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1 Introduction

Since the first images of Earth were captured by satellite in 1960, the availability of satel-

lite imagery has grown substantially, with now over one hundred terabytes of imagery

data collected daily. Alongside increasing imagery, a cross-disciplinary research com-

munity spurred by advances in computer vision has developed a range of algorithms to

transform raw images into predictions of social, economic, and environmental variables.

For example, remote sensing algorithms have enabled researchers to track deforestation

(Hansen et al., 2013), identify illegal mining activities (Swenson et al., 2011), and monitor

economic activity like agricultural land use (Potapov et al., 2022) and wealth (Jean et al.,

2016; Chi et al., 2022) at fine resolution and national or even global scales.

These predictions provide a treasure trove of new data to better understand key

drivers of human and environmental well-being and their use in empirical research is

growing rapidly. For example, measurements of global forest cover and deforestation from

Hansen et al. (2013) have been cited over 8,000 times since their release. However, these

remotely sensed predictions1 are indirect measures of the true variables of interest and

often exhibit substantial measurement error, which may be correlated with the variable

itself or with other variables in the model. As a result, remotely sensed variables may

introduce bias into both parameter estimates and associated measures of uncertainty

when used in downstream regression analyses. For example, errors in remotely sensed

air pollution have been shown to confound estimates of the relationship between air

pollution and mortality (Josey et al., 2022). These biases can arise whether remotely

sensed variables are used in causal inference settings with clear experimental designs, or

in descriptive analyses that are correlational.

While the biases in parameter estimation introduced by measurement error and meth-

ods for their correction have been long documented in the statistical literature (e.g., Little
1Throughout this paper, we use the phrases “remotely sensed” and “satellite-based” interchangeably.

Although our analysis relies exclusively on satellite imagery based predictions, other forms of remote
sensing, such as Light Detection and Ranging (LIDAR), similarly exhibit nonrandom errors that can
influence downstream regression analyses (Triglav-Čekada, Crosilla and Kosmatin-Fras, 2009).
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and Rubin, 2019; Wooldridge, 2010; Wang, McCormick and Leek, 2020), directly transfer-

ring error correction methods from other disciplines is complicated by the complex nature

of errors in remotely sensed measurements, which can arise from flaws in the imagery,

from key features not being visible, or from errors in the translation of the information

within the image (e.g., color and texture) into the outcome of interest (e.g., forest cover).

Thus, it is still common practice to use satellite-based measures without correction as

either the dependent (e.g., BenYishay et al., 2017; Sims and Alix-Garcia, 2017; Marx,

Stoker and Suri, 2019; Balboni et al., 2021) or independent (e.g., Chen et al., 2017; Crost

et al., 2018; Freeman et al., 2019; Harari, 2020; Kocornik-Mina et al., 2020; Proctor,

2021; Chen, Oliva and Zhang, 2022) variable in regression analysis. The degree of bias

introduced by measurement error in remotely sensed variables has yet to be systemat-

ically quantified, and a generalizable and easily implementable solution to account for

such errors has yet to be proposed.

In this paper, we quantify the extent to which continuous remotely sensed variables

introduce parameter bias and lead to incorrect estimates of parameter uncertainty when

used in regression analysis as either an independent or dependent variable. We do so both

using reanalysis of published research and using a set of real-data simulation experiments

that leverage a newly available benchmark dataset providing co-located ground truth

(“labels”) and remotely sensed predictions for multiple variables across the contiguous

United States. While simulations have been extensively used to demonstrate the efficacy

of all error correction methods we evaluate here (e.g., De Silva et al., 2017; Freedman et al.,

2008; Cole, Chu and Greenland, 2006), such results depend critically on assumptions

about the structure of measurement error in the experimental design. Because these

assumptions are largely untestable in applied settings, we rely on actual remotely-sensed

and ground truth measurements, as opposed to simulated data, to evaluate what types

of measurement error are typically present, what types of error lead to bias, and to what

degree these biases are amenable to correction.

We show that not accounting for measurement error, as is standard in most applied
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research, tends to substantially bias parameter point estimates and dramatically decrease

coverage2 across a diversity of empirical settings. For example, we find that 95% confi-

dence intervals estimated using remotely sensed data rarely contain the true parameter

of interest, raising concerns about the growing use of remotely sensed data in empirical

research. We demonstrate that while mean-reverting measurement error (negative corre-

lations between errors in one variable and itself) is common in remotely sensed variables,

differential measurement error (correlations between errors in one variable and levels of

another variable) is responsible for the majority of the induced bias.

We then present a method to account for measurement error that is feasible in cases

where researchers have even a small quantity of labeled data for calibration. We show

that multiple imputation, an “off-the-shelf” data imputation technique used widely in

statistics to solve missing data challenges, but so far untested in this setting, improves

the accuracy of recovered parameters and prevents exaggerated statistical precision across

a broad set of empirical models. In turn, corrected 95% confidence intervals contain the

true parameter of interest over 90% of the time. We demonstrate that multiple imputa-

tion performs well under common limitations that applied researchers face, such as small

samples of ground truth data located far from target areas of interest, and when ap-

plied in panel fixed effects settings commonly used for program evaluation. Such settings

receive little study in the error-correction literature, but are critical for informing the

applicability of error-correction methods in empirical research. Throughout, we compare

the performance of multiple imputation to other common error correction methods, show-

ing that it systematically out-performs alternative approaches. Collectively, our findings

indicate that multiple imputation is a generalizable and easily implementable method for

correcting parameter estimates that rely on remotely sensed variables.3

Our findings contribute to a nascent literature that has begun to document measure-

ment error in satellite-based measurements and explore its implications for parameter
2Coverage is defined as the likelihood that an estimated confidence interval contains the true parameter

of interest.
3Multiple imputation can be implemented off-the-shelf in R using the mice package, in Python using

the scikit-learn library, and in Stata using the mi command.
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estimates and uncertainty (Fowlie, Rubin and Walker, 2019; Ratledge et al., 2022). Re-

view articles raise the general issue (Jain, 2020; Gibson et al., 2021), and solutions to

the problem have been proposed in the case of binary landcover data (Alix-Garcia and

Millimet, 2020; Garcia and Heilmayr, 2022). One paper develops a method to correct

for mean-reverting measurement error when making remote sensing predictions of con-

tinuous variables by tailoring the loss function during algorithm development (Ratledge

et al., 2022). While this method appears to effectively reduce bias from mean-reverting

measurement error, it is not designed to address other types of measurement error such

as differential measurement error, which we find drives the majority of the bias induced

by remotely sensed variables. Further, the method is infeasible to implement for the

vast majority of researchers, who use, but do not themselves produce, remotely sensed

predictions. Though each unique analysis using remotely sensed data requires individ-

ual consideration, this rapidly growing field lacks a comprehensive assessment of the

magnitude of bias introduced by errors in remotely sensed measurements. This analysis

represents, to our knowledge, the most extensive set of experiments to date aimed at

informing the use and correction of remotely sensed measurements in regression analysis.

Moreover, while our quantitative insights are most relevant to analyses using remotely

sensed variables, the threats to parameter recovery that we identify, as well as the solution

that we propose, apply more generally to the use of machine learning (ML) predictions

in downstream regression analysis.

The paper proceeds as follows. Section 2 describes the data used throughout the pa-

per. Section 3 details a set of experiments designed to both quantify the biases introduced

by remotely sensed variables in regression analysis and to evaluate the performance of

multiple imputation and other error correction methods at mitigating these biases. Sec-

tion 4 presents results from these experiments and Section 5 concludes by highlighting

key considerations for researchers conducting regression analysis with remotely sensed

variables.
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2 Data

Our real-data simulation analysis relies primarily on a multi-label benchmark dataset from

Rolf et al. (2021) that includes remotely sensed predictions and corresponding ground

truth labels for six variables: forest cover, population density, nighttime luminosity, av-

erage household income, elevation, and road length. These predictions were constructed

from high-resolution visual imagery using the Multi-task Observation using Satellite Im-

agery and Kitchen Sinks (MOSAIKS) framework, a machine learning approach that relies

on an unsupervised featurization of imagery called random convolutional features in com-

bination with a ridge regression to train a model to predict an outcome of interest (see

Rolf et al. (2021) and Rahimi and Recht (2007) for details). Importantly, MOSAIKS gen-

erates predictions with similar error magnitude and structure to other commonly used

methods, such as a convolutional neural network (see Supplementary Materials Section

C.2, Figure B.2 and Rolf et al. (2021)’s Supplementary Figure 17), making these data

generally representative of many modern remotely sensed predictions.

Figure 1 shows these labels and remotely sensed predictions for all six variables

at 1km2 resolution across 100,000 sampled locations in the contiguous United States.4

Ground truth observations are collected from ∼2016 (see Table A.1 for details). Of

these 100,000 grid cells, we randomly sample 40,000 to facilitate computation throughout

the analysis. To increase the number and variety of variables considered, we augment

this dataset with observations of average temperature and precipitation from PRISM.5

Throughout our analysis, we focus on continuous remotely sensed variables as these are

most commonly used in applied economics studies (e.g., Heft-Neal et al., 2020; Freeman

et al., 2019; Ratledge et al., 2022). We standardize all our ground truth and remotely

sensed variables by the mean and standard deviation of the ground truth variable to

facilitate comparisons of coefficients across variable pairs.
4Note that the sampling was population weighted, which is why the missing locations in Figure 1 are

not uniformly distributed.
5Data available at https://prism.oregonstate.edu/. We assign each 1km x 1km grid cell the value

of the 0.8km x 0.8km PRISM grid cell that contains its center. Temperature and precipitation are 30
year averages from 1991-2020.
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To assess the implications of errors in remotely sensed variables in prior research,

we use data from Deschenes, Greenstone and Shapiro (2017)’s study of the effects of the

U.S. NOx budget program on ambient air pollution. These data include county-by-season

estimates of PM2.5 across the U.S. over the years 2001-2007, constructed by interpolating

ground monitor data across each county’s area. We replicate the authors’ original analysis

and then re-estimate their main specification using a satellite-derived PM2.5 dataset from

Van Donkelaar et al. (2021), a widely-used remotely sensed measure of air pollution, in

place of the original monitor data. To do so, we average the gridded monthly PM2.5 data

from Van Donkelaar et al. (2021) to the county-by-season level.

3 Methods

3.1 Empirical setting

To begin, we consider a straightforward setting in which a researcher is interested in

estimating the following simple linear regression:

yi = α + βxi + εi (1)

We assume that Equation 1 is correctly specified, such that recovered coefficients α̂ and

β̂ represent unbiased estimates of the true parameters of interest when Equation 1 is

estimated using ground truth data.6 Similarly, we assume that standard errors on the

coefficients recovered from estimating Equation 1 with ground truth data are unbiased

estimates of parameter uncertainty. In initial experiments, we consider a cross-sectional

research design, such that i indexes location (one of 40,000 1km x 1km grid cells across

the U.S.), but we later generalize our analysis to the panel data setting.

