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Abstract

This paper presents a formal privacy analysis of data swapping, a family of statistical disclo-
sure control (SDC) methods which were used in the 1990, 2000 and 2010 US Decennial Census
disclosure avoidance systems (DAS). Like all swapping algorithms, the method we examine has
invariants – statistics calculated from the confidential database which remain unchanged. We
prove that our swapping method satisfies the classic notion of pure differential privacy (ϵ-DP)
when conditioning on these invariants. To support this privacy analysis, we provide a framework
which unifies many different types of DP while simultaneously explicating the nuances that dif-
ferentiate these types. This framework additionally supplies a DP definition for the TopDown
algorithm (TDA) which also has invariants and was used as the SDC method for the 2020 Census
Redistricting Data (P.L. 94-171) Summary and the Demographic and Housing Characteristics
Files. To form a comparison with the privacy of the TDA, we compute the budget (along with
the other DP components) in the counterfactual scenario that our swapping method was used
for the 2020 Decennial Census. By examining swapping in the light of formal privacy, this pa-
per aims to reap the benefits of DP - formal privacy guarantees and algorithmic transparency -
without sacrificing the advantages of traditional SDC. This examination also reveals an array of
subtleties and traps in using DP for theoretically benchmarking privacy protection methods in
general. Using swapping as a demonstration, our optimistic hope is to inspire formal and rigor-
ous framing and analysis of other SDC techniques in the future, as well as to promote nuanced
assessments of DP implementations which go beyond discussion of the privacy loss budget ϵ.
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1 Connecting Data Swapping with Differential Privacy

1.1 Explicating invariant constraints in differential privacy definitions

In 2018, the United States Census Bureau (USCB) announced an overhaul of their disclosure avoid-
ance system (DAS) [Abowd, 2018]. The DAS for the Decennial Censuses of 1990, 2000 and 2010
principally consisted of a data swapping method [McKenna, 2018] which interchanges the reported
values of sensitive variables in a randomly selected subset of records [Dalenius and Reiss, 1982, Fien-
berg and McIntyre, 2004]. In contrast, the USCB declared that the 2020 DAS would be redesigned
from the ground up with the primary goal of satisfying a mathematical definition of privacy. This
definition, the USCB decided, must be some type of differential privacy (DP) [Dwork et al., 2006b]
– a large family of technical standards which aim to quantify privacy by measuring the change in
the output statistic due to a unit change in the input data.1

However, there were other priorities for the 2020 Census, some of which appear to complicate a
straightforward adoption of DP. In particular, state population counts are legislatively required to
be published exactly. On the other hand, DP typically requires that all published statistics are
infused with random noise. The USCB’s TopDown algorithm (TDA) [Abowd et al., 2022] – used
to protect the 2020 Census Redistricting Data (P.L. 94-171) Summary File, the Demographic and
Housing Characteristics (DHC) File and the Demographic Profile2 – sidesteps this conflict by first
applying a DP method to add noise into the 2020 Census data and then removing this noise from
a set of key statistics, called the invariants, via a complex optimization procedure. The invariants
for the 2020 Census include not only the state population totals but also the counts of households
at the lowest level of Census geography, amongst other statistics [Abowd et al., 2022, Section 5.2].
More generally, invariants refer to any summaries of data that must be released without subjecting
them to any modification, differentially private or not.

To date, the privacy analysis of the TDA has focused solely on its first step, when privacy noise
is added to the Census data [Abowd et al., 2022]. Yet any rigorous analysis must encompass
the entire TDA procedure and assess the privacy impacts of both the noise infused in the first

1See [Desfontaines and Pejó, 2022] for a survey of the numerous differential privacy definitions.
2The USCB produces multiple data products from each Decennial Census. For 2020, the three principal data prod-

ucts are the Redistricting Data (P.L. 94-171) Summary File (published August 2021), the Demographic and Housing
Characteristics (DHC) File (to be published May 2023) and the Detailed Demographic and Housing Characteristics
Files (to be published starting from September 2023) [U.S. Census Bureau].

Both the Redistricting Data and DHC Files use versions of the TopDown algorithm, with the DHC’s updated
version “tuned” to improve accuracy. Related tabulations across these Files will be consistent. Additionally, “noisy
measurement files” for the Redistricting Data and DHC will be published by the USCB. These files are the output of
the first step (noise infusion) of the TDA, before the second step (termed “post-processing” by the USCB) is applied
[US Census Bureau, 2023a].

In contrast, the Detailed DHC Files will use a new privacy mechanism, the SafeTab-P algorithm [Tumult Labs,
2022, US Census Bureau, 2023f]. The Detailed DHC Files will not be internally consistent nor agree with related
tabulations in the Redistricting Data and DHC Files.

To be clear, in this paper we are interested in the assessing the privacy afforded by the two steps of the TDA in
combination – which together produce the final versions of the Redistricting Data and DHC Files – and not simply
the privacy afforded by the first step – which produces the noisy measurement files.
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step and the noise removed in the second step. This second step is not readily addressable by
the standard definitions of DP in the current literature, because these definitions do not explicate
the permissible counterfactual data universes which are essential for meaningfully defining the DP
operations (e.g., the action of alternating a single membership or attribute). Such explication is
paramount for handling invariants, much like the explication of conditioning in statistical inference
– that is, constraining the possible states by the known or assumed information – is the first step
towards properly account for known information. Indeed the process of infusing invariants into DP
definitions parallels that of defining and applying a sampling distribution with respect to a sub-
population instead of the entire population. The overall mathematical notion of the distribution is
the same. The difference is to what state space (e.g., a population) it is applied to.

At the same time, just as defining conditional distributions brings complications and subtleties (such
as conditioning on a probability-zero event), defining invariant-infused DP reveals a host of hidden
complexities and assumptions implicit in conventional DP definitions, as we explore in Section 3.
By making these nuances explicit, we make the notion of DP more applicable and meaningful in
the presence of invariants, because any theoretical guarantee of privacy that does not take into
account known information (such as invariants) is not a practically relevant one, as the 2020 Census
demonstrates. Further, this explication of DP also naturally leads to an understanding of the formal
privacy of data swapping confidentiality methods.

1.2 Goals of this paper

This paper presents a formal privacy analysis of data swapping [Dalenius and Reiss, 1982, Fienberg
and McIntyre, 2004]. Swapping refers to a general concept and thus there are a broad class of
statistical disclosure control (SDC) methods which can be designated as data swapping, including
the 1990, 2000 and 2010 US Census DAS [McKenna, 2018]. In order to conduct a rigorous privacy
analysis, we focus on a single type of swapping algorithm. Since the details of the USCB’s swapping
methods have never been made fully public due to confidentiality concerns, our algorithm is designed
with the dual mandate of being congenial to a formal privacy analysis while also aligning as much
as possible with the public knowledge of the 2010 US Census’s swapping method.

We show that this swapping algorithm is differentially private conditioning on the invariants that
it produces, and we do so by providing an explicit expression for its privacy loss budget ϵ. This
achieves one of the major goal of this paper: a theoretical analysis of the privacy guarantees that
swapping affords.

As a prerequisite for such an analysis, we first provide a unifying notion of a differential privacy
definition as a bound on the derivative of the data-release mechanism. By interpreting differentia-
tion in a very general sense, this abstract definition encompasses many of the different types of DP,
while simultaneously making explicit the various nuances which differentiate these types. Although
this framework is an important tool on its own (see Bailie et al. [2023+]), for our specific purposes it
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demonstrates how invariants can be incorporated into DP, without changing the definition but sim-
ply by explicating an existing DP component – the data universe. While this perspective results in
a suitable privacy definition for swapping, it also enables us to formally describe a privacy definition
for the USCB’s TopDown algorithm. Such a privacy definition, which encompasses both the noise
infusion and noise removal steps of TDA, was previously missing from the literature. Finally, this
framework gives necessary context for understanding the privacy budget ϵ of a differential privacy
mechanism.

Another major goal of this paper is to establish swapping methods on an equal and formal footing
with other invariant-respecting DP mechanisms, in order to compare and elucidate their similarities
and differences. Swapping mechanisms have received criticism since they have been shown theo-
retically to introduce bias into the published data [Drechsler and Reiter, 2010]. But the level of
this bias depends on implementation parameters which are typically kept secret. Only with public
transparency of the 2010 USCB’s swapping algorithm – as enabled by a formal privacy analysis –
can the extent of this bias be quantified. This would provide practical considerations for the 2010
Census data, above and beyond what the current theoretical understanding can provide.

With formal privacy analysis serving as the theoretical support, a focal comparison presented in this
paper is between the TDA and the counterfactual scenario in which the USCB uses our swapping
algorithm to protect the 2020 Census. The swapping algorithm we examine, which mimics the 2010
Census DAS, satisfies a type of differential privacy we call (cSwap, ϵ)-DP which is the same in form
as the privacy definition of the TDA. Thus, this analysis illustrates the evolution over time of the
privacy guarantees provided in the US Decennial Censuses.

In a nutshell, this paper continues an existing line of research [Rinott et al., 2018, Bailie and Chien,
2019, Sadeghi and Chien, 2023] examining non-DP statistical disclosure control (SDC) techniques
– which are typically regarded as ad-hoc – under the light of formal privacy. Hence our fourth
and broadest goal is to demonstrate how seemingly ad-hoc SDC techniques can (and should) be
framed and analyzed, formally and rigorously. Since both DP and traditional SDC each have their
own unique advantages [Slavković and Seeman, 2023], combining these two somewhat conflicting
fields bestows opportunities to reap the best of both worlds. On the one hand, DP supplies a
formal, mathematical description of the level and substance of privacy provided by a confidentiality
method. DP also allows for complete transparency of the method without any degradation of these
privacy guarantees. Recasting swapping algorithms, or other SDC techniques, as formally private
provides strong guarantees that the details of these algorithms – which have traditionally been
kept secret – can safely be made public. This transparency is an important prerequisite for any
valid statistical analysis of privacy-protected data [Gong, 2022]. For example, our work suggests
that once the formal privacy guarantee of the 2010 Census DAS is explicitly stated, the details of
its implementation can be published without privacy risk, allowing for the first time statisticians,
economists and social scientists to appropriately account for the DAS in their analyses. On the
other hand, swapping carries its own advantages, including facial validity and logical consistency
which are important to data users [boyd and Sarathy, 2022, Hotz and Salvo, 2022, Ruggles et al.,
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2019], and which DP methods, such as the 2020 DAS, cannot achieve without partially destroying
statistical transparency.

2 A Preview of the Main Results

The swapping algorithm we examine can be briefly summarised as follows. The variable set is
partitioned into two non-empty categories: the swapping variables VSwap and the holding variables
VHold. Each record is independently selected with probability given by a parameter p called the
swap rate. The swapping variables VSwap of the selected records are then randomly shuffled. More
specifically, a derangement σ (i.e. a permutation with no fixed points) over the selected records’
indices is sampled uniformly at random. The new VSwap of a selected record i is given by the VSwap

of the σ(i)-th selected record.

Sometimes, swapping is restricted to records which share the same values on a (possibly empty)
subset of the holding variables, called the matching variables VMatch. Also referred to as the swap
key [McKenna, 2018, Abowd and Hawes, 2023], the matching variables are often important char-
acteristics of the data population, as they define strata so that swapping is restricted within these
strata. Whenever VMatch is nonempty, the above procedure is repeated independently within each
category of VMatch.

Like the 2020 DAS, swapping maintains some statistics as invariant. Specifically, there are two
contingency tables which remain unchanged by swapping: 1) VMatch×VSwap: the cross-classification
of the matching variables by the swapping variables; and 2) VHold: the cross-classification of all the
holding variables. We denote these two invariant tables by cSwap. The interior of the contingency
table (VHold − VMatch)× VSwap is perturbed by the swapping algorithm.

The following result is a simplification of our main results give in Section 5 for general p, where the
notation (cSwap, dHamS, ϵ)-DP denotes pure ϵ-DP mechanism conditioning on the invariants defined
by cSwap and with respect to the Hamming distance dHamS. (We explain in detail this notation in
Section 3 and argue its necessity in Section 4.)

A Simplified Main Result The above swapping mechanism is (cSwap, dHamS, ϵ)-differentially pri-
vate, where

ϵ ≤ ln
[
(b+ 1)(1− p)p−1

]
, when 0 < p ≤ 0.5,

where b is the number of records in the largest category of VMatch.

In intuitive terms, this result says that the swapping algorithm we consider satisfies ϵ-differential
privacy, when conditioning on the swapping invariants cSwap. What does this mean? In DP, ϵ

can informally be viewed as a measure of the difference in output between any two neighbouring
input datasets. In this case, we measure change in input datasets via the Hamming distance dHamS

(disregarding ordering of records). By conditioning on the swapping invariants, we restrict our
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consideration to input datasets which have the same values on cSwap. More exactly, the data
universe D is now a function of the confidential dataset X∗:

D(X∗) = {X : cSwap(X) = cSwap(X
∗)},

and we measure the difference in output between any two X,X ′ ∈ D(X∗). In order to maintain
the robustness property of DP, we must analyse every data universe D(X∗), over all the possible
confidential datasets X∗. While classic DP compares all neighboring datasets in

⋃
X∗ D(X∗) simul-

taneously, invariant-respecting DP analyzes each D(X∗) separately. Rather than being ad-hoc, this
restriction is a necessary precondition for defining differential privacy with invariants (whether for
swapping, the TDA, or other methods [Gong and Meng, 2020, Gao et al., 2022, Dharangutte et al.,
2023]), as illustrated by Propositions 4.3 and 4.4. If we were required to compare datasets across
D(X∗), then we could no longer release invariants exactly. Moreover, as explained in Section 3,
restriction of the data universe is a typical procedure in many statistical analyses.

Informal Definition A mechanism T satisfies (c, dX , ϵ)-differential privacy if, for all X∗, all pos-
sible outputs t and all datasets X,X ′ ∈ D(X ′) = {X : c(X) = c(X∗)}, the following inequality is
satisfied:

Pr(T (X) = t) ≤ exp
[
ϵdX (X,X ′)

]
Pr(T (X ′) = t).

Here the divergence dX typically encodes the notion of neighbouring datasets. Datasets X,X ′

with dX (X,X ′) = 1 are called neighbours in the DP literature. Neighbours represent unit changes
against which changes in the output of T are measured.

This discussion highlights some of the important components underlying any differential privacy
definition. Other components, as discussed in the Section 3, include the choice of divergence dT

on the output space: pure DP uses the multiplicative distance, while other types of DP such as
(ϵ, δ)-DP and ρ-zero concentrated DP (zCDP) use different divergences. Revealing these nuances
allows the definition of differential privacy to be understood as a broad standard that can be used
to investigate and compare a wide range of confidentiality methods. Importantly, many existing
implementations of differential privacy rely on convenient interpretations of these nuances. By
casting DP in a light which illuminates these nuances, we hope to improve the clarity and rigor
in assessing DP implementations. (We provide a limited discussion of suggested improvements in
Section 4 with the aspiration this sparks more extensive conversation on this important subject.)

