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Abstract 

Blockchain technology disintermediates digital platforms by substituting a centralized authority 

with a market mechanism that ensures automated enforcement of transactions following pre-

defined rules. Although this substitution is hailed as facilitating Web 3.0, a new era of the internet 

that promises more inclusive and democratic digital platforms, it also limits the platform provider’s 

toolset to orchestrate a healthy and appealing ecosystem of platform complements. Based on a 

sample of 1,560 decentralized applications (dApps) on the Ethereum blockchain, we show that 

Ethereum’s gas fee mechanism favors finance dApps at the cost of crowding out dApps from other 

categories and reducing the heterogeneity of complements offered on the platform. This finding 

highlights that blockchain platforms that rely on a similar transaction verification mechanism will 

struggle to become the general-purpose platforms necessary to realize the promises of Web 3.0. 

 

Keywords: Blockchain, Platform Economics, Within Platform Competition, Decentralization, 
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Limits to Orchestration in Decentralized Platforms: Exploring the 

Effect of Ethereum’s Transaction Verification Mechanism on dApp 

Heterogeneity 

1. Introduction 

Blockchain technology disintermediates digital platforms by substituting a centralized authority 

with a market mechanism that ensures automated enforcement of transactions following pre-

defined rules (Nakamoto 2008). According to proponents of blockchain technology, this 

disintermediation limits a platform provider’s ability to modify the platform rules or exclude 

complementors unilaterally and allows platform architects to design platforms where the created 

value is distributed more evenly among all participating parties (Catalini and Tucker 2018, Vergne 

2020). Based on these promises, Gavin Wood, one of Ethereum’s founding fathers, envisioned 

that blockchain technology will enable what he refers to as Web3.0, a new form of the World Wide 

Web that is more fair, democratic, and free from powerful platform intermediaries that exploit 

their users’ data (Wood 2014a). With this vision, he spurred a whole new industry that aims to 

disrupt prevailing digital platforms across industries such as finance, gaming, insurance, and 

health.  

However tempting this vision might be, it is also important to consider that disintermediation 

is no panacea free from limitations. For example, it is commonly known that blockchain platforms 

bear higher coordination costs as protocol changes require a consensus by the community and 

higher storage costs as the same data is replicated across different nodes (Pereira et al. 2019). In 

this study, we take a platform orchestration perspective and focus on another important limitation 

recently receiving burgeoning interest. This limitation is that blockchain platforms truncate the 

platform provider’s strategic tools to prioritize some transactions over others to orchestrate an 



3 

 

 

 

appealing set of third-party applications (platform complements) and steer the direction of 

innovation when necessary (Leiponen et al. 2021).  

One of platform providers’ most powerful strategic tools is their ability to set prices and engage 

in price discrimination to enhance the quality of services offered on the platform (e.g., Lin 2020, 

Liu and Serfes 2013, Wang and Wright 2017). Blockchain platforms eliminate this tool, as no 

entity has the power to set prices for transacting on the platform unilaterally. On blockchain 

platforms, the transaction price and how it is set are inherent parts of the reward mechanism 

necessary to incentivize nodes to exert the effort to maintain the network. Although the platform 

providers can initially design the overall reward and transaction fee mechanism, they cannot 

interfere with how the price of a specific transaction is set after the system is launched. 

Currently, most blockchain platforms like Bitcoin and Ethereum rely on a market mechanism 

that sets the price for transacting on the platform (Buterin 2014, Nakamoto 2008). However, for 

this market mechanism to work, they also restrict the supply of transactions.1,2 The limited supply 

of transactions in combination with a market mechanism has led to skyrocketing transaction fees 

in the past. As a result, some dApp providers saw a decline in their dApp usage and decided to 

leave the platform. Most prominently, Dapper Labs (dapperlabs.com), the developer of the 

CryptoKitties collectibles game, left and developed their own blockchain platform called "Flow," 

which is specifically tailored to the needs of NFT collectible games. At the time of writing, Flow 

hosts 427 dApps.3 Most of these dApps are gaming and NFTs collectibles dApps and are exclusive 

 

1 Restricting the supply is also necessary to maintain a sufficient level of decentralization. Not limiting the supply 

would favor nodes with more computational power that can compute and verify more transactions and thus exclude 

smaller nodes with less computational power.  
2 While changing the supply will in general impact the price, it does not allow for price discrimination. Further, 

changing the supply also requires a consensus, e.g., vote by all miners on the Bitcoin network and a EIP (Ethereum 

Improvement Proposal) or community vote on Ethereum.  
3 https://www.flowverse.co/, accessed on 02/01/2023. 
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to the Flow blockchain. The most famous example is NBA Top Shots (nbatopshot.com) which has 

already attracted more than $1.1b in sales until January 2023.4 The emergence of the Flow 

blockchain can be seen as a direct consequence of Ethereum's inability to regulate the market 

mechanism and stay attractive for all types of complements. To understand if the market exit of 

dApp providers like Dapper Labs underlies a systematic pattern, our research aims to investigate 

the consequences of using a market mechanism to determine transaction fees from a platform 

orchestration perspective. Specifically, we study whether blockchain platforms—which remove 

the platform provider’s ability to set prices and substitute it with a market mechanism—are a viable 

blueprint for platforms that aspire to host a variety of different applications and become general-

purpose platforms.  

We argue that such a market mechanism prioritizes complements only based on the transaction 

fee sensitivity of their users. Whereas this leads to an efficient allocation for homogenous 

transactions (e.g., like transactions on the Bitcoin network), it can lead to long-run inefficiencies 

in the case of heterogenous complements as it favors some types of complements over others based 

on their current user’s transaction fee sensitivity but not on the value that the complement might 

provide in the future. It does so by adding an additional externality in the form of congestion costs 

to the already existing competition between complements of the same category: if one complement 

attracts more users and thus increases the demand for transactions, the transaction fees for all other 

complements—irrespective of the service they offer—rise as well, as they all compete for the same 

supply of transactions. This is problematic because, as we show later (Section 4), there are several 

characteristics other than the quality of a complement that determines its users’ sensitivity toward 

transaction fees. Especially in times of congestion and high transaction fees, some complements 

 

4 https://www.flowverse.co/applications/nba-top-shot, accessed on 02/01/2023. 
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will be used less, and as the platform provider has no tools to protect them, if necessary, they have 

to abandon the platform even if it would be overall beneficial for the platform if the complement 

would stay in the long run.  

Such an unregulated reduction of complement heterogeneity is not desirable, as we know from 

the literature on platform competition that users value the diversity of platform complements. 

Thus, an unsolicited reduction of complements can hamper a platform's potential to leverage same-

side and cross-side network effects (see Rietveld and Schilling 2020). Further, it also questions the 

neutrality of the blockchain and raises concerns about how this mechanism influences investment 

incentives for complementors and platform providers that are similar to the discussion around net 

neutrality (Choi and Kim 2010). Finally, it also questions whether blockchain platforms that rely 

on a market mechanism to enforce the correct execution of transactions will be a viable option for 

Web 3.0, where all web applications have to run fully decentralized.  

Despite the important implications and the potentially detrimental effects of using a market 

mechanism to ensure the automated verification of transactions, there is scant research 

investigating how such a mechanism and the lack of strategic tools to protect complements, if 

necessary, impacts the heterogeneity of complements offered on a platform. To fill this void, we 

ask the following research questions: how does a market mechanism for the decentralized 

verification of transactions affect the usage of platform complements? What complements will be 

offered on blockchain platforms in the long run? 

