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Abstract

We document a regime change in the U.S. Treasury market post-Global Financial Cri-
sis (GFC): dealers switched from net short to net long Treasury bonds. Consistent with this
change, we derive “net-long” and “net-short” Treasury curves that account for dealers’ balance
sheet costs, and show that actual Treasury yields moved from the net short curve pre-GFC to
the net long curve post-GFC. This regime change helps explain negative swap spreads post-
GFC and the co-movement among swap spreads, dealer Treasury positions, yield curve slope,
and covered-interest-parity violations, and implies changing effects for a wide range of mone-

tary and regulatory policy interventions.
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Introduction

Prior to the GFC, the yield on the long-term Treasury bonds was below the fixed rate on interest
rate swaps of the same maturity. This positive swap-Treasury spread (“swap spread,” for short)
pre-GFC was in part due to the “convenience yield” of the Treasury bonds (a la Krishnamurthy
and Vissing-Jorgensen (2012)). However, post-GFC, yields on long-maturity U.S. Treasury bonds
have been consistently above the corresponding swap rates, suggesting that Treasury bonds are
now in some sense “inconvenient.” Likewise, prior to the GFC, CIP deviations were almost non-
existent, but have emerged as significant and persistent following the crisis. The emergence of CIP
deviations and the change in the sign of long-maturity swap spreads are both well-documented in

the literature.!

We provide new empirical evidence to link swap spreads and CIP deviations with regimes in
which primary dealers are net long or net short with respect to Treasury bonds. Figure 1 illustrates
a significant change in the Treasury market over the past twenty years. Pre-GFC, primary dealers
on net maintained a short position in Treasury bonds, and the swap spread was positive. Post-GFC,
primary dealers switched to a net long position in Treasury bonds, and the swap spread became
negative. That is, dealers were short Treasury bonds when those bonds had yields lower than swap
rates, and became long Treasury bonds once those bonds had higher yields than swap rates. The

sign switch in the swap spread exactly coincided with the sign switch in dealers’ net position.

We explain the collection of evidence in Figure 1 via a unified framework that incorporates
the convenience (or lack thereof) of Treasury bonds, covered interest rate parity (CIP) deviations,
and primary dealers’ net Treasury positions. Our framework emphasizes the role of balance-sheet
constrained dealers in the Treasury market. This framework naturally leads to regimes in which
dealers are net long, net short, or flat with respect to Treasury bonds. Intuitively, in the long regime,
Treasury yield should be above the swap rate of the same maturity to compensate the balance sheet
cost, while in the short regime, the opposite is true. We show that the effects of policies such
as quantitative easing/tightening (QE/QT) are regime-dependent, and can use our framework to
explain why Treasury yields fell relative to other interest rates during the Global Financial Crisis
(GFC) but rose during the March 2020 COVID-19 crisis (Duffie (2020)).

Our formal analysis proceeds in the following steps. We first derive what we call the “net-long”

'0n swap spreads, see Feldhiitter and Lando (2008), Klingler and Sundaresan (2019), Jermann (2020), Augustin
et al. (2021), and Fleckenstein and Longstaff (2021). On the CIP deviations, see Du, Tepper, and Verdelhan (2018b).



and “net-short” curves, which can be viewed as arbitrage bounds on Treasury yields that account
for funding costs, balance sheet costs, and interest rate risk. We use CIP deviations as a measure
of balance sheet costs (i.e. the shadow value on the balance sheet constraint).? Quantifying these
curves generates predictions of dealer positions consistent with the data. We next build a two-
period, two-market model of dealers-as-arbitrageurs interacting with return-seeking clients, and
in which CIP deviations, Treasury yields, and dealer Treasury positions are endogenous. We use
this model to illustrate the idea of regimes and explain the facts in Figure 1. Lastly, we consider
a variety of conventional and unconventional policy interventions in our model, and show that the

effects of these policies are regime-dependent.

We begin by constructing estimates of the yields at which dealers would be willing to take a net
long or net short position in Treasury bonds. The net long curve describes a Treasury yield above
which a dealer would always want to be net long Treasury bonds, regardless of its beliefs about
future Treasury yields. Similarly, the net short curve provides a yield below which a dealer would
always be willing to be net short the bond. We construct these curves taking the interest rate swap
curve and the structure of CIP violations as given. Our construction uses interest-rate swaps> to
measure discount rates, CIP violations to measure the cost of balance sheet, and takes into account
the spreads between financing rates and discount rates. The use of swap rates and CIP violations
is motivated by a single assumption: that all zero-cost, zero-balance-sheet trading strategies are
at least weakly unprofitable under a common stochastic discount factor (SDF).* This assumption
allows us to compare the strategy of financing the purchase of a Treasury bond with the strategy of
borrowing unsecured and engaging in CIP arbitrage (the difference between these is a zero-cost,
zero-balance-sheet strategy). We use this comparison to derive our net long curve, and construct

our net short curve in a similar manner.

The net long and net short curves differ for two reasons: financing rates and balance sheet
costs. In particular, because taking either a net short or net long position increases the size of a
dealer’s balance sheet, higher balance sheet costs will increase the net long yield but decrease the

net short yield. We find that actual Treasury yields are quite close to the estimated net short curve

The interpretation of these costs is consistent with the view of Jermann (2020) that swap spreads are affected by
“bond holding costs,” but more specific in that these costs affect both swap spread and CIP deviations.

3Specifically, we use overnight index swaps (OIS), which are swaps based on the effective federal funds rate.

4This assumption is implicit in the models of Jermann (2020) and Du et al. (2022). Under this assumption, the
SDF prices zero-cost and zero-balance-sheet strategies (e.g. derivatives including swaps with negligible balance sheet
cost and zero initial cost), but does not directly determine the price of cash securities such as Treasuries.



pre-GFC and close to the estimated net long curve post-GFC, across a variety of maturities. This
finding is consistent with the data on dealer net positions (i.e. dealers were net short pre-GFC and
net long post-GFC), providing evidence in support of our view of dealers as arbitrageurs and our

notion of Treasury market regimes.

We next construct a two-period, two-market supply-demand model for Treasury bonds and
synthetic dollar lending in the foreign exchange (FX) swap market. Dealers arbitrage the spread
between synthetic dollar lending rate and the swap rate (i.e., the CIP deviation), and the spread
between swap rate and Treasury yield (i.e., the swap spread). In the model, the CIP deviation
(endogenously) reflects the shadow cost of dealer balance sheet. Apart from dealers, we model two
types of clients for Treasury bonds. One type is “real-money” investors such as domestic pension
funds who do not rely on dealers’ balance sheets to fund their positions. Real-money investors
decide between holding Treasury bills versus long-term Treasury bonds, and their demand for
bonds is an increasing function of the expected excess returns on the Treasury bonds. Second, we
model foreign investors who invest in U.S. Treasury bonds financed by “synthetic dollars” (foreign
currency converted to dollars using short-dated FX swaps).” We assume that foreign investors’
demand for bonds increases in the expected return on the Treasury bond net the synthetic dollar

rate.

We close the model by imposing market clearing conditions for Treasury bonds and synthetic
dollars, as well as an intermediary balance sheet constraint. The model has a unique equilibrium,
which falls into one of the three regimes: intermediaries are either long, short, or flat with respect
to Treasury bonds. The regime itself is determined by the difference between Treasury bond supply
and client demand; that is, dealers act as “buyer of last resort” in the long regime and a “short-seller

of last resort” in the short regime.

The model helps explain a new empirical fact we document in the paper: dealer’s net long
position in Treasury bonds is negatively correlated with the term spread between the long-term
Treasury bond yield and short rate in the post-GFC period. That is, dealers hold more bonds when
the price is high relative to the short rate (i.e. a small term spread) and fewer bonds when the
price is low relative to the short rate (i.e. a large term spread). This behavior at first appears

puzzling, on the grounds that a larger term spread predicts larger expected returns of bonds vs.

SFX-hedged foreign investors do not use leverage but nevertheless rely on dealer balance sheets to obtain FX swap
hedging. A canonical example of an FX-hedged foreign investor is a Japanese life insurance company, with liabilities
denominated in yen and substantial U.S. dollar fixed-income assets.



the short rate (Campbell and Shiller (1991)). Our view of dealers as arbitrageurs absorbing the
excess supply/demand for Treasury bonds can rationalize this fact: during the post-GFC period,
when the term spread is low, client demand for Treasury is low. To clear the market, dealers must
increase their holdings, which requires that Treasury bonds offer an attractive yield relative to
interest rate swaps (after accounting for financing rates and balance sheet costs). In contrast, the
existing literature has often emphasized instead returns-seeking behavior (as in the intermediary
asset pricing literature, He and Krishnamurthy (2013)) and the role of dealers as over-the-counter
market makers (as in Duffie et al. (2005)). These perspectives are not mutually exclusive with our
view; however, they do not naturally lead to the prediction that dealers should buy high and sell

low in the Treasury market, as suggested by the data.

In the last section of the paper, we demonstrate that the effects of a variety policy interventions
are regime-dependent, using our two-period model. We also show that the effects of dealer distress
differ across regimes, offering an explanation for why Treasury yields went down relative to swap
rates in the GFC and up during March 2020. These differences arise from differences in the com-
parative statics of our model across regimes, which ultimately are a consequence of the difference
in the way balance sheet costs affect Treasury yields. The model, with minimal modification, is
capable of speaking to the effects of quantitative easing and tightening, inter-central-bank swap
lines, regulatory exemptions to the supplementary leverage ratio (SLR), and interest rate policy.
We discuss the effects of each of these policies, and emphasize how they differ in the long and
short regimes. Finally, we discuss the implications of the framework for the ongoing tightening

cycle, and draw a parallel with the experience of 2017-2019 tightening cycle.

Our paper is most closely related to Jermann (2020) and Du, Hébert, and Huber (2022), in
that we model swap spreads (Jermann (2020)) and CIP violations (Du, Hébert, and Huber (2022))
as arising from constraints on intermediaries. Our paper combines these perspectives and shows
that they can jointly explain data on dealers’ positions.® Relatedly, Favara, Infante, and Rezende
(2022) show evidence that SLR shocks have reduced large banks’ participation in the U.S. Treasury
market. Du, Tepper, and Verdelhan (2018b), Hébert (2020), and Du, Hébert, and Huber (2022)
argue that CIP deviations can proxy for the shadow cost of the these constraints. The strong co-

movement of CIP violations and swap spreads post-GFC we document is consistent with these

% Another difference between our paper and Jermann (2020) is that Jermann (2020) treats Treasury yields as exoge-
nous, and as a result predicts that dealer positions are increasing in the term spread, in contrast to our framework and
the data.



perspectives.’

Considering swap spreads and CIP deviations together helps address a puzzle: why would long-
maturity (e.g. 30 year) swap spreads be affected by fluctuations in current balance sheet costs?
The answer suggested by Du et al. (2022) is that there is a substantial risk premium associated
with the risk that balance sheet costs increase; our quantitative analysis confirms that this risk
premium plays a significant role in long maturity swap spreads. Our quantitative term-structure
framework is substantially more general than the models employed in these papers, and our two-

market equilibrium model is able to address a broader range of policy questions.

The key limitation of our static model is that it treats swap rates as exogenous, and we do
not attempt to explain the behavior of dealers’ swap counter-parties. In contemporaneous work,
Hanson, Malkhozov, and Venter (2022) adopt an approach broadly similar to our two-period model
to explain the way in which shocks to the demand for interest rate swaps affect swap spreads (see
also Klingler and Sundaresan (2019)). Hanson, Malkhozov, and Venter (2022) focus on the swap
market, treating the Treasury market as exogenous; combining the two approaches is an interesting
direction for future research. Their interest is in separating supply and demand shocks, whereas
our focus is on providing estimates of the dealer net long and short Treasury curves, validating the

notion of Treasury market regimes, and analyzing policy interventions.

More recently, the dislocation of the Treasury bond market during the height of the COVID-19
pandemic in March 2020 has led some authors to question whether U.S. Treasury bonds remain
convenient (such as in Duffie (2020) and He, Nagel, and Song (2022)). Relative to this literature,
we highlight the importance of the regime change in the dealers’ net position and the interaction

between dealer balance sheet constraints and client demand for Treasury bonds.

Complementary to our analysis on the role of dealers, the role of hedge funds in the Treasury
market has been examined in Barth and Kahn (2021) and Kruttli et al. (2021), particularly regarding
their activities in the Treasury cash-futures basis arbitrage funded by dealers’ balance sheets. We
develop the net long and net short curve from the perspective of a securities dealer, but argue in
Appendix Section E.1 that dealers will in effect transmit their balance sheet costs to hedge funds
and other levered clients, consistent with Boyarchenko et al. (2018). As a result, the curves we

develop are applicable for these levered clients as well.

"Recent work by Siriwardane et al. (2021) examines market segmentation across different near-arbitrages. The
correlation between CIP deviations and the swap spread stands out being among the highest, which supports the use
of CIP deviations as a balance sheet cost proxy for Treasury trading activities.



The negative correlation between dealers’ net position and Treasury yield curve slope we doc-
ument is the opposite to the pattern observed in typical (excluding the largest) commercial bank
portfolios (Haddad and Sraer (2020)). This contrast emphasizes the importance of distinguishing
between the Treasury activities of securities dealers and commercial bank subsidiaries. Fluctua-

tions in dealers’ inventory have also been linked to overall liquidity conditions (Goldberg (2020)).

The structure of the paper is as follows. We provide institutional background on Treasury
trading by dealers in Section 1. We derive and estimate the net long and the net short curves in
Section 2. We introduce the demand from real-money investors and build an equilibrium model
for Treasury market dynamics in Section 3. We analyze policy implications in Section 4, and in

Section 5 we conclude.

1 Institutional Background

In this section, we outline the mechanics about how dealers go long or short Treasury securities
and hedge with swaps. We then discuss when these strategies are arbitrages, and compare them

with CIP arbitrage. We denote Treasury yields as y, financing rates as i, and swap rates as r.

1.1 The Long Treasury vs. Swap Arbitrage

Suppose that the dealer goes long (buys) a zero-coupon Treasury bond of maturity n at time ¢.
At the onset of the trade, the dealer buys the Treasury bond at yield y,,, and finances the entire
position period-by-period at the time ¢ + j (for j = 0,...,n — 1) financing rate iﬁ +j- This trade is

zero-cost, in the sense that the entire purchase cost of the bond is financed through a mix of secured

l

(repo) and unsecured debt financing (7. ;

time ¢ + j).8

is the effective one-period financing rate of this mix at

A dealer can hedge the interest rate risk of this trade by entering into a swap contract.” Interest

rate swaps exchange a fixed interest payment (r,,) for a sequence of floating interest payments

8See Internet Appendix Section A for more details.
Dealers have an incentive to hedge their net interest rate risk, due to risk-based capital requirements, but will
typically do so at the trading desk level or the whole book level as opposed to trade-by-trade.



(re+ j).lo To hedge a net long bond position, the dealer pays the fixed rate and receives the floating

rate in a swap, whose maturity is set to match the bond (n in our example).

After hedging, the dealer will receive the spread between the floating rate r; ; and the financing

l .
t+]

yn,s on the bond and pay the fixed rate r,,; on the swap; the difference of these two is the negative

rate i, , . each period. If the dealer holds the bond and swap to maturity, the dealer will earn the yield
of the “swap spread” 7, ; — yn;. Thus, if the floating rate is guaranteed to exceed the financing rate
(rej > if +; forall j), and the swap spread is negative, the dealer is guaranteed to earn a profit on
this trade if held to maturity. If in addition the spread r;; ; — if 4
certain ex-ante (because r;, ; — y,, is known at the trade’s inception). In this sense, the swap hedges

is constant, the dealer’s profit is

the bond.!! During this trade, the dealer will have a larger balance sheet, approximately equal to

the value of the Treasury net long position.'?

1.2 The Short Treasury vs. Swap Arbitrage

Short-selling a Treasury bond and hedging with a swap works in an essentially identical way, with
the directions of the trades reversed. When a dealer short-sells a Treasury bond, the dealer borrows
the bond from its owner, and offers the owner cash as collateral. The dealer raises that cash by

selling the borrowed bond, and each period receives an effective interest rate of i; +jon this cash.!?

The dealer can hedge with an interest rate swap by receiving the fixed rate r,; and paying
the floating rate r; ;. If the spread between r,; and i; y is bounded above, and the swap spread
Tny — Yns €xceeds this bound, the dealer is guaranteed to make a profit, assuming the position is

held to maturity. This arbitrage also increases the size of the dealer’s balance sheet. The asset in

100ur analysis will focus on overnight index swaps (OIS), in which one party pays a fixed rate of interest in exchange
for a series of floating payments indexed to the overnight interbank federal funds rate. Prior to the GFC, swaps indexed
to LIBOR were more commonly used, and recently swaps indexed to SOFR (Secured Overnight Financing Rate) have
been introduced. OIS rates are available for our entire sample and are similar to LIBOR swap rates pre-GFC and to
SOFR swap rates in the recent period.
Ut 7y j— iﬁ +j is not constant, there is residual “basis risk,” but negative swap spreads are nevertheless an arbitrage
opportunity if ;4 ; — iﬁ +j 1s guaranteed to be positive.

12To a first approximation, the interest rate swap is entirely off-balance-sheet. More precisely, trading interest rate
swaps can increase the size of the balance sheet slightly. The total exposure includes initial and variation margins
(typically a couple percent of total notional), and an additional 0-1.5% of the swap notional calculated for off-balance
sheet interest rate derivative exposure using the Current Exposure Method, depending on the maturity of the interest
rate swaps. We ignore the additional balance sheet costs of trading derivatives to simplify our analysis.

13See Internet Appendix Section A.2 for more details.



this case is a “loan” to the original owner of the bond (the dealer has given the original owner cash

in exchange for Treasury collateral), and the liability is a security to be delivered.

Thus, the long Treasury-swap and short Treasury-swap arbitrage strategies are both zero-cost,
n-period strategies that use balance sheet and, under certain assumptions, deliver a guaranteed
profit if held to maturity. We will compare these strategies to another n-period, zero-cost, balance-

sheet-intensive arbitrage opportunity: CIP arbitrage.

1.3 CIP Arbitrage

One-period USD-EUR CIP arbitrage involves borrowing dollars in the cash market, converting the
dollars to euros in the spot foreign exchange market, lending out the euros, and using a forward
contract to lock in the exchange rate at which the euro proceeds of the loan are converted back to
dollars. Suppose the dealer borrows dollars in unsecured funding markets at the rate r; (the same
rate used in the interest rate swap), and define the “synthetic” dollar rate r;”" as the synthetic dollar

lending rate in the FX swap market obtained by converting the euro lending rate into dollars. The
profits of the one-period CIP arbitrage are the difference between these two rates, ;¥ = r>" — ry,

and are positive for most major USD-pairs in the post-GFC period (Du, Tepper, and Verdelhan
(2018b)). This trading strategy is also zero-cost, in that the synthetic dollar lending is entirely

financed by unsecured dollar borrowing.

A dealer who plans to engage in the CIP arbitrage for n periods can lock in the profits of this
trade using interest rate and cross-currency basis swaps (the details of which are unimportant at this
stage of our discussion). However, engaging in CIP arbitrage will increase the size of the dealer’s

balance sheet; in this case, the asset is the euro loan and the liability is the dollar borrowing.

1.4 Comparing Arbitrages

Each of these three arbitrages lasts for n periods if held to maturity, has zero initial cost, and uses
balance sheet.'* The core of our analysis focuses on perturbations in which a dealer does less
CIP arbitrage and more of one of the two Treasury vs. swap arbitrages. These perturbations are

zero-cost, zero-balance sheet trading strategies, illustrated in Figures 4 and 5.

14There are differences between the strategies with regards to the timing of payments. We develop our term structure
model to account for these kinds of issues.



Empirically, the rate at which dealers finance the long Treasury trade (iﬁ +;) 1s higher than the
rate at which they finance the short Treasury rate (77, ;). We document in Internet Appendix Section

A.2 that the rate the original bond owners (“security lenders”) pay to dealers is typically roughly 20

I
1+

Finance.'> Because of this difference, the long and short Treasury vs. swap arbitrages will never

basis points below i;, ., even for securities that are not “special”, using data from Markit Securities
both be appealing to dealers. If swap spreads are sufficiently low/negative, as in the post-GFC
period, the long arbitrage will be profitable, while if swap spreads are sufficiently large, as in the

pre-GFC period, the short arbitrage will be profitable.

Each of these arbitrages is subject to market-to-market fluctuations. For example, the two-
period CIP arbitrage has a risk-premium associated with the possibility that the one-period CIP
arbitrage becomes larger next period (Du et al. (2022)). To account for this, we next construct a
model, based on a single critical assumption: that all zero-cost, zero-balance-sheet trading strate-
gies are weakly unprofitable under a common SDF. Using this assumption, we carefully compare

the Treasury vs. swap and CIP arbitrages.

2 The Long and Short Treasury Yield Curves

In this section, we construct what we call “net long” and “net short” yield curves. These yield
curves represent (approximate) arbitrage bounds at which a dealer would be willing to go net long
or net short Treasury bonds. In frictionless models (in which arbitrage capacity is unlimited and
the financing rates iﬁ +;and iy j are equal), there is a single Treasury yield curve. At yields above
this yield curve, dealers would want to go net long bonds, while at lower yields, dealers would
want to go net short bonds. In our model, two frictions create a wedge between the yield at which

dealers would go net long and the yield at which dealers would go net short.

The first friction is balance sheet costs. As emphasized in the previous section, going either
net long or net short a Treasury bond increases the size of dealer balance sheets. This has an
opportunity cost, and this opportunity cost acts like a tax on both these trades. It raises the yield
dealers require when going net long, while lowering the yield they require when going net short.

We proxy for balance sheet costs using CIP deviations.

SWhen a dealer makes a repo loan to a hedge fund client (typically at a rate above if i the client selects the
Treasury collateral. A dealer who wants to short a specific bond cannot rely on this kind of lending to find the bond.

Instead, the dealer borrows the bond from a security lender at the lower rate i} i

9



The second friction is the difference in financing rates of the long and short Treasury positions.
When a dealer goes net long, they finance the position at a relatively high interest rate (iﬁ +;); when
1+)- The difference

between these two rates crates another wedge between the net long and net short curves.

a dealer goes net short, they receive a relatively low interest rate on their cash (i

Our analysis in this section is partial equilibrium. We take swap rates, financing rates, and
Treasury yields as given, and ask if dealers are willing to go net long or net short Treasury bonds.
We will then compare our answers to this question, which are based on price data, with our quantity

data on dealers’ net Treasury positions.