Figure 2.1 is a graphical depiction of the swap rate (p) to privacy loss budget (ϵ) conversion, a
result discussed in detail in Section 5. As Theorem 5.6 makes precise, the relationship between the
swap rate and the nominal ϵ achieved by swapping depends on b, the size of the largest stratum
delineated by VMatch. Three observations are worth noting. First, for each b, there exists a smallest
ϵ, call it ϵb, below which no swap rate p ∈ (0, 1) can attain. Marked by the outlined diamonds
in the Figure, we see that the larger the b, the larger the ϵb: for example when b = 10, ϵb is 1.15

(at p = 76%), whereas when b = 106, ϵb is 6.91 (at p = 99.9%). Second, for every b and every
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Figure 2.1: Conversion between the swap rate (p) and the nominal privacy loss budget (ϵ) at different
values of b, the size of the largest stratum delineated by VMatch (from 2 to 1 million, color coded).
Outlined diamonds indicate the smallest ϵ attainable for each b. Grey dotted lines correspond to
swap rates of 5% and 50% respectively. The ϵ values are nominal in that the privacy guarantee they
afford shall be understood in the context of cSwap (and hence b).

attainable ϵ at that b (except for ϵ = ϵb), two different swap rates can achieve that ϵ, the higher one
of the two often being very close to 100%. For example at b = 10, a swap rate of either 33.2% or
95.2% achieves the nominal ϵ of 3. The reason behind this is that, under the swapping scheme we
consider, swaps are derangements and have no fixed points. Thus an overly aggressive swap rate
may inadvertently preserve the statistical information, akin to a randomised response mechanism
with a high probability of flipping the binary confidential answer.

Third and most importantly, we emphasize that the ϵ values visualized in Figure 2.1 are nominal in
the sense that the privacy guarantee they afford must be understood with respect to the full context
as outlined by the privacy definition. An aspect of this context is b, the size of the largest stratum
of VMatch, and as a result, even the same ϵ value across different b’s shall not be equated to be the
same privacy guarantee. Indeed, the reader may have noticed that the ordering of the b curves in
the Figure suggests a seemingly peculiar fact that, for a larger b, a higher p is needed to achieve the
same ϵ. In Section 5.3, we provide a numerical demonstration of our swapping mechanism using the
1940 Decennial Census full count data, and in Section 6.2 a “what-if” analysis on the counterfactual
application of swapping to the 2020 Census, to further illustrate the contextual nature of the privacy
guarantee.

As part of the comparative analysis of our swapping algorithm and the 2020 DAS, we show in
Section 6.1 that the formal privacy of the 2020 DAS requires relaxations of ρ-zero concentrated
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DP (or approximate-(ϵ, δ)-DP) to allow for invariants. Thus, our swapping mechanism satisfies a
type of DP which is similar to that of the 2020 DAS. The within-system privacy evaluation (i.e.
the privacy budget ϵ) of the 2020 redistricting data and DHC files is more than double that of our
swapping algorithm (with a 2-4% swap rate as was purportedly used in the 2010 Census DAS [boyd
and Sarathy, 2022]).3 However, as we will discuss in Section 6, there are a number of important
caveats to this statement. Firstly, the output of the swapping algorithm can be used to produce
all of the Census data publications (with no increase in privacy budget), whereas additional data
products – such as the Detailed DHC Files – will necessarily increase the total privacy loss in
the 2020 Census. More importantly, swapping necessitates more invariants than were used by the
TDA. Hence, the privacy budgets of our swapping algorithm and the 2020 DAS cannot be compared
directly, since they satisfy different types of DP. This reflects the broader point that privacy budgets
are contextual and their interpretation depends on a range of factors, including the sensitivity of
the collected microdata, and of the published statistics, as well as the exact privacy definition used,
as discussed in Section 4.

Our formal assessment of swapping showcases the relative privacy guarantee it affords. It does
not, as no disclosure mechanism can, offer absolute privacy guarantees. While a determination of
swapping’s privacy budget ϵ provides a within-system privacy evaluation, across-system evaluations
– comparing the disclosure risk of ϵ-DP mechanisms with different sets of invariants – is inherently
subjective and contextual. We leave this as an important topic for future research.

Paper Organization Section 3 develops the abstract differential privacy definition from an intu-
ition of bounding the derivative of the output statistics per unit of input data. It describes the three
components of any differential privacy definition: the data universe D, the divergence dX on the
input data and the divergence dT on the output. Section 4 argues that any privacy evaluation of a
mechanism must be made with regard to these three components, as context for understanding the
mechanism’s privacy loss ϵ. Section 5 derives the necessary invariants of swapping; formally defines
our swapping algorithm; presents the differential privacy analysis of this algorithm; and demon-
strates its use on the 1940 US Decennial Census full count data. Section 6 uses the framework of
Section 3 to provide differential privacy definitions for the 2020 TopDown algorithm and conducts
a counterfactual thought experiment of applying swapping to the 2020 Decennial Census. Section 7
ends the paper with a discussion on some criticisms and extensions of data swapping.

3We have not attempted to verify the accuracy of boyd and Sarathy [2022]’s claim that the swap rate was between
2-4% for the 2010 Census.

8



3 Explicating the Nuances of Differential Privacy

3.1 Set up and intuition

A data custodian is interested in releasing a privacy-protected (i.e. sanitised) statistic T ∈ T based
on a dataset X ∈ X . The dataset X is observed by the data custodian and is some representation
of a population. In this Section, we focus on the case where the population consists of a collection of
individuals whose privacy must be respected when publishing T . This generalises to settings where
the population units are, for example, businesses or to settings where multiple types of units require
privacy protection, for example individuals and households.

Typically T ⊂ Rd, although we do not rule out the possibility that the output space T is more
complex. For example, T may itself be a (synthetic) dataset. To be clear, T – like any statistic – is
not a fixed value. Rather T is a function of the data X ∈ X which transforms X into some value
in the output space T . We allow the output of T to depend not just on X but also upon some
auxiliary randomness, say a uniform random variable U ∼ Uniform[0, 1].4 U provides the noise
which is used by T to protect the privacy of X.

Thus, the statistic T (·, ·) is a function X × [0, 1] → T , which, in the differential privacy literature,
is typically called the privacy mechanism. We instead refer to T as the data-release mechanism to
emphasize that – in addition to privacy protection – T may encompass many other data processing
steps (such as cleaning, coding, imputation, etc.) from data collection through to data publication.
Indeed, understanding the starting point of T – and hence how the data X represents individuals
in the population – is crucial to understanding what is or, more importantly, is not protected by T ,
as explored further in Section 7.1.

We stress the duality of T as simultaneously a statistic from the data user’s perspective, and a
privacy mechanism from the privacy analyst’s perspective. This duality lies at the heart of the
fundamental tension of this field: the tradeoff between privacy and utility. T must be designed to
balance these two competing interests.

By convention in differential privacy, the dataset X is considered fixed and is not modelled, so
that the randomness in T (X, U) is induced solely by U . Therefore, the data X, as the object
of an attacker’s inference, plays the role of the parameter in privacy analysis. An immediate and
critical consequence of this recognition is that any distribution placed on X can be viewed either
as a posited generative model for X or as a prior distribution for X, or a mixture of both. We
emphasise this crucial observation by denoting the law of T (X, U) by PX(T (X, U) ∈ ·) or, if T is
clear from the context, PX .5 When the dependence of T on U (or on both U and X) is apparent
from the context, we write T (X) (or just T ) for simplicity.

4Ignoring computational issues, a single uniform random variable U is sufficient for all practical applications,
since U can generate countably many (independent) random variables of arbitrary distribution via the inverse-CDF
method. .

5We require the technical condition that, for all X ∈ X , the function T (X, ·) is measurable with respect to a
given σ-algebra on T and the Borel σ-algebra [0, 1], so that PX is well-defined.
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Differential privacy is a condition on the data-release mechanism T . Loosely, it is the requirement
that if the data X change slightly, then the output T (X) – or more precisely, the distribution
PX(T ∈ ·) of the output – also changes slightly. Succinctly, DP requires that T is robust to changes
in the data input X.

Intuitive Definition: A data-release mechanism T satisfies differential privacy (DP) if the
‘derivative’ of the map X 7→ PX(T ∈ ·) is bounded within [−ϵ, ϵ], for all datasets X in the data
universe D.

Here the derivative is understood in a loose sense as the small change in output PX(T ∈ ·) per small
change in input X. The parameter ϵ > 0 is a measure of the ‘degree’ of privacy and the minimum
possible ϵ can be intuitively thought of as the privacy loss of T . A small ϵ implies that T is stable to
perturbations in X; a large ϵ means that a change in X can be influential. Ideally, a data curator
would choose a value of ϵ – which in this context is called the privacy loss budget – based on the
sensitivity of the data and the broader social context [Nissenbaum, 2010] and design a mechanism
T with privacy loss at most ϵ. However, in practice, choosing the budget ϵ is an opaque process,
complicated by various nuances underlying differential privacy. For example, what are the practical
implications on real-world privacy protections from increasing the budget by one unit? To answer
this question, one must understand the scale of the privacy budget. In the standard formulation of
DP (pure ϵ-DP), the privacy loss is measured on the log scale, since under pure DP, ϵ is a bound
on the log-likelihood ratio logPX − logPX′ , not the likelihood ratio PX

PX′
. Thus, it might be more

accurate in this case to call ϵ the log-budget. Indeed, when interpreting the privacy loss, the privacy
semantics of ϵ-DP are all expressed in terms of exp(ϵ), rather than ϵ (see e.g. Kifer et al. [2022],
Wasserman and Zhou [2010], Gong et al. [2023+]).

The scale of the privacy loss ϵ is implicit in the ‘derivative’ d
dXPX . In fact, by writing d

dXPX ,
one must have set (consciously or unconsciously) the metric against which changes in PX are
measured – indeed this is a requirement to define a differential dPX . The metric used in dPX

for pure ϵ-DP happens to be on the log scale. The privacy budget ϵ inherits this scale, which
complicates its interpretation, since a change in budget from (for example) ϵ = 10.3 to ϵ = 17.9 is
very different to a change from exp(10.3) ≈ 30, 000 to exp(17.9) ≈ 59 million. Other types of DP
use different measures of change, which in turn imply different scales for their privacy loss budgets
(see Sections 3.6 and 4.2).

As for the differential dPX , we likewise need a measure of change between datasets X and X ′ for
the differential dX. More fundamentally, we must first define the space of realizable datasets D,
which is called the data universe. As we shall now see, even such an apparently simple concept as
the space of possible datasets D gives rise to its own nuances. Yet to make precise the definition
of differential privacy, requires that these complications are explored. This is the goal of the next
Section.
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3.2 The data universe D

The differential privacy guarantee given in the intuitive definition above is afforded to datasets in
a given data universe D. That is, we bound the derivative d

dXPX only at each X ∈ D. The data
universe D may be equal to X (the collection of all datasets that are structurally and mechanically
possible) but more generally D is a subset of X .

Sometimes the data curator may partially base their choice of D on the observed, confidential
dataset, which we denote by X∗. The most prominent example of this situation is the 2020 US
Census. There, D was restricted to datasets which share the same state population totals (amongst
other quantities) as X∗. To accommodate this possibility, we take D to be the output of a set-
valued function D(·) : X → 2X . In this way, there are multiple data universes {D(X)}X∈X , with
each universe D = D(X) associated to the event that the data custodian observes the confidential
dataset to be X.

DP requires that, for every data universe D ∈ {D(X)}X∈X , the derivative d
dXPX is bounded at

every X in the space D – but not necessarily in the space X . This distinction is crucial since X

typically has very high dimensional, so that there are multiple derivatives – one for each dimension.
Restricting X to D restricts not just the datasets X which are protected, but also the protections
afforded to them (i.e. in which directions the derivative d

dXPX is bounded). So restricting D
strictly weakens the privacy protection in two senses: 1) it limits the counterfactual datasets that
are protected and 2) it reduces the protection afforded to each of the protected datasets.

While restricting the data universe via D leads to a reduction in actual privacy protection, this
complication is necessary in many real-world applications of DP. In addition to other examples
from the DP literature, we will demonstrate in Section 6.1 that D is required to describe the formal
privacy protections afforded to the 2020 US Census response. (See also Section 4.3 for a more general
discussion of its necessity.) Furthermore, this practice is typical in statistical disclosure control and
data analysis more broadly. Top-coding – where one sets a maximum limit on a continuous variable,
usually after looking at the raw data – is one common example. More generally, data-dependent
categorization of a continuous variable entails a restriction of the data universe.

An important class of data universe functions D encodes invariants: exact quantities calculated
from the confidential data. Due to legal and policy mandates or other guidance that the data
curator must observe, invariants are published as-is. From the perspective of data utility, invariants
are thus restrictions on the output of a mechanism. Conversely, from the perspective of data privacy,
invariants are restrictions on the input, or more exactly, the data universe D.

In this work, we encode the invariants as a deterministic function c : X → Rl of the database.6 The
6In some applications (such as the 2020 Decennial Census), there are also inequality invariants [Abowd et al., 2022].

As an example of such an invariant, TDA requires that the reported number of group quarters in any geographical
unit is at most the number of persons in that unit. More generally, an inequality invariant is of the form f(X) ≤ 0

11



invariant-compliant data universe function Dc is defined as

Dc(X) =
{
X ′ ∈ X : c(X ′) = c(X)

}
. (3.1)

Note that an invariant function c defines an equivalence relation ∼ over its domain X . Specifically,
two datasets X ∼X ′ if and only if c(X) = c(X ′). Hence, the data universe function (3.1) induces
a partition of X indexed by the image of the invariant function c.

Example 3.1. Let the dataset be an contingency table of m× n records taking non-negative integer
values: X = (N+)m×n. Suppose the function c : (N+)m×n → (N+)m+n tabulates the column- and
row-margins:

c(X) =

( m∑
i=1

xi1, . . . ,
m∑
i=1

xin,
n∑

j=1

x1j , . . . ,
n∑

j=1

xmj

)
.

If the data curator treats the column- and row-margins of the confidential dataset as invariant,
it would be equivalent to employing the data universe function D as defined in (3.1) using the c

function above.

3.3 Measuring change via divergences

We now return to the question of measuring change in X and in PX , so that we can make the
intuitive definition precise. We measure change very generally via the notion of divergence:

Definition 3.2. A divergence d on a set S is a function S × S → [0,∞] satisfying d(x, y) = 0 if
x = y.

Divergences generalise the concept of metrics. We use the term divergence to highlight that, al-
though they measure distance in some abstract sense, we generally do not require them to be a
metric.

To define DP, we need to equip the space X with a divergence dX . To measure change in PX , define
L(T ) as the set of probability distributions on the measurable space T and equip the space L(T )
with a divergence dT . Now we can understand the ‘derivative’ of T at X (in the direction towards
X ′) as the ratio dT (PX ,PX′ )

dX (X,X′) . DP is the requirement that this ratio is bounded between [−ϵ, ϵ].

3.4 Formalising the intuition

Definition 3.3. Let X be the space of input datasets and let the measurable space (T ,F ) be the
space of outputs. A differential privacy definition is a tuple (D , dX , dT ) where

for some function f : X → R. Such an invariant can be incorporated in our framework by defining

c(X) =

{
1 if f(X) ≤ 0,

0 otherwise.
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1. D : X → 2X is the data universe function which associates the observed dataset X with a
data universe D = D(X) ⊂ X ;

2. dX is a divergence on X ; and

3. dT is a divergence on the space L(T ) of probability distributions on T .

There are many definitions of differential privacy, each corresponding to different choices of D , dX

and dT .

The choice of dT has received much attention in the literature. In Section 3.6, we demonstrate how
different choices of dT correspond to pure-DP [Dwork et al., 2006b], approximate and probabilistic
DP [Dwork et al., 2006a, Meiser, 2018], Rényi DP [Mironov, 2017] and concentrated DP [Dwork
and Rothblum, 2016, Bun and Steinke, 2016a]. Deciding upon the choices for D and dX – which in
practice are no less important than dT – have received comparatively little attention.