We assume the researcher, however, cannot directly estimate Equation 1 because she

cannot observe either y or x using traditionally collected ground truth data. Instead, she
6We address the implications of measurement error in the ground “truth” data themselves in the

discussion.
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must rely on a remotely sensed proxy, indicated by ỹ or x̃. For example, if ground truth

data for the independent variable x are not available, as illustrated in the left panel of

Figure 2, she will estimate what we call the “error-in-X” regression:

yi = αx̃ + βx̃x̃i + ϵi, (2)

where remotely sensed measures x̃ are used directly as proxies for x. Due to measurement

error in x̃, the researcher who estimates Equation 2 will recover different coefficients α̂x̃

and β̂x̃ and different estimates of their standard errors than those from Equation 1.

Similarly, if ground truth data for y are not available, as illustrated in the middle panel

in Figure 2, the researcher will estimate the analogous “error-in-Y ” regression, where

remotely sensed predictions ỹ are substituted for y in Equation 1. We design a set

of experiments to quantify how parameters differ when regressions are estimated using

ground truth versus remotely sensed data and to test the effectiveness of various error

correction methods at reducing these differences across a diversity of applied settings. We

detail these experiments below, and visually illustrate the overall experimental design in

Figure B.1.

3.2 Performance metrics

Our analysis quantifies bias introduced by remotely sensed measurements by compar-

ing recovered parameters in Equation 2 to those of Equation 1, in both the error-in-X

and error-in-Y cases. We similarly evaluate the performance of corrected models, which

leverage multiple imputation or alternative error correction approaches to adjust β̂x̃ (or,

analogously, β̂ỹ) and its estimated standard error. The four performance metrics we use

to compare uncorrected and corrected regression models to those using ground truth data

are: absolute proportional coefficient bias, proportional standard error bias, coverage, and

power (see Supplementary Materials Section C.1 for details).
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3.3 Experiment one: quantify parameter biases introduced by

remotely sensed measurements

In our first experiment, we systematically evaluate the extent to which error in remotely

sensed measurements induces bias in parameter estimates across diverse empirical set-

tings. The co-location of the labeled data and predictions from Rolf et al. (2021) enables

us to create a set of 42 different ordered pairs of variables7 (e.g., population density and

forest cover; nighttime luminosity and income, etc.). While it is impossible to create a

fully representative sample of the many possible empirical settings where remotely sensed

data could be used in regression analysis, these pairs provide a large and heterogeneous

set of regression models to evaluate the degree of bias introduced by measurement error

and the ability of multiple imputation to correct for it.

For each pair of variables, we estimate three regressions, reflecting the three data

availability regimes outlined in Figure 2: one where the ground truth labels are used for

both variables (as in Equation 1), one where the remotely sensed variable is used for the

dependent variable (i.e., error-in-Y ), and one where the remotely sensed variable is used

for the independent variable (i.e., error-in-X).

We calculate the distribution of uncorrected and ground truth estimates for each pair

of variables using a bootstrap procedure illustrated in Figure B.1. Specifically, we create

100 datasets of size 40,000 by randomly sampling with replacement from the original

dataset. Coverage is calculated as the fraction of the 100 bootstrap runs in which the

estimated confidence interval contains the ground truth point estimate. Power is calcu-

lated as the fraction of bootstrap runs where the null of β = 0 is rejected when this null

is also rejected in the ground truth data. Figures show the distribution of bias in the

regression coefficient (i.e., Equation S1) and bias in standard errors (i.e., Equation S2)
7We have 6 variables from Rolf et al. (2021) and add 2 climate variables from PRISM, leading to 8

total. Each variable can be paired with every other variable twice, once where it is the outcome variable,
and once where it is the independent variable. This gives 8 × 7 = 56 ordered pair combinations for
analysis. We do not explore remotely sensed predictions of climate data, so pairs including temperature
or precipitation variables are only estimated with two regressions. This leaves us 42 error-in-X and
error-in-Y models with associated ground truth models. All variables are normalized by their standard
deviation prior to regression analysis to facilitate comparison across pairs.
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over all bootstrap × variable pair combinations, and the distribution of coverage and

power over all variable pair combinations.8 All performance metrics are calculated for

only the 40 of the 42 variable pairs that have a significant (p < 0.05) relationship in the

true data.

3.4 Experiment two: evaluate the efficacy of multiple imputation

for correcting parameter biases and inference

In our second experiment, we use the empirical setup described above to evaluate the

efficacy of various error correction methods drawn from the statistics literature, including

multiple imputation. Similar to the uncorrected model, we compute bias in the regression

coefficient, bias in the standard errors, coverage, and power for each pair of variables for

a variety of error correction methods over the 100 bootstrapped samples. We focus our

main analysis and results on multiple imputation (Rubin and Schenker, 1991) due to its

prior performance in other fields (Rubin, 1987; Cole, Chu and Greenland, 2006; Keogh

and White, 2014), its ability to account for uncertainty, its more flexible assumptions

about the distribution of errors relative to the other calibration methods (Keogh and

White, 2014), and its performance in our analysis. All other error correction methods we

evaluate are described in Supplementary Materials Section C.4.

Multiple imputation, as well as all other error correction methods we consider, re-

lies on a user-provided calibration dataset where researchers obtain some quantity of

ground truth data. For example, the researcher may be estimating the error-in-X re-

gression Equation 2, and have access to a smaller calibration dataset where y, x, and x̃

are all available, as illustrated in Figure 2. Intuitively, the calibration dataset allows the

researcher to estimate the structure of the measurement error present in the remotely

sensed variables, and then to use that estimated structure to correct parameter estimates

and measures of uncertainty when estimating the regression of interest in the main sam-
8Averaging coefficients or standard errors over bootstrap runs before calculating bias gives consistent

results.
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ple. To implement this in our analysis, we partition each bootstrap sample of 40,000

observations into a “main” sample of size 28,000 (70%), where we assume the researcher

does not have access to ground truth data for all variables, and a “calibration” sample of

size 12,000 (30%), in which additional ground truth data is used for error correction, as

described below.

To illustrate how multiple imputation works, consider the error-in-X case. Multiple

imputation begins with a first-stage model, such as (but not limited to) linear regression,

where the relationship between the ground truth observation x and both the remotely

sensed observation x̃, and the ground truth observations of the outcome variable y is

estimated in the calibration sample. For example, the researcher might estimate a linear

first stage model using data from the calibration sample, as follows:

xi = δ + γx̃i + ψyi + ei (3)

Estimated coefficients from Equation 3, which is called the imputation step, describe how

the remotely sensed proxy relates to the ground truth measurement, conditional on the

outcome variable.9 For example, when extreme values of x are routinely underestimated,

as is common in remotely sensed estimates (e.g., see Figure B.2), γ̂ is greater than one.

Next, the estimated relationship from Equation 3 is used to impute a “corrected” value

of x̃ in the main sample, where ground truth measurements x do not exist. Call this

prediction x̂. In multiple imputation, this imputation step is repeated K times, such

that K versions of x̂ are generated using predictions from Equation 3. This duplication

of the error-correction imputation step can be done in a variety of ways, including through

bootstrapping or through estimating Equation 3 with Bayesian linear regression, as we
9Multiple imputation can easily be extended to more complex regression settings with additional

covariates or controls like fixed effects. This results in additional controls being included in Equations
3 and 4. We detail and implement multiple imputation in a setting with additional controls and fixed
effects in Section 4.6. Further, Equation 3 can also be nonlinear; for example, a random forest can
be used to flexibly estimate the relationship between x, x̃, and y, as well as any relevant covariates
(Van Buuren and Groothuis-Oudshoorn, 2011). Here, we use linear regression, but we show in Figure
B.7 that our results are very similar using other imputation models.
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do here, where K coefficient draws are taken from a posterior predictive distribution

assumed to be Gaussian. Regardless of its specific implementation, multiple imputation

uses a form of Equation 3 to generate a set of K corrected values of the remotely sensed

variable x̃ in the main sample. Denoting each of these x̂k, these predictions are then used

to run the following second stage regression model in the main sample K times:

yi = αk + βkx̂ki + uki , (4)

leading to K point estimates, α̂k and β̂k, as well as their standard errors. This set of

parameters is then used to derive final multiple imputation coefficients and measures

of uncertainty using Rubin’s Rule, a group of formulas based on asymptotic theory for

combining coefficient estimates and standard errors into final parameter estimates (Rubin

and Schenker, 1991).10 A key benefit of multiple imputation is that final coefficients

and standard errors are constructed accounting for uncertainty in the imputation step

(Equation 3). This method was originally designed to address systematic non-response

in surveys (Rubin and Schenker, 1991), but has been applied widely in biostatistics and

other applied statistics fields (Sterne et al., 2009; Liu and De, 2015).11

Figure 3 uses an example of one simple linear regression to illustrate how remotely
10The Rubin’s Rule combined multiple imputation coefficient estimate is the average across the K

point estimates from Equation 4: β̂MI = 1
K

∑K
k=1 β̂

k. Rubin’s Rule then combines the within-imputation
and the between-imputation variances to generate a single estimate of coefficient variance. The within-
imputation variance is calculated as the average of the conventional sampling variance across imputations:
Vw = 1

K

∑K
k=1 V (β̂k), where V (.) indicates variance. The between-imputation variance is calculated as

the variance of the estimated coefficient of interest across imputations: Vb =
∑K

k=1(β̂
k−β̂)

K−1 . The total
variance is the sum of the two: V (β̂) = Vw + Vb +

Vb

K .
11Readers may note that multiple imputation somewhat resembles the standard instrumental variables

approach to correct for measurement error, in which one error-prone variable is used as an instrument
for another, under the assumption that the errors are independent across the two variables (Wooldridge,
2010). A primary difference is that multiple imputation requires a small calibration dataset where ground
truth measurements are available, whereas two-stage least squares (2SLS) requires a second, independent,
measurement across the entire main sample. Obtaining such a measurement for the entire main sample
seems unlikely in the context of remote sensing, which is often leveraged in data-limited settings. Addi-
tionally, previous work has shown that two remotely sensed predictions of the same outcome tend to have
correlated errors Rolf et al. (2021). Another important difference between multiple imputation and 2SLS
is the types of measurement error they can correct – multiple imputation can address non-differential
measurement error, as discussed in the results, whereas standard IV approaches do not. Moreover, 2SLS
cannot be used to solve biases arising from an error-prone dependent variable (i.e., error-in-Y ).
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sensed measures can bias parameter recovery and how multiple imputation can correct

for such biases. Panel A shows that there is substantial measurement error in remotely

sensed estimates of road length; in particular, extremely high levels of road length are

systematically underestimated by the machine learning model. Panel B demonstrates

that this error introduces substantial bias in the estimation of the relationship between

population density and road length; in this “error-in-X” model, the slope coefficient turns

out to be biased upward. Multiple imputation uses a calibration sample to learn the rela-

tionship between true and predicted road length, controlling for population density, and

then adjusts all data points in the main sample to account for this estimated relationship.