To answer these questions, we use the context of the Ethereum blockchain. Ethereum provides 

a unique opportunity to study our research questions for three reasons. First, Ethereum was the 

first platform to enable smart contracts, which are computer scripts that enable complementors to 

offer web applications (Buterin 2014). As these applications run on top of a blockchain, they are 
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also referred to as decentralized applications or dApps (Wu et al. 2021). Accordingly, Ethereum 

qualifies as a multi-sided platform where complementors can offer arbitrary services to platform 

users. Ethereum is also the most popular platform for dApps, offering services in categories such 

as finance, gaming, social, insurance, and health. Second, Ethereum uses a market mechanism to 

allocate the limited supply of transactions among transaction senders (i.e., users of a dApp). This 

market mechanism resembles a first-price auction where users must bid on how much they are 

willing to pay for the computational effort required by their transaction (Roughgarden 2020). 

Third, Ethereum served as the blueprint for many other blockchain platforms that now use a similar 

mechanism to allocate transactions and thus enhances the generalizability of our results.  

For our empirical strategy, we use daily transaction data from a sample of 1,590 dApps on 

Ethereum and estimate different demand curves for different groups of dApps. To address the 

endogeneity issues arising from the simultaneous determination of transaction fees by demand and 

supply, we introduce Ethereum’s difficulty bomb as a novel demand-side instrument that has led 

to exogenous variation in the supply of transactions. 

Our analysis yields several important findings. First, by finding a downward-sloping demand 

curve, we can confirm that the law of demand also applies to transactions on Ethereum. While this 

finding seems theoretically trivial, the ongoing debate on the prevalence of speculation activity, 

extreme volatility, and illicit transaction conduct questions whether blockchain platforms are 

subject to standard supply and demand dynamics comparable to other financial markets (Foley et 

al. 2019, Li et al. 2018) and thus calls for empirical clarity before scholars can move on with further 

empirical inquiries. Second, we find that different groups of dApps significantly vary regarding 

their sensitivity towards transaction fees and that, in times of congestion, finance applications 

crowd out transactions to other applications by increasing the market price for transacting on the 
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network. Third, our results suggest that building network effects and bundling transactions more 

efficiently are the only options a dApp has to influence its sensitivity towards transaction fees. 

With our research, we contribute threefold. First, we contribute to the platform literature by 

exploring how competition induced by a market mechanism for the allocation of transactions 

affects the heterogeneity of complements offered on such platforms in the long run. These insights 

are not only important as they allow us to gauge how competitive such decentralized platforms are 

in comparison to their centralized counterparts but also because they help us to understand that it 

is currently unlikely that one of the existing blockchain platforms will be able to cater towards the 

need of all types of dApps and dominate all other platforms. Second, we also contribute more 

specifically to the literature on platform orchestration by extending it to the realm of decentralized 

platforms and discussing which orchestration tools might still work when the ability of the 

platform provider to steer transaction activity is limited. Finally, by proving that the basic law of 

demand also applies to transactions on blockchain platforms that offer smart contract-based 

applications and providing a novel instrument that helps to overcome endogeneity problems, we 

pave the way for future scholars that want to leverage the rich data a blockchain platform provides 

to investigate the economic dynamics on blockchain platforms further. 

The remainder of this paper is structured in the following way: Section 2 explains how we 

relate and contribute to the existing literature. Section 3 introduces the context of our study, 

describes all necessary details to understand the process of transacting with an application on the 

Ethereum blockchain and conceptualizes Ethereum as a market for transactions. Section 4 provides 

a conceptual framework that is the basis for our empirical analysis. Section 5 summarizes our data. 

Section 6 discusses the empirical strategy to identify the demand curves for different types of 

applications. Section 7 reports the results of our analysis. Finally, Section 8 concludes with 
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implications for platform providers, complementors, and policymakers and discusses avenues for 

further research.  

2. Related Literature 

For the theoretical foundation of our work, we draw on two streams of prior research.  

Research on platform competition and platform orchestration 

The first stream of literature is the literature on platform competition. This stream stems from early 

work in the domain of standard setting and standards battles (e.g., Church and Gandal 1992, 

Cusumano et al. 1992, Shapiro and Varian 2010) and the seminal work by Katz and Shapiro (1985) 

and Farrell and Saloner (1986) on network effects. Prior work typically focuses on how platform 

providers can use strategic tools such as setting prices (e.g., Brynjolfsson and Kemerer 1996, 

Gandal 1994), investment in quality (e.g., Choi 1994), or subsidizing complements (e.g., Riggins 

et al. 1994) to their competitive advantage in setting with strong network effects.  

Building on this stream of research, platform governance, and orchestration have emerged as 

strong research themes in the platform competition literature (Rietveld and Schilling 2020). This 

research takes a macro perspective and investigates how the rules of a platform are set and 

enforced, how these rules influence the behavior of platform participants, and how the participants’ 

consequential behavior impacts the overall outcome of the platform. Therefore, when we refer to 

a platform orchestration perspective in our context, we refer to this stream of literature and seek to 

examine how the rules of a platform attract complements to the ecosystem or provoke their exit 

from the platform.  

It should be noted that already early research that examined platforms’ decisions regarding 

pricing (e.g., Brynjolfsson and Kemerer 1996), openness/control (e.g., Ghazawneh and 

Henfridsson 2013, Parker and van Alstyne 2018), or platform evolution (e.g., Tiwana et al. 2010) 



9 

 

 

 

and platform ecosystems (e.g., Parker and van Alstyne 2017) more generally implicitly addressed 

governance and orchestration questions. Yet, only recently has research started to investigate more 

explicitly how platform providers’ governance and orchestration strategies influence the 

ecosystem of complementors and the platform's overall performance. For instance, Tudón (2022) 

investigates the platform providers’ trade-off between fostering entry of new complements and 

preventing congestion of the platform and finds that consumer welfare would drop significantly 

without prioritization on the supply side. Similarly, Panico and Cennamo (2020) investigate the 

effect of too many complements on the quality of the ecosystem depending on the nature of 

increasing returns of the complementors and find that if network effects of complementors 

diminish with their network size, a larger network of complementors will dilute the average 

complement quality. With this finding, both studies question the often-oversimplified tenet of the 

network affects literature that a greater breadth and depth of the network is typically considered 

attractive to consumers. This idea is also echoed by other scholars who suggest that too many 

complements may result in coordination problems, increase coordination costs, and decrease 

consumers’ value (e.g., Boudreau 2012, Casadesus-Masanell and Hałaburda 2014, Markovich and 

Moenius 2009).  

Regarding the governance of the platform, O'Mahony and Karp (2020) investigate how the 

decentralization of decision rights on a platform influences participation on a platform. Based on 

an in-depth case study, they find that although the benefits depend on the platform’s products, 

participants, and markets, for most of the participants in their sample, participation increase with 

the platform’s transition towards decentralized leadership. Related but in the context of 

blockchain-based platforms, Chen et al. (2021) find an inverted-u-shaped relationship between the 

decentralization of blockchain platforms and developer activity. Taken together, this literature 
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emphasizes that platform providers must make careful strategic decisions about how many and 

what type of complements they want to attract to join the platform.  

