumvent
SafeGraph’s truncation and censoring. The MSM, PPML, and OLS gravity coefficient estimates are
calculated month-by-month over the sample period (January 2018 - December 2019). PPML and OLS
estimates are also calculated over the full sample panel. Standard errors of the MSM estimates are
described in Section 4. Standard errors of the PPML and OLS estimates are two-way clustered by both
Census block groups and bank branches.
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Appendix

A Core Sample Construction
Here, we supply background information on the SafeGraph geolocation data and a detailed explanation

of how we construct our core sample.

A.1 SafeGraph Geolocation Data
We use two of SafeGraph’s primary datasets: Core Places and Patterns. Both datasets have information

on millions of points-of-interest (POIs) in the United States, which SafeGraph defines as “specific location[s]
where consumers can spend money and/or time.”10 Locations such as restaurants, grocery stores, parks,
museums and hospitals are included, but not residential homes or apartment buildings.

The Core Places dataset provides the establishment name (e.g., Salinas Valley Ford Lincoln), brand
(e.g., Ford), six-digit NAICS code, latitude and longitude coordinates, address, phone number, hours open,
when the establishment opened, and when SafeGraph began tracking information about the establishment.
SafeGraph describes creating this dataset using thousands of diverse sources. We use the January 2021
version of the Core Places dataset, which was the most up-to-date and accurate as of the time of our analysis.

The Patterns dataset contains information on visitors to different locations. A visitor is identified via
his or her mobile device, and one device is treated as one visitor. SafeGraph collects this information from
third-party mobile application developers. Through these mobile applications, SafeGraph gathers a device’s
advertisement identifier, the latitude and longitude coordinates of the device at a designated time, and the
horizontal accuracy of the geographic coordinates.11 In this dataset, SafeGraph aggregates the visitor data
and provides several bits of information, including the number of visits and unique visitors to a POI during
a specified date range, the median distance from home that visitors traveled to reach the POI, the median
dwell time spent at the POI, and the number of visitors using Apple’s iOS or Google’s Android operating
system. The Patterns dataset is backfilled to reflect the Core Places from the January 2021 version.

Most importantly for us, the Patterns dataset contains the home Census block groups of visitors, and
the number of visitors from each of those home block groups. To protect user privacy, SafeGraph employs
differential privacy methods to the visitor home block group data. First, it adds Laplace noise to each block
group’s visitor count (when it observes at least one visitor from the block group). Second, after the noise is
added, Safegraph rounds the visitor counts down to their nearest integers. Third, SafeGraph then truncates
the rounded visitor counts by only reporting data from block groups with at least two visitors. Fourth, home
block groups with only two, three, or four visitors are reported as having four visitors.

SafeGraph determines a visitor’s home Census block group using an algorithm. A brief description
of that algorithm is as follows. The algorithm starts by clustering GPS signals from a device during the
nighttime hours between 6pm - 7am local time. The Census block group with the most clusters is recorded
as the device’s potential home location for the day. SafeGraph reviews the previous six weeks of the device’s
daily home locations and identifies the most frequent one as the device’s home Census block group. This
home location applies for the device over the next thirty days, at which point the home location is updated.
New devices that appear in the panel require at least five days of data before they are eligible to have their
home locations identified. Finally, SafeGraph computes a confidence score for each device’s calculated home
block group. Only high-confidence home locations are included; otherwise, the device’s home location is
classified as unknown.12

10See the SafeGraph Places Manual and Data Guide for more details.
11See the SafeGraph Privacy Policy for more details.
12Full details of the algorithm are found here: Home Identification Algorithm.
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A.2 FDIC Summary of Deposits
To construct our core sample, we rely on branch information from the Federal Deposit Insurance

Corporation (FDIC). Branch data are from the FDIC’s 2019 Summary of Deposits (SOD).13 We rely on the
SOD to confirm that branch locations we use from SafeGraph belong to actual depository institutions,
instead of other financial institutions that SafeGraph might mistakenly label as a “bank,” but do not take
deposits, such as an investment advisory firm.

A.3 Construction Process
Our core sample can be thought of as consisting of two components: (i) a set of locations and (ii) consumer

movement to those locations. We call these two components “places” and “visitors.” In our case, the places
and visitors are specific to bank branches. SafeGraph is our only source of visitor data, and so, we rely on it
exclusively. The visitors data field we use that contains the home Census block groups of the visitors to a
branch is VISITOR_HOME_CBGS. As we describe in the text, this data field is subject to SafeGraph’s differential
privacy.

Places data, on the other hand, are available in both SafeGraph and the SOD. Before we detail how we
make use of both sources, we first need to introduce placekey, which is a crucial way we identify a place.

A.3.1 Placekey

Placekey is a free, standardized identifier of physical locations. It supplants a location’s address and
latitude-longitude geocode with a unique identifier. Using this identifier overcomes the challenge of linking
locations by addresses that are spelled differently (e.g., 1215 Third Street, Suite 10 vs. 1215 3rd St., #10) or by
latitude-longitude geocodes that differ slightly but refer to the same place.

A business’s placekey consists of two parts (called “What” and “Where”), and it is written as What@Where.
The What component encodes an address and a point-of-interest. The point-of-interest piece adjusts if a new
business opens at the same address of a previous business that closed. For example, if a bank branch closed,
but its building converted into a bakery, the two businesses would share the same address, but different
points-of-interest; and therefore, they would be assigned different placekeys.