A final regression with these adjusted data points – repeated multiple times with esti-

mates combined as described above – recovers an unbiased estimate of the true parameter

of interest, as shown in Panel C. In panels D and E, this same exercise is shown, but with

remotely sensed road length as the outcome variable, making it an “error-in-Y ” model.

There is substantially less bias for multiple imputation to correct in this example for the

error-in-Y than error-in-X case. In our real-data simulation experiment, we repeat the

estimation and correction shown in Figure 3 for all 40 pairs of variables in our benchmark

dataset.

3.5 Experiment three: examine the performance of multiple im-

putation in data-limited and panel data research settings

Our final set of experiments evaluates the robustness and generalizability of multiple

imputation in more data-limited and complex settings that applied researchers commonly

face. We investigate the implications of having a limited number of calibration data

observations and of having a calibration set distant from the main sample. We also

evaluate the challenges and efficacy of using multiple imputation with control variables

and in a triple-difference panel data research design used in a prominent research paper.

The methods for each experiment are described accompanying the findings, in the results
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section.

4 Results

4.1 Errors in remotely sensed measurements bias the distribution

of parameter estimates.

The bias introduced by errors in remotely sensed measurements across all regressions

between all pairs of variables is shown in Figure 4. Each panel shows the distribution of

each performance metric over all bootstrap samples for all 40 of the 42 pairs of variables

for which the ground truth data reject the null hypothesis of no empirical relationship at

the 0.05 significance level. Performance metrics for regression models using uncorrected

remotely sensed predictions are shown in purple. Median estimates of these distributions

are indicated with a black dot, while means are shown with a red dot. Error-in-X models

are shown in column A and error-in-Y models are shown in column B.

These results reveal that remotely sensed variables tend to introduce substantial bias

into linear regression coefficients. The median coefficient bias of the uncorrected estimates

is 23% across all regression models and bootstrap samples in the error-in-X case, and

10% in the error-in-Y case. Note the long tail in these distributions: for some pairs of

variables, substituting ground truth for remotely sensed observations leads to biases of

over 100% (e.g., night lights regressed on income with a mean bias of 700%, and elevation

regressed on income with a mean bias of 110%). These long tails lead the mean bias to

exceed the median bias, with a mean bias of 69% in the error-in-X case and 37% in the

error-in-Y case. Figure B.3 shows that coefficients tend to be exaggerated in the error-

in-X model but attenuated in error-in-Y models, although biases in both directions are

common in both cases.

Errors in remotely sensed measurements also lead to biased estimates of parameter

uncertainty (Figure 4, second row). Standard errors are biased large in the error-in-X
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case, with a median bias of 12%, but a long right tail. Somewhat more concerning is

that in the error-in-Y case, the uncorrected standard errors are biased downward relative

to true values, with a median bias of -12%, indicating that replacing dependent variable

ground truth observations with remotely sensed values tends to overstate the precision

of point estimates.

Importantly, large coefficient bias in the uncorrected approach leads to exceptionally

poor coverage in both the error-in-X and error-in-Y cases (Figure 4, third row). Whether

a remotely sensed variable is used as the independent variable or dependent variable, mean

coverage is below 25%, indicating that recovered 95% confidence intervals rarely contain

the true parameter of interest. This lack of coverage is concerning given the increasing

use of remotely sensed data for parameter recovery and causal inference. Power is not a

cause for concern in the uncorrected models, as mean power is higher than 95% in both

the error-in-X and error-in-Y cases (Figure 4, bottom row).

4.2 Diagnosing the origins of bias caused by remotely sensed

measurements

Many different forms of measurement error could be responsible for the biases observed

in Figure 4. The linear measurement error model (Keogh et al., 2020) is a fairly general

model of measurement error structure that helps elucidate the patterns we recover. In

this model, the remotely sensed variable is expressed as an affine function of the true

variable:

ỹ = θ + λy + u (error-in-Y )

x̃ = θ + λx+ u (error-in-X), (5)

where we assume u to be mean zero, cov(y, u) = 0 for error-in-Y , and cov(x, u) = 0

for error-in-X. For example, classical measurement error, perhaps the most commonly

assumed error structure in economics, follows Equation 5 with the additional assumptions
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that θ = 0, λ = 1, and cov(y, u) = cov(x, u) = 0 in both error-in-Y and error-in-X cases.

Another special case of the linear measurement error model is Berkson error, in which a

mismeasured variable is generated from a prediction or calibration equation, leading to

Equation 5 with λ < 1, a formal characterization of mean-reverting measurement error

(Keogh et al., 2020; Ratledge et al., 2022).

Under the most general form of the linear measurement error model, uncorrected

error-in-X and error-in-Y regression models recover the following slope coefficients (see

Supplementary Materials Section C.2 for details) in expectation:

E[β̂ỹ] = λβ +
σxu
σ2
x

(error-in-Y )

E[β̂x̃] = β
λσ2

x

λ2σ2
x + σ2

u

+
σyu

λ2σ2
x + σ2

u

(error-in-X), (6)

where σ2
x is the variance in the true variable x and σ2

u is the variance in the residuals

from the linear error model, u. Covariances between errors in one variable and values

of the other are indicated by σxu and σyu. When these covariances are non-zero, the

error is “differential” (Carroll et al., 2006). Equation 6 recovers the standard prediction

that classical measurement error (in which λ = 1 and all covariance terms are zero)

causes no bias in error-in-Y models but attenuates coefficients in error-in-X models by

a magnitude determined by the “reliability ratio” σ2
x

σ2
x+σ2

u
. In practice, however, biases can

additionally be influenced by λ and by differential measurement error. Under these more

general conditions, biases can be present in both error-in-X and error-in-Y cases, and can

lead to either attenuation or exaggeration of estimated coefficients.12 It is clear from the

substantial bias in the error-in-Y case shown in Figure 4, and from the exaggeration of

coefficients in the error-in-X case shown in Figure B.3, that the assumptions of classical

measurement error do not hold in this setting.
12For example, with λ < 0 and no differential measurement error, uncorrected error-in-Y models will

exhibit attenuated coefficients βỹ = λβ < β, while uncorrected error-in-X models can be biased in either
direction, depending on the relative magnitudes of λ and the reliability ratio. The special case of non-
differential Berkson measurement error involves a specific λ that exactly balances with the reliability
ratio to lead to no bias in the error-in-X case (Keogh et al., 2020). With differential measurement error
as in the general form in Equation 6, biases can arise in either direction for both model types.
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Instead, our results suggest that remotely sensed measures are best described by a

differential linear measurement error model with λ < 1.13 To see this, first note that

Figure B.4 shows substantial mean reverting measurement error, in which extreme values

are systematically underestimated in remotely sensed predictions (Bound and Krueger,

1991). This behavior generates values of λ < 1,14 which is expected when remotely sensed

measures are generated from a prediction model (Keogh et al., 2020) and is consistent

with evidence from remotely sensed income in Ratledge et al. (2022). Second, Figure B.5

shows non-zero covariance between errors in one variable (shown on the y-axes of each

panel) and levels of other variables (shown on the x-axes of each panel). This implies

that the second terms in both expressions in Equation 6 are non-zero and contribute to

bias. While mean reversion, differential error, and classical measurement errors all likely

play a role in coefficient bias, we show in Figure B.6 that differential measurement error

is responsible for most of the biases we uncover. This figure shows that a measurement

error model allowing for classical and differential measurement errors, but no mean-

reverting measurement error, explains 61% of the coefficient bias in the error-in-X case

and 90% of the bias in the error-in-Y case, across models (Figure B.6, bottom row). In

contrast, a measurement error model that allows only for classical and mean-reverting

measurement errors, but no differential measurement error, explains none of the variation

in either case (Figure B.6, middle row). When we allow for all three forms of error,

the linear measurement error model explains virtually all of the variation in observed

biases (Figure B.6, top row). Thus, empirically it appears that differential measurement

error, as opposed to mean reversion, is the most important contributor to coefficient bias

introduced by remotely sensed measurements. This motivates our evaluation of multiple

imputation, which has been shown in simulation to effectively correct for differential

measurement error (Shaw et al., 2020), and suggests that recently proposed methods to

correct for mean-reverting measurement error (Ratledge et al., 2022) may not account
13The Berkson error model also exhibits λ < 1, but Berkson error is non-differential and involves a

specific value of λ that leads to no bias in the error-in-X case (Carroll et al., 2006).
14We estimate values of λ ranging from 0.47 for income to 0.9 for forest cover across our six remotely

sensed variables.
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for the main source of bias induced by errors in remotely sensed estimates.

The biases in standard errors shown in Figure 4 are also consistent with differential,

mean-reverting measurement error. In general, reduced variance in the outcome variable

in an error-in-Y model due to λ < 1 will lower the sum of squared errors, reducing

estimated uncertainty in βỹ, consistent with the results shown in the second row of Figure

4. In contrast, reduced variance in the independent variable will lower the estimated

variance in x̃ and inflate standard errors, also consistent with results in Figure 4. However,

the presence of differential measurement error in addition to mean reversion complicates

this intuition and makes the direction of bias in uncertainty parameters theoretically

ambiguous (Carroll et al., 2006).

Together, these findings highlight the importance of accounting for non-classical mea-

surement error when estimating regressions using remotely sensed variables. Importantly,

multiple imputation presents an error correction method that applies to the most general

form of Equation 5, and has been shown to be effective at correcting bias in cases with

mean reversion and differential error (Shaw et al., 2020; Josey et al., 2022).

4.3 Multiple imputation successfully addresses bias in parameter

estimates across a diversity of regression models.

While uncorrected regression models estimated using remotely sensed measurements ex-

hibit substantial biases, we find that multiple imputation is highly effective at correcting

them. Figure 4 shows in blue the distributions of all performance metrics across all re-

gression models after using multiple imputation. Median coefficient bias is reduced from

23% down to 2% for the error-in-X case and from 10% down to 2% in the error-in-Y

case. Only 6% of the estimates were biased by more than 25% after multiple imputation

was applied in the error-in-X and error-in-Y cases, compared to 49% and 29% before

correction.

The standard errors estimated by multiple imputation are on average 7% and 9%
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larger than those estimated using ground truth data in the error-in-X and error-in-Y

cases, respectively, due to uncertainty from the first stage error correction model being

incorporated into the final parameter estimates (as shown in Equation 4). Thus, mul-

tiple imputation mitigates the problem of overly precise standard errors uncovered in

the uncorrected error-in-Y case, while also reducing the upward bias in standard errors

uncovered in the uncorrected error-in-X case.