Definition 3.4. A data-release mechanism T : X × [0, 1] → T satisfies a differential privacy
definition (D , dX , dT ) with privacy budget ϵD ≥ 0 if

dT
[
PX(T ∈ ·), PX′(T ∈ ·)

]
≤ ϵDdX (X,X ′), (3.2)

for all X,X ′ in every data universe D ∈ ImD .7

We allow the privacy budget ϵD to vary with the data universe D. That is, ϵD is a function
ImD → R≥0.

DP is Lipschitz continuity Differential privacy is the requirement of bounded change in T ’s
output PX per unit change in input X. As stated above, this is intuitively like bounding the
derivative of T . Since the notion of derivatives does not readily generalise beyond Euclidean space,
this intuition – that DP is a bound on the derivative – is not technically true. However, we can
formalise this intuition using Lipschitz continuity, which is equivalent to bounded derivatives in
Rn:8 When dX and dT are metrics, equation (3.2) is exactly the condition that the function

D → L(T ),

X 7→ PX(T ∈ ·),

is Lipschitz continuous with Lipschitz constant ϵD. Thus, differential privacy is precisely the re-
quirement that T is Lipschitz continuous.

7So that the probability measures PX(T ) exist, we additionally require the (weak) technical condition that T (X, ·)
is measurable for all X ∈ X .

To resolve the edge case where ϵ = 0 but dX (X,X ′) = ∞, we define 0 ×∞ = ∞. This means DP never controls
the difference between PX and PX′ when X and X ′ are incomparable (i.e. dX (X,X ′) = ∞), even in the case of
complete privacy (ϵ = 0).

8For open D ⊂ Rn, a differentiable function D → Rm has bounded derivatives if and only if it is Lipschitz
continuous.
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3.5 The divergence dX

Typically the divergence dX is built from a relation r on X :

dr(X,X ′) =


0 if X = X ′,

1 else if X r∼X ′,

∞ otherwise.

(3.3)

The relation r captures some notion of “neighbouring” datasets: X
r∼ X ′ if X and X ′ are neigh-

bours. There are multiple different relations r used in the differential privacy literature but they
are all formalisations of the following intuitive definition: Datasets X and X ′ are neighbours – i.e.
X

r∼ X ′ – if they differ only on a single unit. However, what is exactly meant by a “unit” also
varies across the DP literature. The most common examples of units are persons, but units are
often families or businesses. In the case where a person repeatedly interacts with a service (such
as social media), the units are sometimes the data generated by a single interaction, or the data
generated by a person over a single day. In Section 4, we will argue that the choice of the privacy
unit is critical to any privacy assessment.

In any case, privacy units must be the building blocks of every dataset X. That is, in order to
define dX via a neighbour relation r, it is required that X ⊂

⋃∞
n=0Rn, where R is the set of all

theoretically-possible units and Rn is the n-fold cartesian product of R. Thus, every dataset X ∈ X
is a vector (or multi-set, if we can disregard ordering), with each element of the vector being a single
privacy unit.

Once the privacy unit has been fixed, there are two common choices for r: A) X
rb∼ X ′ if X and

X ′ have the same number of units but take different values on exactly one unit. That is, X rb∼ X ′

if |X| = |X ′| = n and 1
2 |X ⊖X ′| = 1, where ⊖ is the symmetric set difference. B) X

ru∼ X ′ if X ′

can be formed by adding or subtracting a unit from X. That is, X ru∼ X ′ if |X ⊖X ′| = 1.9 In
the literature, rb is referred to as bounded DP and ru unbounded DP since ru – unlike rb – relates
datasets of differing length.

A divergence dr built from a relation r as in (3.3) can always be sharpened to a metric d∗r . Here
d∗r(X,X ′) is defined as the length of a shortest path between X and X ′ in the graph on X with

9In the situations where the ordering of the data is meaningful (such as under the shuffle model of DP [Erlingsson
et al., 2019]), X

rb∼ X ′ if |X| = |X ′| = n and
∑n

i=1 1{Xi ̸= X ′
i} = 1; and XruX

′ if |X| = |X ′| ± 1 and there exists
some j ∈ {1, . . . ,max(|X|, |X ′|)} such that X = X ′

−j or X−j = X ′. (Here we use the notation v−j to denote the
vector (v1, . . . , vj−1, vj+1, . . . , vn) where the j-th element of v has been removed.)
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edges given by r. For example the extension of drb is the Hamming distance on unordered datasets:10

duHamS(X,X ′) =

1
2 |X ⊖X ′| if |X| = |X|,

∞ otherwise
(3.4)

and the extension of dru is the symmetric difference distance:

duSymDiff(X,X ′) =
∣∣X ⊖X ′∣∣. (3.5)

The superscript u emphasizes that these distances are defined with respect to a choice of the privacy
unit u. Each choice of privacy unit u defines a different version of the Hamming distance duHamS

(and different dru , drb , d
u
SymDiff), since the unit defines the elements of the multi-set X and hence

the operation ⊖.

Under mild assumptions, the privacy definitions (X , dr, dL) and (X , d∗r , dL) are equivalent11 if and
only if dL is a metric [Bailie et al., 2023+].

3.6 The divergence dT

Different variants of DP (pure, approximate, zCDP, Rényi, etc.) correspond to different choices of
dT . These variants refer to families of DP definitions, since they leave the other two components D

and dX unspecified.

In classical (pure) ϵ-DP [Dwork et al., 2006b], the divergence dT is the multiplicative distance
Mult(P,Q), defined for two distributions P and Q on the same probability space (Ω,F) as:

Mult(P,Q) = sup

{∣∣∣∣ln P (S)

Q(S)

∣∣∣∣ : S ∈ F} ,

where 0
0 := 1.

For approximate (ϵ, δ)-DP [Dwork et al., 2006a], the divergence dT is the δ-approximate multiplica-
tive divergence Multδ(P,Q):

Multδ(P,Q) = sup

{
ln

[P (S)− δ]+

Q(S)
, ln

[Q(S)− δ]+

P (S)
, 0

}
S∈F

,

10When the ordering of the data is meaningful, the sharpening d∗rb of the bounded divergence drb is the Hamming
distance

duHam(X,X ′) =

{∑n
i=1 1{Xi ̸= X ′

i} = 1 if |X| = |X ′| = n,

∞ otherwise,

and the sharpening d∗ru of the unbounded divergence dru is given by

du∗ru(X,X ′) = min{|I|+ |J | : I ⊂ {1, . . . , |X|}, J ⊂ {1, . . . ,
∣∣X ′∣∣},X−I = X−J}.

11Two privacy definitions are equivalent if any mechanism which satisfies one definition satisfies the other with the
same privacy budget ϵ. See Section 3.8 for a formal definition.
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where

[x]+ =

x if x ≥ 0,

0 otherwise.

For ρ-zero concentrated differential privacy (ρ-zCDP) [Bun and Steinke, 2016a], the divergence dT

is the normalised Rényi metric Dnor:

Dnor(P,Q) = sup
α>1

1√
α
max

[√
Dα(P ||Q),

√
Dα(Q||P )

]
,

where Dα is the Rényi divergence of order α:

Dα(P ||Q) =
1

α− 1
ln

∫ [
dP

dQ

]α
dQ,

if P is absolutely continuous with respect to Q (where dP
dQ is the Radon-Nikodym derivative of P

with respect to Q) and Dα(P ||Q) =∞ otherwise.

Note that we re-parametrise ρ so that Dnor is a metric [Bailie et al., 2023+]. The parameter ρ in
Bun and Steinke [2016a] is equivalent to ρ2 in our formulation of zCDP.

3.7 Post-processing and composition

A common requirement for differential privacy definitions is closure under post-processing: Any
transformation of a differentially private output is also differentially private. More formally, if T
satisfies (D , dX , dT ) then – for any (possibly randomized) function f – the post-processed mechanism
f ◦ T also satisfies (D , dX , dT ) with the same budget.

A second requirement is closure under composition: if T1 and T2 satisfy (D , dX , dT ) with budgets
ϵ1 and ϵ2, then their composition T = (T1, T2) also satisfies (D , dX , dT ), with budget equal to
some function ϵ(ϵ1, ϵ2). Both these requirements are properties of the divergence dT only. For
example, Mult and Dnor satisfy both post-processing and composition with ϵ(ϵ1, ϵ2) = ϵ1 + ϵ2 and
ρ(ρ1, ρ2) =

√
ρ21 + ρ22 respectively. More details can be found in Bailie et al. [2023+].

It is worth noting that, because we are merely explicating the details of different DP definitions –
rather than changing them – all their properties found elsewhere in the literature should be preserved
under the framework developed in this Section. This includes post-processing and composition,
along with other formal privacy properties.

3.8 Equivalence of differential privacy definitions

Fix the input data space X and the output space T . Write S(D , dX , dT , ϵD) for the set of mechanisms
T which satisfy (D , dX , dT ) with privacy budget ϵD.
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Definition 3.5. A differential privacy (D , dX , dT ) implies another definition (D , d′X , d
′
T ) with ac-

counting f : R≥0 → R≥0 if S
(
D , dX , dT , ϵD

)
⊂ S

(
D , d′X , d

′
T , f(ϵD)

)
for all ϵD ≥ 0.

Equivalently, (D , dX , dT ) implies (D , d′X , d
′
T ) if all mechanisms T satisfying (D , dX , dT ) with privacy

budget ϵD also satisfy (D , d′X , d
′
T ) with budget f(ϵD).

Definition 3.6. Two differential privacy definitions are weakly equivalent if one implies the other
and visa versa (with possibly different accounting functions). Two definitions are strictly equivalent
(or simply equivalent) if they are equivalent with accounting the identity function – that is, if

S
(
D , dX , dT , ϵD

)
= S

(
D , d′X , d

′
T , ϵD

)
for all ϵD ≥ 0.

4 The Contextual Nature of the Privacy Loss Budget

Traditionally, privacy evaluations have primarily focused on the budget ϵ, using it as a comprehensive
measure of the protection provided by a mechanism. In this Section, we argue that ϵ is solely a
within-system evaluation of privacy. It can only be interpreted within the context of the relevant
differential privacy definition (D , dX , dT ). Between-system evaluations – i.e. comparisons between
the privacy of two different mechanisms – cannot be based on their budgets without regard to their
underlying privacy definitions.

When spelt out in this way, our argument might sound obvious. Such naïve evaluations are akin
to ignoring the difference between dollars and pounds when comparing the (financial) budgets
of American and British companies. Nevertheless, there is a tendency when implementing and
analysing DP systems to report their budgets, without placing these budgets in the context of the
chosen definition (D , dX , dT ). In particular for this paper, contextual thinking is crucial when we
compare data swapping with the 2020 Census TopDown algorithm, since their privacy definitions
differ on all three components – D , dX and dT .

As we will show in this Section, D , dX and dT are all critical for understanding both the substance
and the extent of the privacy guarantees. In comparison, the privacy budget ϵ only contributes to
understanding the extent of the privacy protection. In this sense, ϵ is essentially meaningless without
an accompanying description of (D , dX , dT ) to explain the substance of what is being protected.
This suggests that ϵ may be, in spite of its prominence, the least important factor in an assessment
of a DP implementation.

Perhaps one explanation for the literature’s focus on the privacy budget is the legitimate difficulty
in understand how the components D , dX and dT connect to real-world privacy considerations.
Indeed, much more research is needed in order to qualitatively understand the privacy afforded (or
lost) by a DP definition. Further, we need quantitative methods for between-system evaluations
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which can rank the strengths of different DP definitions: Are there (non-trivial) criteria which allow
us to compare one definition against another? When does strengthening one component cancel out
a weakening in another component?

Fortunately, these considerations have recently begun to see more attention. For example, Dwork
et al. [2019] makes the case that:

When meaningfully implemented, DP supports deep data-driven insights with min-
imal worst-case privacy loss. When not meaningfully implemented, DP delivers privacy
mostly in name.

The rub is, of course, understanding what is, and what is not, a meaningfully implementation of
DP, as determined by the societal and cultural context of the data release. Nevertheless, this quote
hints at another possible (less charitable) explanation for the prominence placed on ϵ: An exclusive
focus on the privacy loss budget allows a data custodian to hide important limitations to the actual
privacy provided by their implementation of DP. Blanco-Justicia et al. [2022] makes an argument
for this explanation, although we are unsure of the extent of this practice. (And indeed it is at least
better than keeping the budget secret – or using an absurdly large budget – as the rubber stamp of
“differential privacy” on its own is truly meaningless for assessing privacy.)

The rest of this Section consists of some preliminary thoughts on these considerations, some of which
have already been raised before by others. We hope that the abstract DP definition (D , dX , dT )

from Section 3 provides a coherent framework to organise these thoughts, thereby sparking future
work to resolve the questions raised above and improve our ability to assess and compare DP
implementations.

While this Section raise a number of complications, the upshot is that it reveals other levers – beyond
the budget ϵ – which can be used to trade off privacy and utility for DP mechanisms. This trade-
off lies at the heart of any data release and therefore is a fundamental question of SDC. Existing
research from the formal privacy perspective has focused on adjusting ϵ as DP’s sole measure of
privacy [Abowd and Schmutte, 2019]. This Section illustrates that the three components D , dX , dT

can also be used – and in fact are already being used in an ad-hoc fashion – to manage this trade-off.
Our secondary hope for this Section is therefore to inspire principled privacy-utility trade-offs which
use all four components.

4.1 Impact of the data divergence dX on privacy protection

Consider the typical choice for dX : Set a neighbour relation r on X and build dX from r as in (3.3).
Defining r requires choosing the privacy unit, which is critically important in assessing the privacy
protection provided by a mechanism T . Under this setup, DP protects units in the sense that it
bounds the change in dT (PX , PX′) for a single change in a single unit. Intuitively, when dT (PX , PX′)

is small, an attacker cannot distinguish changes in a single unit; equivalently, if dT (PX , PX′) = ϵ for
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neighbours X,X ′, then a single unit is “ϵ-indistinguishable”. However, for X and X ′ which differ
by more than a single unit (i.e. X,X ′ are not neighbours), the DP condition (3.2) is vacuous as
dr(X,X ′) =∞. This does not mean that DP provides no bound on dT (PX , PX′) for X,X ′ which
differ on more than one unit. In many cases, indistinguishability of single units implies protection
for multiple units but with a decrease in the level of indistinguishability. (This property is called
group privacy. Group privacy with linear decrease in the level of indistinguishability is equivalent
to dT being a metric [Bailie et al., 2023+].)

The converse of this observation hints at a method for artificially shrinking the privacy loss budget:
By decreasing the size of the privacy unit, one can decrease ϵ without changing the mechanism T .
This means we can add exactly the same amount of noise into the data while reporting that we
have increased the level of privacy protection! More generally, inflating the divergence dX (X,X ′)

between datasets X,X ′ will reduce the budget ϵ. This highlights the necessity of understanding
the privacy unit and dX when assessing the actual privacy afforded by a mechanism.

As an example which is particularly relevant for this paper, using individuals as privacy units
provides less privacy protection than using households, as household records are as least as large as
individual records. Furthermore, if the privacy unit is an individual, then the privacy protection
afforded to a household’s characteristics decreases as the number of individuals in that household
increases. For this reason, if one wants to protect the privacy of households, the privacy unit must
be at least as large as the (theoretically possible) largest household.