We add to this stream of literature by investigating blockchain platforms from a platform 

orchestration perspective. Blockchain platforms are an interesting novel phenomenon as they 

provide an alternative blueprint for established centralized platforms. They substitute a centralized 

authority with a market mechanism that ensures the correct and automated enforcement of 

transactions. By doing so, they truncate the platform provider’s strategic tools to attract or exclude 

complements by setting prices, offering subsidies, or limiting entry. Hence, blockchain platforms 

limit the power of a strong “visible” hand by shifting the agency towards the “invisible” hand of a 

decentralized market. Although platform providers can define the initial rules of this market, they 

cannot interfere with them afterward. Due to the importance of a healthy ecosystem of 

complements for a platform's success, it is paramount to understand how the market mechanism 

used on blockchain platforms to verify transactions influences what types of complements will be 

offered on such platforms.  

Research on transaction fees on blockchain platforms 

The first stream is the nascent literature that studies transaction fee mechanisms on blockchain 

platforms. Within this literature, scholars have already started to characterize blockchains as 

marketplaces where miners offer their services to transaction senders and study the dynamics of 

these marketplaces with different theoretical perspectives. For instance, Basu et al. (2019) and 

Easley et al. (2019) build game theoretic models to analyze how Bitcoin’s fee mechanism causes 

high variability in transaction fees and thus might deter miners (Basu et al. 2019) and users (Easley 

et al. 2019). Other scholars like Huberman et al. (2017) and Donmez and Karaivanov (2021) use 

queuing theory to investigate the implications of transaction fee mechanisms on blockchains. 
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Huberman et al. (2017) use this theoretical lens to study the entry and exit of miners and find that 

Bitcoin’s transaction fee mechanism protects users from monopoly pricing. Donmez and 

Karaivanov (2021) use queuing theory to investigate the determinants of transaction fees and 

reveal that changes in transaction demand and the type of transactions are important factors 

associated with higher fees. The third stream of researchers builds on auction theory (e.g., Lavi et 

al. 2017). Most notably, Ilk et al. (2021) take a supply and demand perspective on Bitcoin’s 

transaction fee mechanism and show that the basic forces of demand and supply determine the 

price of transactions on the Bitcoin platform. They also find that due to a relatively inelastic 

demand curve and a comparatively elastic supply curve, Bitcoin’s current transaction fee 

mechanism can efficiently self-regulate transaction fees as increasing fees stimulate mining by a 

larger magnitude than dampening demand. In addition to the literature specifically dedicated to 

transaction fees on blockchain platforms, there is ample more general research on the economics 

of cryptocurrencies and on blockchain mining, some of which also address transaction fees and 

their implications as a peripheral topic. Regarding the general microeconomic forces, Halaburda 

et al. (2020) provide a general review. Regarding mining, for instance, Houy (2016) and Cong et 

al. (2021) provide a general analysis of Bitcoin’s mining game and miners’ behavior. Kroll et al. 

(2013) scrutinize the security of Bitcoin’s mining mechanism and conclude that transaction fees 

only have limited importance. Arnosti and Weinberg (2018) develop a model that considers 

heterogenous cost structures among miners and explains how this heterogeneity fosters the 

concentration of mining power. Finally, Sapirshtein et al. (2016) study the equilibrium between 

miners and conclude that a proper design of the transaction fee mechanism only produces a reliable 

system in equilibrium if miners are sufficiently small. 
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Although all these prior accounts either implicitly or explicitly focus on the implications of the 

mining process and develop suggestions on how to improve the protocol, they only focus on the 

implications of the transaction fees mechanism for the miner or the users (i.e., transaction senders). 

Despite their importance for the long-run success of second-generation platforms, like Ethereum, 

that enable third parties to offer additional services in the form of dApps, the consequences of a 

transaction fee mechanism for these complementors are currently neglected. To fill this void, our 

research adds to this stream of literature by being the first that investigate the implications of the 

transaction fee mechanism on platform complements (i.e., dApps). Arguably for complementors, 

the transaction allocation mechanism can have severe implications if skyrocketing transaction fees 

prevent users from sending transactions to the dApp.  

On the empirical side, only a few accounts estimate the impact of transaction fees on the usage 

of blockchain platforms, and most are focused on the Bitcoin blockchain (e.g., Easley et al. 2019, 

Ilk et al. 2021). For example, Ilk et al. (2021) provide empirical evidence that the basic economic 

theory (i.e., the law of demand) also holds for transactions on blockchains by finding a downwards-

sloping demand and an upwards sloping supply curve for transactions on the Bitcoin blockchain. 

For Ethereum, this evidence is still lacking. Although few accounts investigate the relationship 

between network congestion and gas prices (Donmez and Karaivanov 2021) or gas prices and 

throughput (Azevedo Sousa et al. 2021, Spain et al. 2020), or how high gas fees antagonize 

Ethereum’s goal of inclusion and democratization by excluding users who cannot afford the 

increasing gas fees (Cong et al. 2022), there is a paucity of research that analyzes supply and 

demand dynamics on Ethereum and in particular how these impact the usage of dApps. We, 

however, argue that the possibility to offer dApps distinguishes the potential of Ethereum and 

demarcates the potential of similar decentralized platforms to compete with established centralized 
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platforms like Apple’s iOS or Google’s Android. If we want to understand if decentralized 

platforms can deplete the prevalence of established centralized platforms, one important step is to 

understand under what conditions platform complements must work on such decentralized 

platforms. To this end, our work also adds to the related literature by presenting empirical evidence 

for the impact of a decentralized transaction verification mechanism on the usage of dApps. As an 

aside, we also provide initial empirical evidence that basic economic theory applies to transactions 

on Ethereum and thus pave to way for further economic inquiries.  

3. Background 

Ethereum is the second-largest blockchain platform, with a market capitalization of 300 billion 

USD and over 1.2 million daily transactions.5 It is the context of our study as it was the first 

blockchain platform to introduce smart contracts, which enable more complex transactions than 

simple money transfers and thus allow complementors to develop their own blockchain-based apps 

running on top of the blockchain (Buterin 2014). As transactions differ regarding complexity and 

thus require differing computational effort to be executed by miners, Ethereum introduced a new 

market mechanism that incentivizes miners to compute more computationally expensive 

transactions. This market mechanism served as a blueprint for many other blockchain platforms 

that enable smart contracts and thus is seminal for the whole industry. In the following, we briefly 

review the core features of Ethereum’s market for transactions and particularly focus on the 

economic aspect relevant to our paper. For a more technical review, we refer to Antonopoulos and 

Wood (2019) and Wood (2014b).  

 

5 https://etherscan.io/ (retrieved on March 30rd, 2022). 
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Smart contracts and dApps 

Smart contracts are immutable and automatically enforced computer programs running on top of 

a blockchain (Fröwis and Böhme 2017). They allow developers to specify arbitrary agreements 

between two parties in the form of pre-defined obligations and rules written in computer code. If 

triggered by receiving a transaction, a smart contract is automatically enforced by the decentralized 

network according to the pre-defined rules, making it impossible for parties to unilaterally alter or 

renegotiate the transaction's outcome with a smart contract (Halaburda et al. 2019).  

As smart contracts enable arbitrary programs, they can be used to develop so-called 

decentralized applications or dApps (Wu et al. 2021). dApps are blockchain-based apps that 

resemble normal web applications regarding their user interface but differ from normal web 

applications as they run their business logic as a smart contract on a decentralized blockchain 

platform. Due to the immutability and automated enforcement of the underlying smart contract, 

users of a dApp do not have to trust the dApp provider or rely on third-party institutions to fulfill 

its obligations but can read the smart contract and ascertain that the promised outcome will be 

delivered.6 Therefore, the promise of dApps is to solve problems of centralized control, limited 

access, downtime, censorship resistance, and trust issues arising from weak institutions (Leiponen 

et al. 2021).  