With low bias and standard errors that account for both sample and imputation un-

certainty, models estimated using multiple imputation tend to have excellent coverage:

95% confidence intervals estimated from multiple imputation include the point estimate

from the ground truth labels >90% of the time for both error-in-X and error-in-Y cases

(Figure 4, third row). The additional uncertainty from imputation, however, leads mul-

tiple imputation to have marginally lower power than the uncorrected approach (mean

power falls from 98% to 97% for both the error-in-X and error-in-Y cases). Thus, for sim-

ple linear regression models using remotely sensed variables, multiple imputation appears

to reduce bias in parameter estimates and improve coverage at the cost of modest reduc-

tions in statistical power. Figure B.7 shows that this conclusion is consistent whether

multiple imputation is implemented using a Bayesian linear regression approach, as we

have used throughout our main analysis, or alternative methods such as linear regression

bootstrapping or predictive mean matching.

4.4 Multiple imputation performs well with calibration sets that

are small and that are distant from the main sample.

A primary cost to the researcher of implementing a correction method like multiple im-

putation is that a calibration set of ground truth labels co-located with both the remotely

sensed measurements and the remaining variables in the analysis must be obtained. The

experiments shown above use a randomly selected calibration sample of size 12,000 and

impute values for a main sample size of 28,000. However, in many empirical applications

19



it may be difficult or impossible to collect such a large and spatially well-distributed cal-

ibration dataset. Here, we assess the performance of multiple imputation under a range

of calibration set sizes and under different spatial distributions of calibration data to

evaluate the method’s generalizability to a wider range of real-world applications.

Sample size: Figure 5 shows how the performance of multiple imputation varies with

the size of the calibration set. The uncorrected model performance is depicted by the

horizontal purple line, which doesn’t vary with calibration set size because no calibration

data are used to correct the regression estimates. Grey lines indicate bias, coverage, and

power for each of the 40 regression models, while black lines and blue dots indicate median

(bias) or mean (coverage and power) values over models.15 Intuitively, coefficient bias

from the models corrected using multiple imputation increases as the calibration set size

falls. The rate of decrease in performance is similar in the error-in-X and error-in-Y cases,

with median bias increasing from 2% with 12,000 calibration set observations to 13% with

180 observations. However, because uncorrected regressions have much higher coefficient

biases in the error-in-X case, multiple imputation is on average more beneficial in this

setting. Specifically, in the error-in-X case, corrected median coefficient bias remains

nearly half the size of that of the uncorrected models, even with only 180 calibration

observations. In the error-in-Y case, multiple imputation has lower median bias than the

uncorrected model as long as the calibration set is above roughly 500 observations. With

fewer observations, however, the imputation procedure is poorly constrained and bias is

increased above the uncorrected model.

The second row of Figure 5 shows that estimated standard errors become increasingly

inflated as calibration set size declines. This is due to increased uncertainty in the cali-

bration model leading to increased uncertainty in the final estimates. Further, as a result

of increased coefficient bias, model coverage decreases slightly with reduced calibration
15In Figures 5 and 6 we report median coefficient and standard error bias, but mean coverage and

power. We do so because of the long tails of the distribution of bias, and because coverage and power are
binary for each bootstrap run of each model. Qualitative results are similar using means and medians.
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sample size, though less than proportionally with the increase in coefficient bias due to

increases in the estimated standard errors (Figure 5, third row). Finally, large standard

errors from small calibration samples lead to meaningful declines in statistical power:

mean power drops to 74% for error-in-X and 73% for error-in-Y when the calibration set

size is reduced to 180 observations.

Together, these results suggest that multiple imputation can reduce coefficient bias

even in cases where only a few hundred ground truth labels can be obtained, although

performance improves with the size of the calibration set. It also cautions that when

only minimal calibration data can be obtained, error correction techniques may exacer-

bate, rather than mitigate, bias relative to using the remotely sensed measures directly,

particularly in error-in-Y cases.

Spatial proximity: Another consideration in applied settings is the spatial proximity

of calibration data to the main sample area of interest. In some contexts, remotely

sensed data may be widely available, but it may be feasible to collect ground truth

data only in a limited geographic region. For example, while remotely sensed pollution

measures are ubiquitous, researchers may have access to air pollution monitors in only a

handful of sparsely sampled locations. This spatial separation between calibration and

main samples raises the possibility that multiple imputation will become less effective,

as the structure of the measurement error estimated in the calibration data may be less

applicable to main sample observations located far away. To evaluate this possibility,

we design an experiment (detailed in Supplementary Materials Section C.3) in which we

systematically increase the physical distance between the observations in the main and

calibration datasets and record the performance of multiple imputation at each separation

distance.

Figure 6 shows the four performance metrics for multiple imputation regression mod-

els (vertical axes) plotted against the distance between observations in the calibration

and main datasets (horizontal axes) for both the error-in-X and error-in-Y cases. As in
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Figure 5, the uncorrected model performance is depicted by the horizontal purple line.

Grey lines indicate bias, coverage, and power for each of the 40 regression models, while

black lines and blue dots indicate median (bias) or mean (coverage and power) values

over models. The figure shows that increasing the distance between the main and cali-

bration samples increases bias and decreases coverage, but does not substantially change

parameter uncertainty or power.

In the error-in-X case, multiple imputation outperforms the uncorrected model for

coefficient bias up until the maximum evaluated distance between the main and cali-

bration dataset of 1776km (16 degrees), though median bias increases from 2% in the

baseline experiment to 24%. Correspondingly, coverage gradually declines from a mean

of 92% at no spatial extrapolation to close to the uncorrected level of 19% at 1776km.

For the error-in-Y case, multiple imputation outperforms the uncorrected model only up

to separation distances of roughly two hundred kilometers, on average. As in Figure 5,

the loss of performance is similar in both cases, but the better baseline performance of

the uncorrected model in the error-in-Y case leads to more limited gains from multiple

imputation. Overall, the results of these spatial extrapolation calibration experiments

are broadly encouraging, but also caution against relying on multiple imputation when

calibration data are located very far from the main sample of interest, especially for

error-in-Y settings.

Importantly, in these extreme cases, removing the calibration data from the estimating

sample (i.e., using “standard” in place of “efficient” multiple imputation16) is a simple

solution that can substantially improve bias and coverage, at the cost of reduced precision.

The performance of standard multiple imputation is shown by the dotted lines in Figure

6. Across the range of spatial separation between the main and calibration samples, the

bias of standard multiple imputation is roughly one half to two-thirds that of efficient
16Throughout the paper, we emphasize results from what is called the “efficient” version of multiple

imputation, in which the calibration set is appended to the main sample when estimating the regression
shown in Equation 4. Efficient multiple imputation is generally preferable as it makes the best use of all
available data. Using a “standard” version of multiple imputation, where only the main sample is used
in estimation, tends to provide less precise estimates, but, as we show here, can reduce bias and improve
coverage when spatially extrapolating between the calibration and main samples.
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multiple imputation and the coverage is roughly double in both the error-in-X and error-

in-Y cases.

Together, these experiments document the returns to higher quantity and quality of

calibration data when implementing multiple imputation. They also demonstrate the

overall robustness of multiple imputation as an error correction method in data-limited

settings. Our results suggest that multiple imputation can reduce parameter bias even

with a relatively small or distant calibration set, but that in settings with extremely

limited calibration data, biases can be amplified and power reduced. Importantly, across

all settings analyzed, the coverage of multiple imputation models exceed that of the

uncorrected models, so long as standard multiple imputation is used when spatially ex-

trapolating.

4.5 Multiple imputation performs well relative to other correc-

tion methods.

Above, we compared bias, coverage, and power metrics between uncorrected models and

models corrected with multiple imputation. Here, we additionally evaluate the perfor-

mance of multiple imputation as compared to other common error correction methods,

each of which is described in detail in Supplementary Materials Section C.4.

Figure B.8 shows that with a randomly distributed calibration dataset multiple impu-

tation has lower bias and higher coverage in the error-in-X case than all other approaches

we consider. The closest contender to multiple imputation is “complete case analysis,” the

approach of directly applying the coefficient estimated in the calibration sample to the

main sample, which has almost the same performance as multiple imputation. However,

complete case analysis has slightly lower coverage and its performance drops rapidly rel-

ative to multiple imputation methods at lower sample sizes (shown in Figure B.11) and

with more distant calibration datasets (shown in Figure B.13).

For the error-in-Y case, the choice of error correction method is much less consequen-
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tial, as all correction approaches perform quite well at lowering coefficient and standard

error bias and raising coverage (see Figure B.9). All correction methods exhibit a similar

decline in performance with decreased sample size and with increased spatial distance

between main and calibration datasets (see Figures B.12 and B.14).17 The only excep-

tion to this general finding is that complete case analysis leads to slightly more bias than

other correction methods (see Figure B.9). As in the error-in-X case, this approach is

also less robust to small and distant calibration samples (see Figures B.12 and B.13).

In sum, these results are consistent with prior literature on statistical error correction,

demonstrating that multiple imputation approaches outperform other error correction

methods for most metrics. However, multiple imputation is rarely, if ever, empirically

evaluated against these alternative error correction methods in experiments that examine

the influence of sample size or spatial separation between calibration and main samples

(McNeish, 2017). Overall, we find robust evidence that multiple imputation is as good

as or better than common alternative error correction techniques, even when calibration

data are limited or spatially distant.

4.6 Multiple imputation performs well in fixed effects experimen-

tal designs.

The analyses above use remotely sensed variables in cross-sectional simple linear regres-

sion frameworks. In practice, however, many researchers use remotely sensed variables in

more complex research designs. We conduct two experiments to evaluate the potential

bias introduced by remotely sensed variables, as well as the efficacy of multiple imputa-

tion, in such contexts.

First, we replicate the analysis shown in Figure 4 using a cross-sectional fixed effects

research design, rather than simple linear regression. By including state fixed effects in the

estimating equation, we identify the relationship between the outcome and independent
17External calibration methods generally perform poorly, but exhibit little decay in performance with

changes in calibration data quantity and quality. We address this approach in the Discussion.
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variable using only within-state variation across 1km×1km grid cells. To implement this,

for each pair of variables and each bootstrap sample, we first residualize all variables with

respect to the fixed effects in both the main sample and the calibration sample. We then

perform all analysis steps as outlined in previous sections.18 Figure B.15 shows that the

challenges to parameter estimation from using remotely sensed variables in the simple

regression framework are replicated when using spatial fixed effects, as is the ability

of multiple imputation to address them. This suggests that the threats to estimation

posed by errors in remotely sensed variables may not be easily remedied by flexible

spatial controls, and that multiple imputation is effective at reducing bias and improving

coverage in research designs relying on spatial fixed effects.