We proceed in four steps. First, we will introduce a very simple model of dealer behavior, to
illustrate the trade-off a dealer faces between going net long or short Treasury bonds and other
arbitrage activities. Second, we generalize the ideas illustrated in this simple model, and construct
the net long and net short curves. Third, we discuss the assumptions under which these curves
represent arbitrage bounds. Finally, we build a term structure model to estimate the net long and

net short curves.

2.1 One-Period Net-Long and Net-Short Treasury Yields

We first consider the problem of a risk-neutral dealer who can choose between trading a single n-
period zero-coupon Treasury bond and a one-period CIP arbitrage, subject to a fixed balance sheet
constraint. We make these stark assumptions (only one bond, fixed balance sheet) to illustrate the
main idea; they are not imposed in our more general term structure analysis in Section 2.4. The
dealer makes this choice at a single date in this simplified example; for this reason, we will omit
time subscripts.

Let "™ be the dealer’s bond position (in dollars, not notional), with negative values implying
short-selling. Let ¢*" be the dealer’s “synthetic dollar” position (in dollars), which we define
as the currency hedged investment leg of the CIP arbitrage (the other leg is borrowing dollars).
We assume that the synthetic dollar rate (e.g. the currency-hedged euro rate) is above the dollar
borrowing rate (r*" > r), so that the direction of the arbitrage is to lend in synthetic dollars and

finance in actual dollars.

Suppose the dealer faces a fixed balance sheet constraint,

qsyn+ |qb0nd| _ q—’ (1)

10



where ¢ > 0 is the balance sheet capacity for Treasury and CIP arbitrage. Note that the absolute

bond

value of ¢ enters this expression, reflecting the fact that both long and short positions require

balance sheet.

Let y be the log-yield on the Treasury bond. We assume, following the discussion above, that
if the dealer buys the bond, the dealer will finance its position with at the log interest rate i*. If the

dealer instead short-sells the bond, it receives a log return #* on its cash.

We define pg as the risk-neutral expectation of the bond price in the next period, when the
trade will be unwound. In this simple example, we will treat this as exogenous. In our more
general term structure analysis, this value will be determined primarily by the n-period swap rate
and the n-period CIP deviation, in keeping with the idea that we are using swap rates and CIP

violations to measure interest rate and balance sheet risk.

The dealer’s problem is

-l
max ( PQ - e ) -max{g?" 0}
qbond g e~y N~~~
’ ~—~~ financing of long position
return of selling after one period
i PQ bond
e — — -max{ — 0
+ ( E _ R ) {—¢""¢,0} ()

return earned on cash collateral ) )
return of buying back after one period

syn

+ ( e e ) . qsyn
~——
CIP arbitrage spread

subject to the balance sheet constraint in (1). That is, the dealer chooses between the long Treasury

trade, the short Treasury trade, and the CIP arbitrage.'®

We assume that the profit of Treasury trade does not dominate the synthetic lending trade, so
that the synthetic lending amount is always non-zero. This assumption eliminates the corner case
of ¢*" = 0, which has less empirical relevance, and implies that the shadow cost of balance sheet

constraint is measured by CIP deviations. We also assume, consistent with the data, that i* < i,

Solving the problem, we find three different regimes. The first regime features ¢?”"¢ > 0 and

g®" > 0. The yield in this regime is equal to the "net long yield" y, solved from the first-order

16We have omitted the swap part of the Treasury-swap arbitrages from these calculations, as a simplification. This
simplification is justified under the assumption that the swaps are fairly priced under the Q measure.

11
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e ny = — - N 3
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The second regime features ¢?*? < 0 and ¢*" > 0. The yield in this regime is equal to the "net

bond

short yield" y*, solved from the first-order conditions of ¢ and g™,

e = PQ &)

e’ — (ersy” _ er) ’

Comparing these two first-order conditions, we can see that the discount rate (denominator)
is lower in the short regime than in the long regime, for two reasons. First, the funding rate is
lower, and second, the opportunity cost of balance sheet (¢/~ — ¢”) is subtracted from the short
funding rate but added to the long funding rate. As a result, the short yield is below the long yield,
reflecting (intuitively) that the dealer requires a low yield/high price to justify a net short position

and a high yield/low price to justify a net long position.

bond

The third possible regime features ¢ =0 and ¢”" > 0. In this regime, the Treasury bond

yield has to satisfy y* <y <. That is, the profit on the long and short Treasury strategies does

not justify the balance sheet cost, so the dealer chooses to have a zero net Treasury position.

To gain further intuition, consider the case of a one-period bond that matures next period (pg =

1). The log-linearized version of (3) and (4) is, defining 7P = r™" — r,

r—(r—i)4r, 3)
Y = r—(r—is)—rCip, (6)

<
l

L

The net long yield can differ from r (which we will think of as the one-period swap rate) for
two reasons. First, holding Treasury bonds takes up bank balance sheet, so the yield has to be
higher by an amount equal to the opportunity cost of the balance sheet (measured by 7). Second,
if dealers’ financing rate is lower than their unsecured funding cost, i’ < r, then there is a financing

benefit to owning the Treasury bond, which makes the dealer willing to accept a lower yield.

The net short yield can differ from r for similar reasons. The impact of the opportunity cost of
balance sheet affects the sell yield with a negative sign. The sell yield has to be lower (the price to

be higher) to justify dealer’s short position, which also takes balance sheet. The sell yield is further
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lowered if the return on the cash collateral is lower than the dealer’s borrowing cost, i* < r.

2.2 Multi-Period Net Long and Net Short Curves

We next extend the logic of these yields to a more general, multi-period setting, constructing what

we will call the “net long curve” and “net short curve.”

We make three key assumptions: (i) there is an SDF that prices interest rate swaps and cross-
currency basis swaps, (ii) some synthetic dollar lending occurs in equilibrium, and (iii) all zero-
cost, zero-balance-sheet trading strategies are weakly unattractive under this SDF (i.e. 0 > E[MR]
in the standard notation). We will interpret this SDF as a dealer’s SDF, under the usual intermediary
asset pricing assumption that dealers are active in all of these markets. Let (Q denote the risk-neutral

measure associated with this SDF.

The first assumption is justified by the observation that essentially all of the arbitrages docu-

mented in the literature involve the use of balance sheet.!”

That is, no-arbitrage between deriva-
tives appears to hold in the data. The second is justified by the empirical observation that currency

dealers actively engage in CIP arbitrage.

The third assumption generalizes the first-order condition of our simple model. In that model,
the strategy of increasing or decreasing ¢”*™, financed at the appropriate financing rate, and off-

Syn

setting the change in balance sheet by changing ¢*", is weakly unattractive under the risk-neutral
measure Q. Our generalization of this condition assumes that all feasible zero-cost, zero-balance

sheet perturbations are weakly unattractive.

These assumptions are much more general than our simple model. In particular, we have made
no assumptions on the pricing of balance-sheet-increasing or balance-sheet-reducing strategies,
and hence are agnostic about why dealers find it costly to increase the size of their balance sheet.
We have also said nothing about how many maturities of Treasury bonds are available, or what

other assets are also traded by dealers.

In what follows, all rates are annual and each period is one month. Consider the strategy of

going long the Treasury bond at yield y,,, financing via repo, and offsetting the balance sheet

7This is true, for example, of all of the arbitrages considered in and Boyarchenko et al. (2018) and Siriwardane,
Sunderam, and Wallen (2021).

13



effect by reducing CIP activity. We must have

1.1 1 sy 1 —1

e*ﬁ)’n.teﬁh _|_e*%)7n.t (eﬁr; _ eﬁrt) > Et@[e*”ﬁyn—l,z-u]‘ (7)
——— < -
secured financing forgone CIP profits

The left-hand side of this expression represents costs paid at time # 4 1. The financing of the bond
purchase must be repaid (the first term), and the profits of the forgone CIP arbitrage are lost (the
second term). These must be weighed against the benefits of selling the bond at time 7 + 1. This
condition is a generalization of (3) from our simple model (with an expectation under Q playing
the role of pg). Note that because both sides of this equation are defined in terms of 7 + 1 payoffs,

the discount rate associated with the SDF is irrelevant.

Define the monthly log interest rate

1 syn

1. 1
x1, = In(ent — " 41", (8)

and iterate:

n—1
e,%yn’t 2 eflnizyil.t — E;Q[exp(_ le,t+])] (9)
j=0

The yield curve yfm defines what we call the “net long curve.” This curve represents the point at
which dealers would be willing to switch from CIP arbitrage activity to taking a net long position
in a Treasury bond. Since zero-cost, zero-balance-sheet strategies are weakly unattractive, this net
long curve is, by induction, an upper bound on Treasury yields (under the assumption that dealers
engage in CIP arbitrage).

This net long curve can also be viewed as a lower bound on swap spreads (defined as the
difference between swap rates and Treasury yields of matching maturity). Let r,clff be the n-period
CIP violation (the n-period synthetic dollar rate minus the n-period swap rate). Linearizing (9) and

recalling that r,,, is the n-period swap rate,

n—1

I cip Q 1 ./
Tng — Ynt Zrmt_yn,t""’_ Tnt + E [_ Z (rf+j_lt+j)]' (10)
~—~ n =0 ~———
n-period CIP violation " financing benefit

The difference between the short-maturity swap rate 7, ; and the financing rate iﬁ +j 1s generally
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small and stable over time. As a result, equation (10) implies that if yields are close to the net long
curve, we should expect swap spreads to be negative and close in absolute value to the matched-

maturity CIP violation.

We should also emphasize the important role of risk premia that is hidden in this expression.
The n-period CIP violation r,?f is well above the physical (IP) measure expectation of future short-
maturity CIP violations, as emphasized by Du, Hébert, and Huber (2022). That is, net long curve
yields are higher than swap rates both because of expectations of non-zero future balance sheet

costs and because of the risk associated with the possibility that these costs become larger.

We develop the net short curve via similar logic. Consider the strategy of short-selling the
Treasury bond at yield y, ;, borrowing the bond against cash collateral, and offsetting the balance

sheet effect by reducing CIP activity. We must have

_n ds Qr —n-l _n 1 syn 1
e 12nt x etz < ES[e” mnlitl] pem 12t (e12t —e12't), (11)
— ~~ TN —~ > —_———
sale price  gross return on cash collateral repurchase price forgone CIP profits

The left-hand side of this expression is the cash generated at date r 4 1 by selling the bond and
posting the cash as collateral. The right-hand side represents the costs of this trade at date ¢ 4 1,
including both the cost of repurchasing the bond and the forgone CIP profits. Define the monthly

log interest rate

1 .5 1 1 sy
xp; = In(e2" +en2"" —en2't ) (12)

and iterate: 1
e Tahnt < eflnizyn.,f = EtQ[eXp(— Z x27t+j)]‘ (13)

j=0

The yield curve y; , defines what we call the “net short curve.” This curve represents the point at
which dealers would be willing to switch from CIP arbitrage activity to taking a net short position
in a Treasury bond. The net short curve is a lower bound on Treasury yields (again under the

assumption that dealers engage in CIP arbitrage).

The net short curve can also be viewed as an upper bound on swap spreads. Linearizing (13),

n—1

; 1
S o cip Q ) sec
Ynt — Ynit Srn,t_ynJN Tt + E [_ Z (rt+]_rt+j) ] (14)
S =0 ~—
n-period CIP violation security lending spread
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The difference between the short-maturity swap rate and the security lending rate is positive, and
the n-period CIP violation in our definition is also positive and proxies for the balance sheet cost.
Taking these two forces together, equation (14) implies that if yields are close to the net short

curve, we should expect positive swap spreads.

Our assumptions are sufficient to determine an upper and lower bound on Treasury yields (or,
equivalently, on swap spreads), but are not enough to pin down Treasury yields themselves. In a
frictionless world, the net long and net short curves converge to one curve and thus exactly pin
down Treasury yields. In the presence of frictions, yields can fall anywhere in between the net
short and net long curves. We will show, empirically, that yields were close to the net short curve
before the GFC and close to the net long curve after the GFC. We will then construct a model in
which dealers interact with non-dealers. In this model, the demands of non-dealers will determine

where Treasury yields fall within the net short and net long curve bounds.

2.3 Discussion

Before proceeding, we elaborate on the interpretation of these curves and on the role of interest

rate swap hedges in this framework.

The Net Short and Net Long Curves as Arbitrage Bounds. The bound y,; € [yi7,,y£l,t] is an
arbitrage bound if y,, 1,41 € [yfl_l’t T yfl_l’t 1] with probability one, which follows from our key
assumptions. This observation gives rise to the following interpretation: the net long yield is a
yield at which a dealer would be willing to go long even if the dealer believed all dealers would
be net long the bond in the future with probability one. Likewise, the net short yield is the yield
at which a dealer would be willing go short, even if the dealer believed all dealers would be net
short in the future with probability one. Yields falling in between these bounds can be loosely

interpreted as related to the probability that dealers will be either net long or net short in the future.

In Internet Appendix Section E.2, we show that under relaxed assumptions, if y, ; > yfh,, dealers
will perceive an arbitrage opportunity, even if it is not guaranteed that future yields are within
the bounds, i.e., if it is possible that y,_j ;1 < )’fz—u +1- The net short curve does not share this
property. However, we are able to derive a lower value for yields which we call “partial equilibrium
net short curve” such that the dealer will always be willing to go short, and show that the net short

curve described in the main text is a close approximation of this partial equilibrium net short curve.
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Pre-GFC and Post-GFC. Pre-GFC, synthetic lending rates were close to swap rates (i.e. CIP
violations were roughly zero), and security lending rates (if) were roughly 25 basis points below
one-month swap rates. As a result, during this period, x> ; was roughly the one-month swap rate
less 25 basis points. It follows that net short curve yields y, , were lower than matched-maturity
swap rates by about the same amount, which is to say there was a significant positive swap spread.
In contrast, the net long curve during this period was only about five basis below swap rates,

reflecting the difference between the long financing rate (the tri-party repo rate) and swap rate.

Post-GFC, synthetic lending rates are well above swap rates, and the spread between the one-
month swap rate and the long financing rate is small. In this period, xi, is approximately equal
to the synthetic lending rate. As a result, net long curve yields y,l” are approximately the same as
synthetic swap rates (i.e. EUR swap rates converted to dollars), which are swap rates plus the CIP
basis of the same maturity. This leads to a significant “negative swap spread” between swap rates
and the net long curve. In contrast, the net short curve now features rates far below swap rates
(large and positive swap spreads), reflecting both the spread between the short financing rate and

one-month swap rates and the CIP violations.

Actual swap spreads went from being large and positive pre-GFC to negative post-GFC. This
fact, combined with the discussion above, previews our result that Treasury yields went from being
close to the net short curve pre-GFC to close to the net long curve post-GFC. We will discuss the

consequences of this shift in Sections 3 and 4.

Hedging with Swaps. It is standard practice to hedge a Treasury position with an interest rate
swap.'® Prior to the GFC, hedging using LIBOR swaps was typical; following the GFC, OIS rose
in prominence, and more recently swaps based on repo rates (SOFR swaps) have begun to trade.
Our analysis will focus on OIS swaps, which are available for a reasonably long sample (unlike
SOFR swaps) and insensitive to credit risk (unlike LIBOR swaps). 19

Hedging Treasury bonds with interest rates swaps leaves the dealer exposed to mark-to-market
risk associated with fluctuations in the Treasury-swap spread. In our log-linearized equations (10)
and (14), we can see that the swap spreads for the net-long and net-short curve depend on the risk-

neutral expectations of future balance sheet constraints and residual basis spreads between money

18 There are a range of approaches: hedging can be static or dynamic, and based on matching maturity, duration, or
cashflows.
19See more details in Internet Appendix Section A.
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market rates.

Thus, the net long curve y,l” can be hedged with a synthetic dollar swap (by swapping EUR
rates to dollars), under the assumption that the long financing rate vs. short-term swap spread is
stable. The net short curve y; , can be hedged via a combination of swaps and synthetic dollar
swaps, under the assumption that the spread between short interest rates and short-term swap rates

is stable.

If one assumes that a Treasury yield will always be at one end of these boundaries, then the
Treasury bond itself can be hedged. But note that the hedge will differ depending on which of the
two boundaries is assumed to apply, and in neither case is the hedge a single swap. The intuition
for this result is that balance sheet costs matter, and hedging the Treasury bond with a swap hedges

interest rate risk but does not hedge balance sheet risk.

Yields and Positions. The net short and net long curves we construct are estimates of yields at
which the dealer should be willing to take a net position in a Treasury bond, after accounting for
financing and balance sheet costs. This definition leads naturally the prediction that if the yield is
at the net long yield, dealers should be net long, and if the yield is at the net short yield, dealers
should be net short. These bounds are constructed from possibly unreasonable beliefs about the
stochastic process driving bond prices. As a result, we should not be at all surprised if dealers are

willing to go long at yields below the net long yield or go short at yields above the net short yield.

Moreover, the yield of a Treasury bond relative to these curves does not directly determine
the scale of dealer positions. For example, if the yield is at the net long yield, dealers should
be net long, but the quantity by which they will be net long will depend on their balance sheet
capacity, risk tolerance, and other considerations that cannot be inferred directly from yield curves.
Nevertheless, we should expect net dealer positions to increase when yields move close to the net
long yield and to decrease (become net short) when yields move close to the net short yield. We

can construct a heuristic mapping from yields to position via this intuition.

Dealers and Levered Clients. In developing the net long and net short curves, we have adopted
the perspective of a dealer. In Internet Appendix Section E.1, we argue that these curves are also
arbitrage bounds from the perspective of the dealer’s levered clients (i.e. hedge funds). Deal-

ers’ balance sheet costs are in effect transmitted to these clients via bilateral lending markets, a
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point emphasized by Boyarchenko et al. (2018). As a result, balance sheets costs will influence
a substantial segment of the Treasury market, even though dealers are on their own hold a rela-
tively small quantity of Treasury bonds on net. Internet Appendix Section E.1 also contains some
suggestive evidence supporting this perspective. In what follows, we will treat dealers and their

levered clients as a consolidated entity.

2.4 Term Structure Estimation

To estimate the net long and net short curves, we need to construct the risk-neutral expectations of
x1,4+j and x4 ;. This is where our assumption that interest rate swaps and cross-currency basis
swaps are priced by a common SDF applies. The risk-neutral expectations we need are determined
primarily by the swap curve and the term structure of CIP violations. We will proceed by con-
structing an SDF (in particular, a term structure model) that fits swap rates and CIP violations, and

then use that SDF to construct the net long and net short curves.

At the heart of our calculations is a comparison between a Treasury hedged with a swap and
a CIP violation of the same maturity. A rough version of this comparison can be done without a
model: one simply compares the swap spread with the CIP violation. Our term structure model
allows for a more careful version of this comparison. First, it allows us to consider Treasury
bonds with maturities and coupon structures that do not exactly line up with the available points
of the swap and CIP curves. Second, it allows us to explicitly account for the residual basis risk
between financing rates. Third, it allows us to model the unwinding of the trade when the bond
has six months remaining maturity (which helps fit the short-end of the yield curve). Fourth, it
smooths the swap and CIP curves, reducing micro-structure-induced noise. Lastly, it accounts for

covariances that are omitted from the naive spread calculation.

Our term structure model largely follows the standard approach in the no-arbitrage term struc-
ture model literature (Joslin, Singleton, and Zhu, 2011; Joslin, Priebsch, and Singleton, 2014). At
first glance, this might seem strange, given that our model necessarily features arbitrage. In partic-
ular, our term structure model must match both swap rates and CIP violations, which is equivalent
to matching dollar swap rates and synthetic dollar swap rates. Our term structure model therefore
features two different short rates, and as a result two different yield curves, as in Augustin, Cher-

nov, Schmid, and Song (2020).?° We use a no-arbitrage approach (as opposed to other methods of

20We follow a similar approach to those authors when constructing our term structure model.
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yield curve interpolation) on the grounds that such an approach is consistent with our assumption

of no-arbitrage across derivatives.

We will use lower case symbols to denote scalars or vectors and uppercase symbols to denote
matrices, and assume each time period is one month. We follow the convention that all rates and
yields are expressed at yearly frequency, so we will scale them by 1/12 to obtain the monthly
yield. Let z; denote a vector of N risk factors (our empirical exercise will have N = 5) for our term
structure model. We assume that, under the physical (actual) probability measure P, z; follows a

Gaussian AR(1) process,
Gt =Ko, + KT at (2) el el ~ N(O.Iy), (15)

where Iy is the N X N identify matrix, kg) . is an N x 1 vector of constants, KI]IDZ is an N x N matrix,
and X, is a symmetric positive semi-definite N X N matrix. The intermediary’s log stochastic

discount factor that prices derivatives is

mes1 = —(8o+ 8 zl)——ﬂﬁﬂzm, (16)

where A, = (£1)(Ao + A1z) is the price of risk associated with each shock. We will assume
that the profits of derivatives trades are discounted using the OIS curve, consistent with industry
practice. 2l That is, r; = 8y + 5 -z¢, where r; is the log of the annualized fixed rate associated with

a one-month overnight index swap.

This standard specification leads to a risk-neutral () measure dynamics for the state vector z,

tra1 =k K 2+ ()22, €2 ~N(O,Iy), (17)

7,t+1° Tz, 041
where the parameters ké% and Ki@z are functions of the physical measure parameters and the SDF
parameters. It also leads zero coupon-swap rates that are affine in the state vector,

12 el |
Tnt = _FIH(E’Q lexp( 12 ree)]) = @’ + (b3 7, (18)

J=0

2IThe choice to use OIS rather than some other discount rate does not substantially impact our results, as we use
the SDF only to price zero-NPV derivatives, whose value is not sensitive to shifts in the level of the discount rate.
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where r,,; denotes log of the annual fixed rate associated with an n-month swap.

The one-month log synthetic dollar rate is likewise assumed to be affine,

i =8+ 81z, (19)
which generates the recursion
syn 12 Q = 1 syn syn syn\T
g = = In(Elexp(}, —5r)) =@+ (07") 2 (20)
j=0

We assume that the rates x; = (x1;,x2,, f—zyf’ﬂl) are affine functions of our state variable, where

x1, and xp ; are the discount rates associated with our net short and net long curves, and yfill is the

log annualized yield on a six-month Treasury bill. We assume that
1
x=Y+T1z+ (Ex)2&, & ~ N(0,13). (21)

These additional variables can be thought of as akin to the “macro factors” often included in stan-
dard term-structure models. The key assumption is that the measurement errors &, do not enter
the SDF (and hence have the same distribution under P and Q). The coefficients } and I'; can be

identified from regressions of these factors on the state variables.?