DApps are the complements of interest for our study as they extend the functionality of the 

Ethereum network. Without dApps, Ethereum users could use the network only to send Ether (i.e., 

Ethereum’s native cryptocurrency) to each other. With dApps, complementors can offer any 

 

6 Obermeier and Henkel (2022) discuss that smart contracts only remove the necessity of trust if the users have read 

and completely understood its source code. In practice, due the time and effort it takes to read a smart contract this is 

rather unlikely. Still, they also argue that smart contract enables a new form of trust that is based on the possibility of 

reading the source code. This form of trust differs from trust in the dApp provider as it is based on logically provable 

facts (i.e., what is written in the source code) rather than on inference about latent characteristics of the dApp provider. 
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arbitrary service. According to DappRadar, Ethereum currently hosts more than 3,600 dApps 

across categories such as finance, games, gambling, insurance, social media, property, and digital 

identity. It is Ethereum’s vision to grow further the number and diversity of dApps offered on the 

platform and ultimately pave the way for Web3, a more inclusive and democratic version of the 

internet, where apps are available to everyone without any downtime, censorship, entry 

restrictions, and central control of the data.7 

Ethereum’s market for transactions 

To verify and enforce transactions users send to dApps, Ethereum uses a decentralized 

transaction verification and enforcement mechanism that relies on cryptography, a decentralized 

consensus mechanism, and economic incentives to substitute a centralized intermediary. Prior 

scholars have already characterized Bitcoin mining, which uses a similar mechanism, as a two-

sided market (e.g., Basu, Easley 2019) and a market for data space more specifically (Ilk 2020). 

We also characterize Ethereum’s transaction verification and execution process as a market but 

highlight some important differences due to Ethereum’s capability to run smart contracts and offer 

dApps. 

Like on the Bitcoin network, transactions on Ethereum are not instantly effective but have to 

be verified by special users called miners. At regular intervals, these miners select transactions 

from the pool of pending transactions, verify their validity according to rules specified in 

Ethereum’s protocol, bundle the transactions together, and participate in a computationally 

demanding puzzle known as “proof-of-work” (PoW). This puzzle requires miners to brute-force 

numerous hashes until they find a hash that satisfies the conditions imposed by the protocol. Only 

 

7 https://ethereum.org/en/upgrades/vision/ 
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the winners of this puzzle get to write their block onto the blockchain and receive the block reward 

in addition to all transaction fees paid by the transaction senders. It is important to note that the 

mining of transactions comprises two tasks. First, the miner needs to compute the transaction and 

check it against a list of rules only if the transaction fulfills these rules can the miner add it to the 

block. If only one transaction in a block did not fulfill the requirements, all other miners would 

reject the whole block. Second, the miner needs to solve the proof of stake puzzle by computing 

numerous hashes until one miner finds a block hash that fulfills the requirements for a new block. 

Both tasks require computational effort. Although the update from PoW to Proof-of-Stake (PoS; 

i.e., an alternative consensus mechanism that does not require solving a computationally expensive 

puzzle to decide who gets to write the next block but randomly assigns the privilege to write new 

blocks to miners according to their stakes tokens) will drastically decrease the computational 

efforts miners have to invest in finding a new block, it will not impact the effort miners have to 

invest in verifying every individual transaction. In essence, the update to PoS will even increase 

the relative importance of the effort required to verify a transaction. 

In contrast to Bitcoin and to facilitate dApps and arbitrary transactions, Ethereum does not 

charge a fee per transaction but a fee for the computational effort a transaction requires. A 

transaction's computational effort is measured in units of gas according to a list that indicates a 

fixed gas requirement for every atomic computation. To maintain decentralization by ensuring that 

miners with less powerful machines can also participate in mining transactions, the maximum gas 

of a block is limited (block gas limit). In addition to limiting the total gas a block can use, the 

Ethereum protocol also tries to keep the average time it takes to find a new block (average block 

time) within a 12 to 14 seconds interval (Wood 2014b). These two limitations imply that the total 

amount of available gas has an upper limit. To allocate the limited gas supply, Ethereum uses a 
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market mechanism that we conceptualize as a market for transactions or, more specifically, a 

market for the verification and enforcement service of transactions.  

The commodity sold on this market is the gas required to verify a transaction.8 Accordingly, 

users (transaction initiators) are the buyers, whereas miners are the sellers of this commodity. On 

the supply side, the supply of gas on each day is fixed due to the block gas limit and the limited 

average block time. Although miners can decide to what extent they use this limit, they cannot 

change it individually. Changing this limit requires successful voting by all miners and a protocol 

update. Also, suppose more miners join the network and participate in the race to solve the mining 

puzzle. In that case, the network will increase the mining difficulty (i.e., the number of hashes it 

takes on average to find a new block) to keep the average block time within the target window of 

12 to 14 seconds and keep the supply of gas fixed.9 

To incentivize miners to provide their computation service, they are rewarded with a mining 

reward for every block they find. This reward consists of a static block reward (at the time of 

writing, 2 Ether) for finding a new block plus the sum of all gas fees (usually measured in GWei; 

1 Ether = 109 GWei) paid by all transactions t which a miner includes in this block.  

On the demand side, users cast transactions to other externally owned accounts (i.e., simple 

Ether transfers to other users or wallets controlled by computers) or smart contracts. To initiate a 

transaction, users must indicate a transaction gas limit (i.e., the maximum amount of gas a miner 

is allowed to use to compute the transaction) and a gas price (e.g., the price the user is willing to 

pay for each unit of gas). If the gas limit is reached before the transaction is fully computed, the 

transaction will be aborted and not included in the block. Users only pay for the used gas if the 

 

8 It is important to note that the transaction initiator only has to pay the gas fees for the computation of the transaction 

but not for the computational effort the miner has to invest solving the PoW puzzle that is required to find a new block.  
9 See Appendix A for the formular used to compute the mining difficulty.  
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computation is finished before reaching the limit. Also, only the actually used gas is considered 

for the block gas limit. Accordingly, the fees a user has to pay are the product of gas used and the 

gas price the user is willing to pay for every unit of gas. 

As the supply of gas is limited, transaction senders compete with other senders by choosing a 

gas price that is high enough that miners pick their transactions from the pool of pending 

transactions. Typically, miners engage in profit maximization (Basu et al. 2019). Hence, they sort 

transactions by the indicated gas price and requirement and fill up the block until its gas limit is 

reached. Especially in times of congestion, offering too low a gas price means that a transaction 

will not be picked up by any miner and ultimately be deleted from the pool of pending transactions. 

Although, in theory, it is possible for transaction initiators to observe the gas price bids by other 

initiators and adjust their bids in response, we follow Roughgarden (2020) and see this price 

mechanism as a first-price, sealed-bid auction. Our reasoning for this type of auction in threefold. 

First, even though the pool of pending transactions is openly available, the peer-to-peer nature of 

the pool implies that not every participant sees every transaction simultaneously. Thus, it is 

difficult for initiators to determine what transactions were available to the miner when they 

assembled the block. Second, although a block is found on average every 12-14 seconds, the exact 

timing of a block’s discovery cannot be predicted. Therefore, initiators do not know when they 

need to be among the highest bidders. Third, some wallets already offer gas price suggestions that 

help to gauge a price that has a high likelihood of leading to the inclusion of the transaction in one 

of the next blocks. However, these tools are only backward-looking. They suggest a gas price by 

extrapolating the gas prices that have led to the inclusion of the transaction on one of the last 

blocks. If initiators want to ensure that their transaction is processed with certainty, they still need 

to exceed this suggestion and account for the possibility that other initiators will do so, too. This 
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gas price mechanism has led to considerable fluctuations in the amount of gas used and the price 

users have paid for a unit of gas. For illustration, Figure 1 depicts the daily gas usage on the left 

and the daily average gas price on the right.  