Second, we consider using remotely sensed predictions in a panel data setting with

fixed effects and a set of control variables. Specifically, we replicate the main specification

from Deschenes, Greenstone and Shapiro (2017)’s study of the effects of the U.S. NOx

budget program on ambient air pollution. This regression model uses panel data and a

suite of spatial and temporal fixed effects to construct a “triple-difference” research design

in which PM2.5 is compared across states, years, and seasons that are (versus are not)

covered by the NOx budget program.19 The estimating equation is:

PM2.5cst = β1{NBP Operating}cst +Wcstρ+ µct + vcs + νst + ϵcst (7)

where c is county, s is season (either “summer” or “winter”, each of which is six months),

and t is year. PM2.5cst is the ambient concentration of PM2.5 measured in µg/m3 and

1{NBPOperating}cst is an indicator function that is equal to one when the NOx budget
18This approach is motivated by the Frisch-Waugh-Lovell Theorem (Lovell, 2008). As fixed effects

are control variables like any other, they can be projected out of the outcome and treatment variables,
rather than being directly controlled for, without any implication for recovered coefficients of interest.
Note that this approach is more computationally efficient than including the fixed effects directly, and it
removes issues in settings where a fixed effect needed for prediction in the main sample is not identifiable
in the calibration sample, such as with spatial fixed effects and spatially disjoint main and calibration
sets. This is discussed further in the replication of Deschenes, Greenstone and Shapiro (2017) below.

19Note that the NOx budget program was only operational during summer months. See Deschenes,
Greenstone and Shapiro (2017) for details on the empirical design.
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program is operational for a given county, season, and year. β is the coefficient of interest

and indicates the influence of the NOx budget program on ambient PM2.5. Wcst is a

matrix of weather controls, including precipitation, temperature and dew point temper-

ature,20 µct is a set of county-by-year fixed effects, vcs is a set of county-by-season fixed

effects, and νst is a set of season-by-year fixed effects.

The authors used daily PM2.5 concentrations from ground monitors for their analysis,

interpolated to the county-season-year level. Here, we show that directly substituting

these data for satellite-derived PM2.5 leads to substantial bias in the coefficient of interest,

β. To do so, we first replicate the finding from Deschenes, Greenstone and Shapiro (2017)

that the NOx budget program reduced average county PM2.5 by 1.03 µg/m3. Our result,

in Table 1, column 1 is identical to the authors’ estimate in their Table 2, column 5.

Second, we replace the authors’ station data with PM2.5 observations from the widely-

used remotely sensed Van Donkelaar et al. (2021) dataset and re-estimate Equation 7.

We find that using remotely sensed air pollution data attenuates the estimated effect of

the budget program on air pollution by ∼50% relative to the original paper and reduces

standard errors by ∼35% (Table 1, column 2). In turn, the 95% confidence interval

estimated in column 2 does not contain the original point estimate from Deschenes,

Greenstone and Shapiro (2017). This suggests that the previous findings of substantial

bias, overly precise standard errors, and low coverage in the error-in-Y case shown above

using data from Rolf et al. (2021) generalize to the context of satellite-based air pollution

data and a fixed effects panel data setting with high-dimensional controls.

We then evaluate whether multiple imputation can effectively correct for the estimated

bias. To mimic the likely situation that the calibration set would be available in certain

geographical units but not others, we randomly assign full county time series from the

replication dataset into either a main sample (70% of the counties) or calibration sample

(30% of the counties). This reflects a setting where, for example, air pollution monitor

data are available in a handful of counties, but not in all of them. To ensure there are
20Temperature and dew point temperature are represented using the share of days in each county-

season-year that fall within a set of 20 bins defined by quantiles of the daily distribution.
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adequate calibration samples for both the participating (“treated”) and non-participating

(“control”) counties, we sample the main and calibration sets proportionally from the

treated and control counties identified in Deschenes, Greenstone and Shapiro (2017).21

A rich set of fixed effects are used in Deschenes, Greenstone and Shapiro (2017)

to create a triple-difference research design. While this lends credibility to the causal

interpretation of the estimated β coefficient, these fixed effects introduce some complexity

into the application of multiple imputation. In particular, treating these fixed effects as

standard controls by including them directly in both stages of multiple imputation is

infeasible. This is because the county-specific fixed effects µct and vcs can be estimated

in the first (i.e., imputation) step of multiple imputation only for the counties falling into

the calibration set. Making predictions from this model in the main sample is impossible

because the fixed effects for those main sample counties are unknown.

We address this challenge by residualizing all regression variables by µct and vcs prior to

the multiple imputation analysis, effectively controlling for these county-year and county-

season fixed effects throughout the entire multi-step procedure.22 Note that because the

season-year fixed effects νst are estimated using data from all counties in the sample,

they can be treated identically to other controls in the regression. After residualization,

we conduct multiple imputation in a standard manner, using the calibration sample to

estimate how residualized ground truth pollution relates to residualized remotely sensed

pollution and the other residualized model controls, including the season-year fixed ef-

fects (analagously to Equation 3). Denoting residualized variables with a double dot

superscript, as in ¨PM2.5, we estimate:

¨PM2.5cst = γ ˜̈PM2.5cst + ψ1 ¨{NBP Operating}cst + Ẅcstϱ+ ν̈st + ecst. (8)

Then in the main dataset (where we assume ground truth data for PM2.5 are not avail-
21“Treated” counties are in states that have an operational NOx budget program at some point in

the sample, while “control” counties are in all other states investigated by Deschenes, Greenstone and
Shapiro (2017).

22This approach is, again, motivated by the Frisch-Waugh-Lovell Theorem (Lovell, 2008).
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able), we use the estimated calibration model from Equation 8 to impute residualized

values of true PM2.5, K times. We can then perform K estimations of the following

regression, using each of the imputed datasets k (analogously to Equation 4):

ˆ̈PM2.5kcst = βk
1 ¨{NBP Operating}cst + Ẅcstρ

k + ν̈kst + ϵkcst (9)

In both Equations 8 and 9, standard errors are clustered by state-season, following De-

schenes, Greenstone and Shapiro (2017). Coefficients and standard errors are recovered

from across K multiple imputations using Rubin’s Rule. As in all the experiments above,

we use efficient multiple imputation, which includes the calibration dataset along with

the main dataset when estimating Equation 9. We repeat the random splitting of the

data into main and calibration sets and the multiple imputation analysis 200 times to

recover a distribution of bias and of the effectiveness of multiple imputation.23 Reported

point estimates and standard errors from multiple imputation are calculated as means

over the 200 runs; median estimates are nearly identical.

Column 3 in Table 1 shows that multiple imputation removes ∼60% of the bias in

the coefficient introduced by the remotely sensed pollution data and ∼40% of the bias in

the standard errors.24 Moreover, the corrected 95% confidence interval now contains the

original point estimate. These findings demonstrate the ability of multiple imputation

to generalize to a regression framework exploiting panel data with a large set of semi-

parametric control variables.

It is important to note that in a fixed effects research design, the exact implementation

of multiple imputation will depend on the chosen fixed effects and the spatial and temporal

structure of the calibration and main samples. While we have shown one adaptation of

multiple imputation designed to meet the needs of a particular dataset and research
23Note that in practice, researchers would only have access to one main dataset and one calibration

dataset. Here, we bootstrap the entire procedure in order to capture sampling variability, as we have
access to both ground truth and remotely sensed pollution in all counties.

24Note that the PM2.5 data from Van Donkelaar et al. (2021) rely on remotely sensed variables as well
as other inputs, such as station data and a chemical transport model. This highlights the applicability
of multiple imputation to error-prone predicted variables beyond those that are purely remotely sensed.

28



design, this procedure can easily be adjusted to match the nature of the calibration data

available and the structure of the fixed effects estimated in other contexts. Residualizing

fixed effects when they cannot be included as standard controls due to the structure of the

calibration set, while including all other fixed effects and control variables in both stages

of multiple imputation, generalizes easily to most settings and appears to be effective.

Here, we have considered remotely sensed variables in a panel data setting, but prior

work has similarly documented the effectiveness of multiple imputation in panel data

settings where measurement error arises for other reasons, such as survey non-response,

entry errors, or inability to comprehensively track individuals over time in a longitudinal

study (e.g., De Silva et al., 2019, 2017; Spratt et al., 2010; Nevalainen, Kenward and

Virtanen, 2009).25 However, to our knowledge, this prior literature has not evaluated

a spatially structured calibration set, as we have done here by removing entire county

time series from the main sample, nor explored how to handle fixed effects that cannot

be treated as standard controls in multiple imputation. This spatial structure, and its

implications for fixed effects estimation, is very likely to be a key feature of available

calibration data in many applied economics settings, and it is encouraging to see that

even in this complex empirical setting, multiple imputation performs well at mitigating

parameter biases.

5 Discussion

As the uses and benefits of remotely sensed data continue to expand across many disci-

plines, it is increasingly important that the challenges these data raise be examined and

that corresponding solutions be identified, tested, and improved. In this paper, we make

progress toward these goals by evaluating the risks that measurement errors in remotely

sensed data pose for parameter recovery in regression analyses. First, we quantify the
25There is a large literature investigating the effectiveness of multiple imputation in longitudinal study

settings, but to our knowledge none consider the estimation of panel data models with spatial and/or
temporal fixed effects. In some longitudinal simulation studies, multiple imputation has been found to
exhibit variable performance, depending on assumptions about error structure (Twisk et al., 2013).
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biases introduced by remotely sensed variables when used in downstream regression anal-

yses. We uncover substantial bias in regression coefficients and associated standard errors

when using a large set of remotely sensed environmental and economic variables in simple

linear regression models. Second, we demonstrate that a standard statistical technique

for imputation of missing data, multiple imputation, performs well at mitigating these

biases across a diversity of contexts, as long as researchers have access to some amount

of ground truth data. These results apply most directly to studies leveraging remotely

sensed variables in regression analysis, but are relevant more broadly to analyses relying

on machine learning predictions in downstream regressions (Wang, McCormick and Leek,

2020).

These results call into question the findings of previous papers that directly use re-

motely sensed measures in regression analyses without correction. However, there are a

few important features and limitations to keep in mind. First, the empirical returns to

using multiple imputation as a correction method are higher for remotely sensed mea-

surements with lower predictive power. For example, Figure B.16 shows that within the

Rolf et al. (2021) benchmark dataset used throughout this paper, variables with higher

R2 in the underlying remote sensing model exhibit lower bias when used in regression

analysis without correction, and therefore have a lower value of applying multiple im-

putation. As remotely sensed measurements improve, biases introduced in downstream

regression analyses are likely to become smaller. However, the growing use of remotely

sensed socioeconomic indicators, which tend to be more difficult to sense than directly

visible natural phenomena like forest cover, indicates that measurement error and its

correction will remain important considerations.

Second, we have assumed throughout the analysis that ground-based measurements

are fully accurate. Of course, measurement error is also present in traditional data col-

lection methods and threatens parameter recovery in traditional analyses as well (Little

and Rubin, 2019). In some cases, particularly in contexts without established data man-

agement systems, ground-based measurements may actually exhibit larger measurement
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error than satellite-based predictions (Lobell et al., 2020). However, remotely sensed

measurement error is often substantially larger than errors we consider in traditional set-

tings; for example, satellite-based estimates of income or wealth generally can explain

just a half to two-thirds of the variation in ground truth data (Chi et al., 2022; Jean

et al., 2016; Yeh et al., 2020; Rolf et al., 2021; Ratledge et al., 2022). Thus, while ground

truth data are rarely perfectly measured, there is a much larger scope for parameter bias

arising from such substantial remotely sensed prediction errors.