Finally, we assume that the dealer unwinds their position when the remaining maturity reaches
six months, at which point the Treasury bond is equivalent to a Treasury bill. We make this as-
sumption to capture the empirical observation that, pre-GFC, bill yields fell below other short-term
risk-free rates (see e.g. Nagel (2016)). Incorporating this effect is important when constructing

bounds on a one-year bond (which will become equivalent to a bill relatively soon) but has a min-

22The tri-party repo and secured lending rates (which are essentially the long and short financing rates) are overnight
rates. Given data limitations, we use overnight tri-party repo rates and overnight security lending rates to construct
x;. The 1-month CIP basis data are available, but to avoid the quarter-end effect (Du et al., 2018b), we instead use the
3-month CIP basis to obtain the synthetic rate in x;. Our estimation reveals that there are unit-root elements in the z;
process. A more sophisticated approach is to restrict that the spreads x1, —r; —r{'?, xo, — 1, + 7,7, and x3, — r, are
stationary, i.e., zero loadings on the unit-root element. Our main approach is the direct regression of x; on z;, but we
show in the internet appendix that results are similar if we impose stationarity on the spreads. See Internet Appendix
Section C for more details.

21



imal effect on long-maturity bonds. The curves we construct are thus

n .l 6
e T2Vni — E@ [exp(— Z X1,4j)exp(— 12yfﬁf1 o)l (22)
j=0
Q = 6 bill
—15Vns = E;~[exp(— sz i+j) exp(— 12y"lm 6)]- (23)
j=0

Under the assumptions of our term structure model, these curves are also affine in the state vari-

ables.

2.5 Term Structure Estimation Results and Predictions

We obtain data from various public sources, as documented in Internet Appendix Section A. We
then estimate the term structure model to fit dollar swap rates and synthetic dollar swap rates, using
a standard maximum likelihood approach. The goal of our estimation procedure is to accurately
fit and interpolate these curves. Figures 6 and 7 illustrate the fit of our model. For details on the
estimation procedure and on related issues such as coupon vs. zero-coupon bonds, see Internet

Appendix Section C.6.

In Figure 8, we show the model-implied net long and net short curves, in comparison with the
Treasury yield curve. In Figure 9, we subtract matched-maturity OIS rates from all the yield curves

in Figure 8.

Several patterns are immediately apparent. Prior to the GFC, yields for one, three, five, and ten-
year bonds were often close to the net short curve, consistent with the net position data. In contrast,
twenty-year maturity bonds are often close to the net long curve. Our model therefore predicts that
dealers would be short intermediate-maturity bonds and long longer-maturity bonds. We validate
this prediction in more detailed position data below. We should also note that, because there
are substantially more intermediate-maturity than long-maturity bonds outstanding, this pattern
naturally generates an overall net short position.”®> After the GFC, all yields for bonds of one-
year-maturity or greater are close to the net long yield, suggesting that dealers will be long coupon

bonds. This is again consistent with the position data.

230ur model has no specific predictions about how dealers should allocate their long/short positions across various
arbitrages. In making this argument, we are assuming that, all else equal, larger markets lead to larger positions.

22



Note that the six-month yield is constructed by regressing bill yields on the factors of our term
structure model, and by assumption the net long and net short curves are identical at this maturity.
We include it in these graphs to illustrate that, for the most part, our model captures the fluctuations
in the bill-OIS spread. These fluctuations play an important role in the movements of the net long
and net short curves at the one-year maturity point; they play a relatively minimal role for longer
maturities. Intuitively, movements in the six-month bill-OIS spread are amortized over longer

maturities and hence have only small effects on longer-maturity yields.

We next compare Treasury yields relative to the net short and net long curves to position data
for specific bond maturity buckets. As discussed above, a bond’s yield relative to the net short and
net long curve bounds serves as a heuristic proxy for dealer positions. We define a "relative yield
index" by
Yni = Yns
)’fq,z - y‘fm

This index takes on a value of one if the yield of the n-month maturity Treasury bond is equal to

1. (24)

pOSp; = 2 %

the net long yield, negative one if it is equal to the net short yield, and zero if it is equal to the

average of the net long and net short yields.

We then plot this relative yield index against the net dealer position by maturity bucket. We
obtain the net primary dealer coupon Treasury bond position in maturity buckets of <3 years, 3-
6 years, 6-11 years, and >11 years from the FR2004 primary dealer statistics published by the
Federal Reserve Bank of New York. We then normalize each of these by the total assets of primary
dealers, and plot them with the relative yield index at the 2-year, 5-year, 10-year, and 20-year
maturities. The bond position and relative yield index are plotted on different axes (because they

are not in comparable units), with the zero points on each axis aligned.

For a variety of reasons, we do not expect these series to perfectly align. First, as discussed
above, the mapping between how close a yield is to the net long or net short curves and the pre-
dicted net dealer position in that maturity is unclear, and may change over time. Second, the
arbitrage bounds we construct are motivated by trading strategies that (at least potentially) hold the
bond almost to maturity. Dealers also intermediate bonds between clients, and may be willing to
buy a bond for the purpose of selling it quickly even if they view the bond as overpriced (close to
the net short yield). This kind of intermediation activity acts as a kind of noise in the relationship
between net dealer positions and the relative yield index, and is likely accentuated when looking

at specific maturity buckets as opposed to overall net dealer positions. Despite these caveats, there
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is a non-trivial correspondence between the relative yield index and actual positions, as shown in
Figure 10. We also construct a weighted average version of the relative yield index, where the
weight for each maturity is the fraction of dealer Treasury bond holding at that maturity over total
dealer Treasury bond holding. Then we plot this aggregate relative yield index together with total

dealer Treasury holding scaled by dealer balance sheet size, as shown in Figure 11.

Summarizing our analysis thus far, Treasury yields have moved from being close to net short
arbitrage bounds pre-GFC to being close to net long arbitrage bounds post-GFC, and net primary
dealer positions have responded by switching from being net short to net long. Strikingly, the net
short and net long curves are constructed by assuming that dealers will remain net short or long
going forward. Our results therefore imply that, pre-GFC, dealers were expected by the market to
maintain a net short position, and that following the GFC, this expectation flipped and the market
now anticipates dealers maintaining a net long position going forward. The relationship between
yields and positions we document is consistent with the view that balance-sheet-constrained dealers
act as arbitrageurs between the Treasury and swap markets.”* We next consider the implications
of this perspective, with an emphasis on the causes and consequences of the regime shift we have

documented.

3 A Model of the Treasury Market

Thus far, we have said little about how the Treasury regime is determined. In this section, we build
a supply-and-demand model to endogenize dealers’ net position, as a function of their balance
sheet constraint, demand for Treasury bonds from non-dealers, and the overall supply of Treasury
bonds. This model helps explain the change in the Treasury regime pre- and post-GFC, the striking
correlation between the slope of the yield curve and the dealer position in Figure 2, and fragility of

the Treasury market when dealers’ balance sheet constraints are tight.

24*We interpret our results as showing that Treasury yields are often at or near arbitrage bounds given swap prices.
However, one could equally say that swap yields are at or near arbitrage bounds given Treasury yields, adopting the
perspective of Hanson, Malkhozov, and Venter (2022).
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3.1 Model Setup

The model has two dates (zero and one), and a single n-period Treasury bond. Date one exists only
for the purpose of determining payoffs; all of our analysis will focus on date zero, and we will
omit time subscripts for all date zero rates and yields. We will take as exogenous the date zero log
interest rates ybi”, i', i*, and r, as well as two different expectations concerned future bond prices.

We define the dealer’s date zero risk-neutral (Q-measure) expectation of date one bond prices as

po = exp(—(n—1)yg) = Eexp(—(n— L)yu—1,1)]

(25)
= E%exp(—(n— )ry—11+ (n—1)(rn1.1 —Yn-1.1))]

where r,_1 1 and y,_ | denote the (n— 1)-period swap rates and Treasury bond yields at date
one, and yg denotes the risk-neutral expectation-implied yield at date zero. We define the corre-
sponding physical measure (IP) counterpart as yp, so the physical-measure expected future bond
price is exp(—(n— 1)yp). Note that the dealer’s SDF and associated risk-neutral measure QQ price

derivatives, but will generally not price positive-investment assets (such the Treasury bills).

We have written the definition of yg in this way to highlight the possible interpretations of
comparative statics with respect to yg. One interpretation, which we emphasize, is that a decrease
in yg represents a change in the swap curve holding constant the risk-neutral expectation of future
swap-Treasury spreads. An equally valid interpretation is as a change in the risk-neutral expecta-
tion of future swap-Treasury spreads holding the swap curve constant. It is important to distinguish
between comparative statics that hold yp constant and comparative statics that change both yp and
y@- The first of these represents a change in risk premia, that latter a change in expected future

rates.

These interest rates and expected bond prices will allow us to compute the dealer’s net short
and net long curves. The key endogenous variables are y, the yield of an n-period zero-coupon
bond at date zero, and r**"*, the one-period synthetic unsecured risk-free rate at date zero. We focus

on the following asset prices that are closely related to the empirical motivations in Figure 1.
* The Treasury term spread, y — y?!/.

* The synthetic—swap spread, r**" — r, which maps to CIP deviations.
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* The n-period swap spread r,, —y, where

exp(—nry) = EQexp(—r— (n — Drp—11)] (26)

* The swap term spread, r, — r, which contains both an expectation component and a risk

premium component.

We will treat dealers and their levered clients as a single consolidated entity, based on the
analysis of Internet Appendix Section E.1. In the Treasury market, dealers will interact with two
kinds of investors. Hedged investors purchase the Treasury bond and swap it to their local currency.
Unhedged investors choose between the Treasury bond and Treasury bills. Dealers also have other
counterparties in the synthetic lending market; these other counterparties do not participate in the
Treasury market. This structure implicitly assumes that the tri-party repo, bill, and interest rate
swap markets are infinitely elastic, whereas the Treasury and synthetic borrowing markets are

elastic but not infinitely so; we make these assumptions to simplify our exposition.

Our model of dealers is exactly that of section 2.1, with pg defined as in (25). Recall that ™"
is the quantity (in dollars) of synthetic loans supplied by the dealers at date zero, and ¢?*"? be the
quantity (in dollars) of bonds owned (positive) or short-sold (negative), and that the dealer balance

sheet constraint is ¢ 4 |¢"”"?| = g.

Let 5" be the supply of bonds (in notional quantities) at date zero, and let D%’f”d and D%’”d
be the demand (in dollars) for bonds from unhedged and hedged investors, respectively. Market

clearing in the bond market requires
qbond + lejand + D}lzlond — exp(— ny) Sbond‘ 27)

The bond price exp(—ny) enters this expression to convert the notional supply S”°"? into dollars.

Unhedged investor demand is a continuously differentiable, strictly positive and increasing

function of the expected log excess return of the bond over bills,>

DY = Dy (ny —yP™ — (n—1)yp). (28)

25 As documented in Haddad and Sraer (2020), typical bank portfolios behave like unhedged investors in our model
in that their position in long-term bonds is increasing the expected excess return of long-term Treasury bonds.
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Likewise, hedged investor demand is a continuously differentiable, strictly positive and increasing

function of the expected log excess return in dollars®® on the hedged strategy:
D" = Dy (ny — ™" — (n—1)yp). (29)

When a dealer helps a hedged investor exchange e.g. yen into dollars and hedge using forwards, the
dealer will end up with a yen asset (cash) and a dollar liability. As a result, this activity increases
the dealer’s balance sheet, and is functionally equivalent, from the dealer’s perspective, to lending

synthetic dollars.

There is an important role for market segmentation in these equations. Both types of Treasury
clients are assumed to care about yp and not yg, because they trade Treasury bonds but not swaps.
Segmentation between constrained agents (dealers) and unconstrained agents (clients), whether
endogenous (e.g., Alvarez and Jermann (2000); Chien, Cole, and Lustig (2011); Biais, Hombert,
and Weill (2021)) or exogenous (e.g., Gertler and Kiyotaki (2010); He and Krishnamurthy (2013)),

is necessary to generate Treasury-swap arbitrage.

Dealers can also lend synthetic dollars to other counterparties (hedged investors buying cor-
porate bonds, for example). We assume that the demands of these other investors for synthetic
dollars are D™ (r" — r), where D" is a continuously differentiable, non-negative and strictly
decreasing function of the spread between synthetic dollars and risk-free rates. Market clearing in

the synthetic dollar market requires that
qsyn — D}I?_Iond +Dsyn(rsyn o l’). (30)

These market clearing conditions, together with the net long and net short inequalities in our
simple model (equations (3) and (4)) and the associated implications for dealer positions, define

our model.

To guarantee that an equilibrium exists in our model, we need interior solutions for (y, ") to
satisfy the two market clearing conditions in (27) and (30). Thus, we make the following technical

assumptions.

Assumption 1. We assume that the demand functions are well-behaved:

20For simplicity, we use the hedged return in dollars, as opposed to in local currency; this allows us to ignore
second-order terms associated with the covariance between interest rates and exchange rates.
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* Excess synthetic loan demand is possible: D*"(0) > g.

o Excess synthetic loan supply is possible: For all y, limsn__,oo D™ (r™" —r) 4+ Dy (ny — r™" —
(n—1)yp) =0.

* Excess bond supply is possible: limy_,_oDy(ny — y"!! — (n —1)yp) + Dy (ny —r — (n—
Dyp) =0.

Note that excess bond demand is also possible without the need to impose additional assump-
tions. This is because if we take y — oo, the right hand side of (27) becomes zero while the left
hand side is strictly positive, causing an excess bond demand. We will show that with Assumption

1, the equilibrium solution to the model exists and is unique.

bond

Depending on the sign of ¢g”?"*¢, our static model features three possible kinds of equilibria,

which we refer to as regimes: a long regime ¢””"¢ > 0, a short regime ¢”*"¢ < 0, and an interme-

diate regime ¢?°"¢ = 0. We discuss each of these regimes in turn.

Our focus, when analyzing these regimes, will be on the spread between synthetic dollars and
the swap rate, " — r, which is endogenously determined. In our quantitative analysis, this spread
was a key input to the model, and we measured it with CIP violations. In this two-market market,
the rate " should be understood as the risk-free return the dealer requires for assets held on
balance sheet, as opposed to specifically a euro rate swapped to dollars. Under this interpretation,

syn

the spread " — r is the kind of financial intermediation spread that plays a key role in macro-
finance models (Brunnermeier and Pedersen, 2009; He and Krishnamurthy, 2013; Brunnermeier
and Sannikov, 2014; Gertler and Kiyotaki, 2010). For this reason, we emphasize how this financial

intermediation spread responds to shocks.

3.2 The Long Regime

. o . . . _ !
We first consider a regime in which dealers are long (¢”** > 0), in which case e ™ = ¢, where

the net-long yield yl is defined in (3) and pg can be expressed in terms of yg as in (25). Thus,

—(n—1)yg
e = 31)

ell 4" —er
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Equation (31) generates a dealer indifference condition between the two endogenous variables "

and y. This indifference condition suggests that "

strictly increases with y. Intuitively, the more
attractive it is to buy the Treasury bond and hedge with swaps (higher y), the higher the return on

synthetic lending (r**"*) must be to generate indifference between these two activities.

Combining the market clearing conditions in (27) and (30), the intermediary balance sheet

constraint in (1), and using qbond > 0, we have
g— e—nySbond +Dy (ny _ybill _ (I’l _ 1)})]?) _ Dsyn(rsyn _ r). (32)

The left-hand side of (32) represents the residual balance sheet available for synthetic lending,
which in equilibrium must equal the residual demand for synthetic lending. Note that the demand
from hedged investors does not appear in this equation, because the dealer balance sheet is unaf-
fected by changes in their demand, holding all else constant.”’ The left-hand side of (32) is strictly
increasing in y, while the right-hand side is strictly decreasing in r*"*. Therefore, equation (32)

generates a kind of market indifference condition, where r*>"

strictly decreases with y. Intuitively,
higher yields lead to more investor demand for bonds, which reduces the balance sheet dealers
allocate to bonds, thereby increasing the balance sheet allocated to synthetic dollar lending and

reducing the synthetic dollar lending spread.

A long-regime equilibrium (y, ") is a point where these two indifference curves intersect and

g"" > 0, which requires
DH(ny — (n . l)yp) —f—Du(l’ly _ybill . (I’l . 1))7]17’) < e—nySbond. (33)

Because the two indifference curves have opposite slopes, such an equilibrium is unique if it exists.

We next consider various comparative statics associated with a long-regime equilibrium: an
increase in bond supply (Sbordy | dealer balance sheet (§), an increase in unhedged bond demand (a
parallel increase in Dy;), an increase in hedged bond demand (a parallel increase in D), an increase
in the swap market term premium (an increase in yg holding yp constant), and an increase in
expected future rates (a parallel increase in both yg and yp). The following proposition summarizes

our results.

27 An increase in hedged investor demand reduces the quantity of Treasury bonds dealers must hold, but increases
the amount of synthetic borrowing they must finance, and hence has no effect on their balance sheet usage, provided
that dealers have a net long bond position.
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Proposition 1. In a long regime equilibrium, holding all else constant,

1. An increase in S leads to an increase in 'y and an increase in r*",

2. A decrease in g or a parallel decrease in Dy is equivalent to a expansion of the same size in

the dollar supply of bonds.

3. A parallel increase in Dy does not change either y or r*™",

4. An increase in yq leads to an increase in 'y and a decrease in r*",

. . . . -1
5. An increase of dy in both yg and yp leads to an increase in 'y of less than = =dy and a

decrease in r’".

6. A parallel increase in D" () increases both 'y and r*™".
Proof. See Internet Appendix Section D.1. [

An increase in bond supply means that, holding yields constant, less dealer balance sheet is
available for synthetic lending. As a result, the market indifference curve increases for each vy,
which leads to an increase in both synthetic lending spreads and bond yields in equilibrium. A
decrease in either dealer balance sheet capacity or in unhedged bond demand is equivalent to an
increase in the supply of bonds, and hence generates the same comparative statics. In contrast, an
increase in hedged demand has no effect on the equilibrium, because this demand has no net effect
on dealer balance sheet constraints; it merely transforms dealer bond holdings into dealer synthetic

lending.

An increase in yg holding yp constant is equivalent to an increase in forward swap rates holding
expected future swap rates constant, and hence to an increase the swap term premium. Such a
change makes owning the Treasury bond and hedging with swaps less attractive to dealers, and as
a result the dealer indifference curve decreases for each y. This in turn leads to an increase in y and

a decrease in 7",

An increase of dy in both yg and yp represents an increase in expected future rates holding the
swap term premium constant. Holding fixed the dollar supply of bonds, such a change would have

syn

no effect on 7" and would lead to an increase in y of %dy. However, because it is the notional

and not dollar supply of bonds that is held constant, an increase in yields generates a contraction in
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the dollar supply of bonds. This contraction, in the long regime, has the effect of reducing synthetic

lending spreads and dampening the increase in bond yields.

The two indifference curves derived from (31) and (32), and the first and fourth comparative
statics in Proposition 1, are illustrated in Figure 12. The market indifference curves are truncated
when yields are sufficiently high; this truncation highlights that the long regime equilibrium ceases

to exist when client demand exceeds the bond supply.

3.3 The Short Regime

We next consider a regime in which dealers are short (¢”°"¢ < 0). In this regime, the bond yield
must exactly equal to the net short yield, e = ¢, where the short yield y* is defined in (4).
Expressing pg with yg as in (25), we obtain

e_(n_l)y(@

e W= (34)

ersec + er _ ersyl‘l

Equation (34) generates a dealer indifference condition, where " strictly decreases with y. Intu-
itively, the less attractive it is to sell the Treasury bond and hedge with swaps (higher y), the lower
the return on synthetic lending (") must be to generate indifference between these two activities.

This relationship has the opposite sign compared to the long regime.

Combining the market clearing conditions in (27) and (30), balance sheet constraint (1), and

using ¢?"? < 0, we obtain
g+e 8" — Dy (ny —yP" — (n—1)yp) — 2D (ny — " — (n— 1)yp) = D" (" —r). (35)

The left-hand side of (35) again represents the residual balance sheet available for synthetic lend-
ing, which in equilibrium must equal the residual demand for synthetic lending. Note that demand
from hedged investors has a double impact on the dealer’s balance sheet. All else equal, an increase
in this demand will result in dealers taking larger short positions and providing more synthetic fi-

nancing to hedged investors, both of which use up dealer balance sheet.

The left-hand side of (35) is strictly decreasing in y: unlike the long regime, more demand
from investors and less supply require dealers to take larger short positions, using up more balance
sheet. Equation (35) therefore generates a kind of market indifference condition, where r*>" strictly
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increases in y.

A short-regime equilibrium (y, ") is a point where these two indifference curves intersect and

g"°" < 0, which requires
syn bill —ny ¢bond
Dy (ny —r?" — (n—1)yp) + Dy (ny —y"" — (n— 1)yp) > e ™" (36)

Because the two indifference curves have opposite slopes, such an equilibrium is again unique if it

exists.

Our next proposition considers the same set of comparative statics studied previously in the

context of the short regime.

Proposition 2. In a short regime equilibrium, holding all else constant,

1. An increase in S°" leads to an increase in y and a decrease in r*";

2. Anincrease in g or a parallel decrease in Dy is equivalent to an expansion of the same size

in the dollar supply of bonds;

3. A parallel increase in Dy leads to a decrease in 'y and an increase in r™";

4. Anincrease in yg leads to an increase in 'y and an increase in r>";

. . . . —1
5. An increase of dy in both yg and yp leads to an increase in 'y by less than = =dy and an

increase in r’".

syn

6. A parallel increase in D¥" () increases r*" and decreases y.

Proof. See Internet Appendix Section D.2. [

An increase in bond supply in the short regime increases yields (like the long regime) but
decreases synthetic lending spreads (unlike the long regime). In the short regime, the larger the
supply of bonds the smaller the dealer’s required short position, and hence more balance sheet is

available for synthetic lending.

Like the long regime, a decrease in unhedged bond demand is equivalent to an increase in bond
supply. Unlike the long regime, an increase in dealer balance sheet capacity is equivalent to an

increase in supply, because dealers are short bonds instead of being long bonds. Also unlike the
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long regime, an increase in hedged bond demand leads to a decrease in yields and an increase in
synthetic lending spreads; it is equivalent to a contraction in the dollar supply of bonds of twice

the magnitude of the demand increase.

An increase in the swap curve term premium makes shorting bonds and hedging with swaps
more attractive. The dealer therefore requires a higher synthetic lending spread to be indifferent
between synthetic lending and shorting Treasury bonds, which leads in equilibrium to higher yields

and higher synthetic lending spreads (the opposite of the long regime).