The choice of privacy unit in commercial implementations of DP is particularly important. In such
settings, a user typically generates data during each interaction with the commercial service (for
example, tweeting, liking a post, or even typing out a message or emoji on a phone [Tang et al.,
2017]). Since the number of interactions a person can have is theoretically unbounded, it is common
to choose the privacy unit as the data record generated by a single interaction, or the data generated
by one user over a single day – rather than the user’s entire data over time – so that the sensitivity
of each unit is controlled [Kenthapadi and Tran, 2018]. Yet this implies the privacy protection for
an individual degrades as the individual’s interactions increase. Since the user data of an individual
is generally correlated, an attacker can infer individual characteristics with high accuracy even if
each single data record is DP-protected.

The following Proposition will prove useful in comparing DP definitions which use different diver-
gences dX on X . Whenever the privacy units of d′X are nested inside those of dX , the Proposition’s
assumption – dX ≤ d′X – is satisfied.

Proposition 4.1. Let dX and d′X be divergences on X such that dX ≤ d′X . Then (D , dX , dT ) implies
(D , d′X , dT ) with accounting function the identity.

Proof. Let T be a mechanism satisfying (D , dX , dT ) with privacy budget ϵ. Then

dT (PX , PX′) ≤ ϵDdX (X,X ′) ≤ ϵDd
′
X (X,X ′).
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4.2 Impact of the output divergence dT on privacy protection

Out of the three components, dT ’s importance is the most widely recognised in the literature, as
evidenced by the use of different letters to denote the privacy budget for different dT . For example,
ρ is used in place of ϵ to denote the privacy budget when dT = Dnor (zero-concentrated DP).
Understanding what dT means is crucial for putting the privacy budget in context. Just as we
can inflate dX , we can artificially shrink dT (for example by dividing it by some large number) to
achieve nominal improvements in the privacy budget.

Perhaps more importantly, dT formalizes what is meant by the notion of indistinguishability between
neighbouring datasets X,X ′. Small values of dT (X,X ′) should mean that an attacker has difficulty
in distinguishing the single unit change between X and X ′. Yet to make this precise, we need to
know how the attacker will infer this unit – i.e. we need to assume the attacker’s statistical inference
framework. The choice of framework is not without controversy [Gong et al., 2023+]. (Existing
research has measured indistinguishability as bounds on frequentist hypothesis testing, Bayesian
posterior-to-posterior and prior-to-posterior semantics.) See Kifer et al. [2022] for a survey of the
semantics of indistinguishability under common choices of dT and Wasserman and Zhou [2010],
Bailie and Gong [2023+], Gong et al. [2023+] for dT = Mult.

Proposition 4.2. Let dT and d′T be divergences on L(T ) such that dT ≥ d′T . Then (D , dX , dT )

implies (D , dX , d
′
T ) with accounting function the identity.

The proof of this Proposition is analogous to that of Proposition 4.2. Since Mult > Multδ for
any δ > 0, this Proposition shows that pure ϵ-DP is stronger than approximate (ϵ, δ)-DP. ϵ-DP also
dominates zCDP because Dnor ≤ 2−0.5Mult [Bun and Steinke, 2016b, Proposition 3.3].

4.3 Impact of the data universe D on privacy protection

The data universe function D is a reminder that the range of possible datasets over which the
privacy guarantee applies is a matter of the data curator’s choice. Therefore, the interpretation of
the privacy guarantee must be contextually situated within that choice as well. In Definition 3.4,
the privacy guarantee acknowledges the data universe D explicitly via the subscript to the privacy
loss budget: ϵD. In the following two Propositions, we will see that the interpretation of the value
of ϵ cannot be isolated from D, and indeed this complicates the comparison of privacy loss budgets
across different applications. For these two results, fix a data space X and invariants c : X → Rl.
Let the invariant-compliant universe Dc be defined as in equation (3.1).

Proposition 4.3. For any dX and dT , the mechanism T (X) = c(X) that releases the invariants
exactly satisfies (Dc, dX , dT ) with privacy budget ϵD = 0.

Now suppose dT (P,Q) =∞ if dTV(P,Q) = 1.12 Let D be a data universe function such that there
12We write dTV to denote the total variation distance. dTV(P,Q) = 1 means that the probability measures P and

Q have no common support. The assumption dTV(P,Q) = 1 ⇒ dT (P,Q) = ∞ is satisfied by all common choices of
dT .
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exists datasets X1,X2 in some data universe D0 ∈ ImD with dX (X1,X2) <∞ and c(X1) ̸= c(X2).
Then T does not satisfy (D , dX , dT ) for any ϵD0 <∞.

The results of Proposition 4.3 also hold if D is any data universe function with c constant within
all D ∈ ImD .

Proof. T is constant within data universes D. Therefore dT (PX , PX′) = 0 for all X,X ′ ∈ D. This
proves the first half of the Proposition. To prove the second half, observe that dT (PX1 , PX2) =∞
but dX (X1,X2) <∞.

The following result is the converse of Proposition 4.3.

Proposition 4.4. Suppose that a mechanism T varies within some universe D0 ∈ ImDc in the
sense that there exists X,X ′ ∈ D0 with dX (X,X ′) <∞ but PX ̸= PX′ .

When dT is a metric, T satisfies (Dc, dX , dT ) only if ϵD0 > 0.

Proof. This Proposition relies on the metric axiom dT (P,Q) > 0 if P ̸= Q. This implies dT (PX , PX′) >

0.

These two Propositions demonstrate that for privacy with invariants, it is necessary and sufficient to
restrict the data space via Dc. Necessity follows from the second half of Proposition 4.3: if there are
datasets X1,X2 ∈ D0 with different values on the invariants, then releasing the invariants exactly
would require ϵD = ∞. Sufficiency is described in two parts: 1) the invariants can be released
exactly without privacy loss (by the first half of Proposition 4.3); but 2) any additional information
(not logically equivalent to the invariants) cannot be released without incurring privacy loss (by
Proposition 4.4).

As a concrete example of how the meaning of ϵ changes with D , consider evaluating the same mech-
anism T against two definitions (Dc, dX , dT ) and (Dc′ , dX , dT ) which differ only on their invariants.
Suppose the first of invariants are nested within the second; that is, c′ is strictly more constraining
than c. (For example, c are population counts at the county level and c′ are counts at the block
level.) Then T ’s budget ϵ under Dc may be strictly larger than T ’s budget under Dc′ (and in fact
can not be smaller). We have already alluded to this result when discussing Figure 2.1, and will
encounter it again in concrete terms in Section 6.2. As we repeatedly emphasize, it is dangerous to
think that the c-release is indeed afforded with less privacy protection than the c′-release because
there is privacy leakage due to specifying additional invariants, which is not captured by the within-
system privacy evaluation ϵ. Indeed in the extreme example where c is an injective function so that
the universes D are singletons, there is no privacy protection afforded by (Dc, dX , dT ) regardless
of the choices of dX , dT and ϵD. This point is crucial to understanding the comparative analysis
between our swapping algorithm and the 2020 TDA as presented in Section 6.

Proposition 4.5. Suppose that D and D ′ are nested in the sense that D ′(X) ⊂ D(X) for all
X ∈ X . Then (D , dX , dT ) implies (D ′, dX , dT ).
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5 Data Swapping and Differential Privacy

5.1 What invariants does swapping preserve?

The goal of this Section is to show that data swapping satisfies DP where D is induced by some
invariants c. Specifically, we are interested in examining swapping under the following differential
privacy definition.

Definition 5.1. Let c : X → Rl be some invariants. Write (c, dX , ϵD)-DP as shorthand for the
differential privacy definition (Dc, dX ,Mult) with privacy budget ϵD.

In this Section, we will determin the invariants c of swapping by examining what swapping does,
and does not, change in the data. Swapping is, very loosely, a synthetic data generation mechanism.
Given a dataset X as input, swapping produces a sanitised (i.e. privacy protected) version Z of
X. Both X and Z have the same variables – we denote the set of variables as V – and the same
number of records.

As introduced in Section 2, the swapping variables VSwap and the holding variables VHold form
a non-empty partition of the variable set. In practice, variables in VSwap are typically sensitive
variables [Fienberg and McIntyre, 2004], and variables in VHold are typically quasi-identifiers. Pairs
of records are randomly selected and their swapping variables are interchanged. The two categories
are ‘duals’ of each other, in the sense that they can be interchanged without modifying the behaviour
of the swapping algorithm. Both categories must be non-empty; otherwise swapping is vacuous in
the sense that it will not change the data, except perhaps by re-ordering rows.13 Matching variables
VMatch ⊂ VHold (also referred to as the swap key [McKenna, 2018, Abowd and Hawes, 2023]) define
strata in the database in which the swapping operation is restricted and are often key characteristics
about the underlying population. Note that it is permissible for VMatch to be empty, so that any
two records can be swapped without matching on any characteristics. Typically, however, some
non-trivial matching variables are defined for data utility reasons, which we illustrated below.

Example 5.2. Simplification of the disclosure avoidance system (DAS) for the 2010 US Decennial
Census:14 In the 2010 Census, the swapping units are individual households. (We will show later
that this implies the privacy unit for the 2010 DAS are households.) This means a record in the
data X correspond to a household and each swap interchanges VSwap between two households. The
matching variables VMatch include both the number of voting age persons and the total number of
persons in the household. VMatch also includes a geographic variable Vg, either the Census tract,
county or state of the household. VSwap are the geographic variables nested underneath Vg. (See US
Census Bureau [2021] for a description of the geographic hierarchy of the Decennial Census.) For

13A swap is vacuous if and only if the two records share the same values of VSwap or the same values of VHold.
Thus, to guarantee no vacuous swaps one must choose records which disagree on both VSwap and VHold.

14This example is based on publicly-available information about the 2010 DAS. This information is incomplete
as some implementation details have been deemed confidential due to concerns that they may allow the privacy
protection to be undone.
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example if Vg is the county, then VSwap is the block and tract of the household. All other variables
are holding variables – in particular, the household and person characteristics. One can imagine the
2010 DAS as digging up pairs of houses of the same size in the same geographic area and swapping
their locations but not changing the house and its occupants.

In the 2010 DAS, each household is assigned a risk score based on the USCB’s assessment of
how unique the household is within its neighbourhood. These risk scores are used to compute
each household’s probability of being swapped. Every household has a non-zero swap probability.
Selected households are then swapped with one of their neighbours.

After swapping, a record (VMatch,VSwap,VHold−VMatch) becomes (VMatch,V
′
Swap,VHold−VMatch) –

i.e. only the values of the swapping variables change. Thus, any statistic generated by only VHold

is preserved by swapping, since the pairs (VMatch,VHold − VMatch) of each record are themselves
preserved by swapping. Moreover, since VMatch is equal between swapped records, any statistic
generated by only (VMatch,VSwap) is also preserved by swapping. Thus, only statistics generated by
(VSwap,VHold − VMatch) are not preserved by swapping. In the case of discrete variables (which is
our primary concern), we can be more exact in describing the invariants of swapping:

Proposition 5.3. Suppose that all variables in X are discrete.15 Without loss of generality, we
may assume that each of VMatch,VSwap,VHold−VMatch are singletons (otherwise, cross-classify each
set of variables into a single variable). Denote the categories of the matching variable VMatch by j =

1, . . . ,J . Similarly let k = 1, . . . ,K and l = 1, . . . ,L be the categories of VSwap and VHold − VMatch

respectively.

The dataset X can be represented as a 3-dimensional contingency table H(X) = [nX
jkl] of counts

in each combination of categories j, k, l. (We will omit the superscript X when it is clear from
the context.) No interior cell count njkl is preserved under swapping. But all margins – except
n·kl =

∑
j njkl – are invariant under swapping.

To simplify the notation, whenever a subscript is omitted, it means the corresponding position has
been summed over, such as

nj =
∑
k,l

njkl, nk =
∑
j,l

njkl, njk =
∑
l

njkl, nlk =
∑
j

njkl.

This will of course cause ambiguity when specific values are used, such as n1, in which case we will
use the full notation n1·· or n·1· for the first two, for example.

Proof. Swapping pairs a record a in categories jkl with a record b in jk′l′. It moves a to jk′l and b

to jkl′. The matching category j is the same in a and b by construction.16 After the swap njkl and
15Swapping only requires that the matching variable is discrete. VSwap and VHold − VMatch may be continuous.

However, for simplicity we focus on the main motivating example of releasing contingency tables, in which case all
variables must be discrete. All of the variables in both the 2010 and 2020 US Decennial Censuses are discrete.

16We do allow the possibility that k = k′ or l = l′ but in either of these cases the swap is vacuous in the sense that
the contingency table [njkl] does not change.
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njk′l′ decrease by one, and njk′l and njkl′ increase by one. Hence, the margins njl =
∑

k njkl and
njk =

∑
l njkl are invariant under swapping.

Example 5.2 (continued). In the 2010 US Census DAS, the number of adults, children and house-
holds in each block are invariant. (This is the njk margin.) The counts of all the person and
household characteristics inside each Vg are also invariant. (This is the njl margin.) For example,
if Vg is the county, then the aggregate characteristics at the county level remain unchanged by
swapping, but these aggregates at the block and tract level are perturbed.

Definition 5.4. Suppose that all variables in X are discrete. Using the notation in Proposition
5.3, define the swapping invariants cSwap(X) for a given choice of (VMatch,VSwap,VHold − VMatch)

as the margins njl and njk:

cSwap(X) =



n1·1

n1·2
...

nJ ·L

n11·

n12·
...

nJK·


.

Example 5.5. In the 2020 TDA, there are two invariants (ignoring group quarters and structural
zeroes for simplicity): 1) the number of people in each state; and 2) the number of households in each
block [U.S. Census Bureau, 2021c]. We cannot design a swapping algorithm which preserves these
– and only these – invariants. In other words, the 2020 US Census invariants do not correspond to
any swapping invariants cSwap, regardless of the choice of (VMatch,VSwap,VHold). Why? Swapping
always preserves the one-dimensional marginals: nj , nk and nl; but the 2020 US Census DAS does
not. For example, the number of females in the US is not invariant in the 2020 Redistricting Data
Summary File but it must necessarily be invariant under any swapping algorithm. If we wanted to
remove some of the swapping invariants, we could apply additional privacy protections (e.g. noise
infusion) before or after swapping. (These and other extensions to data swapping are discussed
further in Section 7.2.)

5.2 Swapping satisfies pure ϵ-DP conditioning on its invariants

From herein, follow the assumptions of Proposition 5.3: Assume that all variables in X are discrete;
and that there is one matching variable, one swapping variable and one non-matching holding
variable, with categories j, k and l respectively.

In this Section, we will design a specific data swapping algorithm – termed the Permutation Algo-
rithm to distinguish it from other data swapping methods – which satisfies (cSwap, d

u
HamS, ϵD)-DP.