----------- insert Figure 1 about here ----------- 

In the next section, we develop a conceptual framework that explains the intuition underlying our 

empirical analysis. As our study focuses on the implications of Ethereum’s market for transactions 

on the heterogeneity of complements offered on the network, the framework mainly focuses on 

the implications of gas fees on the usage of dApps. For an analysis of how gas fees impact the user 

(i.e., transaction senders) and miners in the network, we refer to Cong et al. (2022) and Basu et al. 

(2019).  

4. Conceptual framework 

In this section, we discuss the intuition that underlies our empirical analysis. It is important to note 

that although our empirical analysis is—due to the selection of our instrumental variable—limited 

to a period when Ethereum relied on PoW as a consensus mechanism, our following theoretical 

arguments also apply to the period when Ethereum updated to PoS.10 The update to PoS only 

removed the computationally expensive puzzle of finding a new block but did not change the fact 

that users still need to compensate miners for verifying and enforcing their transactions by paying 

fees for the gas used by their transactions. In a similar vein, our arguments should also apply to 

other smart contract-enabling platforms that rely on an auction-based transaction verification 

 

10 Also our arguments should apply to the period after EIP1559 (Ethereum Improvement Proposal). Although EIP1559 

introduced a more flexible block gas limit and introduced an upper limit to the amount fees users can pay miners to 

incentivize them to process their transaction fast, it neither changed the fact that the supply of gas is still fixed and 

that users can outbid others by paying higher fees.  
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comparable to the one discussed above (e.g., Aztec Network, Binance Smart Chain, Optimism, 

Polygon). 

The driving force behind our framework is that the usage of a dApp—hence its success—on 

Ethereum depends on the usage of the platform, which in turn again depends on the usage of other 

dApps. However, due to two countervailing forces, it is unclear if increasing the user base and 

dApp base benefits all dApp providers. On the one hand, entering dApps attract new users to the 

platform, fosters the platform’s adoption, and enlarges the number of possible users of the focal 

dApp. On the other hand, the limited supply of transactions in combination with the first-price 

auction that allocates this limited supply aggravates the direct competition among dApps by 

introducing a negative externality: new dApps and users increase demand and intensify the 

competition for the limited supply of gas. The increasing demand and competition lead to 

increasing congestion costs and higher gas prices. Because transaction initiators need to pay 

transaction fees to interact with every dApp, increasing gas prices lessen the overall utility and, 

thus, the usage of dApps. Accordingly, the relative magnitude of these countervailing effects will 

determine the effect of Ethereum’s market for transactions on the success of the platform 

complements. 

Although the net impact of increasing gas prices as a response to more platform usage is 

theoretically undetermined—due to the countervailing forces described above—we can analyze 

which characteristics of a dApp expose it more to changes in the gas price. Understanding this is 

not only useful for the complementors’ decision to enter such a market but also for the platform 

provider, as it might have important implications for the heterogeneity of complements offered on 

the platforms. We hypothesize that depending on four characteristics, dApps are more or less 
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sensitive to changes in the gas price and, therefore, better or worse equipped to compete in a market 

for transactions.  

First, we expect that the type of service a dApp offers influences its sensitivity towards changes 

in the gas price. This intuition becomes clear when considering that some dApps provide social 

and entertainment services while others provide financial or security-related services. Although 

finance dApps do not necessarily provide more utility to users than leisure-related dApps, it is 

easier to compute the expected utility of a finance transaction. Therefore, it should be easier for 

users to evaluate if they still want to send a transaction, whereas, for other dApps, the uncertainty 

and cognitive effort to gauge the expected utility will deter them from sending a transaction. 

Further, finance-related transactions are often more time-sensitive, and as Donmez and Karaivanov 

(2021) show, users on Ethereum are more willing to pay higher gas fees for timely transactions. 

Another reason why types of services might differ regarding their gas price elasticity of demand 

might be the frequency of required interactions. For instance, property and identity-related dApps 

typically require only infrequent interaction, whereas gaming or finance dApps require regular 

interactions. Through frequent interactions, gas fees can quickly accumulate and deter usage.  

Second, even within the same type of service, dApps can substantially differ regarding the 

requirements of the transaction. For example, dApps can differ in the complexity of the underlying 

transaction and hence the gas required for the computation of it. On the one hand, the gas 

requirement correlates with the complexity of the underlying functionality. On the other hand, it 

is also driven by the efficiency of the code itself. Particularly within the same type of service, 

where the functionality and complexity of transactions with dApps are similar, the code's 

efficiency should be the main determining factor for the gas requirement. Especially in times of 

high gas prices, we expect users to be more sensitive to such differences and use dApps that require 
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less gas for the same functionality. Another factor determining a dApp’s gas price sensitivity 

should be the value transferred in a transaction with a dApp. For example, finance dApps carry 

value to transfer money to other accounts or to invest it (e.g., provide money to a liquidity pool). 

Other dApps require users to pay for their services (e.g., get data from an oracle) or to purchase 

goods (e.g., buying NFTs). Considering that some NFTs are sold for well above $100,000,11 it 

becomes evident that even gas fees of a few dollars are negligible. Therefore, we expect that 

depending on the average transaction value that a dApp usually carries, the dApp should be more 

or less sensitive to changes in the gas price.  

Third, dApps also differ in the overall quality of their services or their usability and hence in 

the value they create for their users. Accordingly, some dApps are more appealing to users than 

others. These dApps should not only perform better at baseline but are also more likely to benefit 

from the entry of other dApps. Consider, for example, that numerous new dApps enter Ethereum. 

This should attract additional users since users appreciate product variety. But once the users join, 

they will disproportionately choose the dApp offering more utility. This effect can be exacerbated 

if the dApp itself benefits from network effects, which should be the case for dApps such as 

currency exchanges, marketplaces, or social messengers. For such dApps, the increasing utility 

due to the larger network could counterbalance the additional fees resulting from the intensified 

competition for gas among dApp users.  

Fourth, the current performance of a dApp should influence users’ willingness to pay fees for 

a transaction with the dApp. Again, especially for dApps that rely on network effects, the number 

of other users of a dApp should increase the utility of transacting with this dApp.  

 

11 For example, see CryptoPunk which are sold for as much as 8,000 Ether. https://opensea.io/collection/cryptopunks 
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Implications for the platform provider 

The heterogeneity of complements is a decisive factor in a platform’s success (Rietveld and 

Schilling 2020). Therefore, platform providers need to strategize on how many and what types of 

complements it wants to attract to join the platform to orchestrate an ecosystem of complements 

that create the most value for their users. However, in the case of blockchain platforms, the 

strategic toolset of platform providers to steer the transaction activity on the platform to attract or 

deter dApps is limited, as the “invisible” hand of the market determines the prioritization of 

transactions. Therefore, platform providers must understand and consider possible market 

dynamics already during the design of the market mechanism and carefully align it with the 

platform strategy. If not designed carefully, a market mechanism can lead to the discrimination of 

a certain type of complements, provoke them to leave the platform, and jeopardize the platform’s 

long-term goals.  