Figure 13 illustrates the dealer indifference curve (34), the market indifference curve (35), and

the first and fourth comparative statics discussed in Proposition 2.

3.4 The Intermediate Regime

bond — (0,28 In this regime, the yield must fall between

The last regime we consider is one in which ¢
the net short and net long yields,

¥ <y<y, (37)

the bond market must clear without dealers taking a position,

Dy(ny —r™" — (n—1)yp) + Dy (ny —y""' — (n— 1)yp) = e ™", (38)

and the dealer balance sheet constraint is reduced to ¢*"* = g. Equating ¢*"

with synthetic lending
demand, we obtain

g =Dg(ny—r""—(n—1)yp) + D" (r™" —r). (39)

The following proposition summarizes the comparative statics in this case. We restrict attention
to interior intermediate equilibria, for which y* < y < ¥/, and discuss the determinants of regime

boundaries below.

Proposition 3. If an interior intermediate regime exists, it is the only such equilibrium. In an

interior intermediate regime equilibrium, holding all else constant,

1. An increase in S leads to an increase in y and an increase in r*";

281n position data, dealers will never have an exactly zero net Treasury position, for reasons (for example, interme-
diation activities) that are outside the scope of our model. We view the intermediate regime as describing a situation
in which dealers are targeting a roughly net flat position.
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2. Anincrease in g or a parallel increase in Dy leads to a decrease in both y and r™";

3. A parallel increase in Dy leads to a decrease in y and an increase in r™";

syn

4. Anincrease in yq leaves both y and r™" unchanged;

. . . . -1
5. An increase of dy in both yg and yp leads to an increase in 'y by less than *=dy and a

decrease in r™".
6. A parallel increase in D¥"(-) increases both r" and y.
Proof. See Internet Appendix Section D.3. 0

When dealers are not active in the Treasury market, increases in supply lead to higher yields
as a consequence of clients demanding higher expected returns in exchange for holding larger
positions. Some of these clients are hedged clients, whose increase position size requires additional
synthetic dollar financing from dealers, reducing those dealer’s ability to lend to other synthetic

dollar clients, which results in increasing synthetic lending rates.

As usual, an increase in unhedged demand is equivalent to a decrease in supply. However, the
comparative statics with respect to balance sheet and hedged demand are unlike either the long or

short regime; both effects are driven by the role of the hedged demand in the Treasury market.

Unlike either the long or the short regime, in the intermediate regime the OIS term premium
is disconnected from Treasury yields. Dealers are not actively arbitraging bonds and swaps, and
neither type of client trades swaps; as a result, changes in the swap market term premium do not
affect the Treasury market. In contrast, increases in expected yields lead to higher yields, exactly

as in both the long and the short regime.

3.5 Equilibrium

Let us next consider the factors that determine which of three regimes occur in equilibrium. The
following proposition summarizes how some of the comparative statics discussed thus far can

change the equilibrium regime.

Proposition 4. The equilibrium exists and is unique given the exogenous parameters. Holding all

else constant,
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1. There exists an 0 < Sg < Sp < oo such that a short regime equilibrium exists for all Shond Ss,
a long regime equilibrium exists for all S*" > Sp, and an intermediate regime equilibrium
exists for St ¢ [Ss, Sp].

2. There exists an 0 < ypg s < yop < o such that a short regime equilibrium exists for all
Yo < Yo,s, a long regime equilibrium exists for all yo > yg p, and an intermediate regime

equilibrium exists for yg € [y0.5,Y0.8)-
Proof. See Internet Appendix Section D.4. [

Intuitively, when bonds are scarce, dealers will be short to meet client demands, while when

bonds are abundant dealers will be long to fill the shortfall in client demand.

Less intuitively, when the yield curve is steep dealers will be short bonds. Considering the
dealer’s bond position in isolation, this looks like a money-losing strategy: expected returns are
higher when the yield curve is steeper. However, if the swap curve has a higher term premium
than the Treasury curve and the dealer is hedging with swaps, then selling bonds and hedging is in
fact a profitable strategy. Similarly, buying bonds when the curve is flat looks like a money-losing
strategy, but is in fact profitable if the swap curve is even flatter and the dealer hedges. In our
model, client demand for Treasury bonds is driven by the expected returns on those bonds; spreads

must therefore move in a way that induces dealers to take the opposite position.

Figure 14 illustrates the comparative statics of the model with respect to changes in the swap
curve term premium. The swap-Treasury spread is an increasing function of the swap term pre-
mium, but the rate at which it increases depends on the regime. In contrast, the synthetic lending
spread is U-shaped: it is high in both the long and short regimes, and low in the intermediate
regime. Lastly, the dealer Treasury position as a fraction of its capacity g decreases with the OIS

term premium, consistent with the motivating facts in Figure 2.

3.6 Model vs. Data

We now return to the motivating facts illustrated in Figures 1 and 2 and discuss them through the

lens of our model. We divide our discussion between the pre-GFC and post-GFC periods.
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Yield Curve Slope vs. Dealer Position The model is able to explain why dealers’ net long posi-
tion is larger when the term spread (slope of the yield curve) is lower. This pattern is documented
in Figure 2, and is at first puzzling in light of the fact that the slope positively predicts future
bond returns (Campbell and Shiller (1991)). That is, if dealers held more Treasury bonds when
the expected returns on those bonds are higher (as in Jermann (2020)), we would expect a positive

relationship between bond holdings and the term spread.

Our model resolves the puzzle by assuming that client demand is increasing in expected excess
bond returns. Dealers accommodate client demand by acting as arbitrageurs between the bond and
swap markets, which leads naturally to the result that their Treasury positions declines in expected
excess bond returns, and hence the term spread. Meanwhile, dealers justify a larger position by

charging a larger swap spread.

Pre-GFC. Prior the GFC, CIP violations were close to zero, swap spreads were positive, and
dealers were net short (Figure 1). During this period, dealers were able to use large amounts of
leverage for the purpose of engaging in arbitrage trades, and Treasury bonds were comparatively

scarce (relative to the supply in the post-GFC period).

Our model reconciles these facts in the following way. First, because of the scarce supply
of Treasury bonds, dealers ended up net short pre-GFC, absorbing the excess client demand for
Treasury bonds (Proposition 4 part 1). Because dealers had ample balance sheet capacity, CIP
violations remained small (Proposition 2 part 2). Because dealers were net short, Treasury yields
ended up on the net short curve (34), which is below the OIS swap curve due to funding spreads
(i < r) and low Treasury bill yields (which lead to a lower yg). Consequently, swap spreads were
positive.

To illustrate this point, in Figure 15, we replicate Figure 14, with a relatively high balance sheet
capacity for dealers, relatively low bill yields, and a relatively small supply of Treasury bonds.
Figure 15 shows that our model, with these parameters, predicts a small and roughly constant CIP

spread, a positive swap spread, and a negative dealer Treasury position.

Thus, given a scarce bond supply, ample dealer leverage, and low Treasury bill yields (relative
to other rates), our model can replicate the stylized facts illustrated in Figure 1 for the pre-GFC

period.
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Post-GFC. After the GFC, CIP violations were significant, swap spreads were negative, and
there was a strong correlation between the two (Figure 1). Dealers were net short, and the size
of their position was strongly negatively correlated with the slope of the yield curve (Figure 2).
Dealers faced tight leverage constraints as part of the post-GFC regulatory regime (Duffie (2017)),

and there was a large increase in the supply of Treasury bonds.

Our model reconciles these facts in the following way. First, because of the large supply of
Treasury bonds, dealers ended up net long post-GFC, absorbing the demand shortfall (relative to
supply) from clients (Proposition 4 part 1). Because dealers had tight balance sheet constraints,
CIP violations became large (Proposition 1 part 2). Because dealers were net long, Treasury yields
ended up on the net short curve (31), which is above the OIS swap curve mainly due to balance
sheet costs (funding spreads (i < r) are small, and in the post-GFC regime bill yields are close
to r). Consequently, swap spreads are negative. Moreover, because swaps spreads are now driven
primarily by balance costs, they are now strongly correlated with other measures of balance sheet
costs (CIP violations). Lastly, because Treasury yields are on the net long curve, dealers are willing
to absorb changes in client demand for Treasury bonds. Because clients seek Treasury returns
((28) and (29)), and therefore demand more when the term spread is higher, dealer net positions

are negatively correlated with the term spread (by market clearing).

We again replicate Figure 14 in Figure 16, but with a low balance sheet capacity for dealers, no
spread between bill and funding rates, and a relatively large supply of Treasury bonds, as a way of
capturing the post-GFC period. Figure 16 shows that our model, with these parameters, predicts
significant CIP violations, negative swap spreads, co-movement between these two in response to

shocks, and a positive dealer Treasury position.
Thus, given a large bond supply, limited dealer leverage, and Treasury bill yields comparable to

other rates, our model can replicate the stylized facts illustrated in Figures 1 and 2 for the post-GFC

period.

Pre- vs. Post-GFC. Our analysis shows that a combination of three factors (a large increase
in Treasury supply, a tightening of dealer balance sheet constraints, and an increase in bill yields
relative to other rates) are sufficient in our framework to explain the differences we document

between the pre- and post-GFC periods.

Figure 3 illustrates the first two of these changes. The U.S. government borrowed a large

37



amount during the financial crisis and continued running substantial deficits in the years that fol-
lowed. As a result, the outstanding of marketable Treasury securities grew from $4.7 trillion in
2008 to $22.5 trillion as of June 2022. This resulted in a large increase in the supply of Treasury
bonds, even after accounting for the Federal Reserve’s bond purchases. At the same time, regula-
tory reforms lead to a reduction in the size of dealer balance sheets. We speculatively attribute the

third change (a relative increase in bill yields) to the payment of interest on excess reserves.>

There are of course many other differences between the pre- and post-GFC periods. There are
also relevant factors in the model (in particular, the shape of the demand curves of clients) that may
have changed between these period and about which we have little information. For these reasons,
we can show that the three changes we emphasize above are sufficient to explain the observed
differences between the pre- and post-GFC periods, but cannot prove that all of the differences

were caused by these forces and not some other changes between the two periods.

Counterfactuals. Our model allows us to consider two related counter-factual scenarios. We ask
(1) what if balance sheet constraints were tight pre-GFC, and (i1) what if Treasury supply remained

scarce post-GFC, in both cases holding all else equal.

Both of these counter-factual scenarios involve the short regime, in the first case because deal-
ers were in fact short pre-GFC and in the second case as result of the hypothetical Treasury scarcity
post-GFC. Both scenarios also involve tight balance sheet constraints, in the first case by assump-

tion and in the second because balance sheet capacity was scarce post-GFC.

The combination of balance sheet scarcity and the short regime would lead our model to predict
large and positive swap spreads. These swap spreads would be caused both by funding spreads
(* < r) and balance sheet costs, and could easily be 100 basis points higher than the negative swap
spreads observed post-GFC (under the assumption of a 20bps difference between i* and i’ and a
40bps CIP violation). With regards to the post-GFC counterfactual, our model therefore implies
that, treating swap rates as fixed, Treasury yields are substantially higher than they would have

been in the absence of a large increase in supply.

2In the pre-GFC period, banks were significant holders of Treasury bills at rates well below tri-party repo rates.
After the Fed began paying interest on reserves at rates higher than tri-party repo rates, banks substantially reduced
their bill ownership, and government-only money market funds substantially increased their bill ownership. Such
funds can invest in both bills and tri-party repo; as result, bill yields rose to roughly the level of tri-party repo rates.
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3.7 Regimes and Treasury Market Fragility

During the financial crisis of 2008-2009, Treasury yields fell by more than matched maturity swap
rates. During the COVID-induced financial turmoil of March 2020, the reverse was true: Treasury
yields did not fall by as much as swap rates, and in fact briefly rose (Duffie, 2020; Haddad, Moreira,
and Muir, 2021; He, Nagel, and Song, 2022). The different comparative statics across the long and

short regimes in our model offer an explanation for this pattern.

In the short regime, an increase in balance sheet costs (as measured by the spread " —r), all
else equal, will lead to lower Treasury yields (Proposition 2). In contrast, in the long regime, an
increase in balance sheet costs will lead, again all else equal, to higher Treasury yields (Proposition
1). Both crises were characterized by large increases in arbitrage spreads; the difference was that

the market was in the short regime pre-GFC and in the long regime post-GFC.

He, Nagel, and Song (2022) attribute the differences between these two episodes to client
demand for Treasury bonds (a dash-for-cash in COVID, a flight-to-safety in the GFC). Our story is
compatible with theirs, in the sense that Treasury selling in COVID would increase balance sheet
costs (the long regime) and Treasury buying in the GFC would also increase balance sheet costs
(the short regime). However, our story does not rely customer demand for Treasury bonds as the
causal factor behind the increase in balance sheet costs. In both the GFC and COVID episodes,
even if clients had not bought or sold Treasury bonds on net, we expect that balance sheet costs
would have risen, and as a result predict that Treasury yields would have moved relative to swap
rates upwards in COVID but downwards in the GFC. Quantifying the role of Treasury demand, as
opposed to other forces, in explaining the tightening of balance sheet constraints in these episodes

is an interesting direction for future research.

4 Implications for Policy

In this section we consider a variety of Federal Reserve policies, and study how the effects of
those policies depend on the regimes we have identified in the Treasury market. The specific
policies we consider are interest rate policies (including forward guidance), swap lines with other
central banks, supplementary leverage ratio (SLR) exemptions, and quantitative easing/tightening
(QE/QT). Our analysis will emphasize the way in which the direction of the effects of these policies

depends on the Treasury market regime; drawing quantitative conclusions would require estimating
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client demand curves. We will use the comparative statics described previously, and focus on
the effects of the aforementioned policies on Treasury yields and on synthetic dollar rates. As
discussed above, we view synthetic dollar rates as a proxy for financial intermediation spreads

more generally.

Our framework treats the term structure of swap rates as exogenous. We first discuss of the
effects of interest rate policies that change the level and slope of the swap curve. Then in our
analysis of the subsequent three policies (swap lines, SLR exemptions, QE/QT), we focus our
discussion on the direct quantity and balance sheet effects of these policies, without discussing the
additional effects of these policies on the swap curve and expectations of future rates (i.e. keeping

y@ and yp unchanged in our static model).

Before discussing these policies, we should emphasize that all of these policies have effects
on inflation, real economic activity, and financial stability that are outside the scope of our model.
Policies that increase arbitrage spreads and other financial market distortions can be justified on
these grounds. However, combinations of the policies we discuss might achieve these same ob-
jectives while avoiding financial market distortions, and it is the goal of our analysis to highlight

these possibilities.

Table 1: Summary of Policy Implications

Policy Type Long Regime Short Regime
Tsy Yield Lending Rate Tsy Yield Lending Rate
J Term premium T 0 T J
Swap line i 1 T I
SLR Exemptions d 1 T 4
QT (purchasing bills, selling bonds) T 0 T 4

syn

Notes: Tsy yield is the long-term Treasury yield y. Lending rate is the synthetic lending rate r

Table 1 summarizes our results, which we subsequently explain in more detail. Setting aside
the specifics associated with each policy, our main message is that the effects of each of the policies

depend on the Treasury market regime.
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4.1 Interest Rate Policy

We first consider the effects of policies that affect swap rates and rate expectations, including both
rate hikes and forward guidance. That is, we define interest rate policy as controlling the current
level and future expectations of the federal funds rate (the floating rate for interest-rate swaps).>’
Our analysis will consider the relationship between shocks to current and future federal funds rates

and shocks to Treasury yields.

The comparative statics of our model distinguish between changes in term premium (changes
in yg holding yp constant) and changes in expectations (equal changes in both values). Monetary
policy likely changes both expectations and risk premia. Hanson and Stein (2015) and Hanson,
Lucca, and Wright (2021) argue that rate hikes increase both expected future rates and term premia.
There is also evidence that forward guidance affects risk premia in addition to rate expectations
(e.g. Rogers, Scotti, and Wright (2018)).

To avoid taking a stand on the exact decomposition between interest rate policy and risk premia,
we will describe interest rate policy in terms of the level and slope of the swap curve, under the
premise that a steep slope implies a high risk premium and a flat or inverted slope implies a low

risk premium.

A high level of expected rates (a parallel increase in both yg and yp) is equivalent, in our
model, to a contraction in the dollar supply of bonds, because the supply of bonds is assumed to
fixed in notional terms. This effect is potentially offset by forces outside our model— for example,
the federal government might issue more debt to cover the additional interest costs associated with

high rates. For this reason, we do not emphasize it as the main effect.

Instead, we focus on the slope of the term structure and the term premium. A low term premium
in our model in the long regime leads to a contraction in the client demand for Treasury bonds,
a further build-up in the dealer’s long position, an increase in bond yields, more negative swap
spreads, and an increase in synthetic lending spreads (see part four of Proposition 1 or Figure 16).
In the short regime, a low term premium instead leads to a decline in synthetic lending spreads (see

part four of Proposition 2).

30This sidesteps the issue of how administered rates (such as the interest on reserves rate and ONRRP rates) transmit
to the federal funds market, which is beyond the scope of our model.
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4.2 Central Bank Swap Lines

We next consider the policy of establishing swap lines between the Federal Reserve and other
central banks. These swap lines allow foreign central banks to borrow dollars from the Federal
Reserve, using their own currency as collateral. The foreign central banks then lend those dollars

to their local banks, typically for the purpose of financing a position in dollar-denominated assets.

This procedure allows non-U.S. banks to borrow dollars, and is a substitute for borrowing syn-
thetic dollars via a dealer.?! We therefore incorporate swap lines into our static model as equivalent
to a demand shift in the synthetic lending market (a parallel shift in D*"). The swap lines establish
by the Federal Reserve generally have rates determined by policy. If the rate is higher than the
prevailing market rate, the facility will go unused, and the equivalent demand shift is zero. If the
rate is appealing, it is equivalent to a rate ceiling in the synthetic loan market, and hence to an

endogenously sized decrease in the demand for synthetic dollars.?

Any demand decrease in the synthetic lending market will lead to reduced synthetic lending
spreads in both the long and short regimes (see part six of Propositions 1 and 2). In the long
regime, these reduced lending spreads will also lead to reduced Treasury yields (and hence swap
spreads), whereas in the short regime reduced lending spreads would lead to increased Treasury
yields. Again, both of these effects operate through the relaxation of balance sheet constraints, and
the regime determines the relationship between balance sheet tightness and Treasury yields. In
both cases, there would be an increase in the demand for Treasury bond financing (either tri-party
repo or security lending). Our model assumes these rates are fixed, but in a more complex model

these rates might also adjust.

We should note that, in our model, a swap line with a rate equal to the swap rate and large
capacity could drive the synthetic lending spread to zero. This would endogenously result in all
of the dealer’s balance sheet being allocated to the Treasury trade, and violate Assumption 1.
Although we do not formally analyze this case, we should emphasize what does not happen: it is

not the case that the balance sheet cost faced by dealers goes to zero. Instead, the CIP violation

3'We are assuming that dealers are not themselves borrowing using the swap lines; providing subsidized dollar
funding to dealers would have additional effects not described in this section.

¥ During normal times, because of stigma associated with tapping central bank liquidity facility and moral suasion
from central banks discouraging banks to use swap line to fulfill their routine funding needs, the take-up in the swap
line is extremely low even when the swap line rate borrowing rate is temporarily below the implied dollar rate from
the FX swap market.
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ceases to be a meaningful measure of balance sheet costs. Other financial intermediation spreads

would decline (due to the relaxation of dealer balance sheet constraints), but would not go to zero.

Summarizing, in both regimes, swap lines can substitute for dealer balance sheet in the syn-
thetic dollar market, thereby reducing synthetic lending spreads. However, swaps lines have op-
posite effects on Treasury yields in different regimes: they decrease Treasury yields in the long

regime, but increase Treasury yields in the short regime.

4.3 Leverage Ratio Exemptions

We next consider changes to regulatory policy that involve exempting certain kinds of low-risk as-
sets from the SLR calculation. We consider two possible exemptions: exempting Treasury bonds
and repo loans against Treasury collateral (exempting Treasurys, for short), and exempting re-
serves. Similar policies were implemented during the most acute parts of the COVID-induced

market disruptions in 2020.

Recall in our static model that we have consolidated dealers and their levered clients into a
single entity, based on the analysis of Internet Appendix Section E.1. This consolidation is based
on the fact that both repo loans that dealer provide to their levered clients to hold Treasury bonds
and direct holdings of Treasury bonds increase the size of the dealer’s balance sheet. For this
reason, it is simpler to consider a policy that exempts both repo loans against Treasury bonds and

Treasury bonds directly owned by dealers.??

Exempting Treasurys will both free up dealer balance sheet capacity for synthetic lending and
remove the need to reduce CIP arbitrage activity when taking a net position in Treasury bonds.
This will lead to Treasury yields that are a function only of financing rates (i’ in the long regime,
i* in the short regime), and therefore have the effect of reducing yields in the long regime and
increasing yields in the short regime. In both regimes, the SLR exemption will allow dealers to

Syn

allocate the regulated portion of their balance sheet entirely to synthetic lending (¢*" = g) and lead

to a reducing in financial intermediation spreads.
Exempting reserves (or any other assets) frees up the dealer balance sheet space for Treasury
holding and synthetic lending, and thus is equivalent to expanding the balance sheet capacity g in

our static model. In the long regime, this would result in a decline in bond yields and synthetic

33Exempting one but not the other would shift the net holdings of Treasury bonds from dealers to their levered
clients or vice versa, in addition to relaxing balance sheet constraints.
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lending spreads; in the short regime, bond yields would rise while synthetic lending spreads fall

(see part two of Propositions 1 and 2).

Both SLR exemption policies will lead to a reduction in financial intermediation spreads, whose
magnitude depends on the extent to which balance sheet constraints are relaxed. Exempting Trea-
surys will, in the long regime, reduce Treasury yields by removing balance sheet factors from their

pricing entirely, whereas exempting reserves will not have this effect.

4.4 Quantitative Easing and Quantitative Tightening

We define QE (QT) as the Federal Reserve’s purchases (or sales/redemptions) of Treasury bonds in
the secondary market.>* The Treasury bonds can ultimately come from (QE) or go to (QT) dealer
inventory, bank portfolios (outside the broker-dealer subsidiary), or other non-bank (non-dealer)
clients, and are traded in exchange for reserves. Here, we will separately consider the Treasury
demand and reserve supply channels of QE/QT. We assume that no SLR exemption is applied to
reserves or Treasury securities, and set aside the signaling effects of QE (which are covered in
Section 4.1).