Third, multiple imputation is under-studied within the context of the empirical models

most often employed by applied economists. While we have shown that multiple impu-

tation performs well in a triple-difference panel fixed effects research design used in prior

work, more theoretical and simulation-based analysis is necessary to fully characterize

the benefits and limitations of multiple imputation in panel data settings.

Finally, in most of the results emphasized here, we have assumed researchers have

access to a calibration dataset in which ground truth measurements are available for

both the dependent and independent variables (see data availability regimes in Figure

2). This is called “internal calibration” in the statistics literature. However, in some

cases researchers may only have access to an “external calibration” dataset, in which

ground truth data are available only for the remotely sensed measure (whether it is the

dependent or independent variable). We show in Figures B.8 and B.9 that multiple

imputation becomes much less effective in this setting.

In sum, we show across a variety of settings that multiple imputation is highly effective

at reducing parameter biases introduced into regression analysis due to remotely sensed

measurements. While there are important limitations to its effectiveness that should be

considered, this method is simple, easy to implement via existing packages in software

platforms such as R, Stata, and Python,26 and it generalizes well across a wide range

of empirical contexts, including when calibration data are limited and when regression
26There are different packages available for multiple imputation in most platforms. For example, mice

is available in R, IterativeImputer is available within scikit-learn in Python, and a variety of mi
commands are available in Stata.
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models leverage panel data and standard fixed effects research designs.
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Figures

Figure 1: Ground-truth labels and remotely sensed predictions of forest cover,
elevation, income, nighttime lights, population density, and road length from
Rolf et al. (2021). Maps show ground-truth labels for 80,000 1km x 1km grid cells
which were sampled with a population-weighted uniform-at-random sampling scheme
from across the continental United States and are aggregated to 20km x 20km for vi-
sualization. Scatters show the relationship between ground truth (y-axis) and remotely
sensed predictions (x-axis) for each variable. Text under each variable name gives the
original ground-truth data source.
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Error-in-X Error-in-Y Ground truth

   x       x      y      y~ ~    x       x      y      y~ ~    x       x      y      y~ ~

Main
sample

Calibration
sample

Data not available
Data available

Figure 2: Three data availability regimes with different implications for pa-
rameter recovery and bias correction. Figure shows three possible scenarios for
data availability, each of which is evaluated in this analysis. First, in the error-in-X case
shown on the left, the main analysis sample includes ground truth data for the depen-
dent variable y, but only remotely sensed measurements for the independent variable x
(denoted x̃). The calibration sample, which is generally smaller than the main sample,
includes these observations plus ground truth observations for the independent variable x.
In contrast, the error-in-Y case shown in the middle column includes ground truth x and
remotely sensed ỹ in the main sample, and additional ground truth y in the calibration
sample. In the ground truth case, no bias is present and no calibration is necessary, as
ground truth observations are available in the entire main sample.
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Figure 3: Remotely sensed predictions introduce bias in parameters recovered
in downstream regression analyses: example from predictions of road length.
Figure uses ground truth population data and remotely sensed predictions of road length
to illustrate how measurement error in remotely sensed predictions can bias downstream
regression coefficients and estimated standard errors. Panel (A) shows ground truth ob-
servations of total road length within 1km × 1km grid cells on the y-axis, plotted against
satellite-based predictions of total road length on the x-axis. Panel (B) shows that the
measurement error evidenced in panel (A) leads to a biased estimate of the relationship
between population density and road length. Panel (C) shows data points and a regres-
sion model both adjusted using multiple imputation to correct the bias introduced by
remotely sensed road length. Panels (D) and (E) repeat these analyses in an “error-in-
Y ” model in which remotely sensed road length is the outcome variable and population
density is the independent variable. In this case, bias from measurement error is minimal,
but multiple imputation corrects for overly precise standard error estimates.
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Figure 4: Bias, coverage, and power for regression models using remotely
sensed variables both with and without correction via multiple imputation.
Figure shows the distribution of bias, coverage, and power over a set of 100 bootstrapped
estimates of 40 regression models, each of which estimates the relationship between two so-
cioeconomic and/or environmental variables (e.g., income and temperature; road length
and forest cover). Purple distributions indicate regression models in which remotely
sensed variables are used without correction as either a dependent (panel (A), “error-in-
X”) or independent (panel (B), “error-in-Y ”) variable, while blue distributions indicate
regression models in which multiple imputation was used with a corresponding calibra-
tion set to correct bias in recovered parameter estimates. The top two rows show the
proportional bias in regression coefficients and standard errors (where 0.25 indicates a
25% bias), while the bottom two rows show coverage and power. Data for violin plots
has been winsorized for visual display purposes only.
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Figure 5: The effect of calibration set size on the ability of multiple imputation
to correct biases introduced by remotely sensed variables. Figures show median
bias, mean coverage, and mean power as a function of the size of the dataset available for
calibration in the multiple imputation procedure. Horizontal purple lines show values for
the uncorrected model, which does not rely on a calibration set. Solid black lines show
median bias and mean coverage and power values across all regression models. Light grey
lines show these measures for each of 40 regression models estimating the relationship
between two socioeconomic and/or environmental variables (winsorized for display). Blue
dots indicate values for a calibration set size of 12,000, as is used throughout the rest of
the analysis (e.g., in Figure 4). As in Figure 4, panel (A) shows results for regressions
in which remotely sensed variables are used as independent variables (i.e., “error-in-X”),
while panel (B) shows results for regressions in which remotely sensed variables are used
as dependent variables (i.e., “error-in-Y ”).
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Figure 6: The effect of distance between calibration and main datasets on the
ability of multiple imputation to correct biases introduced by remotely sensed
variables. Figures show median bias, mean coverage, and mean power as a function
of the distance between the calibration set and the main regression sample. Horizontal
purple lines indicate values for the uncorrected model, which does not rely on a calibration
set. Solid black lines show median bias and mean coverage and power values across all
regression models. Light grey lines show these measures for each of 40 regression models
estimating the relationship between two socioeconomic and/or environmental variables
(winsorized for display). Blue dots indicate average values for a random sampling of the
calibration set (i.e., no spatial separation between calibration and main samples imposed).
Dotted lines show values for a “standard” version of multiple imputation, where, unlike
the “efficient” version of multiple imputation used throughout the text, the calibration set
is not appended to the main set when estimating the parameter of interest. As in Figure
4, panel (A) shows results for regressions in which remotely sensed variables are used as
independent variables (i.e., “error-in-X”), while panel (B) shows results for regressions in
which remotely sensed variables are used as dependent variables (i.e., “error-in-Y ”).
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Dependent variable:

PM2.5 PM2.5 Satellite PM2.5 Satellite
Ground monitor Uncorrected Multiple Imputation

(1) (2) (3)

NOx budget program −1.03 −0.52 −0.82
(0.27) (0.18) (0.22)

t-statistic −3.80 −2.95 −3.73
Main sample (N) 4,172 4,172 2,912
Calibration sample (N) 1,260

Table 1: Replication of Deschenes, Greenstone and Shapiro (2017) using re-
motely sensed air pollution, with and without correction via multiple im-
putation. Column (1) shows the paper’s original estimate and standard errors of the
effect of the NOx budget program on ambient PM2.5. Standard errors and t-statistic
are calculated from the full original dataset, where standard errors are clustered at the
state-season level. Column (2) shows the same estimate using uncorrected satellite PM2.5

data from Van Donkelaar et al. (2021) in place of ground monitor data. Standard errors
and t-statistic are computed identically to column (1). Column (3) shows point esti-
mates and standard errors corrected using multiple imputation, where 30% of the data
was used as a calibration dataset. The 70/30 split of the data sample is done with 200
bootstrap samples and parameters shown (including standard errors and the t-statistic)
reflect means across this distribution of bootstrap samples (median estimates are nearly
identical).
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A Supplementary Tables

Variable Units Native resolution
Forest cover % forest cover ∼ 30 m× 30 m
Elevation meters ∼ 611.5 m× 611.5 m
Population density log(people per sq. km) ∼ 1 km× 1 km
Nighttime lights log(nanoWatts /cm2/sr) ∼ 500 m× 500 m
Income USD per household census block group
Road length meters polyline
Housing price USD per sq. ft. geocoded point data

Table A.1: Description of variables obtained from Rolf et al. (2021). Table lists
the variables that form the benchmark dataset leveraged throughout this analysis. Each
variable is measured both using remote sensing and using ground truth observations.
Most of the ground truth data are based on measurements from 2010-2015. Ground-
truth values (labels) for these tasks are assembled from publicly available data, and all
remotely sensed predictions are made available by the authors at https://codeocean.
com/capsule/6456296/tree/v2. More details on the original data are described in Rolf
et al. (2021).
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B Supplementary Figures

42 pairs of combinations of:
forest cover, population density, 
income, elevation, road length,
nighttime lights, 
as well as temperature and 
precipitation

for each 
pair

Error in x Error in y Ground truth
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Figure B.1: Experimental design used to evaluate the impact of remotely
sensed variables on downstream regression analyses. Schematic outlines experi-
ments used to evaluate the bias, coverage, and power implications of measurement error
introduced into regression analysis by remotely sensed variables.
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Figure B.2: Remotely sensed consumption from Jean et al. (2016) and re-
motely sensed PM2.5 from Van Donkelaar et al. (2021) display mean-reverting
measurement error. Panels A-D show errors in consumption predicted from satellite
images (measured in $/person/day) by Jean et al. (2016) plotted against corresponding
ground truth values of consumption for four different countries in Africa. Panel E shows
errors in remotely sensed county-level PM2.5 (measured in µg/m3) from Van Donkelaar
et al. (2021) plotted against U.S. EPA monitor-based PM2.5 over the years 2001-2007.
Downward slopes in all panels indicate mean-reverting measurement error (Bound and
Krueger, 1991), consistent with λ < 1 in Equation 5.
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Figure B.3: Remotely sensed variables tend to inflate coefficients in error-in-X
models and attenuate coefficients in error-in-Y models. Figure decomposes results
from the top row of Figure 4 into coefficient biases in regression models with true slope
coefficients less than zero (labeled “Negative”) versus those with true slope coefficients
greater than zero (labeled “Positive”). Here, proportional bias is signed and is computed
as

ˆ̃
β−β̂

β̂
, following notation from Section 3. Using this definition, attenuation bias would

appear as positive bias for true negative coefficients (first column of each panel) and as
negative bias for true positive coefficients (second column of each panel). While there is
large heterogeneity displayed, uncorrected error-in-X models tend to exhibit coefficient
inflation, while uncorrected error-in-Y models tend to exhibit attenuation (shown in
purple). In contrast, coefficients corrected using multiple imputation (shown in blue)
display minimal bias and exhibit no systematic inflation or attenuation of coefficients.
Data for violin plots has been winsorized at the 2.5% and 97.5% levels to cap outliers for
visual display purposes only. The unwinsorized mean is indicated by the red circle while
the median is indicated by the black circle.
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Figure B.4: Remotely sensed predictions of six diverse variables exhibit mean-
reverting measurement error. Figure shows the relationship between remotely sensed
values (y−axis) and ground truth values (x-axis) for all six variables used throughout
the analysis and obtained from Rolf et al. (2021). Slope coefficients λ for each subplot
correspond to the Equation 5 and are indicated visually by the blue line. The 45 degree
line is indicated in black. All estimated values of λ are less than unity, demonstrating
that these remotely sensed predictions exhibit mean-reverting measurement error, which
contributes to bias in both error-in-X and error-in-Y regression models (see Equation 6).