As we have elaborated above, some dApps might be more sensitive to changes in gas prices. 

Especially in times of high gas prices, for these dApps, it should be more difficult to attract users. 

If this decline in usage sustains for longer, the dApp might have to terminate its business and leave 

the platform. Consequently, characteristics associated with a higher sensitivity towards the gas 

price should also be associated with a higher likelihood of an exit and a lower likelihood of entry, 

particularly in times of high gas prices (also see supplementary survival analysis in Appendix C).  

 Although the exit of an unsuccessful dApp might be desirable for the platform provider and 

platform users if the exit is due to the bad quality of the dApp (e.g., it relies on inefficient smart 

contracts that require more gas than the smart contract of a competitor), it might be less desirable 

if the exit is due to the fact that the transaction verification mechanism discriminates against other 

characteristics of a dApp (e.g., type of service offered, or value carried by a transaction with a 

dApp) —especially if the platform aspires to become a general-purpose platform. To understand 
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if there is undesirable discrimination in a market for transactions, next, we empirically investigate 

the drivers of a dApp’s sensitivity we hypothesized above and discuss their implications.  

5. Data and sample construction 

We combine block and transaction-level data publicly stored on the Ethereum blockchain with 

three different data sources that provide supplementary off-chain data, such as the category of the 

dApp or the exchange rate for one Ether or other tokens. Below we explain the data sources and 

the resulting sample and then discuss the variables in our data set.  

Data collection procedure and sample 

We obtained our data from four different sources. First, we use the Ethereum ETL12 to download 

all block-level and transaction-level data publicly stored on the Ethereum blockchain for our study 

period (July 1st, 2017, until December 31st, 2020).13 The block-level data include a unique 

identifier (i.e., block hash), a timestamp, the difficulty of the block, the gas limit, which indicates 

the maximum of gas miners are allowed to use in this block, and the gas used, which is the sum of 

computational effort the verification of all transactions in this block required. The transaction-level 

data contain the block hash, a sender and recipient address, the gas used by this transaction, and 

the gas price the sender has paid for one unit of gas in GWei (1 GWei = 10-9 Ether). Second, we 

use two websites that provide a curated list of dApps (stateofthedapps.com and defillama.com) to 

identify dApps that are running on Ethereum, the addresses of their associated smart contracts, and 

the category of the application. This step allows us to map the pseudonymous smart contract 

addresses on the blockchain to their respective dApp and is necessary because a dApp can consist 

 

12 https://ethereum-etl.readthedocs.io/en/latest/ 
13 We chose this study period as it allows us to observe three periods where the additional difficulty induced by the 

difficulty bomb caused a shortage in gas supply (see Figure 2 and Ethereum Improvement Proposal (EIP) 649, 1234, 

and 2384).  
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of multiple smart contracts. Overall, we identified 1,590 dApps with 4,680 associated smart 

contracts active in our study period. As neither stateofthedapp.com nor defilama.com provides an 

exhaustive list of all smart contracts associated with a dApp, we further collect a list of all verified 

smart contracts from the Etherscan API14 and manually match 1,316 additional smart contracts to 

the dApps in our sample. Through the address of the smart contracts, we can link transactions with 

their associated dApps. We also use the Etherscan API to collect further daily network-level data, 

such as the network utilization, which measures the extent to which the block gas limit has been 

used. Finally, we retrieve the daily prices for one Ether and other tokens associated with the dApps 

in our sample from the CoinGecko API.15 To ensure that all variables are on the same level and to 

mitigate high-frequency variation in the data, we first merge the block-level and transaction-level 

data by using the block hash reported for every transaction and then aggregate the resulting data 

at the daily level. Our consolidated dataset covers 1,279 days. Table 1 provides an overview of the 

number of dApps per group of categories.16 

-------- insert Table 1 about here -------- 

Data sets, variables, and measurement 

Besides the daily aggregation, we further aggregate transactions on the level of a dApp.  

Our main variable of interest is the quantity of gas used. It refers to the daily amount of 

computational verification effort demanded by all transactions with a dApp. It is measured in Giga 

gas units. This variable operationalizes the goods supplied by the miners and demanded by the 

transaction senders.  

 

14 https://etherscan.io/apis 
15 https://www.coingecko.com/en/api/ 
16 To mitigate multicollinearity issues arising from similar transaction patterns across similar categories, we 

aggregated the 17 categories into 5 groups that resemble in the type of service they offer. We obtained the groups by 

applying a cluster analysis to variables like daily transaction count and transaction value.  
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The gas price is the price (in GWei) transaction initiators must pay for each gas unit. As the 

gas price an initiator pays varies according to the outcome of a first-price auction, we define the 

gas price in times of the market gas price a sender would have had to pay for their transaction to 

just make it into one of the blocks on a given day. We proxy this market price with the daily 

average of the bottom fifth percentile gas price recorded on each block on that day in GWei. We 

use this proxy because there are blocks in whose verification miners circumvent the first-price 

auction mechanism by adding their own transactions with a gas price close to zero or even zero. 

Accordingly, using the marginal gas price (i.e., the lowest gas price on a day at which a transaction 

is just included in a block) would not correctly reflect the market mechanism. We also run several 

robustness checks with alternative gas price variables (e.g., different percentiles of the gas price in 

USD).  

We define the variable difficulty bomb as the average additional difficulty induced by 

Ethereum’s difficulty bomb on a given day. Next to the automated adjustment of the mining 

difficulty, the difficulty bomb is the second mechanism encoded in Ethereum’s protocol that 

influences the total network difficulty (i.e., the average number of hashes it takes to find a block). 

The goal of the difficulty bomb is to force miners to switch from PoW to PoS once the PoS update 

is available. To this end, the difficulty bomb exponentially increases the mining difficulty until it 

is almost impossible to find new blocks by solving the PoW puzzle. As Ethereum planned right 

from its start to switch to PoS at some point, the difficulty bomb was always part of the protocol. 

However, because the update to PoS was delayed several times, the difficulty bomb increased the 

difficulty too fast, resulting in a disproportionate increase that was not reflected by the network 

hash rate and the discovery of significantly fewer blocks per day. Because the resulting shortage 

in gas was not intentional (the plan was that PoS-blocks would grow at the same rate as the PoS-
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blocks would decline), the Ethereum community issued a protocol update that turned back the 

additional difficulty. Over our study period, this pattern occurred three times and is reflected in 

three protocol updates (EIP649, EIP1234, and EIP2384). As the difficulty induced by the difficulty 

bomb is not reported in any database, we leverage the fact that Ethereum’s protocol continuously 

tried to keep the block time within the target window of 12-14 seconds and constructed the variable 

as follows. The difficulty induced by the difficulty bomb on a day d is the difference between the 

total observed difficulty and the theoretical difficulty required to reach the target block time, given 

the current hash rate in the network. Accordingly, the difficulty bomb on a day d is: 

𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑏𝑜𝑚𝑏𝑑 = (𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ℎ𝑎𝑠ℎ 𝑟𝑎𝑡𝑒𝑑 𝑥 𝑡𝑎𝑟𝑔𝑒𝑡 𝑏𝑙𝑜𝑐𝑘𝑡𝑖𝑚𝑒) − 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑑 

The unit of this variable is the number of Tera hashes it requires on average to find a new 

block. Due to the exponential growth and the fluctuation of the network difficulty within the target 

window, especially at the beginning of the activity of the difficulty bomb, the added difficulty is 

not always distinguishable from zero. To account for this fact, although the difficulty bomb is 

always active, we only assign a positive value to the difficulty bomb if the block time is noticeably 

above the target window (> 14s). According to this conservative approach, we only observe on 

16% (182 days) of all days in our sample a difficulty bomb above zero. To establish robustness, 

we also use different cutoffs and approaches to measure the activity of the difficulty bomb. We 

will discuss our instrument’s relevance and exogeneity later in the empirical strategy and results 

section.  

