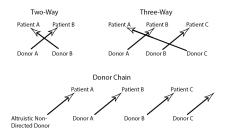
Does Paired Kidney Exchange Reduce Demographic Disparities in Transplant Outcomes?

Keith F. Teltser¹


Bethany I. Lemont²

¹Georgia State University

²Ohio University

NBER Racial and Ethnic Health Disparities Conference April 28, 2023

What is Paired Kidney Exchange?

- Incompatible or poorly-compatible donor-recipient pairs are added to a registry over which matches are determined
- Algorithms maximize some mix of match quantity & quality
 - Quality of match: blood type, presence or absence of certain antibodies, age, travel distance, wait time

Motivation

- Kidney exchanges improve TX outcomes (Teltser, 2019)
 - 64% of exchange transplants represent new living donor TXs
 - Exposure to exchange increases survival, reduces waiting time
- Do these gains accrue evenly across groups? Do they reduce or exacerbate existing disparities in transplant outcomes?
 - No formal prices or market mechanism; equity in organ allocation is a clearly-stated priority
 - Paired exchange solves living donor compatibility issues

Existing Racial Disparities in Transplant Access

- In 2019, only 11% of living donor kidney TXs went to black patients; 25% of people diagnosed with ESRD were black
- Lower rates of survival after 1, 3, 5 years (Gordon et al., 2010)
- Among black recipients, 25% receive living donation. In contrast, 46% among white recipients (Gore et al., 2009)
- Disparity is growing over time (Purnell et al., 2018)
- Potential explanations (from Gore et al., 2009):
 - Willingness to ask relatives and friends
 - Distrust of medical system, institutional racism
 - Donor suitability higher rates of diabetes, hypertension

Simple Conceptual Framework

- If gap is primarily attributable to relative lack of *compatible* willing donors, exchange could reduce the disparity
- However, if attributable to having fewer willing/suitable donors, then exchange could exacerbate the disparity

Data

- Universe of registration-level waiting list and TX data from the Scientific Registry of Transplant Recipients (SRTR)
 - Exclude if age<18 at time of registration/transplant
- Includes zip codes of residence for TX candidates/recipients and donors, zip codes of TX centers
- Calculate zip-month TX counts from January 2000 (data quality improved) through December 2018 (end of sample)

Estimation of Quantity and Quality

$$Y_{(i)zt} = \lambda Activity_{zt} + \alpha_z + \gamma_t + \eta_z t + \zeta_{sy} + \epsilon_{(i)zt}$$
 (1)

- Y includes TX outcomes (for zip z in month-year t) and quality outcomes (individual i in zip z and month-year t)
- α_z , γ_t , $\eta_z t$, and ζ_{sy} are zip code FEs, month-year FEs, zip-specific linear trends, and state-year FEs
- Activity: time-varying local exposure to exchange

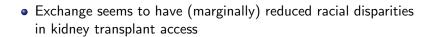
Measuring Exposure to Exchange Activity

- Use variation in exchange activity across time and place to estimate impact of exposure on transplant outcomes
- $Activity_{\tilde{z}t}$ = number of exchanges within 50 miles of zip code in the month of observation (excluding own if relevant)
- Why 50 miles? Patients must be able to cost-effectively access a participating center
 - 71% of exchange TXs are performed within 50 miles
- No evidence of demand-driven exchange adoption, endogenous patient relocation (Teltser, 2019)

Quantity Results

		Exchange	Direct Living	Any Living			
Nearby exchanges (Excluding Own)							
	White	0.00038*** (0.00003) [0.00084] 45.5%	-0.00011* (0.00006) [0.01104] -1.0%	0.00028*** (0.00007) [0.01213] 2.3%			
	Black	0.00017*** (0.00002) [0.00020] 86.7%	-0.00009** (0.00004) [0.00243] -3.7%	0.00010** (0.00004) [0.00269] 3.7%			
	Other	0.00020*** (0.00002) [0.00026] 77.6%	-0.00011** (0.00005) [0.00310] -3.5%	0.00009* (0.00005) [0.00342] 2.6%			
P-values for tests of different coefficients:							
Black and White Other and White Black and Other		0.000 0.000 0.387	0.765 0.971 0.756	0.028 0.032 0.907			

Quality Results


		Graft Survival			Registration	HLA
		>1 year	>3 years	>5 years	Duration (Days)	Mismatches
Nearby Exchanges (Excluding Own)						
	White	-0.0010 (0.0008) [0.93] -0.1%	-0.0006 (0.0012) [0.85] -0.1%	0.0010 (0.0018) [0.77] 0.1%	-0.798 (1.879) [493.87] -0.2%	0.0124*** (0.0047) [3.49] 0.4%
	Black	0.0026*** (0.0009) [0.91] 0.3%	0.0033** (0.0015) [0.80] 0.4%	0.0033 (0.0023) [0.69] 0.5%	-2.476 (2.685) [826.61] -0.3%	-0.0034 (0.0045) [4.20] -0.1%
	Other	0.0016* (0.0009) [0.94] 0.2%	-0.0020 (0.0015) [0.88] -0.2%	-0.0025 (0.0022) [0.81] -0.3%	-5.263* (2.913) [774.75] 0.7%	-0.0078 (0.0053) [3.78] -0.2%
P-values for tests of	f different co	pefficients:				
White and Black		0.002	0.048	0.425	0.609	0.015
White and Other		0.023	0.466	0.214	0.196	0.004
Black and Other		0.398	0.015	0.064	0.481	0.524

Summary of Key Findings

- When exchange exposure increases, black patients experience
 - larger % increase in exchange TXs and slightly larger % increase in living donor TXs than white patients
 - larger increases in 1 and 3-year survival than white patients
 - no decrease in antibody mismatches, while white patients do
- However,
 - implied substitution between direct living and exchange is 53% for black patients, 29% for white patients
 - as with white patients, black patients do not experience a reduction in time to transplant

Concluding Remarks

- Results can inform the design of kidney exchange matching algorithms and allocation policy moving forward
- How can we further reduce the gap?
 - Exchange programs could place greater emphasis on enrolling and matching disadvantaged patients
 - Another tool: expand list exchange, which can facilitate allocation of living donor kidneys from incompatible pairs to disadvantaged patients on the deceased donor waitlist