24



Here the privacy unit u of duHamS is given by the level of the data swapping, which can vary be-
tween implementations of the algorithm. We do not claim that this is the swapping algorithm used
by the 2010 DAS but we do believe it reflects the essential features of the 2010 DAS. However,
certain aspects of the Permutation Algorithm were made with the specific goal of satisfying DP.
For example, DP cannot be satisfied if the number of swaps is fixed.17 To see this, suppose X,X ′

differ by a single swap and the same number of swaps m are applied to both X and X ′ to produce
Z and Z ′ respectively. It is possible that m + 1 swaps are necessary to produce Z from X ′. In
this case, Pr(Z|X) > 0 but Pr(Z|X ′) = 0. More generally, a necessary condition for a swapping
procedure to be DP (with dT a metric) is that every orbit space is a superset of its data universe:
G ·X ⊃ DcSwap(X), where G is the set of all possible swaps that are permissible by the swapping
procedure.18

To avoid this complication, the Permutation Algorithm randomly permutes the swapping variables
VSwap of records in the same matching category j. (A permutation is simply multiple swaps done
one after the other.) Since we do not want to permute every record, each record is selected for
permutation independently with probability p. To avoid the case where the random permutation
leaves a record fixed, we sample uniformly at random from the set of all derangements.19

Pseudocode for the Permutation Algorithm is provided in Algorithm 5.1. The output is a contin-
gency table H(Z) = [nZ

jkl] (i.e. a 3-way tensor) computed on the swapped dataset Z.20

Theorem 5.6. Let

b = max{0, nj | there are at least two different records in stratum j}.

Then Algorithm 5.1 is (cSwap, duHamS, ϵD)-DP where duHamS is the Hamming distance defined in (3.4),
ϵD = 0 if b = 0 and otherwise

ϵD =

ln(b+ 1)− ln o if 0 < p ≤ 0.5

max
{
ln o, ln(b+ 1)− ln o

}
if 0.5 < p < 1,

(5.1)

with o = p/(1 − p). On the other hand, for p ∈ {0, 1} and for some D with b > 0, Algorithm 5.1
does not satisfy (cSwap, d

u
HamS, ϵD)-DP for any finite ϵD.

The units for the Permutation Algorithm’s privacy definition (cSwap, d
u
HamS, ϵD) are given by the

type of records which are being swapped. For example, if Algorithm 5.1 swaps person-level records,
17To be clear, based on the available public information, we do not believe the 2010 DAS fixes the number of swaps,

although we have not been able to confirm this.
18The other direction G ·X ⊂ DcSwap(X) is a consequence of Proposition 5.3.
19A derangement is a permutation with no fixed points – i.e. a function σ : {1, . . . , n} → {1, . . . , n} such that

σ(j) ̸= j for all j.
20H(Z) = [nZ

jkl] can also be expressed as a collection of J matrices Hj(Z) = [nZ
jkl], j = 1, . . . ,J , each of which

has dimension K × L. The contingency table H(Z) fully determines Z up to re-ordering of the rows of Z. The
Permutation Algorithm could output the swapped dataset Z directly, without changing any of its privacy guarantees.
For an explanation, see (A.2).
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Algorithm 5.1: The Permutation Algorithm
Input: Dataset X
1: for j = 1, . . . ,J do
2: if nj = 0 or nj = 1 then
3: continue
4: end if
5: for record i with category j do
6: Select i with probability p
7: end for
8: if 0 records selected then
9: continue

10: else if exactly 1 record selected then
11: go to line 5
12: end if
13: Sample uniformly at random a derangement σ of the selected records.
14: /* Permute the swapping variable of the selected records according to σ: */
15: Save copy X0 ←X before permutation
16: Let kX(i) be the value of the swapping variable of record i in dataset X.
17: for all selected records i do
18: Set kX(i)← kX0(σ(i))
19: end for
20: end for
21: Set Z ←X to be the swapped dataset.
22: return contingency table [nZ

jkl]

then the privacy unit for duHamS is persons. If instead it swaps household-level records (as was
done in the 2010 Census DAS and in our applications below), then the privacy unit of duHamS are
households.

The proof of Theorem 5.6 is in Appendix A. A broad sketch for the case 0 < p ≤ 0.5 (i.e. o ≤ 1) is
given here: We need to show that, for fixed datasets X,X ′,Z in the same data universe D,

Pr(σ(X) = Z) ≤ exp(mϵ) Pr(σ′(X ′) = Z),

where m = duHamS(X,X ′) and the probability is over the random sampling of σ and σ′ in Algorithm
5.1. We can show that there exists a derangement ρ of m records such that X = ρ(X ′). There
is a bijection between the possible σ and σ′ given by σ′ = σ ◦ ρ. If mσ is the number of records
deranged by σ, we have

mσ −m ≤ mσ′ ≤ mσ +m. (5.2)

This gives a bound on Pr(σ)/Pr(σ′) in terms of omσ−mσ′ and the ratio between the number of
derangements of mσ′ and of mσ. For o ≤ 1, this can be bounded by o−m(b + 1)m using the
inequality (5.2). The result for 0 < p ≤ 0.5 then follows with some algebraic simplification.
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Table 5.1: A comparison of two-way tabulations of dwelling ownership by county based on the 1940
Census full count for the state of Massachusetts (left) and one instantiation of Algorithm 5.1 at
p = 50% (right). Total dwellings per county, as well as total owned versus rented units per state,
are invariant. All invariants induced by the Algorithm are not shown.

county owned rented total owned rented total
(swapped) (swapped) (swapped)

Barnstable 7461 3825 11286 5907 5379 11286
Berkshire 14736 18417 33153 13770 19383 33153
Bristol 33747 63931 97678 35537 62141 97678
Dukes 1207 534 1741 946 795 1741
Essex 53936 81300 135236 52631 82605 135236
Franklin 7433 6442 13875 6337 7538 13875
Hampden 30597 58166 88763 32267 56496 88763
Hampshire 9427 8630 18057 8145 9912 18057
Middlesex 104144 147687 251831 100372 151459 251831
Nantucket 593 432 1025 471 554 1025
Norfolk 44885 40285 85170 38566 46604 85170
Plymouth 24857 23882 48739 21549 27190 48739
Suffolk 49656 176553 226209 67357 158852 226209
Worcester 53126 78535 131661 51950 79711 131661

total 435805 708619 1144424 435805 708619 1144424

5.3 Numerical demonstration: 1940 Census full count data

We demonstrate Algorithm 5.1 using the 1940 Decennial Census full count data.21 For the 1940
Census, the smallest geography level is county, hence swapping is performed among household
units across counties within each state, where each household’s county indicator is set to be VSwap.
The matching variables (or swap key) VMatch are the number of persons per household and the
household’s state. Our analysis is focused on the ownership status of household dwellings, an
indicator variable taking value of either owned (including on loan) or rented. This is our VHold −
VMatch. The invariants cSwap induced by this swapping scheme include 1) the total number of owned
versus rented dwellings at each of the household sizes at the state level, and 2) the total number of
dwellings at each of the household sizes at the county level. In our notation, these are the njl’s and
the njk’s, respectively.

We restrict our illustration to the state of Massachusetts. Table 5.1 compares the two-way tab-
ulations of dwelling ownership by county based on the original data and one instantiation of the
swapping mechanism using a high swap rate of p = 50%. The row margin of either table is the
county-level total dwellings and is invariant due to nk =

∑
j njk. The column margin is the total

number of owned versus rented dwellings in Massachusetts and is invariant due to nl =
∑

j njl.

Table 5.2 supplies the conversion between different swap rates to the privacy loss budget ϵ. Under the
21The data is obtained from IPUMS USA Ancestry Full Count Database [Ruggles et al., 2021].
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Table 5.2: Conversion of swap rate to ϵ (PLB). Under this swapping scheme, the largest stratum
size is b = 264, 331, the number of all two-person households of Massachusetts.

swap rate 0.01 0.05 0.10 0.50
ϵ 17.08 15.43 14.68 12.48
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Figure 5.1: Mean absolute percentage error (MAPE) in the two-way tabulation of dwelling ownership
by county induced by Algorithm 5.1 applied to the 1940 Census full count data of Massachusetts,
at different swap rates from 1% to 50%. Each boxplot reflects 20 independent runs of Algorithm 5.1
at that swap rate.

current swapping scheme, the largest category size delineated by VMatch is b = 264, 331, consisting
of all two-person households of Massachusetts. Therefore by (5.1), we see that a low swap rate of
1% corresponds to an ϵ of 17.08, whereas a high swap rate of 50% corresponds to an ϵ of 12.48. It
is worth noting that since cSwap is fixed in this analysis, the different values of ϵ presented in this
Table can be directly interpreted as privacy guarantees of different quantified strengths.

We also examine the accuracy of the two-way tabulation as a function of swap rate. Figure 5.1
shows the mean absolute percentage error (MAPE) in the two-way tabulation induced by swapping
at different swap rates from 1% to 50%.22 The variability across runs is small: each boxplot reflects
20 independent runs of Algorithm 5.1.

22The mean absolute percentage error of a swapped table from its true table is defined as the cell-wise average of
the ratio between their absolute differences and the true table values. The MAPE in Figure 5.1 is with respect to the
contingency table of county by dwelling ownership in Massachusetts and is defined in the notation of Section 5.1 as

1

KL
∑
k,l

∣∣nX
kl − nZ

kl

∣∣
nX
kl

,

where X is the true table, Z is the swapped table, k is the county indicator and l whether the house was rented or
owned.
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The accuracy assessment we demonstrate here is highly limited. The analysis above assesses only
cell-wise departures of the swapped two-way marginal table from its confidential counterpart. It
does not capture potential loss of data utility in terms of multivariate relational structures. It is well
understood in the literature that swapping erodes the correlation between VSwap and VHold−VMatch;
see e.g. Slavković and Lee [2010]. For the current example, this means the county-wide charac-
teristics of household dwellings (other than their size) are not preserved, but other multivariate
relationships are. While an in-depth investigation into the utility of swapping is out of scope for
this paper, we return to the subject of data utility in Section 7 to discuss the implication this work
may have on that line of inquiry.

6 Implications for the US Decennial Censuses

One of the main motivations for developing a framework that unifies different DP definitions (as in
Section 3) is to facilitate a comparison between swapping and the differentially private DAS for the
2020 Decennial Census. This Section is dedicated to this comparison.

A main component of the 2020 DAS is the TopDown algorithm [Abowd et al., 2022], used for the
production of privacy-protected 2020 Census Redistricting Data (P.L. 94-171) Summary and the
Demographic and Housing Characteristics (DHC) Files.23 In addition, it has been announced that
the SafeTab algorithm [Tumult Labs, 2022] will be used to produce the privacy-protected Detailed
DHC Files and has been implemented in the Detailed DHC-A Proof of Concept [US Census Bureau,
2023f].24

Table 6.1 provides an overview of the comparison we make in this Section. It lays out the choices of
dT , dX , privacy unit, invariants, and privacy loss budget that pertain to the TopDown algorithm,
the proposed SafeTab algorithm, for comparison against a hypothetical application of swapping to
the 2020 Decennial Census. Sections 6.1 and 6.2 respectively lay out the details that lead up to the
elements reported in this Table.

23The P.L. 94-171 dataset was released on August 12, 2021 [U.S. Census Bureau, 2021a]. The Demographic Profile
and DHC are scheduled for release in May 2023 [U.S. Census Bureau, 2022].

24The Detailed DHC-A Proof of Concept was released on January 31, 2023. The Detailed DHC-A is planned for
release in August 2023. At the time of writing, the release dates for the Detailed DHC-B File and the Supplemental
DHC File are to be determined [U.S. Census Bureau, 2022].
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dT dX (Unit) Invariants Privacy Loss Budget

TopDown Dnor dpHamS (person)25 Population (state) PL & DHC:
Total housing units (block) ρ = 15.2926

Occupied group quarters (block)27 ϵ = 52.83 (δ = 10−10)28
Structural zeros29 See Table 6.2

SafeTab Dnor dpHamS (person) None30 DDHC-A: ρ = 19.77631

DDHC-B & S-DHC: TBD.

Swapping Mult dhHamS (household) Varies but greater ϵ between 9.37-19.3832

than TDA;33 see Section 6.2 See Table 6.3

Table 6.1: A comparison of the DP definitions of the TopDown algorithm [Abowd et al., 2022], the
SafeTab algorithm [Tumult Labs, 2022], and hypothetically applying swapping (Algorithm 5.1) to
the 2020 Decennial Census.

6.1 Privacy analysis of the TopDown algorithm (TDA)

This Section provides a privacy definition for the TopDown algorithm. We prove (in Theorem 6.1)
that TDA satisfies zero concentrated DP (zCDP) [Bun and Steinke, 2016a] when conditioning on
the invariants it induces. We also show that it is necessary to restrict the data universe according
to these invariants: TDA cannot satisfy ρ-zCDP for any finite ρ without conditioning on these
invariants.

TDA is summarised in Algorithm 6.1. Briefly, it is a two step procedure: The first step (called the
“measurement phase” in Abowd et al. [2022]) produces Noisy Measurement Files (NMF) Tp(Xp) and
Th(Xh). The NMF are privacy-protected versions of tabular summaries Qp(Xp) (at the person level)

25See Section 6.1 for a discussion regarding the choice of privacy units in the TopDown algorithm.
26To avoid confusion, we use the parametrisation of ρ common in the literature, which is equal to ρ2 under the

parametrisation of zCDP using Dnor as given in Section 3.6.
27Counts for each type of occupied group quarters (e.g. correctional facilities, university housing, military quarters,

etc.) were held invariant at the block level when producing the redistricting data and DHC files with TDA.
28Using the conversion ϵ = ρ+ 2

√
−ρ ln δ given in Bun and Steinke [2016a] and adopted by the USCB.

29The complete description of the 2020 Census TopDown invariants can be found in Section 5.2 of Abowd et al.
[2022] (for the PL file) and Population Reference Bureau and U.S. Census Bureau’s 2020 Census Data Products and
Dissemination Team [2023] (for the DHC and Demographic Profile).

Note that structural zeros are classified as edit constraints, not invariants, in Abowd et al. [2022]. However, we
recognize that structural zeros, such as what record values are deemed impossible, are contextual in nature as well,
hence we classify them as invariants under the current framework. The distinction is between restricting X (the set
of all theoretically-possible datasets) or restricting the data universe D. If a function is constant on X then it can be
considered as an edit constraint; otherwise it needs to be encoded as an invariant. So that X remains constant over
time (as much as possible), we advocate for considering structural zeros as invariants.

30As far as we are aware at the time of writing but production settings for this algorithm have not yet been released.
31This is the privacy budget allocation reported in the Census Bureau’s Detailed DHC-A Proof of Concept [US

Census Bureau, 2023f]. It should be taken as provisional and may not be the privacy loss budget used in producing
the actual DDHC-A File. Detailed DHC-B and Supplemental DHC proofs of concept have not yet been released and
no provisional budgets have been announced by the USCB, as of April 2023.

32The exact privacy loss budget ϵ depends on the swapping rate p and the swap key VMatch.
33Depending on the swap key VMatch and the swapping variables VSwap, the invariants are all (multivariate) house-

hold characteristics at either the state, county or block group and (optionally) the household size at a geography one
level lower.

30



and Qh(Xh) (at the household level)34 respectively. Here Xp and Xh are the Census Edited Files –
the final version of the confidential Census data (after data cleaning and missing data imputation).
Qp(Xp) and Qh(Xh) vary with the implementation of TDA, but (roughly) they are the statistics
(without privacy noise) that the US Census Bureau would like to publish. For example, when
releasing the redistricting data files, Qp(Xp) and Qh(Xh) are equal to these files, but aggregated
directly from the Census microdata without any privacy protection. However, to improve accuracy,
the USCB adds additional queries to Qp,Qh beyond the counts in the redistricting data or DHC
files.