The Where component consists of a unique character sequence. It encodes a hexagonal region on the
surface of the Earth based on the latitude and longitude of the business. The hexagon contains the centroid
of the business, and the Where component is the full encoding of the hexagon. To consider an example
Placekey, take the Chase branch at 1190 S. Elmhurst Rd. in Mount Prospect, IL 60056. This branch’s placekey
is 223-222@5sb-8gg-jn5. Additional technical information about Placekey can be found in their white paper
located here: Placekey White Paper.

A.3.2 Choosing the Set of Places

Both the SOD and SafeGraph have bank branch locations. SafeGraph locations are already identified by
their placekeys. We generate placekeys for the SOD locations using Placekey’s free API. To construct an
accurate and comprehensive set of places, we take advantage of place information in SafeGraph and the
SOD. The quality of SafeGraph places is higher than those in the SOD. Often, an address in the SOD has
an invalid placekey, and a Google Maps search confirms that no physical place exists at that address. (The
place’s absence is not due to a branch closing.) A higher quality set of places from SafeGraph should come at
little surprise, as the success of the company’s business relies in part on providing highly accurate place
information.

13FDIC SOD data are located here: SOD.
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On the other hand, the quantity of places is higher in the SOD than in SafeGraph. In SafeGraph, bank
branches are classified by their 6 digit NAICS codes (522110 for Commercial Banking, 522120 for Savings
Institutions, and 551111 for Offices of Bank Holding Companies). The number of places in SafeGraph under
these categories is less than the number of branches in the SOD. So that we can link places information to
visitor information, all places we analyze must be included in SafeGraph. For example, a branch in the
SOD that is not part of SafeGraph whatsoever has no visitor information to study. But we can use place
information from the SOD to choose the set of places from SafeGraph that balances quality and quantity.
Doing so constructs our core sample, which we define next.

Our core sample includes only SafeGraph places with brands that are included in the SOD and for which
we have visitor geolocation data from SafeGraph. In the SOD, the field CERT identifies a unique banking
institution. We rely on this field to select the list of unique banks, and we use the union of the SOD fields
namefull and namehcr to identify a bank’s brand. In SafeGraph, we use the field LOCATION_NAME to identify
a bank brand name. For example, Wells Fargo & Company and SunTrust Banks, Inc. are two bank brands
with locations in the SOD. All Wells Fargo and SunTrust Bank places in SafeGraph would be included,
and their locations would be identified by SafeGraph’s placekeys for them. All SOD locations (and their
placekeys) are ignored.

3



Figure A.1
Number of Bank Branches and Branch Visitors - Core Sample

The figure presents the number of bank branches and number of branch visitors each year-month in our core sample.
The core sample includes only businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking),
522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and
whose brands are also listed in the FDIC’s 2019 Summary of Deposits.
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Table A.1
Driving Time versus Haversine Distance

Dep. var.: Driving time b/w block group and visited branch

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Haversine distance 0.641 0.634 0.631 0.632 0.649 0.652 0.634 0.647 0.632
b/w block group and visited branch (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 57.610 60.684 58.863 64.234 51.796 51.427 58.749 50.702 67.206
(0.177) (0.150) (0.494) (0.156) (0.319) (0.289) (0.195) (0.303) (0.171)

Observations 995,000 725,000 35,000 498,000 497,000 498,000 497,000 508,000 487,000
Adjusted R2 0.982 0.991 0.993 0.992 0.972 0.973 0.990 0.975 0.990
Sample Core MC Core Core Core Core Core Core Core
Black > 0.8 O
Black ≥Med. Black O
Black < Med. Black O
White ≥Med. White O
White < Med. White O
log(Income) ≥Med. log(Income) O
log(Income) < Med. log(Income) O

Each column reports coefficients from a univariate, weighted OLS regression with heteroskedasticity-robust standard errors reported in parentheses.
One observation is a block group × branch pair from our core sample of Census block groups and bank branches, where the branches consist of
businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding
Companies) for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits (SOD). Observations are weighted
by block-group population counts from the 2019 5-year American Community Survey (ACS). Dependent variable observations are the driving times
from the population-weighted centers of block groups to branches, where driving times are computed using the Origin-Destination Cost Matrix of
ArcGIS Pro under the default settings. Centers of population are from the 2010 Census. Independent variable observations are the corresponding
haversine distances between block groups and branches. 995,000 block group × branch pairs were drawn randomly. Column (1) includes the entire
random sample of block group × branch pairs. Column (2) restricts the sample to block groups with Rural-Urban Commuting Areas (RUCA) codes
equaling 1 (Metropolitian area core). Column (3) restricts the sample to block groups with Black population shares exceeding 80%. Column (4) restricts
the sample to block groups with Black population shares at or exceeding the median Black population share across all block groups in the entire
random sample. Column (5) restricts the sample to block groups with Black population shares below the median Black population share across all block
groups in the entire random sample. Column (6) restricts the sample to block groups with White population shares at or exceeding the median White
population share across all block groups in the entire random sample. Column (7) restricts the sample to block groups with White population shares
below the median White population share across all block groups in the entire random sample. Column (8) restricts the sample to block groups with the
natural logarithm of median household income at or exceeding the median of the natural logarithm of median household income across all block
groups in the entire random sample. Column (9) restricts the sample to block groups with the natural logarithm of median household income below the
median of the natural logarithm of median household income across all block groups in the entire random sample. Racial shares and median household
income are from the 2019 5-year ACS.
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