To isolate the effects of the Treasury demand channel, we consider a hypothetical version
of QE in which the Fed purchases Treasury bonds in exchange for Treasury bills. This operation
(which is somewhat akin to “Operation Twist”) leaves the supply of reserves unchanged. We model
this operation, which isolates the Treasury demand channel of QE, as a parallel outward shift in
the demand curve for Treasury bonds (Dy) in our static model. Holding fixed money market
yields and swap rates, in the long regime quantitative easing will reduce both yields and synthetic
lending spreads (see part two of Proposition 1). In contrast, in the short regime, quantitative
easing will reduce yields while increasing synthetic lending spreads (see part two of Proposition
2). Both of these effects operate through the balance sheet mechanism; the regime matters because
it determines whether balance sheet constraints are tightened or loosened by QE. If the goal of
quantitative easing is to lower financial intermediation spreads, then our results imply that QE is

effective via the Treasury demand channel in the long regime but not in the short regime.

To isolate the reserve supply channel, we consider a hypothetical purchase of Treasury bills

34The Federal Reserve and other central banks have at times purchased mortgage, corporate, and other bonds as part
of quantitative easing programs. The model described thus far considers only Treasury bonds, and for this reason we
restrict attention to Treasury purchases.
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in exchange for reserves, which leaves the supply of longer-maturity Treasury bonds unchanged.
Note that the combination of these two operations is QE: the purchase of Treasury bonds in ex-
change for reserves. Note also that the effects of QT are exactly the opposite of those of QE. The
effects of QE through the reserve supply channel are more complex, and depend in particular on

whether the Fed’s overnight reverse repo (ONRRP) facility is actively used.

Consider first the case without an active ONRRP facility. In this case, the reserves the Fed
creates via QE must end up on bank balance sheets.?> This will be true regardless of whether the
ultimate seller of the bonds to the Fed is a bank, dealer, or non-bank. We can incorporate this effect

into our model as a reduction in 4.

Suppose the reduction in balance sheet capacity is equal to the increase in bond demand (i.e.
that all reserves end up on bank balance sheets). In the long regime, the reserve supply channel
(g) will exactly offset the Treasury demand channel (Dy(+)); see (32). In contrast, in the short
regime, both the reserve supply channel and the Treasury demand channel will lead to more tightly

constrained dealer balance sheets (see (35)).

With an actively used ONRRP facility, the reserve supply channel is significantly muted. The
ONRREP facility allow money market funds to make repo loans to the Federal Reserve. If the Fed
exchanges reserves for bills, these funds will sell bills and receive deposits at their clearing banks,
and then lend those deposits back to the Federal Reserve using the ONRRP facility. Thus, with
an active ONRRP facility, the effects of QE can operate entirely through the Treasury demand

channel.

In summary, in the long regime with an active ONRRP facility and binding balance sheet
constraints (the situation as of June 2022), we expect QE/QT to have strong effects on Treasury

yields and financial intermediation spreads.

4.5 Implications for Monetary Policy Tightening Cycles

In June 2022, the Federal Reserve began to normalize its large balance sheets from the extraordi-
nary response to the COVID pandemic. In addition, the Fed has been increasing short-term interest
rates substantially while engaging in quantitative tightening. Our framework has important impli-

cations for the dynamics of the Treasury market during such a tightening cycle.

331f the Fed’s purchases under QE coincide with Treasury issuance, then some reserves might temporarily go into
the Treasury’s general account before eventually winding up on bank balance sheets.
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We first note that tightening cycles are often associated with with flat or inverted Treasury yield
curve, and low expected returns on long-term Treasury bonds. This dampens real money investors’
demand for Treasury bonds, and it is particularly challenging for dealers and levered investors to

accommodate a reduction in Fed holdings of Treasury bonds (QT) when client demand is weak.

Consider the experience of the 2017-2019 tightening cycle, in which the Fed normalized its
balance sheet for the first time post-GFC and increased the short-term interest rates from the zero-
lower-bound to 2.5 percent. During that tightening cycle, dealers’ increased their Treasury hold-
ings by about $100 billion and hedge funds increased their holdings by about $350 billion, together
accounting for the entirety of the $390 billion Fed balance sheet normalization from October 2017
to September 2019. The swap-Treasury spread and the Treasury cash-futures basis widened con-
siderably over the period. Moreover, the increasingly crowded dealer balance sheet and signifi-
cant build-up of the levered investor positions may have contributed to the repo market distress in

September 2019 and Treasury market dislocation in March 2020.

Consistent with this experience, our model suggests that the combination of QT with an active
ONRREP facility and a flattening curve, in the long regime, can lead to higher yields, more negative
swap spreads, and higher financial intermediation spreads. SLR exemptions and the use of the

swap lines established with foreign central banks have the potential to ameliorate these effects.

Finally, it is important to note that there are two main factors that distinguish the current tight-
ening cycle from the 2017-2019 cycle. First, there is currently over $2 trillion cash at the ONRRP
facility (the ONRRP facility was not very active during 2017-2019). The cash at the ONRRP
can, potentially, be deployed to finance Treasury supply without further crowding out dealers’ bal-
ance sheet. Second, current interest rate volatility is significantly higher than during the previous
tightening cycle, due to greater uncertainty in the future path of policy rates. Greater interest rate
volatility can discourage the build-up of dealers’ inventory and the levered investors’ position due

to additional value-at-risk-type constraints, which we have been abstracted from our framework.

5 Conclusion

We have documented a regime change in the U.S. Treasury bond market. Prior to the 2008-2009
financial crisis, dealers were net short-sellers of Treasury bonds, swap spreads were positive, and

CIP violations were small. Following the GFC, dealers became net long Treasury bonds, swap
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spreads turned negative, and covered interest parity violations emerged. Our analysis ties these
observations together by constructing arbitrage bounds, the net short and net long curves, and

providing evidence of dealers-as-arbitrageurs in the Treasury market.

We then discuss the causes and consequences of this regime change. We view the large increase
in Treasury supply and the tightening of leverage constraints on dealers as the primary drivers
of this regime change. Using a stylized static model, we have argued that this regime shift has
amplified the effects of quantitative easing and of the yield curve slope on borrowing spreads. In the
post-GFC dealer-long regime our model predicts tighter dealer balance constraints in response to
Fed quantitative tightening and a flat or inverted Treasury yield curve, and more elevated financial
intermediation spreads. Our analysis suggests that other polices, including the use of swap lines

and of exemptions to SLR calculations, can help offset these effects.
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Figure 1: Primary Dealer Treasury Holing, Swap Spreads, and Cross-Currency Basis.

o
ln_
- o
-
o
=
S- )
182
—3
=]
2 :
2
_o §-
o [
- =]
T / "ﬁ//‘v 3
g (=3
o | ‘ 2z
B Q
o
o o
o L ©
M T T T T o
2000 2005 2010 2015 2020

30Y IRS-Tsy Spread (bps)
PD Net Coupon Tsy Holding (BIn)

5Y USD-EUR XCCY (bps)

Notes: This figure plots the spread between the 30-year Libor-linked interest rate swap and the U.S. Treasury
yield (in green), and the 5-year USD-EUR cross-currency basis (in orange), and net holdings of coupon
Treasury bonds. The pricing data are from Bloomberg, and the primary dealer position data are from the
publicly available primary dealer statistics published by the Federal Reserve Bank of New York. The quote
on the cross-currency basis swap effectively measures the direct dollar interest rate minus the synthetic
dollar interest by swapping EUR interest rate into dollars (Du, Tepper, and Verdelhan (2018b)).
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Figure 2: Term Spreads and Primary Dealer Treasury Holdings

Post-2009
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Notes: Panel (a) plots the yield spread between the 10-year Treasury bond and the 3-month Treasury bill
(in blue), and the primary dealers’ net holdings of Treasury bonds. Panel (b) plots the relationship between
the two variables post-2009 in a scatter plot. The pricing data are from Bloomberg, and the primary dealer
position data are from the publicly available primary dealer statistics published by the Federal Reserve
Bank of New York.
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Figure 3: Treasury Supply and Broker-Dealer Total Assets.
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Notes: This figure plots the total marketable Treasury securities outstanding (in red), the total marketable
Treasury outstanding minus Federal Resereve holdings (in orange), and the financial assets of the U.S.
broker-dealer sector (in blue) in trillions of dollars from Flow of Funds.

Figure 4: Balance Sheet Change for a Long-Treasury Trade in the Long Regime
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Figure 5: Balance Sheet Change for a Short-Treasury Trade in the Short Regime
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Figure 6: Fit of the TS Model to Dollar OIS Curves.
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Notes: In this figure, we show the fitting of the dollar swap curve using our term-structure model. Data are
from 2003 to 2021. More details on the term structure model can be found in Section 2.4.
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Figure 7: Fit of the TS Model to USD-EUR CIP Deviations.
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Notes: In this figure, we show the fitting of the OIS-Based EUR-USD CIP Deviations using our term
structure model. The CIP deviations are shown as the spread between the synthetic dollar interest rate and
the USD OIS rate (the negative of the quoted cross-currency basis). Data are from 2003 to 2021. More
details on the term structure model can be found in Section 2.4.
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Figure 8: Long and Short Curves.
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Notes: In this figure, we show the model-implied net-long and net-short curves for Treasury securities,
together with the actual Treasury yields. Data are from 2003 to 2021. All yields are par yields. More details
on the term structure model can be found in Section 2.4.
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Figure 9: Long and Short Curves — OIS Spreads.
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Notes: In this figure, we show the model-implied long and short Treasury curves minus the OIS rates for
corresponding maturities, together with the actual Treasury—OIS spreads. Data are from 2003 to 2021. All
yields are par yields. More details on the term structure model can be found in Section 2.4.
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Figure 10: Relative Yield and Position by Maturity.
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Notes: In this figure, we plot the relative yield index versus actual scaled primary dealer Treasury positions.
The relative yield index is defined as 2*(long curve — Treasury curve)/(long curve — short curve) — 1.
The scaled primary dealer Treasury position is calculated as the ratio of the primary dealer net position in
the Treasury securities for the corresponding maturity bucket (published by Federal Reserve Bank of New
York) to total financial assets of the broker-dealer sector (published by Flows of Funds). The position data
corresponding to 2-year, 5-year, 10-year, and 20-year yields in the figure are defined based on the following
maturity buckets, 1-to-3 years, 3-to-6 years, 6-to-11 years, over 11 years, respectively. Data are from 2003
to 2021.
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Notes: In this figure, we plot the weighted average of the relative yield index across maturities vs. primary
dealer Treasury positions. For each maturity, the relative yield index is defined as 2*(long curve — Treasury
curve)/(long curve — short curve) — 1. Each relative yield is then weighted by coupon Treasury outstanding
for the corresponding buckets over total coupon Treasury securities, based on data from the Center for
Research in Security Prices. The primary dealer Treasury position is the ratio of total primary dealer net
position in all coupon Treasury securities (published by Federal Reserve Bank of New York) to total financial

Figure 11: Relative Yield and Position in Aggregate.
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Notes: This figure illustrates the dealer indifference curve defined in (31) and the market indifference curve
defined in (32), under three different levels of S and two different levels of yg- The functional forms and
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Figure 12: Indifference Curves in the Long Regime.
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parameters used to generate the figure are described in Internet Appendix Section B.

60



Figure 13: Indifference Curves in the Short Regime.

Short Regime (Low, Lower, Lowest Supply)

----- Market Clearing + Balance Sheet (lowest supply)
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----- Dealer Net Short Curve (10bps OIS term prem.)

Dealer Net Short Curve (20bps OIS term prem.)

Treasury Term Spread (bps)

Notes: This figure illustrates the dealer indifference curve defined in (34) and the market indifference curve
defined in (35), under three different levels of $?*"? and two different levels of y@- The functional forms and
parameters used to generate the figure are described in Internet Appendix Section B.

Figure 14: All-Regimes and the swap Term Premium.
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Notes: This figure plots the synthetic lending spread r*" — r, swap-Treasury spread r, —y, and the ratio of
Treasury position over total Treasury and CIP arbitrage position ¢?*"?/g, as a function of the swap curve
term premium r,, — r. We fix the expected future rates. The functional forms and parameters used to generate
the figure are described in Internet Appendix Section B.
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Figure 15: All-Regimes with Large Dealer Balance Sheet Capacity and Small Bond Supply.
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Notes: This figure plots the synthetic lending spread " — r, swap-Treasury spread r, — y, and the ratio of
Treasury position over total Treasury and CIP arbitrage position ¢”** /g, as a function of the swap curve
term premium r, —r. We fix the expected future rates and assume a relatively large dealer balance sheet
capacity, a small bond supply, and a large spread between y* and r. The functional forms and parameters
used to generate the figure are described in Internet Appendix Section B.

Figure 16: All-Regimes with Small Dealer Balance Sheet Capacity and Large Bond Supply.
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Notes: This figure plots the synthetic lending spread r*" — r, swap-Treasury spread r, —y, and the ratio of
Treasury position over total Treasury and CIP arbitrage position g”**¢ /g, as a function of the swap curve term
premium r, — r, holding expected future rates fixed, with a relatively small dealer balance sheet capacity,
large bond supply, and small spread between y*¥ and r. The functional forms and parameters used to
generate the figure are described in Internet Appendix Section B.
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Internet Appendix
"Intermediary Balance Sheets and the Treasury Yield Curve'

A Data

A.1 Data Sources

We obtain the Treasury term structure from Bloomberg, for maturities 0.25, 0.5, 1, 3, 5, 10, 15,
20, and 30 years, all at daily frequency. The T-bills are from the ticker "GB", representing actively
traded T-bill yields, and the non-bills are from the ticker "C082", representing the widely-used
Bloomberg fair value Treasury yield curve.

We obtain OIS term structure denominated in USD from Bloomberg for maturities 0.25, 0.5,
1, 3, 5, 10, 15, 20, and 30 years, all at daily frequency. The ticker is "USSO" and data are from
Nov 1996 to Dec 2021.

We construct the synthetic dollar lending rate from Euro (EUR). For this purpose, we obtain
OIS term structure for EUR for maturities 1, 3, 5, 10, 15, 20, and 30 years. The EUR OIS data are
from Aug 2009 to Dec 2021.

Then we obtain the above-one-year maturity LIBOR basis at a daily frequency for EUR-USD
from Bloomberg. The EUR-USD LIBOR basis covers Nov 1999 to Dec 2021, and includes the
following maturities (in years): 1, 3, 5, 10, 15, 20, 30. EUR 3-month LIBOR basis is from
Bloomberg, and they are at daily frequency from Jan 2000 to Dec 2021.

To construct the OIS basis, we also collect EUR inter-bank interest-rate swap (IRS) term struc-
ture from Bloomberg at daily frequency. EUR IRS data are from Sep 1999 to Dec 2021. Then we
construct the OIS basis for each maturity as

EUR-USD OIS basis = EUR-USD LIBOR basis + (USD OIS - USD IRS)
- (EUR OIS - EURIRS) ,

where each term has the same maturity.

Due to data limitation, we use the “hybrid OIS basis”, defined as follows:
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* Whenever OIS data are available, we construct the OIS basis from the LIBOR basis and
LIBOR-OIS basis swap.

* When OIS data are not available (only happens before 2008), we use the LIBOR basis instead

This approach is essentially OIS basis throughout the whole sample period because OIS basis and
LIBOR basis are almost the same before the global financial crisis. A comparison between the OIS
basis and the LIBOR basis is shown in Figure Al.

Our data on the tri-party repo rate also comes from Bloomberg. We assume a two percent
haircut (which is standard in the tri-party repo market), and define (at a daily frequency)

il =0.98% " +0.02x% ff; (A1)

where 7" is the tri-party repo rate and ff; is the effective federal funds rate (which is a proxy for
unsecured borrowing costs and is also obtained via Bloomberg). Note that the federal funds rate is

the floating rate associated with OIS swaps.

For the short-regime financing rate i}, we use security lending rates, which we discussed in

more detail in Internet Appendix Section A.2.

On the quantity side, dealer net holdings are Treasury securities are based on the primary dealer
statistics published by the Federal Reserve Bank of New York.
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Figure Al: Comparison of LIBOR EUR Basis and OIS EUR Basis

—— LIBOR basis 3M —— LIBOR basis 1Y
8 | --- OISbasis3M 3 - --- OlShbasis 1Y
-
'
o - ° 1
o o
o n —
\Tl I
=] 8
o —
] 0
=] 3
S -
] 0
i |
T T T T T T T T T T
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
— LIBOR basis 5Y —— LIBOR basis 10Y
o _| ~~ - OIS basis 5Y --- OIS basis 10Y
N
o -
o
4
|
o
S
|
o
3 4
|
o
8 4
! T T T T T T T T T T
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
€ { — LIBOR basis 20Y o _| — LIBOR basis 30Y
- -~ OIS basis 20Y ¥ 71 --- oIS basis 30Y
o | '
3 o |
N
o -
o
o
N — o
I (\Il —
o
T A % -
o i
8 f?a 8 -
T T T T T T T T T
2000 2005 2010 2015 2020 2005 2010 2015 2020

Notes: This figure illustrates the LIBOR EUR-USD basis and the OIS EUR-USD basis. The cross-currency
basis is defined as the dollar rate minus the synthetic rate, which is exactly the opposite to the CIP violations
we used in the model.
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A.2 Treasury Securities Lending Rebate Rates

Dealers who wish to short-sell a Treasury bond must find someone to lend them the bond. There
are, generally, two ways of borrowing a bond as a dealer. The first is when that bond is posted
as collateral by a levered client (typically a hedge fund), and the second is by borrowing the bond

from a security lender (an asset manager, insurance company, or similar institution).

Dealers lend cash to clients against Treasury collateral in bilateral repo markets, at rates that
are general higher than rates in the tri-party repo market (which is to say, the rate at which dealers
can borrow against Treasury collateral). However, to earn these relatively high rates, dealers must
be willing to accept whatever Treasury collateral their clients wish to borrow against. A dealer who
wishes to short-sell a specific bond or bonds of a specific maturity might not be able to find a client
who wants to take a levered long position in that same bond or maturity. In fact, if dealers and their
levered clients generally share the same view on which bonds are relatively cheap or expensive, we
should expect that the bonds dealers would like to short will not be the bonds their levered clients

would like to long.

A dealer wanting to short a bond is therefore more likely to borrow that bond from a security
lender. Security lenders require collateral from dealers. We will first assume cash collateral, al-
though collateral swaps, discussed below, are also common. A dealer therefore lends cash when
borrowing the bond. The security lender is borrowing this cash, and must invest it until the dealer

returns the bond.

The security lender is willing to do this because it can earn a spread between the rate it pays
to the dealer on the cash collateral (i* in our model) and the rate it earns on its invested cash.
Because the dealer can demand its cash back at any time, the security lender has a strong incentive
to invest only in safe and liquid assets. For example, a security lender who reinvests the cash in
a government money market fund, which in turn invests in the tri-party repo market, is likely to
receive no more than the tri-party repo rate on its investments, and therefore will offer the dealer an
even lower rate on its cash collateral. If the security lending market is competitive and the cash is
re-invested in tri-party repo market, the spread between the tri-party repo rate and the rate on cash

collateral is a measure of the costs to the security lender of running a security lending program.

We use data from Market Securities Finance to calculate the rebate rate on the cash collateral
when the dealer is borrowing Treasury bonds from a security lender. Figure A2 shows that the

95 percentile of all Treasury securities lending rebate rate (“rebate rate”, for short) is consistently
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below the tri-party repo rate. The spread between tri-party and rebate rate is about 20 basis points
on average and quite stable throughout our sample. We emphasize the 95th percentile to highlight
that this spread applies to all securities, and not merely those that are “special” (meaning that they
are particularly hard to borrow).

Figure A2: Comparison Between Securities Lending Rebate and Triparty Repo Rates

T T T T T T T T T
2006 2008 2010 2012 2014 2016 2018 2020 2022

) . . T T T T T T T T T
Triparty Repo 95% of Treasury Securities Lending Rate 2006 2008 2010 2012 2014 2016 2018 2020 2022

(a) 95 pct of Rebate vs. Triparty (b) Spread between 95 pct of Rebate and Triparty

Notes: Panel (a) plots the yield spread between the 10-year Treasury bond and the 3-month Treasury bill
(in blue), and the primary dealers’ net holdings of Treasury bonds. Panel (b) plots the relationship between
the two variables post-2009 in a scatter plot.

In practice, dealers might demand a haircut when lending cash to clients and be required to
provide excess cash (a negative haircut) when borrowing from securities lenders. Baklanova et al.
(2019) pools these two cases and demonstrate that the haircut is small in absolute value (a few
percent at most). We therefore assume a zero haircut for want of better evidence, and would like

to thank Sebastian Infante for making us aware of this issue.

Collateral swaps (in which the dealer posts a different bond as collateral) are also common. In
a collateral swap, the dealers offers a bond of equal value as collateral in lieu of cash, and pays a
cash fee. Our data from Market Securities Finance shows that the average fee in a collateral swap
is roughly 20bps on an annualized basis (i.e. .002% of the bond value if borrowed for a whole

year), consistent with our view of the tri-party repo rate as the security lender’s outside investment
option.
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B Functional Forms and Parameters for Figures

This appendix section describes the functional form and parameter assumptions used to generate
Figures 12, 13, 14, 15, and 16. These functional form and parametric assumptions are for illustra-

tive purposes only and do not represent a calibration of the model.

We assume a constant elasticity functional form for the Treasury demand curves. Note that

both of these demand curves are functions of the hedged bond log risk premium 7, y (the expected

syn

excess log return using " as the risk-free rate). We assume that

Dy (Tu) = D o eXp(Ne 1) (B-1)

where Dy o > 0 represents the demand at zero risk premium. The parameter 1y > 0 is the semi-

elasticity of bond demand to the log risk premium.

We similarly assume that

Dy(mny) = Dy oexp(Mu Ty ), (B-2)

where 7, iy is the log risk premium with respect to Treasury bills, with Dy o > 0 and ny > 0.
Note that 7, i and 7, iy are log risk premia; an 1y or Ny of 50 implies a roughly 1.35x change in

demand given a 1% excess return.

For the synthetic demand curve, we assume that
D¥"(x) = DY"x ¢, (B-3)

where x = " — r is the spread in basis points and & > 0 is the elasticity of demand to the spread.
This functional form imposes an Inada-type condition that ensures that demand is large as the

spread becomes close to zero.
Note that these functional forms satisfy Assumption 1, irrespective of the parameters employed.