5



Figure B.5: Relationships between error residuals in one variable and levels of
another variable show differential measurement error for many variable pair
combinations. Residuals from the linear measurement error model in Equation 5 are
plotted on the y-axis against ground truth values of all other variables on the x-axis. Off-
diagonal boxes show the covariance between a variable’s remotely sensed residual errors
and the true value of another variable. Any nonzero correlations indicate the presence of
differential measurement error in remotely sensed variables (i.e., non-zero values of σyu or
σxu in Equation 5). Diagonals are omitted as they provide information about λ (shown
in Figure B.4), not information about differential error.
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Figure B.6: Decomposing the source of bias introduced by remotely sensed
measurements in downstream regression analyses. As detailed in Section 4.2, both
mean reverting measurement error and differential measurement error can contribute to
bias in error-in-X and error-in-Y regression models. This figure decomposes overall bias
to show that differential measurement error is the most important factor in explaining
the coefficient biases we recover. Each row plots observed coefficient bias (y-axis) against
the theoretically predicted bias that would arise under alternative assumptions about
measurement error structure (x-axis). The bottom row assumes no mean reversion, but
allows for the presence of differential measurement error. The middle row assumes non-
differential measurement error, but allows for mean reversion. The top row is the most
general, and allows for both mean reversion and differential measurement error. This top
row shows that together, these two forces explain all of the observed coefficient biases we
recover across our diverse regression models.
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Figure B.7: Proportional coefficient bias and mean computation time for
commonly used multiple imputation methods. Figure shows performance and
compute time for the three most commonly used multiple imputation methods imple-
mented in the mice package in R. The top row shows proportional coefficient bias while
the bottom row shows the relative time taken to perform the bias correction for a single
variable (N = 40, 000). Results indicate that the Bayesian linear regression specifica-
tion for multiple imputation (labeled “mi.norm”), which we use throughout our analysis,
out-performs predictive mean matching (labeled “mi.pmm”) and bootstrap linear regres-
sion (labeled “mi.norm.boot”), while being computationally the least demanding. Results
shown throughout the main text are from error correction method “mi.norm”.
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Figure B.8: Performance of alternative error correction models in the error-
in-X case. Figure shows proportional coefficient bias, proportional standard error bias,
coverage, and power across all regression models tested for each of nine error correction
models, one data subsampling approach, and the uncorrected regression approach. Data
for violin plots has been winsorized at the 2.5% and 97.5% to cap outliers for visual
display purposes only. The unwinsorized mean is indicated by the red circles and the
corresponding median is in black. Error correction approaches are detailed in Section
C.4.
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Figure B.9: Performance of alternative error correction models in the error-
in-Y case. Figure shows proportional coefficient bias, proportional standard error bias,
coverage, and power across all regression models tested for each of nine error correction
models, one data subsampling approach, and the uncorrected regression approach. Data
for violin plots has been winsorized at the 2.5% and 97.5% to cap outliers for visual
display purposes only. The unwinsorized mean is indicated by the red circles and the
corresponding median is in black. Error correction approaches are detailed in Section
C.4.
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Figure B.10: Illustration of the data availability regime used to test multiple
imputation when the calibration sample is spatially separated from the main
sample. Figure visually displays how the calibration and main datasets are separated in
the spatial experiment outlined in Section 4.4. From top left, clockwise: when separation
distance is 1, 4, 8, and 16 degrees. To implement this experiment, we draw the main
sample from the red boxes and the calibration sample from the blue boxes. As the
width of the grid becomes larger, bias correction using multiple imputation becomes
more difficult, as any point in the main sample is, in expectation, farther in physical
distance from a point in the calibration sample. For each spatial separation distance, we
“jitter” the grid up, down, and left for different bootstrap runs to ensure that results are
representative across geographic divisions.
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Figure B.11: Effects of calibration sample size on bias, coverage, and power
across all alternative error correction techniques (error-in-X case). Proportional
coefficient bias, proportional standard error bias, coverage, and power across all models
plotted against calibration sample size for each error correction technique. Results can
be interpreted as in Figure 5, but include additional error correction approaches beyond
multiple imputation. Error correction approaches are detailed in Section C.4.
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Figure B.12: Effects of calibration sample size on bias, coverage, and power
across all alternative error correction techniques (error-in-Y case). Proportional
coefficient bias, proportional standard error bias, coverage, and power across all models
plotted against calibration sample size for each error correction technique. Results can
be interpreted as in Figure 5, but include additional error correction approaches beyond
multiple imputation. Error correction approaches are detailed in Section C.4.
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Figure B.13: The effect of distance between calibration and main datasets
on the ability of all alternative error correction techniques to correct biases
introduced by remotely sensed variables (error-in-X case). Proportional coeffi-
cient bias, proportional standard error bias, coverage, and power across all models plotted
against distances between calibration sample and main sample for each error correction
technique. Results can be interpreted as in Figure 6, but include additional error correc-
tion approaches beyond multiple imputation. Error correction approaches are detailed
in Section C.4. As in the main text, horizontal purple lines show results for a random
sampling of the calibration set (i.e., no spatial separation between calibration and main
samples imposed) for the uncorrected model. For completeness we also show here average
uncorrected values for each grid size. As expected, these values change very little as the
grid size changes. Thus, for simplicity, we show the purple line only in the main text
figures.
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Figure B.14: The effect of distance between calibration and main datasets on
the ability of all alternative error correction techniques to correct biases in-
troduced by remotely sensed variables (error-in-Y case). Proportional coefficient
bias, proportional standard error bias, coverage, and power across all models plotted
against distances between calibration sample and main sample. Results can be inter-
preted as in Figure 6, but include additional error correction approaches beyond multiple
imputation. Error correction approaches are detailed in Section C.4. As in the main text,
horizontal purple lines show results for a random sampling of the calibration set (i.e., no
spatial separation between calibration and main samples imposed) for the uncorrected
model. For completeness we also show here average uncorrected values for each grid size.
As expected, these values change very little as the grid size changes. Thus, for simplicity,
we show the purple line only in the main text figures.
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Figure B.15: Bias, coverage, and power for regression models using remotely
sensed variables when the estimating equation includes spatial fixed effects.
Figure shows analogous results to Figure 4, but here all regression models include state-
level fixed effects (see text in Section 4.6 for details). Data for violin plots has been
winsorized at the 2.5% and 97.5% to cap outliers for visual display purposes. The unwin-
sorized mean is indicated by the red circles and the corresponding median is indicated
by the black circles.
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Figure B.16: Remotely sensed variables with higher accuracy exhibit lower co-
efficient bias in downstream regressions. Figure shows the proportional coefficient
bias in uncorrected (purple) and corrected via multiple imputation (blue) downstream
regression models plotted against the R2 of the original remote sensing prediction. Mul-
tiple imputation consistently lowers coefficient bias for all regression models, but as R2

decreases, the ability to correct for bias falls. Variable pairs with less than 0.5 R2 suffer
from large (≥10%) bias in uncorrected models, and in some cases large biases remain even
after correction. Points are jittered horizontally for visualization due to sets of variable
pairs sharing the same R2.
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C Supplementary Discussions

C.1 Performance metrics

We use four performance metrics to compare uncorrected and corrected regression models
to those using ground truth data. First, we compute bias in the regression coefficient:

bias in the regression coefficient =
∣∣∣∣(β̂ − β̂z̃)

β̂

∣∣∣∣, (S1)

where β̂ is the regression coefficient estimated from Equation 1 using ground truth data,
and β̂z̃ is the error-in-X or error-in-Y coefficient estimated either directly from Equation
2 (or the analogous error-in-Y regression) or from a version of Equation 2 that uses an
error correction technique, such as multiple imputation, to correct for bias. We consider
proportional bias to account for the different strengths of relationships between pairs of
variables, and we consider absolute bias because the sign of β varies across variable pairs.

Second, we compute bias in standard error estimates:

bias in standard errors =
SE(β̂z̃)− SE(β̂)

SE(β̂)
, (S2)

where variables are defined as in Equation S1. Note that Equation S2 can be either
positive or negative, reflecting overly conservative or overly precise standard errors in
a model using remotely sensed data. Finally, we compute two statistics that combine
the estimated coefficients and their uncertainty: coverage is calculated as the likelihood
that a regression model using remotely sensed data recovers a 95% confidence interval
containing the ground truth point estimate; and power is calculated as the likelihood that
a regression model using remotely sensed data rejects a null hypothesis of no relationship
between two variables when the ground truth regression also rejects this null (i.e., p<0.05).

C.2 Derivation of biases in the linear measurement error model

Here we derive the biases introduced by measurement error under the linear measure-
ment error model, a general error model that encompasses both the familiar classical
measurement error model as well as the Berkson error model as special cases (Keogh
et al., 2020). We demonstrate how various restrictions imposed on this general measure-
ment error model change the nature of bias, both in the error-in-X and error-in-Y cases.

As in the main text, we consider a simple linear regression framework in which the
coefficient of interest is the slope parameter β (we suppress subscripts throughout this
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section for parsimony):
y = α + βx+ ε

The “true” value of β is that which would be recovered from a regression with no mea-
surement error in either x or y.

C.2.1 Errors in independent variables (error-in-X)

Under the linear measurement error model, the error-prone variable (in our case, remotely
sensed predictions) is written as an affine function of the accurately measured variable
(in our case, ground truth observations), as follows:

x̃ = θ + λx+ u,

where x̃ represents the imperfect measurements of x and u represents residual, mean
zero measurement errors. With this definition, we can write the expectation of the slope
parameter estimated using remotely sensed x̃ in place of x as:

E[β̂x̃] =
σx̃y
σx̃

=
σ(θ+λx+u,y)

σθ+λx+u

=
λσxy + σyu
σθ+λx+u

=
λσxy + σyu
λ2σx + σu

plug in σxy = βσx

=
λβσx + σyu
λ2σx + σu

= β
λσx

λ2σx + σu︸ ︷︷ ︸
random and mean-

reverting error

+
σyu

λ2σx + σu︸ ︷︷ ︸
differential error

. (S3)

Equation S3 shows that under the general linear measurement error model, there
are three components contributing to bias for the error-in-X case. First, random error u
causes attenuation of β through the “reliability ratio” σx

σx+σu
within the first term. Second,

differential measurement error causes bias through a nonzero covariance σyu in the second
term. Finally, the relationship between x̃ and x itself, captured through λ and displaying
mean reversion when λ < 1, will introduce bias through both the first and second terms.
The direction of bias under this error model is ambiguous and will depend on the relative
magnitudes of λ, σu, and σyu.