Based on the theory developed in Canonne et al. [2022], Abowd et al. [2022] prove that the mech-
anism Tp satisfies (X , dprb , Dnor) and Th satisfies (X , dhrb , Dnor), where Dnor is the normalised Rényi
metric (which was defined in Section 3.6 and corresponds to zero concentrated differential privacy)
and durb is the bounded divergence (defined in Section 3.5) with persons – for Tp – and households
– for Th – as the privacy units u. Discrete Gaussian noise is added to Qp(Xp) and Qh(Xh) to
produce the NMFs Tp(Xp) and Th(Xh). The scale parameters Dp,Dh (analogous to the covariance
matrices of multivariate Gaussian distributions) of the privacy noise are diagonal matrices. The
entries along the diagonal control the total privacy budget ρTDA of the mechanisms Tp and Th, as
well as the allocation of that budget across the different cells in the tables Qp(Xp) and Qh(Xh).
The privacy budgets ρTDA for both Tp and Th as used in the production of the Census redistricting
data (PL file) and DHC file are presented in Table 6.2.

ρ35 ϵ (with δ = 10−10)36

PL Household 0.07 2.70
Person 2.56 17.90

DHC Household 7.70 34.33
Person 4.96 26.34

Total 15.29 52.83

Table 6.2: The privacy loss budgets of the mechanisms Tp (person) and Th (household) used in the
first step of the TDA to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary and
the Demographic and Housing Characteristics Files. Source: US Census Bureau [2023c].

In the second step (called the “estimation phase” in Abowd et al. [2022]), Privacy-Protected Mi-
crodata Files (PPMF) Zp and Zh are produced by solving a complex optimisation problem.37 The
PPMF Zp and Zh agree with the Census Edited File Xp,Xh on the invariants cTDA. The invariants
used in the production of the PL and DHC files are given in Table 6.1. In addition, the PPMF
Zp and Zh for the DHC are consistent with related statistics in the PL file [US Census Bureau,
2023d]. When producing the DHC, the PL file P is passed as input into the TDA and a constraint

34In this Section, we will include group quarters as households for the purposes of conciseness.
35To avoid confusion, we use the parametrisation of ρ common in the literature, which is equal to ρ2 under the

parametrisation of zCDP using Dnor as given in Section 3.6.
36Using the conversion ϵ = ρ+ 2

√
−ρ ln δ given in Bun and Steinke [2016a] and adopted by the USCB.

37The PPMF is also called the Microdata Detail File by Abowd et al. [2022].
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H(Zp,Zh) = P is added to the optimization problem to enforce consistency between the DHC and
PL. (The input P is not used by the TDA in production of the PL file.)

The PL and DHC files are produced by summarising the PPMF datasets Zp and Zh into tables. In
addition to the PL and DHC files, the USCB is releasing the NMF Tp(Xp) and Th(Xh) produced
for the PL and DHC files [US Census Bureau, 2023e], and the PPMF Zp and Zh for the DHC file
[US Census Bureau, 2023b].

Algorithm 6.1: Overview of the TopDown Algorithm [Abowd et al., 2022], focusing on aspects
salient to privacy analysis.
Input:

Census Edited Files Xp,Xh at the person and household levels
Person queries Qp

Household queries Qh

Privacy noise scales Dp and Dh

Constraints cTDA (including invariants, edit constraints and structural zeroes)
(Optional) previously released statistics P , as aggregated from a microdata file (where the
aggregation was achieved using a function H)

1: Step 1: Noise Infusion
2: Sample discrete Gaussian noise [Canonne et al., 2022]:
3: Wp ∼ NZ(0,Dp)
4: Wh ∼ NZ(0,Dh)
5: Compute Noisy Measurement Files:
6: Tp(Xp)← Qp(Xp) +Wp

7: Th(Xh)← Qh(Xh) +Wh

8: Step 2: Post-Processing
9: Compute Privacy-Protected Microdata Files Zp,Zh as a solution to the optimisation

problem:
10: Minimize loss l between [Tp(Xp),Th(Xh)] and [Qp(Zp),Qh(Zh)]
11: subject to constraints cTDA(Zp,Zh) = cTDA(Xp,Xh) and H(Zp,Zh) = P .
Output:

Privacy-Protected Microdata Files Zp,Zh, and
Noisy Measurement Files Tp(Xp),Th(Xh) at the person and household levels.

Theorem 6.1. Let cTDA be the invariants of TDA (given in Table 6.1) and let DcTDA be the induced
data universe function (as defined in (3.1)). Then TDA satisfies the differential privacy definition
(DcTDA , d

p
HamS, Dnor) with privacy budget ρTDA = 2.63 (for the Census Redistricting Summary File)

and ρTDA = 15.29 (for the DHC), where dpHamS is the symmetric Hamming distance dHamS with
persons as privacy units.

In the opposite direction, let c′ be any proper subset of TDA’s invariants (which varies on X – i.e.
c′ is not what the USCB call an edit constraint). Then TDA does not satisfy (Dc′ , dX , Dnor) with
any finite budget ρ.

The second half of this Theorem can be generalized from (Dc′ , dX , Dnor) to any privacy definition
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(D , dX , dT ) satisfying the assumptions of Proposition 4.3. In the first half of the Theorem, we cannot
replace Dnor with the multiplicative distance Mult since the NMF Tp and Th are protected with
Gaussian noise. Gaussian noise infusion does not satisfy (X , dX ,Mult) for any finite ϵ (assuming
that X and dX are not trivial, so that (X , dX ,Mult) is not a vacuous definition).

Proof. Fix the privacy definition DP = (DcTDA , d
p
HamS, Dnor). First, we analyze the TDA for pro-

ducing the PL file. The household mechanism Th satisfies (X , dhrb , Dnor) (see Abowd et al. [2022]),
which is equivalent to (X , dhHamS, Dnor) [Bailie et al., 2023+]. Hence Th satisfies DP by Proposi-
tions 4.1 and 4.5 with ρ = 0.07. We can similarly conclude that Tp satisfies DP with ρ = 2.56.
Then by composition, the mechanism Tph = [Tp,Th] has privacy budget ρ = 0.07 + 2.56 = 2.63.
Proposition 4.3 implies the mechanism TcTDA which releases the invariants cTDA(Xp,Xh) has ρ = 0.

The composed mechanism T = [Tph,TcTDA ] has budget ρ = 2.63. The second step of the TDA is
post-processing on T and hence has the same budget.

The argument for producing the DHC file is almost analogous. The composed mechanism T =

[Tph,TcTDA ] has budget ρ = 7.70 + 4.96 = 12.66. Now the second step of the TDA also uses the
PL file P . Hence, this second step is post-processing on the composed mechanism [T ,P ]. This
composed mechanism has budget ρ = 12.66 + 2.63 = 15.29.

The second half of the Theorem follows from Proposition 4.3.

The second step of the TDA requires access to both the NMF [Tp(Xp),Th(Xh)] and the invari-
ant statistics cTDA(Xp,Xh) computed on the Census Edited File. Under the privacy definition
(X , dX , dT ), the invariant statistics cTDA(Xp,Xh) cannot be released with finite budget. So the
second step of the TDA is not post-processing (in the sense given in Section 3.7) under (X , dX , dT )
– it is only post-processing when conditioning on the invariants. In the proof of Theorem 6.1, we
must use the privacy definition (DcTDA , dX , Dnor) in order to use the post-processing property of
DP. The second half of Theorem 6.1 shows that any argument which relies on TDA’s second step
being post-processing must necessarily use a privacy definition which conditions on the invariants
cTDA.

It is also necessary to use persons as privacy units in TDA’s privacy definition. While the household
mechanism Th satisfies (X , dhHamS, Dnor) (where dhHamS is the symmetric Hamming distance with
households as privacy units), the sensitivity of the person-level query Qp due to a single change
in a household record is very large. (In the Census Edited File, the maximum possible household
size is 99,999 [Population Reference Bureau and U.S. Census Bureau’s 2020 Census Data Products
and Dissemination Team, 2023].) This means Tp satisfies (X , dhHamS, Dnor) only with a very large
amplification in privacy budget. Hence, the budget of the TDA would also have to be substantially
increased in order to satisfy (DcTDA , d

h
HamS, Dnor).
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6.2 What if the 2020 Census used swapping?

In this Section we ask the counterfactual question: what if swapping, as we formulate in Algo-
rithm 5.1, is applied to the 2020 Decennial Census? In particular, what would the privacy guarantee
look like under different choices of swapping schemes and swap rates?

Table 6.3 shows the total nominal ϵ that would be achieved by applying swapping to the 2020
Decennial Census for a variety of possible parameter choices. For the purpose of illustration, we
stipulate the swapping variable VSwap to be the block, tract, or county membership of each house-
hold, and the matching variable VMatch to be the geography one level higher than VSwap, either alone
or crossed with the household size variable. From the top to bottom rows of Table 6.3, the VSwap

levels are ordered according to increasing granularity of geography. Within each level of VSwap, the
two VMatch levels are nested, in the sense that the swapping scheme represented in the latter row
(i.e. crossed with household size) induces a logically stronger and more constrained set of invariants
than the former one. These VMatch × VSwap level combinations result in largest strata of varying
sizes, as can be seen from b ranging from as large as 13.68 million (the total number of households
in California) to as small as 11, 691 (the total number of 3-person households in a Florida block
group).38 Varying the swap rate between a low level (5%) and a high level (50%), the nominal ϵ
achieved ranges between 9.37 to 19.38.

If we entertain the assumption that the 2010 Census DAS implemented swapping in the same way
as framed in Algorithm 5.1, we could also obtain a crude sketch of the privacy guarantee that it
would afford. It has been suggested that the 2010 DAS utilized swap keys which include household
size as well as household voting age population and some geography (either tract, county or state)
[U.S. Census Bureau, 2021b]. As we are unable to locate 2010 Census data products that allows for
the precise calculation of b pertaining to this particular swapping scheme, the swap key we consider
here is coarser as it does not accounting for the household count of voting age persons. However,
setting VMatch to be “state × household size” would imply b = 3.65 million (Table 6.3), which serves
as an upper bound for the actual b for the 2010 Census. Combined with a purported swap rate
p between 2% − 4% [boyd and Sarathy, 2022] we arrive at (an overestimate of) the nominal ϵ to
be between 18.29 and 19. We emphasize that this ϵ does not necessarily reflect the privacy budget
of the 2010 DAS, but rather the budget of Algorithm 5.1 when we choose its parameters to reflect
what we know about the 2010 DAS.

This analysis reaffirms a counterintuitive observation we previously made with Figure 2.1 as we
state the main results in Section 2. When the swap rate p is fixed, the more invariants induced by
the swapping mechanism, the smaller the nominal ϵ it achieves. As Table 6.3 shows, when swaps
are performed freely across counties in a state, even a high swap rate of 50% renders a nominal
ϵ that is much larger than that pertaining to swaps among households of the same size within a

38At the time of writing, the 2020 Census DHC Files have not been released, hence we calculate the largest strata
sizes (b) based on the Census Bureau’s 2010 demonstration Privacy-Protected Microdata File (PPMF) for DHC via
IPUMS [Van Riper et al., 2020].

39The Florida block group identified in lines 5 and 6 of Table 6.3 has GIS join match code G12011909112001.
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Table 6.3: The total nominal ϵ achievable by applying swapping to the 2020 Decennial Census for a
variety of VMatch, VSwap, and swap rate choices. The largest stratum under each setting are obtained
from the 2010 Census data.

VMatch VSwap b total ϵ total ϵ Largest stratum
p = 5% p = 50%

state county 13680081 19.38 16.43 California
state × household size county 3653802 18.06 15.11 California, 3-household
county tract 3445076 18.00 15.05 LA County
county × household size tract 853003 16.60 13.66 LA County, 3-household
block group block 21535 12.92 9.98 a FL block group39

block group × household size block 11691 12.31 9.37 a FL block group, 3-household

block group at a low swap rate of 5% (ϵ = 16.43 and 12.31 respectively). If these nominal ϵ’s are
taken at face value, one may be tempted to conclude that swapping schemes with finer invariants
should be preferred from a privacy standpoint. Furthermore, one may find it convenient to also
recognize that finer invariants are desirable from a data utility standpoint, for the obvious reason
that more exact statistics about the confidential are made known. However, such a conclusion –
that finer invariants should benefit both utility and privacy – would be dangerously mistaken, for it
overlooks the privacy leakage, in an ordinary sense of the phrase, due to the invariants alone. This
again highlights the importance of interpreting ϵ within its context, and the necessity of treating
the invariants as an integral part of the privacy guarantee.

It remains difficult to conduct a direct comparison between the privacy guarantees of the above
thought experiment and the actual construction of the suite of privacy-protected 2020 Decennial
Census data products. There are several reasons for this. First, the 2020 Census data products, such
as the redistricting data files generated by the TopDown Algorithm, carry a set of invariants that
cannot be induced by the swapping algorithm under examination. That is, the invariants induced
by TopDown does not accord to any choice of VSwap, VMatch, and VHold (as shown in Example 5.5).
Therefore, the two methods’ classes of differential privacy guarantees are not nested, rendering
their comparison inconvenient. (Although swapping almost always has stricter invariants for most
variables, it does not necessarily have TDA’s group quarter invariants.) In Section 7.2, we discuss
possible modifications to result in a more flexible range of invariants for swapping, in order to bring
the two schemes closer.

Second, swapping and the TopDown algorithm differ in their choices of both data divergence dX

and output divergence dT . Notably, they have different privacy units. Swapping as implemented in
this Section defines households as its privacy unit, whereas the TDA uses persons. As Section 4.1
explains, household distance is a stronger notion than individual distance, since if the record of
a single household changes part of its value, the multiple persons residing in a same household
may all change their values. In addition, swapping utilizes the multiplicative distance Mult as
its output divergence, which is stronger than Dnor as employed by the TopDown algorithm (see
Proposition 4.2). These differences further complicate a comparison between swapping and the
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suite of 2020 Census privacy mechanisms.

Note that if swapping were to be applied to the 2020 Decennial Census with a fixed parameter
setting (VMatch, VSwap, and p), the nominal ϵ reported in Table 6.3 would be the total privacy loss
budget that pertain to all data products derived from the the swapped dataset Z, including the
P.L. 94-171 summary file, the DHC, and the Detailed DHC files, for both persons and household
product types. This is because swapping is performed on the full microdata file, and hence produces
a synthetic version of it from which all data products are produced. Therefore, when comparing
the ϵ values in Table 6.3 with those reported for TopDown and SafeTab in Table 6.1, it should be
understood that the PLB of swapping will not increase with the release of additional data products;
yet (at the time of writing) the privacy loss budget for the 2020 DAS must necessarily continue to
grow with additional data releases. This characteristic of swapping leads to an additional desirable
property that is not enjoyed by mechanisms based on output noise infusion: the logical consistency
of multiple data products resulting from swapping is automatically preserved without the need for
post-processing. We return to this matter in Section 7.2.

7 Discussion

As the title of this work suggests, we have taken a “stirred, not shaken” approach to the two central
subjects under study: data swapping and differential privacy. The goal is neither to revamp these
notions nor to rob them of their essence. Quite the contrary, by examining swapping through the lens
of formal DP and providing theoretical characterization of its privacy guarantees, we seek to unite
and reap the benefits of both worlds [Slavković and Seeman, 2023], including the facial validity
and backward compatibility of the data products produced by swapping, as well as algorithmic
transparency that pertain to formal DP methods [Gong, 2022].

Nevertheless, to compare two SDC approaches that were previously thought to be distinct requires
a supporting common ground, which this work establishes by spelling out the details of one in full,
and piecing together the known facts about the other. The result is a rich lesson on both approaches.
In what follows, we first reiterate the take-home messages from our investigation in a pragmatic
(and invariably tongue-in-cheek) manner, then discuss implications on existing debates concerning
swapping and traditional SDC.