To account for the degree to which miners fill the blocks on a given day, we measure the 

network utilization as the fraction of total available gas (sum of the gas limit of all blocks) on a 

day that is used by all transactions on that day in percent. It captures the platform’s usage level 
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and has been used by prior researchers as a measurement for congestion (Donmez and Karaivanov 

2021).  

In addition to these variables, we compute several measures that allow us to study the 

transaction requirements of each dApp or their usage patterns. To reflect the complexity of an 

interaction with a dApp, we measure the average gas requirement of a transaction with a dApp. 

To reflect the requirements of a transaction with a dApp, we measure the average value of Ether 

or tokens a dApp receives as a proxy for how much value transactions with the dApp usually carry. 

In addition, we measure the following performance indicators for every dApp: average daily 

transaction activity, average the number of unique externally owned accounts (EOA) that 

transactions with a dApp (i.e., our proxy for users),17 the average gas price users pay for a 

transaction with a dApp, the average number of transactions per externally owned account on a 

given day, and the surplus gas price transaction senders pay beyond the market gas price on a 

given day.  

We also control for the following network-level variables: Ether price measures the price of 

one Ether in USD on the day the transaction was executed; Ether volatility measures the daily 

change in the exchange rate of one Ether; Gas limit measures the sum of all block gas limits on a 

day and accounts for the fact that over our sample period, the total units of gas that can be used in 

a block has been increased several times; and finally, day of the week and year dummy variables, 

and a trend. Table 2 provides descriptive statistics and correlation scores for all variables in our 

data set. 

 

17 Technically it is possible to differentiate between smart contract addresses and wallet addresses, but not if a wallet 

address is controlled by a bot. To account for this fact, we refrain from calling wallet addresses “users” and call them 

instead “externally owned accounts” to emphasize that they do not necessarily correspond to human users. Therefore, 

this variable is only a proxy.  
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----- insert Table 2 about here ----- 

6. Estimation strategy 

In this section, we discuss our baseline specification and the instrumental variable (IV) we use to 

address the endogeneity of the gas price.  

Baseline specification 

The specification for our dApp-level analysis is:  

log(𝐺𝑎𝑠 𝑢𝑠𝑒𝑑𝑑𝑡) =  𝛼0 + 𝛼1 log(𝑀𝑎𝑟𝑘𝑒𝑡 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒𝑡) +  𝛼2𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡 +

 𝛼3𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡
2 + 𝛼4log(𝐸𝑡ℎ𝑒𝑟 𝑝𝑟𝑖𝑐𝑒𝑡) + 𝛼5 log(𝐸𝑡ℎ𝑒𝑟 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡) +

𝛼6log(𝐺𝑎𝑠 𝑙𝑖𝑚𝑖𝑡𝑡) +  𝑎𝑔𝑒𝑑𝑡 + 𝜇𝑑 +  𝜇𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘 +  𝜇𝑦𝑒𝑎𝑟  +  𝑢𝑡,  

 

where gas used is the equilibrium gas demand for each dApp d in the period t (day). We chose 

a log-log specification for gas used and market gas price to be able to interpret α1 as the price 

elasticity of the demand. Due to the skewed distributions of Ether price, Ether volatility, and the 

gas limit, we use log-transformed versions of these variables in our specification. The network 

utilization allows us to control for the degree to which miners use the available block gas limit on 

a given day and has been used by prior scholars as a measure of network congestion (Donmez and 

Karaivanov 2021). We also add a quadratic term to account for the nonlinear relationship between 

gas price and network utilization.18 In addition to these variables, we also control for the intrinsic 

growth of the dApp by adding agedt as the number of days since the dApp entered the platform and 

specify µd as dApp fixed effects, µdayofweek as a day of week fixed effects, µyear as a year fixed 

effects, and ut as the error term.  

 

18 We also compute the same model with a threshold specification where we added only the linear term and dummy 

variable that takes on the value one if the utilization level exceeds 90%. They were qualitatively the same regarding 

the magnitude and significance of the coefficients we obtained. 
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Validity of the instrument 

In this model, log(Gas usedt) and log(Market gas pricet) are the endogenous variables, as both 

are jointly determined in equilibrium. To address this simultaneity issue, we use the difficulty bomb 

as an instrumental variable in a two-stage least squares approach (2SLS). In the first stage, we use 

the difficulty and all other control variables listed above to predict the log(Market gas pricet). In 

the second stage, we estimate the specification above by replacing the log(Market gas pricet) with 

its predicted value. The economic intuition underlying our approach is that we leverage the 

difficulty bomb as an exogenous supply shifter. Due to the consistent adjustment of the network 

difficulty and the resulting constant block time, the gas supply curve resembles a fixed vertical 

line. When the difficulty bomb is active, the added difficulty increases the block time and thus 

decreases the number of blocks on a given day. As the maximum gas a block can contain is limited, 

fewer blocks lead to a decrease in the gas supply and hence a horizontal shift of the supply curve 

to the left. We exploit this supply shift to identify the demand curve.  

We argue that the difficulty bomb is exogenous and influences the gas demand only through 

the increased gas price for three reasons. First, it is programmed into the Ethereum protocol, and 

changing it requires a successful protocol update (called Ethereum Improvement Proposal or EIP) 

which is only possible after a majority vote and hence unlikely to be a response to a short-term 

market situation. Therefore, changes to the difficulty bomb can be seen as exogenous policy 

interventions. Second, as the difficulty level is not reported in wallet applications or by an API and 

has to be manually calculated (see above), it is plausible to assume that ordinary Ethereum users 

were not aware of the existence of the difficulty bomb. Third, even if users were aware of the 

existence of the difficulty bomb, it is difficult for them to comprehend its exponential growth and 

differentiate its impact—at least in the initial phase—from normal fluctuations due to the exit and 
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entry of miners. Further, it would also be difficult for users to predict the mining power and cost 

structure of every single miner and to evaluate when they cannot keep up with the difficulty level.  

7. Results 

In this section, we report and discuss four sets of results. First, we report the results of our baseline 

estimation and our finding of a downward-sloping demand curve. Second, we report our results 

regarding different gas price elasticities for each group of dApps. Third, we present our analysis 

regarding further characteristics of a dApp that determine its sensitivity towards changes in the gas 

price. Finally, we discuss the additional checks we conduct to establish the robustness of our 

results.  

Baseline dApp-level results 

Following our baseline specification, Table 3 reports the results of our 2SLS demand curve 

estimation. Column 1 presents the first stage results, where we predict the gas price (log(Market 

gas price)) with our IV (difficulty bomb). Column 2 presents the second stage results, where we 

use the predicted gas price to estimate the price elasticity of the gas demand (log(Gas used)).  

----- insert Table 3 about here ----- 

Confirming our theoretical prediction, Columns 2 and 3 suggest a downwards-sloping demand 

curve for gas on Ethereum. The first stage reported in Column 1 shows that an increase in 

additional difficulty due to the difficulty bomb is significantly associated with increased gas prices. 