In Figure B.6, we decompose Equation S3 into its component parts to assess which
features drive observed biases. To do so, we derive bias under two less general forms
of Equation S3. First, under the non-differential linear measurement error model the
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covariance σyu is assumed to be zero and E[β̂x̃] simplifies to:

E[β̂x̃] = β
λσx

λ2σx + σu
. (S4)

Note that mean reversion with λ < 1 biases β upward, while the reliability ratio causes
familiar attenuation bias. Whether β̂x̃ is inflated or attenuated under this error model
depends on which of these two forces dominates. If measurement error is Berkson, λ and
the reliability ratio balance one another such that no bias arises in the error-in-X case
(Carroll et al., 2006).

Second, under a differential classical measurement error model, λ = 1 and E[β̂x̃]
becomes:

E[β̂x̃] = β
σx

σx + σu
+

σyu
σx + σu

(S5)

While the reliability ratio attenuates β, σyu can be greater or less than zero, leading to
theoretically ambiguous bias.

In Figure B.6, we plot observed proportional bias on the y-axis against theoretical bias
following Equations S3 (top row), Equation S4 (middle row), and Equation S5 (bottom
row). These findings show that the full flexibility of Equation S3 is needed to fully explain
the patterns of bias we observe in remotely sensed variables.

C.2.2 Errors in dependent variables (error-in-Y )

Under the linear measurement error model for the error-in-Y case, we write:

ỹ = θ + λy + v

where all terms are as defined above. With this definition, the expectation of the slope
parameter estimated using ỹ instead of y is:

E[β̂ỹ] =
σxỹ
σx

=
σ(x,θ+λy+v)

σx

=
λσxy + σxu

σx

= λβ +
σxu
σx

plug in σxy = βσx (S6)

Here, there are two components contributing to bias for the error-in-Y version of the
general linear measurement error model. First, differential measurement error causes
bias through a nonzero covariance σxu in the second term in Equation S6. Second, the
relationship between ỹ and y itself, captured through λ, will introduce attenuation bias
through the first term when λ < 1 under mean reversion. The direction of bias under
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this error model is ambiguous and will depend on the relative magnitudes of λ and σxu.
As above for the error-in-X case, we consider bias under two more restrictive error

models in order to decompose overall bias into its component parts. First, under the
non-differential linear measurement error model, the covariance σxu is assumed to be
zero and E[β̂ỹ] simplifies to:

E[β̂ỹ] = λβ, (S7)

where it is clear that mean reverting measurement error λ < 1 will lead to attenuation
of slope coefficients for the error-in-Y case.

Second, under a differential classical measurement error model, we assume λ = 1

and E[β̂ỹ] becomes:
E[β̂ỹ] = β +

σxu
σx

, (S8)

where bias is determined by the covariance σxu.
As discussed above, Figure B.6 plots observed proportional bias on the y-axis against

theoretical bias, following Equations S6 (top row), Equation S7 (middle row), and Equa-
tion S8 (bottom row) for the error-in-Y case. These findings show that for error-in-Y ,
just like error-in-X, the flexibility of Equation S3 is needed to fully explain the patterns
of bias we observe in remotely sensed variables.

C.3 Calibration sample separation experiments

To evaluate the ability of multiple imputation and other bias correction methods to
improve parameter recovery when the calibration sample is spatially distant from the
main sample, we design an experiment based on an experimental design in (Rolf et al.,
2021) where we evaluate models using main and calibration samples that are increasingly
far away from each other in space. Specifically, we create grids over the continental U.S.
with side lengths of δ ∈ [0.2, 0.3, 0.4, 0.7, 1, 4, 8, 16] degrees latitude and longitude.
We then use this grid to divide the main and calibration sample into spatially separate
sets by randomly sampling the main and calibration sets from boxes that are not adjacent
(width-wise and height-wise) within the grid, creating a checkerboard pattern as shown
in Figure B.10. As δ increases, the calibration set becomes on average further away from
the main sample. This separation makes it more difficult for each bias correction method
to correct for bias, as observations in the calibration set are now less likely to be similar
to those in the main sample. To minimize the noise from any specific placement of the
grid, we move or “jitter” the grid by shifting it down, up, or left by half the width of the
grid, before running the analysis for each bootstrap run. Average results are taken over
these differently jittered bootstrap runs similarly to the rest of the analysis.
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C.4 Alternative bias correction methods

In this section, we briefly describe the various bias correction methods that we evaluate
in our setting, and their respective assumptions. For reference, comprehensive reviews
of statistical methods of regression bias correction include Fuller (1995); Carroll et al.
(2006); Freedman et al. (2008) and Keogh and White (2014). Throughout, we denote
observations in the calibration and main dataset set with c and m subscripts. We describe
all error correction methods for the error-in-X case; error-in-Y methods are analogous.

1. Complete Case Analysis (CCA)
Complete case analysis estimates regression parameters directly in the calibration
set, ignoring the main dataset and therefore any remotely sensed data entirely. This
approach is analogous to “benefits transfer” in economics (Boutwell and Westra,
2013), as it simply applies a regression parameter estimated in one sample to a new
context without any adjustment. To implement CCA, the regression coefficient of
interest is simply estimated using only the ground truth values available in the
calibration dataset. All data in the main sample, and therefore all remotely sensed
predictions, are dropped. For CCA to provide an unbiased estimate of the true
parameter of interest in the main sample, the calibration dataset must have the
same relationship between y and x as the main sample.

2. Single imputation linear regression calibration (LRC)
Regression calibration has been one of the most commonly-used methods in the
measurement error model literature (Freedman et al., 2008) because of its simplicity.
To implement linear regression calibration, the relationship between a ground truth
variable, its remotely sensed counterpart, and the ground truth regressor (error-in-
Y case) or regressand (error-in-X case) is estimated in the calibration sample and
then used to make predictions of the true variable in the main sample. In a second
stage, the predicted ground truth values are then used to estimate the regression
model in the main sample. This is the simplest form of imputation, but has been
shown to perform poorly when measurement error is non-classical (Cole, Chu and
Greenland, 2006). It also does not carry uncertainty from the calibration step into
the final estimates, which can lead to overly-precise parameter estimates.

The method is implemented as follows:

(a) Estimate a linear model of xc = δRC + γRC x̃c + ϕRCyc + eRC in the calibration
sample.

(b) Predict x̂RC using δ̂RC , γ̂RC , ϕ̂RC as well as observations of x̃m and ym in the
main sample.
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(c) Estimate the linear regression in the main sample treating x̂RC as you would
if it were not measured with error: ym = α + βRC x̂RC + ϵ

(d) Obtain β̂RC as the linear regression calibration corrected parameter.

3. Single imputation efficient linear regression calibration (Eff. LRC)
This method is implemented identically to linear regression calibration above, but
in step (c), the calibration set is appended to the main sample before estimation.
This yields an estimate of β̂ERC , which is an inverse-variance-weighted average of
the estimate of the coefficient in the calibration set and the estimate of β̂RC using
linear regression calibration (Freedman et al., 2008; Keogh and White, 2014).

4. Single imputation nonlinear regression calibration (NLRC)
Nonlinear regression calibration is an extension of single imputation linear regres-
sion calibration wherein the first stage model is a nonlinear and flexible model.
We use a random forest in our implementation, but other nonlinear methods are
possible. The method is implemented as follows:

(a) Estimate a nonlinear model of xc = δRF (x̃c, yc) in the calibration sample.

(b) Predict x̂RF using δRF as well as observations of x̃m and ym in the main sample.

(c) Estimate the linear regression treating x̂RF as you would if it were not mea-
sured with error: ym = α + βRF x̂RF + ϵ

(d) Obtain β̂RF as the nonlinear regression calibration corrected parameter.

5. Single imputation efficient nonlinear regression calibration (Eff. NLRC)
This method is the same as above for single imputation nonlinear regression cali-
bration, but in step (c), the calibration set is appended to the main sample before
estimation.

6. Single imputation external linear regression calibration (EC: LRC)
In external calibration, the dependent variable is missing in the calibration set (for
the error-in-X case). For the error-in-Y case, the independent variable is missing
in the calibration set. The method is implemented similarly to linear regression
calibration, but data from the dependent variable is omitted in step (a):

(a) Estimate a linear model xc = δExRC + γECRC x̃c + eECRC in the calibration
sample, noting that ym is omitted here as compared to method 2 (LRC).

(b) Predict x̂ECRC using δ̂ECRC , γ̂ECRC as well as observations of x̃m in the main
sample.
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(c) Estimate the linear regression treating x̂ECRC as you would if it were not
measured with error: ym = α + βECRC x̂ECRC + ϵ

(d) Obtain β̂ECRC as the external linear regression calibration corrected parameter.

7. Single imputation external nonlinear regression calibration (EC: NLRC)
This approach is the same as above, but uses a nonlinear function (random forest)
to model the first stage (a).

8. Multiple imputation: Bayesian linear model (MI)
Multiple imputation is described in detail in the main text. In general, this method
replaces each “missing” or, in our case, mis-measured, value x̃ with a vector of
K > 1 possible imputed values. There are many methods to do this imputation,
and here we lay out the Bayesian linear model approach, which allows for parameter
uncertainty in the first stage. We show in Figure B.7 that our main results do not
depend on this particular approach to imputation. Under the Bayesian linear model
imputation, the procedure (adapted by van Buuren (2012) from Rubin (1987)) is
as follows:

(a) Fit a linear regression model of the ground-truth x to the remotely-sensed
variable x̃ and to y using the calibration sample. Obtain the estimated pa-
rameters δ̂, γ̂, ϕ̂.

(b) Calculate the covariance matrix S =
∑̂

x̃,y.

(c) Using the estimated parameters, δ̂, γ̂, ϕ̂, and the covariance matrix,
∑̂

x̃,y,
draw an estimate of the set of three coefficients for each imputation k ∈
{1, 2, ..., K} from the standard (three dimensional) multivariate Gaussian dis-
tribution.

(d) Calculate x̂k = δ̂k + γ̂kx̃m + ϕ̂kym, which is the imputed value for the kth

imputation.

(e) Perform the linear regression analysisK times using theK values of x̂k. Obtain
K estimates of β̂. Pool these together using Rubin’s Rule (see Rubin (1987))
to obtain one final multiple imputation estimate of the parameter, β̂MI .

9. Efficient multiple imputation: Bayesian linear model (Eff. MI)
This method is the same as above for multiple imputation, but in step (e), the
calibration set is appended to the main sample before estimation.
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