7.1 How to reduce privacy loss without adding more noise: a perverse guide

As Section 4 explains in detail, ϵ as the privacy loss budget is contextual in nature. While that is
true for every differentially private mechanism, our analysis of swapping makes a particularly vivid
case study: If the value of a privacy loss budget is taken nominally and out of context, we risk
running down a slippery slope. As we have shown, there are ways to spend apparently less privacy
loss budget, all the while without adding more noise to the privacy-protected data product. In this
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Section we review some of these ways to “cheat”. Needless to say, our intention is not to encourage
such behavior, but rather on the contrary to expose the inherent weaknesses that are open for
exploitation in what seems to be an objective and mathematically absolute framework of privacy
protection. Our warnings may be particularly applicable to commercial implementations of privacy
protection, where conflicts of interest are commonplace. For example, when the data custodian and
data user are the same entity (such as an internet platform company), it can be easily tempted
to cut some differentially-private corners due to a desire to improve data utility while maintaining
prima-facie privacy protection to assauge its data contributors.

The first way to spend less privacy loss budget without adding more noise is to add more invariants.
Theorem 5.6 reveals that the PLB ϵ of the Permutation Algorithm is determined by two things:
the swap rate p and the largest stratum size b. To decrease the nominal value of ϵ, one can either
increase p (up to a point; see Figure 2.1) or decrease b. When the dataset has a fixed size, the
simplest way to decrease b is to define the matching variables VMatch at a finer resolution, resulting
in smaller sizes of strata within which swapping is confined. As Section 5.3 shows, the various VMatch

choices at different levels of geography, with or without crossing with the household size variable,
result in b ranging from as small as 11.7 thousand to as large as 13.7 million, and a nominal ϵ from
12.31 to 19.38 (respectively) at p = 5%.

Decreasing invariants and increasing b should increase the number of candidates that a unit may
swap with, thereby intuitively increasing privacy. But increasing b actually increases the nominal
privacy budget ϵ, even though high resolution invariants can be revealing of the unit’s information
in and of themselves. For an extreme example, suppose we define the swap key VMatch in such
a way that all records with the same key are duplicates of each other. Then, applying swapping
accomplishes nothing regardless of p! Indeed, under this set-up, duHamS(X,X ′) = 0 for all datasets
X,X ′ in the observed universe D = DcSwap(X

∗) and hence the privacy definition (DcSwap , d
u
HamS, dT )

is vacuous at D. This is reflected in Theorem 5.6 which shows that the budget ϵD = 0 when there
are no non-duplicates with the same swap key (i.e. when b = 0). The sheer amount of invariants is
sufficient for the reconstruction of the entire micro dataset, whereas we can still obtain an apparent
privacy guarantee “for free”. This apparent conflict between the mathematics and our intuition is
evidence that privacy accounting by the privacy loss budget alone is inadequate.

A second way to achieve a reduction of nominal PLB for free is to redefine privacy units at a finer
granularity. The intuition behind this maneuver has been recognized, and to some extent utilized,
in the literature of differential privacy mechanism design for complex data structures. For example
for network data, the choice of neighbours is particularly important – are neighbours defined by
removing a node or an edge from the network (i.e. are privacy units edges or nodes?) [Raskhodnikova
and Smith, 2016]? For business databases, does a company constitute a unit, or should units be
employees, or both [Haney et al., 2017, Schmutte, 2016, He et al., 2014]? Or should they be the
company’s transactions? Similarly for large personal databases in commercial settings, should an
individual constitute a unit, or should each of their interaction with the platform (such a post or a
“like”) be privacy units, or should units be the set of a user’s interactions within a given time period
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(e.g. a single day) [Kenthapadi and Tran, 2018, Messing et al., 2020, Desfontaines, 2023]? Finally,
when publishing social statistics, do households deserve privacy protection above and beyond the
protection afforded to their individual members [Machanavajjhala, 2022]?

As Sections 4.1 and 6.2 explain, with all else being equal, a differentially private mechanism with
a larger notion of privacy unit packs more weight in its privacy loss budget, and offers a stronger
privacy guarantee at the same nominal budget than a mechanism with a smaller notion of privacy
unit. Substituting a coarser privacy unit with a finer one shrinks the privacy loss budget.

The differential privacy definition as we spell out in full in Definition 3.3 points to additional ways
to “cheat” beyond what’s discussed above. Put simply, every component of a differential privacy
definition – dX , dT and D – can be gamed. For example, another way to gain PLB out of thin air is
to artificially introduce an output divergence dT that systematically assesses two distributions to be
closer. Technically speaking, the relaxation from ϵ-DP to (ϵ, δ)-approximate DP can be understood
as a maneuver of this type, due to the fact that Multδ is strictly smaller than Mult provided that
δ > 0.

We finish this Section by briefly remarking on a component which has received little attention in
this paper: the data space X . We have assumed throughout that X has remained fixed and have
attempted to compare privacy definitions defined on the same space X . In reality, the data custodian
is free to choose X along with their choice of privacy definition. Given the rest of this paper, it
should come as no surprise that we view the choice of X as a critical, yet critically overlooked,
nuance in DP and SDC more generally. However, we withhold this matter for a future discussion;
and leave as an exercise for the reader the question of how one might use X to perversely lower the
privacy loss budget.

7.2 Implications on current debates concerning swapping

The aim of the current paper is to present an objective analysis of a class of swapping mechanisms
through the lens of formal privacy. It is not an endorsement of existing implementations of swapping
in the 2010 Census data products or other previously published official data products, not the least
because we cannot possibly ascertain the extent to which the existing implementations conforms to
our formulation.

We are aware that from some perspectives, what this paper accomplishes may be an inconvenient
truth. We want to be clear that we are not advocating to reverse the progress that the Census Bureau
and the formal privacy research community have made to advance statistical disclosure control. On
the contrary, our intention is to lay down a rigorous explication of differential privacy and to
examine existing SDC methods through this formal lens. We believe that this approach ultimately
facilitates the modernization of SDC in a way that is helpful to data custodians, responsible to data
contributors, and respectful to data users.
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A concrete benefit of the new perspective we provide is that it sheds light on debates concerning
swapping. In what follows, we review and provide our comments on three current discussions. We
will argue that most of these contentious issues are tangential to the fundamental nature of swapping
and DP noise infusion as mechanisms for data privacy protection. Our work provides a level playing
field that allows for a much needed, informed, and fair comparison.

The use of reconstruction attacks to assist privacy mechanism design One of the Census
Bureau’s main arguments for revamping its swapping-based SDC for Decennial Census data prod-
ucts is that swapping does not provide adequate protection against reconstruction attacks [Abowd
and Hawes, 2023]. Generally speaking, reconstruction attacks work by pulling together many ag-
gregate statistics about a confidential database and recreating the possible individual records under
their guidance. The larger the number of aggregate statistics and the more accurate they are, the
more heavily they constrain the possible configurations of the underlying microdata. As a result,
it is easier to create reconstructed databases with a high chance to lead to the reidentification of
units via linkage to external data sources. This is the idea behind the Bureau’s own suite of simu-
lated reconstruction attacks against the 2010 Census which resulted in high rates of reidentification
[Abowd, 2018, Hawes, 2022].

The weakness of 2010 Census swapping mechanism as exposed by the reconstruction attacks is
without a doubt alarming and calls for action. Equipped with a formal framework to understand
and explicate the differential privacy guarantees associated with swapping, we can delineate the
causes of its susceptibility to reconstruction. We now know that the reason swapping does not
stand up against this particular style of reconstruction attacks is not because it is not differentially
private. Because the swapping algorithm that we examine closely mimics the 2010 DAS, it will
likely suffer from similar susceptibility. A fix for this problem would thus need to result from an
examination of the elements of the algorithmic specification of swapping.

A commonly held belief why the Bureau’s simulated reconstruction attack on the 2010 Census
swapped data leads to high reidentification is that the 2010 swapping scheme induced too many
invariants. As Abowd and Hawes [2023] discuss, these invariants are particularly harmful because of
two facts: 1) total and voting age populations at the block level constitute information at very fine
granularity, and 2) the existence of a high fraction of unique persons within blocks (57%) further
facilitates reidentification via record linkage. As our analysis of Section 6.2 shows, the granularity
of invariants has a larger numerical impact on the privacy loss budget ϵ, more so than the swap rate
for a given set of invariants. Therefore, what may need the most urgent revision are the invariants.
We expand on this in greater detail in our next discussion point.

The important, despite obvious, message here is that a reconstruction attack on swapping is a
reconstruction attacks on a differentially private mechanism, and all consequences of it should be
understood as such. The vulnerability of a privacy-protected data product against reconstruction
attacks is the combined result of all aspects of its privacy mechanism’s design, encompassing pa-
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rameter choices that go far beyond the privacy loss budget.

On the plurality (and the limited choice) of invariants An important criticism of swapping
as implemented in the 2010 and prior Decennial Censuses is that it induces too many invariants.
The invariants severely constrain the permissible data universes, impacting the disclosure risk of
the resulting data product in unpredictable ways. A key question is thus to understand the actual
privacy guarantees in the presence of a plurality of invariants.

One salient consequence of the plurality of invariants is that it can be impossible to, via swapping,
simultaneously maintain a low degree of data disruption and control the risk of identification for
population uniques. The Census Bureau reconstruction attacks experiments show that they had
to significantly increase the rate of swapping to arrive at what is deemed as an acceptable level
of protection for the population uniques [Abowd and Hawes, 2023]. Specifically, the population
uniques can be revealed as part of the invariants. As an extreme example, any swap-key stratum
with only duplicate records would result in a exact reconstruction of that stratum.

In order to design a tailored solution that balances privacy and accuracy targets, we believe the data
custodian should be equipped with the necessary methodology to control invariants in a flexible and
precise manner. To this end, swapping – as implemented in the previous Decennial Censuses as
well as in this work – is insufficient. Nevertheless, several tangible solutions present themselves as
immediately open for exploration, which we discuss now.

The Census Bureau’s comparative analysis between swapping and TopDown considered methods to
override the hard invariants due to swapping. One such method is pre-swap perturbation [Hawes and
Rodriguez, 2021, p. 23], which infuses noise into the confidential record prior to applying swapping.
Another possible method is the probabilistic matching of units. That is, instead of using VMatch to
form hard strata that confine swapping, allow, with a small probability, for units across different
strata to be swapped. The probability can made inversely proportional to some distance metric on
the strata. As a demonstration, take the 1940 Census full count example from Section 5.3, where
VMatch is the state indicator and size of the household and VSwap is the county indicator. Suppose
for some α > 0, a household chosen for swapping would have a (1− α)% chance of being swapped
with another household of the same size, but an α% chance of being swapped with a differently-sized
household. Doing so retains the county-wide household counts as invariant, but the county-wide
total populations are no longer invariant. We leave it to future work to investigate the theoretical
guarantees of pre-swap perturbation and probabilistic matching, only noting here that compared to
classic swapping, both induce strictly more auxiliary randomness into the data product. Therefore,
it would be reasonable to expect the resulting algorithms to enjoy formal privacy guarantees while
supplying more flexible choices of invariants.

Finally, we note that the problem of invariant choice does not pertain to swapping alone. Whether
the data custodian implements swapping or another privacy protection mechanism, the choice of
invariants is unavoidable. The production settings of the TopDown algorithm employed invariants
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as specified by Table 6.1, but the list of invariants was arrived at through an iterative process. USCB
were previously considering block-level population invariants; see e.g. Ashmead et al. [2019], Kifer
[2019]. This illustrates that invariant choice is often a part of many privacy mechanism designs and
parameter choices.

Data utility under transparent privacy Our last point of discussion re-emphasizes another
important motivation for this work, which was only mentioned briefly in the Introduction. By
casting swapping as formal DP, we can theoretically allow its algorithmic specification to be made
public. As the main SDC method for the Decennial Census of the previous three decades, a peek
into the technical specification of swapping can bring tremendous utility to data users and privacy
researchers alike.

Data users who conduct statistical modeling with official data products criticize swapping because
it negatively affects the quality of downstream data analyses. It has been well understood in the
literature that swapping inflicts the most utility damage to the relationships between swapping and
holding variables. Mitra and Reiter [2006] and Drechsler and Reiter [2010] demonstrate that even
low swap rates (e.g. 5%) can substantially reduce the effective coverage of confidence intervals for
the regression coefficient between such variables.

We surmise that the deterioration in coverage is in part due to performing a naïve regression
analysis on processed data, without accounting for the privacy mechanism itself. As Gong [2022]
demonstrates, performing naïve regression analyses on data protected via DP noise-infusion results
in similar types of coverage deterioration, and further that this deterioration can be restored once
the privatization process is statistically modeled (at the expense of wider, though valid, intervals).
However, the analyst cannot possibly be blamed for performing the naïve analyses on swapped data
when the swapping procedure is not public. Unfortunately, swapping by tradition has not been
a transparent SDC technique. The explicit statement of swapping’s privacy guarantees provides
theoretical justification to publish the implementation details of the swapping procedure. This
would allow the swapping mechanism to be appropriately accounted for via statistical modeling.

Note that the justification for transparency relies on the privacy guarantee being public. In the case
of swapping, publishing the privacy guarantee necessitates the release of its invariants. However, as
we repeatedly emphasize throughout this work, there is danger of privacy leakage associated with
the knowledge of invariants in and of themselves. For example, a plurality of invariants supply the
adversary with confidence in their efforts to reconstruct the microdata and reidentify individual
records. Therefore, careful deliberation has to be practised in weighing the cost of making public
the invariants against the benefits of algorithmic transparency this allows.

Swapping also carries unique utility advantages compared to noise infusion, including maintain-
ing the facial validity of the privacy-protected data product and the logical consistency between
multiple data products derived from the same swapped database – all without having to resort to
complex post-processing. The vast majority of formal DP methods based on noise injection rely
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on optimization-based post-processing to restore facial validity and logical consistency [e.g. Barak
et al., 2007, Hay et al., 2010]. Optimization-based post-processing can be procedurally transparent
but in most cases it destroys the probabilistic transparency of the resulting two-step privacy mech-
anism. Probabilistic transparency is a stronger property than procedural transparency, but it is
crucial – indeed necessary – to enable principled statistical analysis on the privacy-protected data
product [Gong, 2022]. The recent proposal by Dharangutte et al. [2023] does away the need for
post-processing in additive noise infusion to maintain both facial validity and logical consistency.
However, it relies on MCMC sampling and hence is non-trivial to implement for large-scale data
products. In contrast, swapping achieves both with ease, as it generates a synthetic version of the
microdata through a recombination of empirically observed values, which in turn serves as the basis
to derive all data products.
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A Proof of Theorem 5.6

In this Appendix, we prove that Algorithm 5.1 (the Permutation Algorithm) satisfies (cSwap, duHamS, ϵD)-
DP for ϵD given in Theorem 5.6. Assume throughout this Appendix the conditions of Theorem 5.6:
that all variables in X are discrete; and that there is one matching variable, one swapping vari-
able and one non-matching holding variable, with categories j, k and l respectively. Recall that
(JX

i ,KX
i , LX

i ) are the i-th record’s categories for the three variables, so that we can write X as

X =
[
(JX

1 ,KX
1 , LX

1 ), . . . , (JX
N ,KX

N , LX
N )

]
,

where N = |X| is the number of records in X.