We use three sets of parameters to generate the figures used in the main text. The illustrative
parameters are chosen to generate clear graphs, and in particular have the property that the regime
can change given modest changes in term premium or bond supply. The pre-GFC parameter set

perturbs this parameter set using a smaller Treasury supply, larger dealer balance sheet capacity,
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and larger repo-bill spread. The post-GFC parameter set uses instead a large bond supply, compar-
atively tight dealer balance sheet, and zero repo-bill spread.

The parameters are chosen under the assumption of an annual holding period and that the
bond is a two-year bond (n = 2). The table below lists the sets of parameters we employ. Note
that Figures 12 and 13 plot dealer indifference curves for different levels of yg, holding all else
constant. Likewise, Figures 14, 15, and 16 have the OIS term premium on the x-axis, which is

equivalent to yg (holding yp constant). For this reason, we do not list yg in the set of parameters

below.

Table Al: Parameters for Figures
’ Parameter \ Ilustrative Value \ Pre-GFC \ Post-GFC ‘

Sbond 10.5 9.5 14.5
g 2 7 2
Y (bps) 95 65 95
yp (bps) 95 65 95
r (bps) 100
rong (bps) 95
rshort (bpS) 75
Dy" 4
& 1
Dy 9.5
Dy 0.5
Nu = NH 50

C Details of the Term Structure Model
The term structure model consists [P and (Q dynamics

a1 =ko, +Ki,u+ (Zz)l/zgfrﬂaggrﬂ ~ N(0,1y),

Tl = kgz +K9Z-Z; + (ZZ)I/ZSSH,SSH ~N(0,1Iy)

The state variable vector z; is 5-by-1, include the first three PCs of OIS term structure (rﬁD C1
rP€2 and rP©3) and the first two PCs of the cross-currency basis term structure (7" FCl and

b
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rtclp,PCZ)

_ Ccl 7
rr
r{’CZ

= rf’C3
rtcip,PC 1

ip,PC2
rf’l’a

The monthly OIS rate and the monthly synthetic rate are both affine functions of the state

vector,

1
Ert = 50 + (51)T2t7

—r" =0+ (01) 2,

12

For pricing Treasury securities, we also need the state vector x; = (x1;,x2,x3,), constructed from
the data as

|~

.l 1 1 _syn
x1, =In(em2"

|~

)
X2, =In(en2" +e

1,
X3 = Eyf g

where il is the financing rate measured according to (A1), and i is the interest received on cash

collateral.

To operationalize the term structure model and reduce dimensionality, we assume that the vec-

tor x; is affine in the state vector z,

X1,t

1
Xy = | X2 | = Y +I'z + (Zx)z‘gx,tagx,t ~ N(0713)

X3¢t

All state variables x;,k € {1,2,3} represent yields at the monthly frequency. However, due
to the lack of data, we use overnight tri-party rate and overnight security lending rate as proxies
for the monthly counterparts. Furthermore, the one-month CIP basis is subject to a quarter-end

effect, where the one-month CIP basis spikes at the end of each quarter due to capital regulation,
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as documented by Du et al. (2018b). To avoid such effect, we instead use the three-month CIP
basis to construct the synthetic rate. The underlying assumption is that the rate difference due to

maturity difference between one month and three months is negligible.

From our estimations, variance matrix X, is close to zero (the maximum eigen value of X, is
about 7 x 107>, and much smaller than the maximum eigenvalue of X, which is 4 x 1073). To
simplify expositions, we set X, = 0 and limit the actual state space to be five-dimensional. Thus,
we will proceed with

x="%+I1z

In what follows, we first show the derivations of the OIS term structure and the basis term
structure. Then we provide details on how the model generates dealer net long and net short
curves. Next, we discuss the conversions between zero-coupon yields and par yields. Finally, we

discuss how to estimate the model.

C.1 OIS Term Structure

The zero-coupon OIS term structure is the “risk-free rate” term structure in our model. Denote the
swap rate as r,,;. The swap exchanges floating payment pegged to the short-term OIS rate r; to
the fixed swap rate r,,;. By construction, the floating leg and the fixed leg should have the same

present value. Thus,
n

exp(nrn ) E2lexp( Y —rx-1)] = 1
k=1

Conjecture

nrps = Ay + Bz

Then we have

n
exp(—n-ray) = exp(—An — Buzi) = E2[exp(— Y riya)]
k=1

n—1

= ECIES [exp(— Y reen) 1)) exp(—71)]
k=1

= EtQ[eXp(_An—l —By_1zt41 — 80 — 81%)]

1
= E2[exp(—An —Bn—lkgZ - Bn—lKi%Zt-i—l + EBn—IEz(Bn—I)T — & — 61z/)]
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which implies

1
An = 8+ An-1 +Buoiks, — 5B Ze(Buo)

By =8+ By 1K,

for all n > 1. The starting values are A9 = By = 0.

C.2 Synthetic-Rate Term Structure

We denote the synthetic rate as ry,, + r,‘jf =,y i.e., composed of both OIS rate and the cross-

currency basis. Conjecture that the cumulative synthetic rate is affine in the state vector,

cip __ ASYyn Syn
n(rys +rus) =AY+ By "z
Then we have

exp(—n(ry? +rus)) = exp(—AS" — BY"z)
n

:E;@[GXP(Z(—”ffk_l —Trk-1))]
k=1
n—1

= ERLEE exp( Y (77 oy = e )] exp(—r = r1)]

= EtQ[exp(—Aiyf1 —B" 21— (8o + 80) — (61 + Sl)zt)]

1 A .
— E[exp(—A%", — B;yflkg%z — B;y_”lKi(?Zz,H + EBZy_"lZz(Biyfl )T — (84 69) — (8 + 01)zr)]

The above equation is the present value of a CIP strategy that earns the CIP deviations, and the
values is the same as the long-term CIP discounted at the long-term discount rate. Then we obtain

the following iteration:

a 1
A= 8 B A4 B S — LB B
B)" =6+ 31 +BZJTIK9Z

with the starting values Af)y "= B(S)y "=0.
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C.3 Treasury Net Long Curve

Next, we derive the iteration steps for the Treasury net long curve.

n .l n—1.1
— 15Vt Xt — FQ[, 7 Ya—
e 12 nt o1, _Ef [e 12 7n 1J+1]

We use 11 = (1,0,0) to denote the indicator vector of the first element, so x; ; = 11, = 11 (Y +1'12¢).

Conjecture that the cumulative yield is affine in the state vector,

l l

For all n > 7, the iteration is
exp(— (Al + Bl )) = EQle " alwTia)
— E2lexp(— (Apy + By yzan +u(0+T12) )]
= EP[exp(— (Aiz—l +B£;—1(k8Z+KinZ 7+ (Z) 12 SH) + ll(Y0+FIZt)>)]
0 I 1o I »Q
= Ef[exp(— (A,_ +B, 1koZ+ll?’0 —B Z(B ) + (B, K, +ulh) -z )]
which implies the iteration equation
1
AL =up+AL_ +B’71k§i - EBZ Z(BL )T
B, =uli+B, K,

At n =6, we have 6 6
) bill
Ey@t lzytl 6X3 = 613('}’0 + FIZI)

with initial values
Al6 = 6l3’)/(), Bé = 6131

A1l



C.4 Treasury Net Short Curve

Next, we derive the iteration steps for the Treasury net short curve.
e_Tnzyz,l exz-,t — EZQ [e_ %y‘;*l,lﬁ’l ]
Similar arguments as in the last section will lead to cumulative yield
n
Vs = A+ Bl
where

1
Ay = 130+ A + By ik, — 3By Ze(By)

B, =1ul+B, K.

At n = 6, we have 6 6
bill
TYes = o =65, =613(10 +T'2)

with initial values
6 =61%, Bg=06uI"

C.5 Par Curve and Zero Curve Conversion

In our term structure model, all the yields are zero-coupon yields. In the data, on the other hand,

yields are par yields. The ideal way to resolve the mismatch is asking the model to convert all

zero-coupon yields into par yields. However, the model is solved thousands of times when we

estimate it, and the extra conversion significantly slows the estimation process. Thus, we do the

following:

* We convert the OIS term structure and the CIP basis term structure into zero-coupon yields

for model estimation purpose.

* Once we finish estimating the model, then we generate the net long and net short zero-coupon

curves, and convert them into par yields.
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For the par-to-zero conversion, we follow the standard Svensson (1994) method that fits the

whole yield curve with a parsimonious functional form and infer the zero yields.

For the zero-to-par conversion, we directly use the definition. We want to transform the annual-
ized zero-coupon yields r,, into annualized par yields rfl?fl” with coupon payment every 6 months.

Then for a coupon-bond of maturity n, the pricing relationship is

par
6 12
ghi = "2” (e_ﬁrf-ﬁ L T2 4. +e‘%’mt> 4o T2t (C-1)

For a bond at the par, the price is q%r = 1, indicating the par yield as

1 —e T2t

g =2x

»

(C-2)

ei%rt,ﬁ _.I_ ei%rt,IZ _.l_ . _.l_eil%rn,l
C.6 Model Estimation

We estimate the model to fit the OIS and basis term structure. Then we use regression-implied
coefficients 9 and I'; to obtain the model-implied net long and net short curves. Denote the

observed OIS yield of maturity n at time ¢ as
fn,t ="rps+ 5:},‘57 tozs ~ J/(Oazois)
and the observed basis as

ACIp __ cIp basis basis
Tng = Tng +§ ) t ~ W(Oazbasis)

n,t

We denote the stacked OIS yields (across different maturities) as 7, and the stacked basis rates as
ACL

#'P. For the estimation step, the set of parameters is ® = {ké();bz, Kle’ kgz, K%PZ, Y Xois, Lbasis, 90, O1 30, 31 }.
The objective of the estimation is to maximize the log likelihood that the observed yields are gen-

erated by the model,
g({ftafflpazt}tedata;®)

A.13



Denote the log likelihood an N-variable normal variable Z with mean y and variance matrix X as

9(Z,u,L). Then the objective function is
g({fz;ffipﬁz}zedata;@) =

Z %(Zz—kg,Z—Kﬁz-Zt—1,0,Zz)+g( — 1,0, Zozv)“"g(Aup_rtc.ip,oazbasisz

tedata

state variable physical dynamics OIS fit fitting basis fitting

The whole estimation problem is thus

A ACL
9 ko max L F P % }edan: ©) (C-3)
k K kP KIP Z Z()lwzbasi.waoval 760781

1,27

To reduce dimensionality, we assume that the covariance matrices for observation errors are in the
form of X,;s = 0,5l and Xy, 555 = Opasisl -

Compared to the classical term structure estimation problem, the key challenge of this problem
is that we need to estimate two inter-linked term structures simultaneously. However, the canon-
ical form transformation in Joslin et al. (2011) only applies to one term structure. To resolve the
challenge and at the same time taking advantage of the canonical form, we design the following
two-step procedure that applies the canonical form to each individual term struccture as initializa-
tion (the initial values for this high-dimensional optimization problem are quite important):

1. Divide the state-space into two blocks, an OIS block, z‘"s (214,221,234 ), and a basis block

Zbasis — (z44,25,;). Similarly, we denote the associated sub-group risk-neutral dynamic pa-
rameters as k? ,,”,K;@ »is and kQ Lbasis (1@ pasis -

eters as k. KIED and k. KF Also divide the observations into the OIS group and

0,z 0is ) 1,z 0is O,Zb“m’
basis group. Then apply the standard canonical form estimation procedure to two models

Denote the sub-group physical dynamic param-

1 basis *

separately,
RAeT, ois kQ KQ k]P KIP Z()is y . 601s 501’3
({rt,Zt tedata’ Z()m? 1 ng) 0 Zozsa 1 zozsa 7 94&01S)H 1 )
asis . Q P basis basis sbasis
({rhzt}[gdata, 0,zbasis” K] Zbasis? k() Zbam ) K basis 5 ZZ 7Zbasi.§‘7 60 ’ 61 )

ois

where the short rate in the first estimation is 9 oS 60” * 77", and the short rate in the second

estimation is 874 + 504515 x z0ais i5 a two-dimensional vector that loads on z2%%. The
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covariance matrix Z?is i1s 3 x 3 and Z’Z’“Sis is 2 x 2. After estimating the above dynamics, we

construct an initialization of the original problem as

Q Q :

ké@ _ %7Z0is Ki@ _ K] 7Z01'5 Q ZZ _ Zgly

z , Z ) basis
kO , Zbasis Kl 7Zh asis ZZ
510 is 30is
, a - basis  § 1
60 = 65”7 5] = 0 ’ 60 = 5(?15 + 606””7 31 = < S]baSiS )
0

We initialize the physical dynamic parameters (kgD o KIPZ) simply from linear regressions,

P
r~ klgyz—f—Kl’Z *Zr—1

2. Then we feed these initial values to the whole estimation problem (C-3), and apply the opti-
mization package in Matlab to optimize over the whole high-dimensional parameter space.
We use the equivalent implementation of the CIP short rate (instead of the synthetic lending

short rate), ;”" — r;, and the corresponding loading 8o — & + (31 —061)z-

After we finish estimating the key parameter set ®, we proceed to obtain ¥y and I'y via a simple

linear regressions,

X~ %+11z

We find that the residual standard errors for this linear regression are one order of magnitude
smaller than X.. In other words, we are able to obtain very accurate approximation of x; through
the state vector z;, so adding the extra estimation error to the above approximation in the model
will not cause much difference, but it requires augmenting the state space. For this reason, we

make the assumption that x; is spanned by z; in the main model.

Finally with estimated ® and (y,I;), we are able to obtain the Treasury net long and net short

curves. We convert these curves into par curves to be comparable with the Treasury yield data.
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C.7 Stationarity Restrictions

Treasury yields can appear non-stationary (in sample), but the spread between an OIS rate and the
matched-maturity Treasury yield cannot diverge due to arbitrage incentives in financial markets.
Our main approach does not impose such a restriction for simplicity. In this subsection, we discuss

how to impose stationarity on the process x; and show that results are broadly similar.

First, our estimation reveals that z;, contains unit-root processes. In particular, the Q-dynamics

of z; contains unit-root elements. Denote the eigenvalue decomposition of K;@Z as
K2 =vDy~!

where D is an diagonal matrix that contains all the eigenvalues of KQZ, and V is the matrix of all
the column eigenvectors for KiQZ. We find that two among the five eigenvalues have absolute values

above 0.999, which is a strong sign of unit root.

To operationalize the stationarity restriction, we rotate the state vector z; to 7; = V~lz, and

rewrite the Q-dynamics in (17) as

Z1 =V kg D5+ VT (E) 2D e

7410 2 0+1 ~N(0,Iy)

We denote the spread vector as

ci

rt+rtp

A ci

Xt = Xt rt—rtp
I

Then we project X; on the stationary components of 7, i.e., three of five with (absolute values of)
eigenvalues below 0.999. The loadings on the non-stationary components are set as zeros. Then
we denote the whole projection as
B=N+ f‘lzt
Next, we rotate back to z,
=% +1:‘1V71Zt
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Thus, we obtain

rt+rtclp

~ = -1 i

X[:’}/()—f—rlv Z[+ rt—rflp
It

In the implementation, we find that there are complex-number eigenvalues, so the resulting j, and
['1V~1 are also complex numbers. Nevertheless, the imaginary parts are quite small so we only
keep the real parts.

With the projection of x; on z;, we are able to derive the Treasury net long and net short curves.
We illustrate the results in Figure A3. We find that results are very close to the baseline results in
Figure 9. Furthermore, all other results, such as the relative yield index matching the movements

in dealer position, are quite similar. For conciseness, we omit other results in this appendix.

Figure A3: Long and Short Curves — OIS Spreads using the Alternative Projection Method.
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Notes: In this figure, we show the model-implied long and short Treasury curves minus the OIS rates for
corresponding maturities, together with the actual Treasury—OIS spreads. We use the alternative projection
method as in Internet Appendix Section C.7. Data are from 2003 to 2021. All yields are par yields.
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D Proofs for the Equilibrium Model

D.1 Proof of Proposition 1 (Long Regime)

Define the function

(ny—(n—1)e) _ eXp(—(n—1)yg)
el —e" 4™

/ _ _
1(mg<y7 rsyn;SbondaQ7yQ7£7 w, 6U,6H, 6syn) =e€

and the function

lon . cbond - _
2 g<y,r€yn’S on 7Q7yQ787a)76U75H76syn) -

G— ef(nyf(nfl)(sfw))sbond —|-DU(I’ly _ybill . (n _ l)(y]P + 8)) + 6U . (Dsyn(rsyn i r) + 5syn) )

By assumption, Dy and D®" are continuously differentiable, and hence f| and f; are continuously
differentiable.

bill

Suppose there exists, given the exogenous values yp, i, y*!! and some initial point ($?"¢ >

0,4>0,y0,€=0,0=0,0y =0,0y =0, 6y, = 0), a solution

llong<y*7rsyn*;Sbond’q,yQ’O’O,()’O’O) _ 0
£ s sherd g,v,0,0,0,0,0) ’

such that
* SYn* bill —ny* ¢bond
Dy (ny" —r™™ — (n—1)yp) + Dy (ny —y™" — (n— 1)yp) <e ™ §7"

Such a point constitutes an equilibrium.

Observe that

W) o QRO o IB™0) o 9B™0)

dy Toarom dy T >0,

and consequently
AN INTEC)

dy aromn
N AN
dy aron
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is invertible (its determinant is strictly negative).

It follows that the equilibrium (y*, "), if it exists, is unique. Suppose not and there ex-
ists another equilibrium (y,7") in the long regime. If " > r* then j > y* according to
long (5, P¥m) = 0. By monotonicity of fi”¢, we have fi”*%(y, ") > fi7"8(y*, r*) = 0, which
contradicts to (y, ") being an equilibrium. A symmetric argument rules out all 7" < r*"*, Thus,

the equilibrium solution to y* is unique. Strict monotonicity ensures the uniqueness of y*.

By the implicit function theorem,

-1

() af’”"go Ifi() IA"()
YBy{gF sy T ox
Irm () 8fz(-) () £l ()
ox ay orsyn Jx

for any x € {SP° g, yQ,€,®,8y,0m, Osyn ;. Observe that the signs of the negative inverse matrix

are
on on, 71 on, on,
ORI 0 L") N0 L
B y rsyn — o J rsyn 8 rsyn _
sgn aflong( ) aleong(.) sign B 8f2""”'(~) aflong(.) [_1 _1]
dy orm dy dy
We solve for the comparative statics as follows:
long . long n
1. An increase in S?°"; 9fax() 0, afg ¢ < 0, and therefore a() > (0 and M > 0.

long
2. A decrease in g or a decrease in dy: f ( ) — =0and

aflong( ) - aflong( )

ox —ny . a(Shond)'

Thus, the decrease in g or Oy is equivalent to the same same size expansion in the dollar

supply of bonds.
lon, lon * SYIk
3. Anincrease in Oy has j g(.) =0, afa 0 0, and therefore % =0and _aw; L —o.
X X X
long long /. -
4. An increase in yg has f () >0, &f () — 0 and thus 2 () >Oandary—x() <0.
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5. An increase of dy in both ygp and yp is equivalent to an increase € by Ae = dy in both f;

and f, and an increase in ® by A®w = dy. The increase in € causes an ﬂAe increase in

long long
241 x() =0, af () > 0, and thus thus

aya( ) <0 and —(') < 0. Taking the two effects together, clearly rsy”* will decrease. To

y and no change in r". The increase in @ has

determine the sign on y*, we can evaluate the change of dy in both yg and yp directly and

long dong
obtain 2 . 0 >0, aj ()

< 0, which implies y* will increase. In summary, we find that
the increase of dy in both y@ and yp increases y* by less than "n;lAs and decreases r***,
Furthermore, the absolute value of the effect of @ is smaller than that of €, indicating that

the total effect is still to increase bond yield.

Taking the two effects together, we find that the increase of dy in both yg and yp increase y*

by less than "T_IAS and decreases """,

arw Irm ()

jlong( ) 0 aflong( )

6. Anincrease in Jyy, has < 0, and thus a( ) > (0 and

> 0.

D.2 Proof of Proposition 2 (Short Regime)
Define the function

exp(—(n—1)yg)

- S
el +e"—e™"

fivhort (y7 rsyn;‘svbond,q,y(@767 o, 6U7 5H7 5syn) — e*(ny*(nfl)e) i

and the function

507 (3, PSP G v e, @, 8, By, Buym) = - ¢ () (@) gbond
—Dy(ny—y"" —(n—1)(yp +€)) — 8y
— (DP"(r™ — 1) + b4yn)
—2(Dp(ny—y"" = (n—1)(yp+€)) + 6n)

By assumption, Dy, Dy, and D*" are continuously differentiable, and hence flshor " and fzs’“” " are
continuously differentiable.

Suppose there exists, given the exogenous values yp, 7,i,y”!! and some initial point ($7"¢ >
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0,4>0,y0,€=0,0=0,0y =0,0y =0, 6y, = 0), a solution

flshort(y*,I"Syn*;Sbond7677yQ707070a070) _ 0
fahort (y s sbond g ye10,0,0,0,0) 0]

such that
* SYn bill —ny* ¢bond
Dy (ny* —r™ — (n—1)yp) + Dy (ny —y""" — (n— 1)yp) > e ™ §7"¢.

Such a point constitutes an equilibrium.

Observe that

If" ()
dy

()
drovm

93" ()
dy

91" ()
Jrovm

<0, <0, <0, >0,

and consequently
p] fivhort () p] fifhort ()

dy orm
af.zthnrf () afjvhorr ()
dy orn

is invertible (its determinant is strictly negative).

It follows that the equilibrium (y*, "), if it exists, is unique. Suppose not and there exists
another pair (+",y) that satisfies the eqilibrium in the short regime. If r" > r*™ we must
have y < y* due to £ (y, ™) = fshort(y* p¥™)_ (if no such ¥ exists, 7" cannot be part of an
equilibrium). Tt follows that £5"°" (y, ") > f5hort (y* ") = 0, and hence r" cannot be part of
an equilibrium. A symmetric argument rules out all " < " and strict monotonicity ensures

the uniqueness of y*.

By the implicit function theorem,

ay*(,) aflshorz () afi\hon () 1 8f15hort(')
dx _ dy arsm dx

ars)n*(.) afghorl(,) afghorl(,) afﬁ'hurt(,)
dx dy drom Jx
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for any x € {Sbond, d,y0,€,®, 8y, 6n }. Observe that the signs of the negative inverse matrix are

1

9 flsgorr () 9 f(;hwt () - 9 fgh(;rz () B 9 fivhort () 1 1
y psyn — o orsyn arsyn o
Sgn afzshort () af2short () Slgn _ afghort () afivlwrt () 1 o 1
dy orsmn dy dy

We solve for the comparative statics as follows:

flshort( ) 0 afzshort( )

ox
Thus, bond yield y* increases, but the synthetlc rate " decreases.