Let ℓu1(X,X ′) be the ℓ1-distance on the interior cells of the fully-saturated contingency table

ℓu1(X,X ′) :=
∑
j,k,l

∣∣∣nX
jkl − nX′

jkl

∣∣∣, (A.1)

where nX
jkl =

∑
i 1JX

i =j1KX
i =k1LX

i =l.

Lemma A.1. The ℓu1 -distance equals the symmetric-difference distance duSymDiff defined in (3.5).
Further, ℓu1(X,X ′) = 2duHamS(X,X ′) if |X| = |X ′|.

Lemma A.2. Mult is a metric on the space of a.e. equal random variables (over the same proba-
bility space T ).
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Proof. It is easy to see that Mult is symmetric and Mult(X,Y ) = 0 if and only if X = Y a.e. All
that remains is to verify the triangle inequality. Let {En} ⊂ F such that∣∣∣∣ln Pr(X ∈ En)

Pr(Z ∈ En)

∣∣∣∣→Mult(X,Z),

as n→∞. Then∣∣∣∣ln Pr(X ∈ En)

Pr(Z ∈ En)

∣∣∣∣ ≤ |ln[Pr(X ∈ En)]− ln[Pr(Y ∈ En)]|+ |ln[Pr(Y ∈ En)]− ln[Pr(Z ∈ En)]|

≤Mult(X,Y ) + Mult(Y, Z).

Define T (X, U) to be the output of Algorithm 5.1 given the dataset X and random seed U as input.
Following Section 3.1, T can be interpreted as a data-release mechanism. Let PX be the probability
distribution of T (X, U) induced by U .

Lemma A.3. If X and X ′ differ only by reordering of rows – i.e. duHamS(X,X ′) = 0, then
Mult (PX , PX′) = 0.

Proof. The contingency table [nZ
jkl] is invariant to reordering of rows of Z. Thus PX = PX′ .

Lemma A.4. Fix some data universe D ∈ ImDcSwap and some X,X ′ ∈ D with duHamS(X,X ′) =

m > 0. Then there exists a permutation σ which fixes |X| −m records such that σ(X) = X ′ (up to
re-ordering of records).

We use the notation σ(X) as shorthand to mean that we permute the swapping variable of records
in X according to σ. For example, if X = [(Ji,Ki, Li)]

N
i=1 then σ(X) = [(Ji,Kσ(i), Li)]

N
i=1.

Proof. We first establish some notation. For a matrix M , define sub(M) to be the matrix where
the zero rows and columns of M have been removed. For example, if

M =

a 0 b

0 0 0

c 0 d


for non-zero a, b, c, d then

sub(M) =

[
a b

c d

]

We have that m <∞ since the invariants cSwap imply that all datasets in D have the same number
of records. Hence X ⊖X ′ contain 2m records, with m records from X and m records from X ′.
Denote the records in X ⊖X ′ which come from X by X0 and the records from X ′ by X ′

0, so that
X ⊖X ′ is the disjoint union of X0 and X ′

0.
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Without loss of generality, we may assume that there is a single matching category (J = 1). (If
there is more than one matching category, apply the following argument to each category separately.)
Then the datasets X (disregarding the order of the records) can be represented as the matrix [nX

kl ].

We will need the following result (∗): For any X ′′,X ′′′ ∈ X , the matrix X ′′ −X ′′′ = [nX′′
kl − nX′′′

kl ]

has zero row- and column-sums if and only if X ′′ ∈ DcSwap(X
′′′). Moreover, X ′′ ∈ DcSwap(X

′′′)

implies X ′′
0 ∈ DcSwap(X

′′′
0 ) and X ′′ −X ′′′ = X ′′

0 −X ′′′
0 .

By the above results, the marginal counts of X0 and X ′
0 agree: nX0

k = n
X′

0
k and nX0

l = n
X′

0
l for all

k and l. But the interior cells disagree: if nX0
kl > 0 then n

X′
0

kl = 0 (and visa versa, swapping X0 and
X ′

0). Further X0−X ′
0 has positive entries which sum to m and negative entries which sum to −m,

and zero row- and column-sums. Permuting a record (Ki, Li) will decrease nKiLi by 1 and increase
nKσ(i),Li by 1.

There is another key observation: By construction of X0 and X ′
0, if we can permute X0 to produce

X ′
0 then we can use the same permutation to produce X ′ from X. Critically, permutations of X0

can only use m records (since there are only m records in X0) and indeed must use m records
to produce X ′

0 (since there are no records in common between X0 and X ′
0). Therefore we have

reduced the problem: we need to find a permutation σ (regardless of the number of records it fixes)
such that σ(X0) = σ(X ′

0).

We prove the result by induction on duHamS(X,X ′) = duHamS(X0,X
′
0) = m. There are two base

cases: The case m = 1 is vacuous since duHamS(X,X ′) = 1 implies that X,X ′ are not in the same
data universe. Why? If ℓu1(X,X ′) = 2 then X −X ′ only has one or two non-zero cells. But this
implies X −X ′ has a row or column with non-zero sum.

For the second base case (m = 2), result (∗) implies that M = X0 −X ′
0 has

sub(M) =

[
1 −1
−1 1

]

(up to re-ordering of rows and columns). Therefore X0 and X ′
0 differ by a single swap σ: if k, k′, l, l′

are indices such that Mkl = Mk′l′ = 1 then define X1 by swapping the records (k, l) and (k′, l′) in
X0. We have X1 = X ′

0 as desired.

This completes the base cases. Now we will prove the induction step. By (∗), we can always re-order
the rows and columns of M = X0 −X ′

0 such that the 2× 2 top-left submatrix looks like

M1:2,1:2 =

[
a b

−c d

]
,

with a, d, c > 0. Define X1 by swapping the records (1, 1) and (2, 2) in X0. Then the top-left
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submatrix of M ′ = X1 −X ′
0 looks like

M ′
1:2,1:2 =

[
a− 1 b+ 1

−c+ 1 d− 1

]
,

and the rest of M ′ is the same as M . If b < 0 then ℓu1(X1,X
′
0) = ℓ1(M

′) = ℓ1(M) − 4. If
b ≥ 0 then ℓ1(M

′) = ℓ1(M) − 2. In both cases, we can use the induction hypothesis to give us a
permutation σ1 of X1 which produces X ′

0. Define the permutation σ as the composition of σ1 with
the swap of (1, 1) and (2, 2).

Proof of Theorem 5.6. Fix X,X ′ in the same data universe D ∈ ImDcSwap . Recall

b = max{0, nj | there are at least two different records in stratum j}.

If b = 0, then X,X ′ only differ by reordering of rows and hence ϵD = 0 by Lemma A.3. Having
taken care of the case b = 0, from herein we may assume b ≥ 2. (The case b = 1 is not possible.)

Suppose that duHamS(X,X ′) = ∆. By Lemma A.4, there exists a derangement ρ of ∆ records such
that ρ(X ′) = X (up to re-ordering of records).

We need to prove that Mult(PX , PX′) ≤ ∆ϵ or equivalently

Pr [H(σ(X)) = H(Z)] ≤ exp(∆ϵ) Pr
[
H(σ(X ′)) = H(Z)

]
,

for all Z ∈ X , where the probability is over the random permutation σ of VSwap sampled by
Algorithm 5.1.40 Interpreting equality of datasets by disregarding the ordering of records (as we
will do for the remainder of the proof), this is equivalent to

Pr [σ(X) = Z] ≤ exp(∆ϵ) Pr
[
σ(X ′) = Z

]
. (A.2)

Suppose p = 0. Then σ must be the identity. Thus Pr(σ(X ′) = X) = 0 but Pr(σ(X) = X) = 1,
which implies (A.3) cannot be satisfied for any m > 0. Then ϵD cannot be finite for any choice of
D.

Now suppose that p = 1. We will show that there exists some data universes D such that ϵD cannot
be finite. For example, suppose that X and X ′ differ by a single swap between the first and second
records and a derangement ρ′ on the other records:

X =
[
(j, k, l), (j, k′, l′),X∗] ,

X ′ =
[
(j, k′, l), (j, k, l′), ρ(X∗)

]
,

40Note that in the pseudocode for Algorithm 5.1, σ denotes a derangement of the selected records while here σ is
a permutation which fixes the VSwap of the unselected records.
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where X∗ = {(Ji,Ki, Li), i = 3, . . . , N}, and k ̸= k′ and l ̸= l′. Suppose

nX
jk = nX

jl = nX
jk′ = nX

jl′ = 1.

Then nX
jkl = nX

jk′l′ = 1 and nX
jk′′l = nX

jkl′′ = 0 for all k′′ and l′′. Since no records can be fixed by σ

when p = 1, we have Pr(σ(X) = X) = 0 but Pr(σ(X ′) = X) > 0. So we cannot satisfy (A.3) for
this data universe D with any finite ϵD.

The rest of the proof examines the case where 0 < p < 1. Now Algorithm 5.1 allows for permutations
which are not derangements. Since X and X ′ themselves differ by a permutation ρ, we can permute
X to produce Z if and only if we can permute X ′ to produce Z. (That is, the orbit spaces (under
the action of permutation) of X and X ′ are both equal to D. This result is given by Lemma A.4.)
Thus, either Pr(σ(X) = Z) and Pr(σ(X ′) = Z) are both zero, or they are both non-zero. We need
only focus on the case where both probabilities are non-zero.

Because we perform random selection and swamping independently for each j, we can decompose the
overall σ = {σ1, . . . , σJ}, where σj will leave any unit i with matching category Ji ̸= j untouched.
Write Xj for the records of X with Ji = j. Simplifying

Pr(σ(X) = Z)

Pr(σ(X ′) = Z)
=

∏J
j=1 Pr(σj(Xj) = Zj)∏J
j=1 Pr(σj(X

′
j) = Zj)

.

Our goal (A.2) is equivalent to proving

Pr(σj(Xj) = Zj)

Pr(σj(X ′
j) = Zj)

≤ exp(∆jϵ), (A.3)

for all j where ∆j = duHamS(Xj ,X
′
j).

Fix some j. For notation simplicity, whenever it is not essential to indicate the role of j, we will
drop the subscript j for the rest of the proof (until the end when we need to optimize over j). (This
is the same as assuming VMatch is empty.)

Let GX→Z = {permutation g : g(X) = Z}. We use the notation g instead of σ to emphasise that
g is not random, while the permutation σ chosen by Algorithm 5.1 is random.

There is a bijection between GX→Z and GX′→Z given by g 7→ g ◦ ρ. Since

Pr(σ(X) = Z) =
∑

g∈GX→Z

Pr(σ = g),

we will prove (A.3) by showing

Pr(σ = g) ≤ exp(∆ϵ) Pr(σ = g ◦ ρ),

for all g ∈ GX→Z . (Note that this may not obtain the best possible bound for specific X and X ′,
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but it is mathematically easier to bound Pr(σ = g)/Pr(σ = g ◦ ρ) than bound the desired ratio∑
g∈GX→Z

Pr(σ = g)∑
g∈GX→Z

Pr(σ = g ◦ ρ)

directly. Yet in the case where GX→Z and GX′→Z are singletons, this approach gives tight bounds.)

Let mg be the number of records (in category j) which were deranged by g and let d(m) denote the
m-th derangement number (i.e. the number of derangements of size m):

d(m) = m!
m∑
k=0

(−1)k

k!

= md(m− 1) + (−1)m for m ≥ 0. (A.4)

Fix g ∈ GX→Z and g′ = g ◦ ρ. We now compute Pr(σ = g). The permutation g is sampled in
Algorithm 5.1 via a two-step procedure. Firstly records are independent selected for derangement
with probability p. Suppose that g deranges records {i1, . . . , img}. Since we disallow the possibility
of selecting only one record,

Pr(the selected records are {i1, . . . , img}) =
pmg(1− p)n−mg

1− Pr(exactly 1 record selected)
.

Secondly we sample uniformly from the set of all derangements of mg records. We sample g with
probability [d(mg)]

−1. Thus,

Pr(σ = g) =
pmg(1− p)n−mg

[1− Pr(exactly 1 record selected)]d(mg)
,

and so
Pr(σ = g)

Pr(σ = g′)
= oδ

d(mg − δ)

d(mg)
, (A.5)

where o = p/(1− p) and δ = mg −mg′ .

Our aim is now to bound the RHS of (A.5) by exp(∆ϵ). Since g′ and g differ only by the permutation
ρ (which fixes n−∆ records), we must have mg −∆ ≤ mg′ ≤ mg +∆. Therefore, there are at most
2∆ + 1 possible cases:

δ ∈ S =
{
δ ∈ Z | −∆ ≤ δ ≤ ∆ and

(
mg − δ = 0 or 2 ≤ mg − δ ≤ n

)}
= {δ ∈ Z | max(−∆,mg − n) ≤ δ ≤ min(∆,mg) and δ ̸= mg − 1} .

Suppose 0 < p ≤ 0.5. Since d(m) is non-decreasing (except at m = 1 which is not realisable by g or
g′) and 1−p

p ≥ 1, the RHS of (A.5) is maximised when mg′j
= nj and mgj = nj −∆j (i.e. δ = −∆j),
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in which case

Pr(σ = g)

Pr(σ = g′)
= o−∆

J∏
j=1

d(nj)

d(nj −∆j)

≤ o−∆
J∏

j=1

(nj + 1)∆j

≤ o−∆(b+ 1)∆

= exp(∆ϵ),

for ϵ = ln(b+ 1)− ln o. The second line uses Lemma A.5.

Now suppose 0.5 < p < 1. In the case of δj = ∆j , the ratio (A.5) is maximised at o∆j when

mg = ∆j . Moreover, o∆j also dominates oδj
d(mgj−δj)

d(mgj )
for all 0 ≤ δj < ∆j and all possible mgj .

Thus,

Pr(σ = g)

Pr(σ = g′)
≤

J∏
j=1

max

{
o∆j , oδj

d(mgj − δj)

d(mgj )
: δj ∈ Sj and δj < 0

}

≤
J∏

j=1

max
{
o∆j , oδj (mgj − δj + 1)−δj : δj ∈ Sj and δj < 0

}

≤
J∏

j=1

max
{
o∆j , o−δj (nj + 1)δj : 0 < δj ≤ ∆j

}
≤ max

{
o∆, o−δ(b+ 1)δ : 0 < δ ≤ ∆

}
.

If o−1(b+ 1) ≥ 1 then o−δ(b+ 1)δ is maximised at δ = ∆. Otherwise o−δ(b+ 1)δ < 1 < o∆. Hence

Pr(σ = g)

Pr(σ = g′)
≤ exp(∆ϵ),

for ϵ = max
(
ln o, ln(b+ 1)− ln o

)
.

Lemma A.5. For any m ∈ N and any a ∈ N satisfying 0 ≤ a ≤ m and a ̸= m− 1,

d(m)

d(m− a)
≤ (m+ 1)a.

Proof. We use induction on m. The base cases m = 0, 1, 2 are straightforward to verify since
d(0) = d(2) = 1 and d(1) = 0. For the induction step, we can assume m ≥ 3 so that d(m− 1) ≥ 1
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and hence

d(m)

d(m− a)
=

d(m)

d(m− 1)

d(m− 1)

d(m− a)

≤ d(m)

d(m− 1)
ma−1

by the induction hypothesis. The result then follows by the identity (A.4):

d(m)

d(m− 1)
=

md(m− 1) + (−1)m

d(m− 1)

≤ m+ 1.
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