1. An increase in S?°"d. 9 ‘9Lx() < 0.

> 0, and therefore a() > 0 and

short
2. Anincrease in g or a decrease in 8y (i.e., a parallel decrease in Dy): of 1 = 0 =0 and

afZShO”(~) _ _afévhort(_) _ 8f25h0rt(')
g oy e .o (Sbond)’

Thus, the increase in g or the same decrease in Oy are equivalent to the same same size

expansion in the dollar supply of bonds.

fshort( ) O afghorl( )

3. Anincrease in 6y has or < 0, and therefore ( ) < 0and a'w ( ) > 0.

o > o,

short short
4. An increase in yg has o or 0 >0, 8fza ) — 0 and thus 2 () > 0 and

5. Anincrease of dy in both yg and yp: this change is equivalent to an increase € by dy in both
ffh"r " and fgh‘” "'and an increase in @ by dy. The increase in € causes an uAe decrease
short short

o x() =0, M < 0, and thus thus

aya() <0and 2 () > (. Taking the two effects together, clearly rsy”* will increase. To

in y and no change in ¥, The increase in ® has

determine the s1gn on y*, we can evaluate the change of dy in both yg and yp directly and

afvhort( ) S O afvhort( )

the increase of dy in both yg and yp increases y* by less than * As and increases """,

obtain > 0, which implies y* will increase. In summary, we find that

long long -
6. An increase in Jyy, has afa 0 =0, af () < 0, and thus a() <0a daﬂ 0 <o
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D.3 Proof of Proposition 3 (Intermediate Regime)

Define the functions

lm‘ y, P Sh()nd,q Y0, €, @ 6U7 6H7 Sepn) = q— e—(fly—(ﬂ—l)(e—a)))sb()nd — (DV(PY = ) + Sy
Q y Y
+Dy(ny —y"" — (n—1)(yp +¢€)) + 6y

and

flm(ya syn;Sbondac?7yQag7w75U76H55Syn) = q_ (DH(I’ly— r"— (l’l— 1)(y[p>+8)) +5H)
(DY) 4 By

By assumption, Dy, Dy, and D®" are continuously differentiable, and hence i and fi" are
continuously differentiable.

bill

Suppose there exists, given the exogenous values yp, , /"¢, y*!! and some initial point ($?°"¢ >

0,§>0,y0,€=0,0=0,0y =0,0y =0, 6y, = 0), a solution

mt(y PRI Sbond,q )’Q,O 0 0 0 0) 0
mt( rsyn* Sbond’q yQ,O 0,0,0 0) !

such that
Y <y <y
Such a point constitutes an interior equilibrium.

Observe that

8f:;( ) _ — ne 'SP Dl > 0
T
af(;";( ) _ —nDy <0

agl:yi) Dl — (DY) >0
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Then the determinant of the derivative matrix

AFC) M)

oy o
) AR
9y  arw

is positive, which implies that the derivative matrix is invertible.

It follows that the equilibrium (y*, "), if it exists, is unique. Suppose not and there exists
another pair (r",y) that satisfies the equilibrium in the intermediate regime. If " > r™* we
must have y > y* due to £ (y, r") = fi (y*, r*"*). It follows that fi" (y, ") > fint (y*, r¥"*) =0,
and hence " cannot be part of an equ111br1um. A symmetric argument rules out all r"* < r*"*,

Strict monotonicity also guarantees the uniqueness of y*.

By the implicit function theorem,

97 () ) o] ragre
dx - _ dy aromn ox
orsyn* () afmr( ) afmt( ) afmt( )
dx dy arn dx

for any x € {Sb ond d,y0,€,®, 8y, 6x }. Observe that the signs of the negative inverse matrix are

1

afg%) agf"‘(-) - 855"%) _ag""c) 11

o : y ﬁ)‘ﬂ — o o rs?'n rsyn _

Sgr AT() () Sien OO AR 1 1
dy orsyn dy dy

We solve for the comparative statics as follows:

d. afl () <0, afz (') = 0, and therefore aa() > 0 and ar) () > 0. Thus,

both the bond yield y* and the synthetlc rate " increase.

3fz ()

1. Anincrease in S?°"d.

fmt ( )

2. Anincrease in ¢ : > 0 and > (. Thus, we have rsa ) < 0. To determine the

()

sign of y , we note that

a int , oy a int o/
S = o=y > S - oy >0
aff()  af()

g 94 =1

A24



Thus,
Iy () _9fi"() _9f"()

0
ax g gpm S
. An increase in dy: fmt(.) > 0 and afzq(.) = 0. Thus, we have 33() < 0and 8” () <O0.
. An increase in 0y has f;m(') =0, fm[(') <0, and therefore () <0and 9rsy *() 0.

. An increase in yg has aflm( ) =0, afmt( ) _ = 0 and thus % =0and % =0.

. An increase of dy in both yg and yp: this change is equivalent to an increase € by dy in both

’"’ and f3 i and an increase in @ by dy. The increase in € causes an "_1 dy increase in y and
no change in **"*. The increase in ® has of fhm( ) >0, of Shm( ) =0, and thus aya( ) < 0and
% > 0. To determine the total effect on y*, we can evaluate the change of dy in both yq

and yp directly and obtain o (;m(') <0, o, ,m( ) > 0, which implies that the total effect on y* is

positive. In summary, we find that the increase of dy in both yg and yp increases y* (by less

than %dy) and increases r*"**.

aflong() aflong() 1 and thus ay*(,) Bflnt() - 8fzm() > 0 and

. An increase in &y, has I , Tx 9ron EPST

arsyn*(')
>0,

D.4 Proof of Proposition 4

Propositions 1, 2, and 3 establish that there is at most one equilibrium in each regime. To proceed,

we first prove that across all possible regimes, the equilibrium is unique. Then we show the exis-

tence of an equilibrium. Finally, we will show how bond supply $”*"¢ and the risk premium yQ

affects the equilibrium regime.

Define

 bond _ exp(—(n—l)yQ)
fl(y’rsyn’S o ’yQ) =e - eil—er-l-ersyn

fz(y’ rsyn;Sbond’yQ) — 67 o efnySbond _Dsyn(rsyn o r) +DU (ny _ybill . (I’l - 1))’1}»)-
syn. gbond __ ,—nygbond _ (] . il 1
[, r" 87 yg) = e ™S Dy(ny —r"" — (n—1)yp) — Dy (ny —y"" — (n— 1)yp).

A —ny _exp(—(n—1)yg)
Sa(, 8P yg) = e — o +e,_e,syi@
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f5 (y7 rsyn;Sbond,yQ) — q+e—nysb0nd _Dsyn(rsyn N 7‘) _DU (ny _ybill . (I’L . l)y]P’)
—2Dg(ny—r?" — (n—1)yp).

where f7 is the residual of long-regime dealer indifference equation (31), f; is the residual of the
long-regime market indifference curve (32), f3 is the residual of the bond-market clearing condition
in (27), f4 is the residual of short-regime dealer indifference equation (34), and f5 is the residual

of the short-regime market indifference curve (35).

In equilibrium, bond market clearing (27) and synthetic lending market clearing (30) implies

f3 _ qbond
Dy + Do — qsyn

By assumption, r > i’ > i*, and in any equilibrium, 7" > r. It follows that
Syn =S ) -5 .
2¢"" > 26" > e +2e" — e > ¢ +e'+ (=€),

and hence that

yn -l -5 syn
(e =) > e —e"

It follows that
f4(y7 rsyn;Sbond7y@) < fl (y7 rsyn;Sbond7y@)‘

In a long-regime equilibrium, 4> > 0, so

q — qbond +

syn

q

Therefore,

fS(y7 rsyn;Sbondva) = q+f3(ya rsyn;SbondJ}Q) _Dsyn(rsyn _r> _DH(ny_rsyn - (I’l— 1>y]P’)

bond _ _syn

=q+q
bond

q
>0
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Furthermore, the equilibrium conditions in the long equilibrium indicates
fi=H=0, fr=¢""">0
In a short-regime equilibrium, "¢ < 0, so
_ghond o g

q=—q

Therefore,

oy, 282 yo) = G — f3(y, 587 yg) — DK — 1) — Dy (ny — " — (n— 1)yp)

— P DY ) — D (ny — " — (n— 1)y)

=q4—q

=g— qb()nd _ qsyn
) qbond

>0

Furthermore, the equilibrium conditions in the short equilibrium indicates

fa=f5=0, fz=¢"""<0

In an intermediate-regime equilibrium, f; = ¢***¢ =0, so

~ syn

q=q

and
P8 yg) =G —¢"" — g™ =0
fs(rr"s 87 yg) = G +¢"" —¢™" =0

Furthermore, the intermediate-regime equilibrium requires that the yield is between the long and

short thresholds, so
fi>20>f4

Note that fi, f3, and f5 are decreasing in y and increasing in "', whereas f, is increasing in
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both y and " and f4 is decreasing in both in both y and *".

We next show that the existence of either a long or a short equilibrium rules out the existence
of another kind of equilibrium. Since all equilibria involve ¢?"¢ > 0,4"*"? < 0, or " = 0, it
follows that an intermediate-regime equilibrium cannot coexist with other equilibria as well (i.e.,
the uniqueness of the intermediate-regime equilibrium holds once we prove the other two). Thus,

the equilibrium if exists must be unique.

D.4.1 Uniqueness of a Long Regime Equilibrium

Suppose there is a (Yiong, 77,,,) that is a long equilibrium. Equilibrium conditions imply
f4(ylong7 r;z;lg; ) <0= fl (ylonga r;zzg; ) = fZ(ylonga r;())];lg; )

F1Otongs P23 > 0, F5(iongs i) > 0
The goal is to show that there cannot be another equilibrium in the short or the intermediate regime.
1. Now suppose there is another equilibrium (y, ") that is in the intermediate regime, which
implies
L) = S0 ™) = 530 r7) =0
iy, r™5) 20 = faly,r™)

If P > "

Jong> WE Must have y > yione by f3(3,7°"5) < f3(Viong, ”;ZZg; ), but in this case,

fZ()’a rm ) > f2(ylong7rlszrr1[g;') =0,

which results in a contradiction.

If " < r;(y)Zg, we have have y < yiong by f1(3,7";+) > fi (Viong ”;zzéﬁ ‘), but in this case

fZ(ya r" ) < f2(ylong7rfzzg;') =0,

whecih reuslts in a contradiction.

If Fon — r;zzg, it is not possible to simultaneously increase f; and decrease f3 by changing y,

and therefore no intermediate equilibrium exists.
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Consequently, there is no alternative equilibrium in the intermediate regime.

2. Now suppose there is another equilibrium (y, 7*") that is in the short regime,which implies
fl(yarsyn;') >0= f4(y7rsyn;_) = f5<y’rsyn;_)

Sy, r™) >0, f3(y, ") <0

If P > rsyn , we musthave y > yione by 33, 7") < f3(Viong, 1 rlong ), but in this case f4(y,7";-) <

fa (ylong, rl - g ) < 0, which leads to a contradiction.

If P <, we have have y < yiong by f1(3:r™"5) > fi(Viong:Tjongs+)» but in this case

Fy,r™ ) < f2 (Viong:Trom g ;+) = 0, which again leads to a contradiction.

If " = rl , it is not possible to simultaneously increase f| and decrease f3 by changing y,

and therefore no short equilibrium exists.
Consequently, there is no alternative equilibrium in the long regime.
D.4.2 Uniqueness of a Short Regime Equilibrium

Suppose there is a (Vgpor rjizrl) that is a short equilibrium. Equilibrium conditions imply

h (ySh"”’ itht’.) >0= f4(yshort7 short’ ) fS(yshortargzZrt;')

fz(y“ho"l’rjzz;'t; ) >0, f3(ysh0rt7rj%2rt;’) <0

1. Now suppose there is another equilibrium (y, 7>") in the intermediate regime, which implies
L) = f3(n,r) = 50,7 ) =0

f1 (y,rsyn;.) >0> f4(y,rsyn;_)

If P > r" . we must have y > yonor by f5(0,7"5) = f5(Vshort> Py +)» bt in this case
H0, ) > Oshort, oo, sh or>+) >0, which leads to a contradiction.

If P < ”S%er we have have y < yspors by f5(y,77";) = f5 ()7short7 short’ '), but in this case
Fa(3, 7)) > fashort, oo, shm, -) = 0, which leads to a contradiction.
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If P =", then by f5(y,r™";-) = 0 we must have y = y,,. However, then this leads to

B30, 7"5) = f3(Vshorts Topyes -) < 0, which is a contradiction.

Consequently, there is no alternative equilibrium in the intermediate regime.

2. Now suppose there is another equilibrium (y, ") in the long regime, which implies
Ja(y, ) <0 = fily, ™) = fay, rs0)

S, ) >0, f5(y,r7") >0

If P > riy . we have have y > Yoo by f1(3,72"5) < fi(Vshorts T -)> DUt in this case

F2(3,7"52) > f2(Vshorts Tipyes-) > 0, which is a contradiction.

If P < rgn ., we must have y < Yonore BY f3(3,7") > f3(Vshorts ey ) but i this case

F4(,7"52) > fa(Vshorts Topoyes -) = 0, which is a contradiction.
If P = "

short?
and therefore no long equilibrium exists.

it is not possible to simultaneously increase f3 and decrease f; by changing y,
Consequently, there is no alternative equilibrium in the short regime.

D.4.3 Equilibrium Existence

Next, we prove the existence of the equilibrium. The high-level idea is to construct the equilibrium
as a convex mapping from a compact and convex set to itself, and then apply the Kakutani fixed-

point theorem.
First, we show the compactness of the relevant space of (y, ™).
Compactness of the y dimension.

In any equilibrium, we must have

£r387 yg) < fy,r87 yg) < G

Because f3 is decreasing in y, there is a y,i, such that

r: Sb()nd :

f3(ymina y@) >q,
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and any equilibrium must have y > y,,;,. We must also have, in any equilibrium,

FO 8P yo) > -4,
which yields, by Dy > 0,
efnySbond _DU (l’ly _ybill . (I’l . 1)y]P’) Z _q‘

Defining y,qx by
—nymaXSbond -D Wil —1 _ =
e U(nymax y (I’l )y]P’) =—q,

it follows that y < y,4x.
Compactness of the " dimension.

Define 7" as
Dsyn(rmin . r) =g,

By assumption D*"*(0) > ¢ and D®" is a strictly decreasing function, we have ™" —r > 0. For
any " < pmin
DY (P —r) > g,

which violates the synthetic market clearing condition in (30). Consequently, in any equilibrium,
P> pmin,

4% such that for any " > r™**, one of the market clearing

Next, we will find an upper bound r
conditions are violated. First, we note that there exists a """ such that for all " > r["*, for any

feasible y we consider, i.e. ¥ € [Ymin, Ymax]»

Syn

).

e_”y(eil —e" ) e >exp(—(n—1)yg) >e (" +e —e"

which says that y € (y*,y') and thus the equilibrium is in the intermediate regime and dealer chooses

g"°™ =0, and supply G to the synthetic lending market. We will show that if 7" is too large, the

synthetic lending market demand will fall below this supply.

Define synthetic lending demand as

m(y,r™") = D¥"(r™" —r) + Dp(ny — r™" — (n— 1)yp).
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which decreases in #". There exists a """ > r"** such that, for all 7" > " and y € [Ymin, Ymax],

m(y,r™") <4,

which breaks the synthetic lending market clearing condition.
Consequently, if " > P no equilibrium can exist.
Convex and Closed Correspondence.
So far we have found a compact and convex space € = [Ymin, Ymax] X [, 7"%] where the

equilibrium (y, ") must belong. Next, we define the correspondence for the equilibrium and

prove that it is convex and closed.

The mapping we construct will constitute four dimensions, including (y, "), the dealer bond

bond ' and dealer synthetic lending ™"

position ¢
From the dealer optimization problem, the demand correspondence only depends on (y, r")

and is defined as follows

(1(7,0)} if f1.(y, 757, vg) <0
{(g"™ ) € R2 : g 4 g™ = ) if f1(y,r"; 8P yo) =0,
Oy, r™) = {(qbond’qsyn) ER_xR,: bond +¢2" =g} if fu(y rsy";SbUnd7yQ) =0,
{(=2,0)} if fa(, 757", vg) > 0,

\{(0’ )} otherwise.

The first case f; < 0 is the only-long region where y > y/. The second case f; = 0 is the long
region where y = y!. The third case f3 = 0 is the sell region where y = y*. The fourth case f; > 0
is the sell-only region where y < y*. The fifth case is the intermediate region where y* <y < y’.

Define the aggregate excess demand correspondence as

Z(y, ") = {(z1,22} € R*: (21 + f5(0, ™), m(y, 1) — 22) € Q(y,r™™) }.

Here, z; represents the excess demand for bonds, and z; is the excess demand for synthetic loans.
By definition, f3(-) is the bond supply less non-intermediary demand, and hence f3(-) +z; must

equal the intermediary demand ¢*°"¢. Likewise, m(-) is synthetic loan demand, and m(-) — z, must
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equal the synthetic loan supply ¢*".

Note that this correspondence is non-empty, u.h.c. (by the u.h.c. property of ¢, which ultimately
arises from the continuity of f1, f4, and the continuity of f3 and m). Note that it is also convex-
valued, a property it inherits from Q. Define the maximum and minimum possible excess demands

by

bond __ = syn.
Zmax — ! max . q—f3(y,ry 7')7
(y7,-s}n)e [ymin 7Ymax] X [rmm Jmax]
bond . = Syn.
Zmin = , min . _Cl_f3(y,’”y a'>7
(y,r“"”)E b’min 7ymux} X [rmmyrmax}
syn syn
er{ax_ . max . m(yary );
(yvr“y”)G [ymim)’max] X [rmm’rmux]
syn . SYIn -
min ' min . m(y7ry )_q7
(y7,-s}n)e [ymi117Ymax] X [rm1n7rmax]

bond _bond ] ,

Now define a price player, who solves, given any vector (z1,z2) € [22924, )0

max (y, r™) - [_Z1] :

(y,r‘y”)e[ym,-,, ,ymax] X [rminJmax] 22

Let p*(z) be the optimal policy correspondence, and note that it is non-empty, u.h.c., and

convex-valued (which follows from the concavity of the objective).

Now define the correspondence

gy, ", z) = [Z(I;Efin)]

which maps [Ymin, Ymax] X [F"", 719%] x [hond zbond] s (27 o owx] to itself. Note that this set is
compact, and by the u.h.c. properties of p* and Z and the compactness of this set, g has a closed
graph. Consequently, by Kakutani’s fixed point theorem, a fixed point (y*, r"** z*) exists.

By construction, at yy,

r; Sb()nd

f3()7mina ayQ) >q,

and consequently all values Z; (y, ") are negative. The best response of the price player at this

point would be y,,.x, and hence there cannot be a fixed point with y* = y,,;,,. Essentially the same

Syn

logic rules out y* = Y,y Similarly, if 7 = 7" then all values of Z(y*,r"*) are positive,
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and the price player’s best response is 7,4y, and hence this cannot be a fixed point. Likewise, if
Y =y then all values of Z(y*,r*™*) are negative, and the price player’s best response is
" = pMin Tt follows that the fixed point is interior, and hence that z* = Z(y*, r"*) = (0,0). Note
that a fixed point with z* = (0,0) cannot exist in which there is no supply of synthetic lending;

consequently, the equilibrium is either a long regime equilibrium,
faly, 8% yg) < fi(y 87 yg) =0,
a short regime equilibrium,

0= fu(y, ;8™ yg) < fi(y, ;87" yg),

or an intermediate equilibrium,

fa(p,rm87M yg) < 0 < fi(y, 7587 yg).

D.4.4 Bond Supply and Equilibrium Regime

To prove that the existence of cutoffs Sg and Sp with 0 < Sg < Sp < oo, such that the short-regime,
the intermediate regime, and the long-regime fall into the three regions, we simply prove that there
is a ranking of the equilibrium along the supply of bonds S.

Consider §?°"¢ = §. According to the previous proofs, an equilibrium (y, ") exists and must
be unique.
Long Equilibrium

First, we show that if S corresponds to a long-regime equilibrium, then for any S > S, the
equilibrium (¥, 7”") must also be a long equilibrium.

Suppose instead the equilibrium for $””"¢ = § is a short-regime equilibrium with (,7").
Then we must have y = y/ > y* = §. Furthermore, f>(y, r":.8,yg) = 0 and f2(3,7";8,yq) >
fo (3,78, yg) > 0. By monotonicity of f>, we must have 7" > r*". Therefore, by monotonicty

of fs, we have
fs(3, 78, vq) > f5(, 7" 8, yg)

However, in the long regime, f5(3,7>";S,yp) = 0, and in the short regime, f5(y,r";S,yq) >
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fs(, "8, yg) > 0, which leads to a contradiction. Thus, S cannot correspond to a short equilib-

rium.

Next, suppose that S corresponds to an intermediate-regime equilibrium. Then we have y = y/ >
¥, 37,78, yq) = 0. For the equilibrium of S, we have f3(y, " S,yq) > f3(y,r";S,yq) > 0.
By the monotonicity of f3, r" > 7. Thus, f>(7,7";S,yq) < f2(3,7";S,y0).

However, by the properties of long and intermediate regimes, we also have f>(y,";S,yg) >0
and fo(3, 7" 8,yg) > (7, 7" S, yg) = 0, which leads to a contradiction.

In summary, if S is a long-regime equilibrium, for any S > S, the equilibrium (¥, #"") must also
be a long-regime equilibrium.
Short Equilibrium

Second, we show that if S corresponds to a short-regime equilibrium, then for any S < S, the

equilibrium solution (y,") must also be a short-regime equilibrium.

Suppose that instead the equilibrium for $°"¢ = § is a long-regime equilibrium. Then we must
have y = y* < y! =y. Furthermore, f5(y,r";S,yq) > f5(y,r"S,yq) > 0, and f5(y,r";S,yq) =

0. By monotonicity of fs5, we get r**" > r*»". Thus, by monotonicity of f,, we obtain

L3, 78, yq) < £, yg)

However, by the properties of long and short regimes, we must have f>(y,r™";S,yq) < f2(y,r™";8,yq) =
0, and f>2(y,r™";S,yg) > 0, which leads to a contradiction.

Suppose that the equilibrium for §?* = § is an intermediate-regime equilibrium. Then we
must have y = y* <. Furthermore, f5(y,r™";S,yq) > fs(y,r™";S,yq) =0, and f5(y,7";S,yq) =
0. By monotonicity of f5, we get r™" > r*". Thus, by monotonicity of f,, we obtain

Lo, r":8,yq) < f2(y. "8, yq)

However, by the properties of short and intermediate regimes, we must have f>(y,";S,yg) > 0

and fo(y,r";S,yg) < f2(y,r”"; S, yg) = 0, which leads to a contradiction.

In summary, if S is a short-regime equilibrium, for any S < S, the equilibrium (y,r™") must

also be a short-regime equilibrium.

Regime Ranking
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From the above discussions, we know that there must be cutoffs Sg and Sg with 0 < §¢ < S <
oo, such that a short-regime equilibrium exists in the left region, an intermediate-regime equilibrium
exists in the middle region, and a long-regime equilibrium exists in the right region. However, we
still have to prove whether the intervals are open or closed.

Intervals for Regimes

We now show that the interval of long-regime equilibrium should be (Sp, ) instead of [Sp, o).
Suppose that $?°*¢ = § is a long-regime equilibrium, with solutions (y, 7*"), and ¢”*". By defini-
tion, qb"”d > 0.

In the long regime, f3(y,r";S,yq) = g"”". We know that ¢?*"¢ > 0 increases in the total
supply of bond and the mapping is continuous. Therefore, there exists a smaller bond supply
Sbond — § _ ¢ for £ > 0, such that the new equilibrium still has ¢”** > 0. Consequently, the

interval of §?"@ for the long-regime equilibrium must be an open set.

Similarly, the interval for the short-regime equilibrium must also be an open set, (—eo, Spg).

D.4.5 Term Premium and Equilibrium Regime

Next, we study how the term premium yq affects the equilibrium. Consider yg. According to
previous proofs, an equilibrium solution (y, ") exists and is unique.
Long Equilibrium

First, we show that if yg corresponds to a long-regime equilibrium, then for any yg > yq, the
equilibrium (¥, 7>") must also be a long equilibrium.

Suppose instead the equilibrium for jig is a short-regime equilibrium with (3,7"). Then
we must have y = y/ > y* = §. Furthermore, f(, o shond yo) =0 and fo(3, 7" 8P o) =
fa (3, 7, sbond ,Yg) > 0. By monotonicity of f>, we must have 7" > r*". Therefore, by mono-

tonicty of fs5, we have
S35 yg) > 50,7387 yg)

However, in the short regime, f5(7,7"; 57" $) = f5(5,7"; 877" yg) = 0, and in the long
regime, f5(y,r"; 8P, y@) > 0, which leads to a contradiction. Thus, Jg cannot correspond to a
short equilibrium.

Next, suppose that y¢ corresponds to an intermediate-regime equilibrium. Then we have y =

v >3, f3(7, fsy”;SbO”d,yQ) = f3(7, fsy”;Sb””d,yQ) = 0. For the long-regime equilibrium of yg, we
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have f3(y, 7", 87" yq) > 0. By the monotonicity of f3, r" > 7. Thus, f>(F,";S?" yq) <
f2 (y’ rsyn; Sbond ’ YQ)-

However, by the properties of long and intermediate regimes, we also have f>(y, r"; 57" yQ) =
0 and f>(¥, fsy”;Sb””d,y@) = fo(y, 7, shond yg) = 0, which leads to a contradiction.

In summary, if yg is a long-regime equilibrium, for any yg > yg, the equilibrium (¥, 7") must
also be a long equilibrium.
Short Equilibrium

Second, we show that if yg corresponds to a short-regime equilibrium, then for any Yo <Yo»

the equilibrium (y, ") must also be a short-regime equilibrium.

Suppose that instead the equilibrium for Yo is a long-regime equilibrium. Then we must have

y=y <y = y. Furthermore, f5 (X,zsy”;SbO”d,y@) =fs (X,[‘y";SbO”d,)_;Q) >0, and f5(y, rsy”;SbO"d,y@) =
0. By monotonicity of f5, we get r**" > r*»"*. Thus, by monotonicity of f>, we obtain

0,787 ya) < fo(y, r": 87" yg)

However, by the properties of long and short regimes, we must have

f2(27ljyn;sbond,y(@> — f2(X7£syn;Sb0nd7XQ) =0,

and f>(y, r"; sPond ,¥Q) > 0, which leads to a contradiction.

Suppose that the equilibrium for Yo is an intermediate-regime equilibrium. Then we must have
y=y*<y. Furthermore, f3 (X,f‘y”;SbO”d,yQ) =f3 (X,zsy”;Sb"”d,XQ) =0, and f3(y, rsy”;SbO”d,yQ) <
0. By monotonicity of f3, we get r**" > r*»". Thus, by monotonicity of f,, we obtain

0,787 yo) < oy, r": 87" yg)

However, by the properties of short and intermediate regimes, we must have f>(y, 7""; 57" yo) >
0and f» (27 rm; gbond ) = F ()_,’ yovn. ghond. XQ) = 0, which leads to a contradiction.

In summary, if yg is a short-regime equilibrium, for any Yo <Y the equilibrium (y, ") must
also be a short-regime equilibrium.
Regime Ranking

From the above discussions, we know that there must be cutoffs yg and yp with 0 < yg < yp <
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oo, such that a short-regime equilibrium, an intermediate-regime equilibrium, and a long-regime
equilibrium exits in the left, middle and right regions. However, we still need to determine whether
those intervals are open or closed sets.

Intervals for Regimes

We now show that the interval of long-regime equilibrium should be (yg, ) instead of [y, o).
Suppose that yg is a long-regime equilibrium, with solutions (y,”"), and g"°™ . By definition,
qbond > 0.

In the long regime, we know that g?**? > 0 is a continuous function of y@- Therefore, there
exists a smaller risk-neutral expectation yp — €, where the new equilibrium is still in the long
regime with ¢g””"¢ > 0. Consequently, the interval of y@ for the long-regime equilibrium must be

an open set.

Similarly, the interval of yg for the short-regime equilibrium must also be an open set.

E Additional Derivations

E.1 Dealers and Levered Clients

In Section 2, we developed net long and net short curves from the perspective of a securities dealer,
yields at which the dealer would be willing to either net long or net short Treasury bonds. In this
section, we extend our model to consider the perspective of a levered Treasury investor (e.g. a
hedge fund) financed by a security dealer of the kind considered in that section. The main result
is that levered clients will have the same net long and net short curves as the dealer that finances
them. That is, the net long curve represents a yield at which the levered client would be willing
to buy the Treasury bond, irrespective of its beliefs about the stochastic process driving Treasury
yields, and a symmetric result holds for the net short curve. This result occurs in spite of the fact

that the levered client is not itself directly affected by balance sheet constraints.

This result is important from a general equilibrium perspective. Dealers are never on net long
or short a large quantity of Treasury bonds during our sample, relative to the overall Treasury
supply. Dealers moved from a net short of roughly 100 hundred billion in 2005 to a net long of
200 hundred billion in 2020. The overall supply of Treasury securities rose from 4 trillion to 22

trillion over the same period.
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However, dealers intermediate repo and reverse-repo for their levered clients in much greater
quantities— on the order of trillions each day. In this section we will argue that the recipients of
much of this financing will act like dealers, and subsequently provide some suggestive evidence

on this point.

Consider the following trading strategy for the dealer: finance a client’s entire purchase of a
Treasury using bilateral repo, use the resulting collateral to raise financing, and reduce CIP activity
so that the trade is balance sheet neutral. In a competitive market, the profits of such a strategy are
Zero:

(en —elh) (e —elat) =0 (E-1)
Lenmread W
That is, the dealer must be indifferent between matched book repo lending and taking advantage

of CIP arbitrage, as both activities use balance sheet.

Let’s now consider the perspective of a levered client who can purchase a Treasury bond,
financed by this intermediary, and can trade derivatives with the securities dealer. Because the
levered client can trade derivatives with the dealer, the projection of its stochastic discount factor
onto the space of derivative returns must agree with the same projection for the dealer’s SDF.
Equivalently, the risk-neutral measure Q is shared (within this space) by the levered clients and the

dealer.

We will also assume that the levered client can engage in risk-free unsecured borrowing' from
the unsecured dealer at the synthetic lending rate. The dealer is unwilling to lend at a rate lower

than this, as otherwise it would be better off engaging in CIP arbitrage.

Under these assumptions, the levered client considers buying an n-month Treasury and then

selling one month later:

efnyn,fertbi _|_ . efn)’n,ferltgyn 2 EIQ [ei(nfl)ynfl,t+l]' (E_2)
N—— N———
secured financing unsecured financing

Substituting in (E-1), this condition becomes identical to (7). It follows immediately that levered

clients must be willing to go net long if the yield reaches the net long curve.

Essentially identical logic applies to the net short curve: the dealers indifference between

Tt is probably better to think of this as secured borrowing using non-Treasury securities that the dealer cannot
itself finance in a repo market.
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matched book repo (in the net short case, intermediating between security lenders and short-sellers)
and CIP arbitrage converts the levered client’s indifference condition to the dealer’s indifference

condition.

We conclude that levered clients who are dependent on dealers for financing will act as if
they face the same balance sheet costs that dealers face, even if they are not themselves directly
regulated. As a result, balance sheets costs will influence a substantial segment of the Treasury
market, even though dealers are on their own hold a relatively small quantity of Treasury bonds on

net.

Figure A4: Primary Dealer Treasury Holdings and Implied Treasury Holding of Levered Investors

100 200 300 400
1 1 1 1

0
]

-100

T T T T T T T T
2008 2010 2012 2014 2016 2018 2020 2022

PD Net Coupon Tsy Holding (BIn)
Short position in Tsy futures of levered funds (bin)

Notes: This figure plots the primary dealer’s net position in coupon-bearing Treasury securities from Primary
Dealer Statistics published by the Federal Reserve Bank of New York, and the short position in the Treasury
futures market by levered funds from the Commitments of Traders Report published by the Commodity
Futures Trading Commission.

In Figure A4, we provide evidence consistent with this perspective. While the Treasury po-
sitions of levered investors are not publicly available, we can infer the holdings of investors that
engage in Treasury cash-future trades from Treasury futures positions. Figure A4 plots the pri-

mary dealer net coupon holdings and levered funds’ short positions in Treasury futures contracts
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published by the CTFC. For relative value hedge funds that arbitrage Treasury cash-futures basis,
a short position in Treasury futures corresponds to a long position in the cash Treasury bonds.
We see that primary dealer positions and the levered funds’ short Treasury futures position are
strongly positively correlated, which is consistent with our result that dealers and levered investors

take similar positions and can be considered as a consolidated intermediary.

E.2 Partial Equilibrium Arbitrage Bounds

In this appendix section, we construct the net short and net long curves described in the main text as
arbitrage bounds under weaker assumptions than those employed in the main text. In particular, in
the main text we assumed that zero-cost, zero-balance sheet trades are weakly unattractive under a
common SDF (i.e., a version of the no-arbitrage assumption). That assumption leads to y,_1 ;41 <
yﬁ_lyt 41 With probability one. Here, we instead assume that there could be profitable zero-cost,
zero-balance sheet trading strategies under the intermediary’s stochastic discount factor. Then we
consider the question of whether this intermediary is willing to go net long or net short a Treasury
bond, irrespective of the intermediary’s preferences or beliefs about the stochastic process driving

Treasury yields.

We will assume that this intermediary’s SDF prices derivatives, and that the intermediary be-
lieves with probability one that x; ; > r; > x;, where x;; and x,, are defined as in the main text.

We discuss the role of this assumption below.

The Net Long Curve

Consider first the trade in which the intermediary buys a zero-coupon seven-month Treasury bond,
and then sells it in one month, at which time the Treasury bond becomes a zero-coupon T-bill. The
intermediary can finance this purchase with tri-party repo, up to the standard two percent haircut
h, and finance the remainder with unsecured debt. This trade, in combination with a reduction in
CIP activity, is a balance-sheet neutral, zero-financing trade. The intermediary is therefore willing
to get net long if this strategy is weakly appealing under the SDF that prices derivatives. Let Q

denote the risk-neutral measure associated with this SDF. We assume that r; is the log risk-free rate
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associated with this SDF.2

Let yl77 , denote a yield at which this trade is attractive to the dealer, and define ygt — yb The

dealer will be indifferent between employing and not employing this trading strategy if

s 1l 1 syn 1 6 il
e 127 (1 ettt + (en2't —e12')) :Et@[e*ﬁytlﬂ].
RH. \'/ . N ~~ vy A ~~ 7
Purchase price Repo Financing Forgone CIP profits Sale price

Cheap financing (i’ < r;) makes the trade attractive and hence decreases the required yield, while
the opportunity cost of using balance sheet (" > r;) has the opposite effect. We assume that

X1 > 1, which is consistent with the post-GFC data and implies that

Lomo 1 1, 1
el2'ttj — eT2't4j > pT21+j — 124+,

This assumption states that the balance sheet cost exceeds the financing advantage. It can be
justified on the grounds that, if it did not hold, it would be efficient for dealers to purchase Treasury
bills from money market funds, financed by repo loans from those same money market funds. This
would lead to large dealer balance sheets, causing the leverage constraint to tighten, and hence

cannot be part of an equilibrium.

Let us now define a yield curve, yﬁm, such that the dealer will be certainly be willing to purchase
an n-month Treasury bond, regardless of her preferences or beliefs, if its yield exceeds this value.

This will be the net long curve. We will conjecture and verify that the curve defined recursively by

syn

n .l 1. 1 1 n—1_1
— 12Vt (T2l o L onlt ) — FQ[,— 7 Ve
e 12 "-’(812’—612 + 12"t )_Et [e 12 'n l.t+l]

. . . . 1 1
has this property. That is, the net long curve is defined by the discount rate 'l = e12" — e12" 4

Lsm .
e2’t _as in the main text.

Fix some n > 7 and suppose y,lm is defined by this recursion for all m € {6,...,n—1}. Consider

a trading strategy that purchases the bond, finances the trade with repo and unsecured borrowing,

That is, we assume the one-month OIS swap rate is the intermediary’s unsecured borrowing rate. This assumption
is consistent with the empirical observation that the one-month OIS rate closely tracks other unsecured rates, for
example the one-month highly rated financial commercial paper rate. It is also consistent with the industry practice of
using the OIS curve to discount derivative cashflows. Lastly, it is consistent with the observation that the unsecured
borrowing rate is the appropriate discount rate for off-balance-sheet cashflows, under our generalized no-arbitrage
assumption.
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offsets the balance sheet cost by reducing CIP activity, and unwinds at the first moment at which the
bond yield becomes weakly lower than yﬁn_‘,. Let 7 denote the months elapsed and let y, ¢, ¢ <
yﬁ,_” ., be the bond price at which the trade is unwound. According to the strategy, we have
Ymg = yﬁmt for all m € {6,...,n— 1}. Further, T < n— 6 is guaranteed because by assumption, the

intermediary always unwinds the trade once the bond has six-month remaining maturity.

The intermediary will be willing to engage in this strategy provided that

71 . )
n J n—j. 1l (I 1 syn 1,
e 12Vni +E[(@[ z e Li=0Tttk o~ 12 Yn—jir+tj ((elzltﬂ' — gﬁ”lﬂ) + (e 2l — eﬁ’fﬂ))]
N s - ~~ o g

[
~~ - _/ /

purchase price J=Y discount rate interim bond price repo financing benefits forgone CIP profits

1 _
< Et@ [6_ Z}E:() Ti+k e %ynfr,mr]
- N v

~ /-

discount rate  sale price

Since derivatives are priced by the intermediary, hedging does not affect the economic profit in the
above trade. We could add a hedging component to this equation, so that certain future fluctuations
in the financing rate are fixed at the beginning of the trade. We omit this extra zero-cost component
for simplicity.

However, this strategy cannot be fully hedged by interest rates swaps. First, the time 7 at which
the bond yield falls below yfnJ is uncertain, as is the ultimate sale price. Second, the interim price
of the bond before 7 affects the size of the trade that needs to be financed, and consequently both
the benefit of cheap financing via tri-party repo and the opportunity cost of the balance sheet. The
effects of intermediate bond prices occur because the intermediary uses short term, as opposed to
term, financing, and because the assets are marked to market. Thus, even if it were possible to
perfectly hedge all of the relevant interest rates, the attractiveness of this trade would depend in
part on the intermediary’s beliefs about the stochastic process driving bond yields.

However, the worse case scenario for the sale price is that it is exactly equal to the unwinding
threshold, y, ¢ 1r = yﬁl_m ¢~ Under the assumption that x ; > r;, the worse case scenario for the
intermediate bond yields is that they are as low as possible (i.e. y,—j;+; = yqu ja+j)» Which is to

say that the trading strategy uses up the maximum possible balance sheet capacity. Consequently,
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the intermediary will definitely be willing to buy the bond if, for all possible stopping times 7 ,

7—1 . .
n _n—j,l J 1 1 . 1 syn 1 .
e T2Ini < _Et@[ 2 e 12 )n—j,t+je_2k:0rt+k<<e121t+j _ eﬁrﬂrj) + (elzrz+j _ eﬁrt+]>)]
j=0

T—1 Tl
"‘EZQ le™ Yi—olttkp™ %ynf‘r,ﬂrf]

and this is in fact the tightest possible bound. Rewriting the definition of net long curve, we obtain

i1 _n—jl J _n,l 14 1 .
e Li=0"tthko T T Yn—jitj — — o~ L0tk T2Vn—ji+j <612’z+j _ eﬁ’rﬂ)

J _n,l L sy 1 .
— ¢ Li—oTrtkp T T2Vn—ji+j (e12'+j — gT2"t+))

+ e_zizo erEg—j [e_%yizfjfl,ﬂrﬂrl]
for any j, and thus it also holds for any bounded stopping time 7. By the definition of the net long

curve, this inequality is equivalent to

Thus, the intermediary will be willing to buy the bond, regardless of the nature of the intermediary’s

preferences and beliefs about the bond price process, if y,; > yfl’t.

We conclude that the intermediary’s demand for a zero-coupon bond should be high if its yield
exceeds the net long curve yield. This demand is limited only by the intermediary’s leverage con-
straint: at some point, the intermediary will have switched entirely to doing the Treasury arbitrage
as opposed to other arbitrages, at which point 7;>" — r, is no longer a valid measure of the oppor-
tunity cost of balance sheet. We therefore predict that if a bond’s yield exceeds the buy yield, the

intermediary’s demand should be substantial.

The Net Short Curve

We next develop parallel logic for the case of short-selling. In this case, we assume that the
intermediary borrows the security from a securities lender in exchange for cash equal to the market

value of the security, and receives a log interest rate i < r; on the cash lent.
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The intermediary will be willing to short a seven-month bond at yield y7, if

7 1 s 6 \bill 7 1 syn 1
R vALE 12t > EQr— —TV (pT2't T2t B}
e e > E~|e +e e e
S—— ~~ —_—— —_——
Sale price Gross return on cash in sec. lending Repurchase price Forgone CIP profits

Note that the sign of the forgone CIP profits has changed, relative to the analogous equation for the
net long curve, reflecting the fact that both buying and short-selling increase the size of the balance
sheet. In equation (E-3), moving the right-hand-side OIS term to the left and dividing both sides

by exp(1571), we obtain

7 7 1 1 syn 1. 1 6 \bill
e T2V > T 12Vt 12" (eﬁrt _eﬁ’f> —|—e_ﬁr’EtQ[e_ﬁyfjr‘] (E-4)

Under the assumption that yields are weakly positive, y7, > 0, the intermediately is definitely

willing to short if

syn bill

_7 — Ty L L Lgs L _6
e 12Vt > o 12V = o 121 <e12’r —el2lf>-|—e 12rfElQ[e 12701, (E-5)

Following the same spirit, let us define y;, , recursively for n > 8 as

1 syn

n.s -5 n—1_s
e 12Vnt — T 121 (eﬁ’r — e%’f ‘f‘EzQ [e_ 2 ynfl.t+l]> 7 (E-6)
. . .. . . 1 syn L s
which can be interpreted as the pricing equation for a bond with a monthly coupon of ezt —e 12",

discounted using the OIS curve.

As above, fix some n > 7 and suppose yy, , is defined as above. Consider a trading strategy that
short-sells the bond, borrows the bond from a securities lender, offsets the balance sheet cost by
reducing CIP activity, and unwinds at the first moment at which the bond yield becomes weakly
higher than y;, ,. Let 7 denote this time and let y,—¢+¢ > ¥,_7 4 be the bond price at which
the trade is unwound. According to the strategy, we have y,,, <y;,, forallm € {6,7,--- ,;n—1}.
Further, T < n — 6 is guaranteed by the assumption that dealers always unwinds the trade once the

bond has six-month remaining maturity. The intermediary will be willing to engage in this strategy
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provided it is profitable,
. O e Qo Tizh k"
e 12Ynt > Et [Z e—ﬁynﬂ,tﬂe—zkzorwk(e 127+ _elzlt+j)] +Et [e_Zkzo Vt+ke_T)’n—r,z+r]. (E-7)
Jj=0

Note that, because i} < rfy " the worst-case scenario is the one that makes intermediate bond prices

as high as possible. Unlike the net long curve, the fact that y, ;4 ; <y _ it is of no help is

generating a bound. In this case, we instead assume a lower bound on yields, y,,, > 0, motivated

the possibility of substitution to cash. In the worst-case scenario, the pricing condition becomes
syn

71 .
1 1 - —T .
e*%)’n; ZEtQ[ Z e*Z;J(:oer (eﬁrtﬂ‘ — eﬁl;+j>] —I—E,Q [e*ZIE:(l) rt+ke*%yst7m+f], (E-8)
j=0

For all stopping times 7 (bounded above by n — 6), this is equivalent to
e~ T > ¢ T T2V (E-9)

which is to say that the intermediary will be willing to short-sell if yields are below y;, ,, irrespective

of intermediary’s preferences or beliefs about future bond prices.’

Finally, we will illustrate that to a first-order approximation, the net-short curve in this appendix
is the same as the net-short curve (23) in the main text. Ignoring the covariance terms, the net-short
curve in this appendix is

1 n 1 1. n—1
1+ A E)’Z,z ~ Erfyn - Elf +E2[1 - T)’fftq,zﬂ]
”)’i,z Ay — (”fyn —r)—(n— 1)E1Q[y}i_1,t+1]

n—17

. : 6 i
myne R EC | Y (0= (" =)+ 50t 6
j=0

It is straightforward to show that equation (23) in the main text also leads to the same linear

approximation.

3Subject to the caveat that the intermediary must believe in the zero lower bound. Our formulas can be readily
generated to other (non-zero) lower bounds, at the expense of additional notation.
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