This is in line with our explanation that the added difficulty reduces the supplied gas—by reducing 

the number of blocks explored per day—and thus intensifies price competition among transaction 

senders. The coefficient of the difficulty bomb is highly significant even though we control for 

network utilization (i.e., the degree to which miners use the available block space), network 
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utilization squared,19 the exchange rate of Ether to USD, the daily fluctuation of this exchange 

rate, the block gas limit, as well as day of the week and year dummies and a common trend.  

Regarding the validity of our instrument, by comparing the first-stage with and without the 

instrument, we obtain an incremental F (121.39) that is well beyond the suggested cut-off of 10 

(Stock and Yogo 2005) and thus suggests that our instrument strongly correlates with the 

endogenous gas price. To test the relevance of our instruments, we compute the Stock-Yogo (Stock 

and Yogo 2005) test for weak instruments, which shows that the Cragg-Donald-Wald F Statistic 

(2542.47) exceeds the predetermined critical value (16.38). Further, we compute the Kleibergen-

Paap LM Statistic (70.04) for under-identification, which is highly significant. These tests suggest 

that our instrument is both strong and relevant. Regarding the exogeneity of our instrument, we 

have already explained above that the difficulty bomb does not impact the gas demand through 

means other than an increase in gas price as the mining difficulty simply is a “production factor” 

for miners that is unlikely to be tracked by the casual Ethereum user.  

To interpret the magnitude of the effect of the gas price (log(gas price)) on the demand of gas 

log(Gas used), the coefficient of -0.64 implies that a 1% increase in the market price of a unit of 

gas decreases the amount of gas demanded by 0.64%. Considering that the average transaction on 

Ethereum consumes 184,000 units of gas (which corresponds to a normal smart contract 

interaction), this equals a decrease of roughly 1,703 smart contract transactions per day or 14,923 

Ether transfers, which require 21,000 units of gas. Considering that the median dApp only receives 

 

19 The inclusion of the quadratic term is suggested by a scatterplot that shows a highly nonlinear relationship between 

the network utilization and the gas price. Especially, when the network utilization exceeds 90% the gas price increases 

dramatically. We also performed a robustness check using a threshold effect at 90% network utilization in form of a 

binary variable that is equal to 1 if the utilization is above 90% and 0 otherwise which we then interact with the linear 

term. This finding is similar to Donmez and Karaivanov  (2021) who test the impact of congestion on the gas price 

for a shorter observation period. 
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eight transactions per day, the order of magnitude of this effect can have significant economic 

implications. 

In sum, this analysis provides first empirical evidence that the well-established “law of 

demand” (Gale 1955) also applies to the verification service of transactions on Ethereum. It also 

provides evidence that Ethereum’s gas price mechanism introduces a form of price competition 

among transaction senders that counteract the main prediction of the two-sided market literature 

(Katz and Shapiro 1985), i.e., that, due to the same-side network effect, an increase in the demand 

side draws even more consumers into the market and leads to subsequent increases in demand. On 

Ethereum, an increase in transaction senders increases not only the utility of transacting on 

Ethereum but also price competition. However, as the demand for gas is negatively associated with 

its price, the market mechanism underlying Ethereum’s transaction verification process dampens 

the effectiveness of same-side network effects.  

Differing Demand Curves per Group  

Column 3 in Table 3 reports the different demand curves for each group of dApps. We obtain 

these demand curves by interacting the instrumented market gas price with the group of a dApp.  

With a positive and significant coefficient (0.27) for our reference group (finance dApps), our 

results suggest that the demand curve for these dApps in upwards sloping. An explanation for this 

upwards-sloping demand curve could be that the entry of additional finance-related dApps has 

caused an influx of high willingness-to-pay customers and that the network affects these finance-

related dApps could realize compensated for the higher transaction fees these transaction senders 

had to pay. This explanation is in line with prior research that describes networked goods (e.g., 

financial services) by irregularities such as an upward-sloping demand curve for low quantity 

levels (Economides and Himmelberg 1995). Particularly, if a service relies on strong network 
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effects, no one will pay for the product if no one else uses it. Although the entry of high 

willingness-to-pay users is typically beneficial for a platform, the fact that we observe downwards-

sloping demand curves in the form of negative moderations of all other groups poses a danger that, 

particularly in times of high transaction fees, dApps from other groups are not used anymore and 

finally have to leave the platform. This reduction of complement heterogeneity can ultimately 

harm the long-term attractiveness of Ethereum, especially as a general-purpose platform.  

Heterogeneous effect of Ethereum gas price mechanism 

Beyond the category of a dApp, we use our rich data to explore further the characteristics of dApps 

that impact their sensitivity toward the gas price. The first set of characteristics pertains to the 

formal requirements of a transaction with a dApp. These characteristics are the amount of gas a 

transaction with a dApp requires and the value of Ether and tokens a transaction with a dApp 

usually carries. To analyze these characteristics, we computed the total average for all these 

variables over all transactions a dApp has received. Because this average is time-invariant, we 

interacted these variables with the gas price and group in different models: In Table 4, Columns 1 

and 4 show the two-way and three-way interaction models regarding the average gas requirement; 

Columns 2 and 5 show the interaction models with the average Ether value sent; and Columns 3 

and 6 the models with the average token value sent.  

----- insert Table 4 about here ----- 

Regarding the gas requirement of a transaction with a dApp, we do not find a significant two-

way interaction effect between the gas price and the average gas requirement (Column 1), but we 

find significant three-way interactions between gas price, gas requirement and group two, three, 

and four (Column 4). These interactions indicate that for some groups of dApps, the two-way 

interaction significantly differs from the reference category (group 1). For instance, for gambling 



35 

 

 

 

dApps, the negative coefficient of the three-way interaction (-0.24) implies that the negative 

impact of the gas price on the gas demand is even stronger if the gambling dApp demands a high 

amount of gas for a transaction. On the other hand, for dApps in group 2, the coefficient of the 

three-way interaction is positive (0.58). This implies that, in comparison to the dApps in group 1, 

for identity and property dApps, a high gas requirement counteracts the downward slope of the 

demand curve to some extent, leading to a decrease in the sensitivity towards changes in the gas 

price. One possible explanation for this finding could be the required frequency of interaction with 

a dApp. In contrast to gambling and finance applications, where users obtain utility from regularly 

interacting with dApps, identity and property dApps only require sporadic transactions. If a 

property dApp bundles more functionality into one transaction, not only the gas requirement but 

also the utility of the transaction increase. Accordingly, the user might be willing to accept high 

gas prices for this transaction as the additional gas fees become less relevant in relation to the one-

time transaction effort. For gambling and finance applications, however, users generate utility 

through more frequent interactions. Here, more functionality in a single transaction might increase 

the utility but, in the long run, also pile up more transaction fees. Thus, users might be less inclined 

to higher gas requirements as they prefer less complex, but dedicated functions realized through 

singular transactions. Another explanation could be that due to the frequent interaction gambling 

dApps require, there is more pressure for such dApps to improve the efficiency of their smart 

contracts in terms of gas requirement.  

Regarding the average value (in Ether or other tokens) sent with a transaction to a dApp, we 

find a positive moderation of the negative demand curve (Columns 2 and 3). The positive 

interaction coefficients between the gas price and the average Ether value (0.14) and token value 

(0.31), in combination with the negative linear coefficient of the gas price (-0.64 and -0.74) are an 
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indicator that the gas price elasticity of dApps decreases with a higher average transaction value. 

This finding is in line with prior studies that find users’ fee sensitivity declines with the transaction 

value (e.g., Wang and Wright 2017).  

Regarding the three-way interactions (log(Market gas price) x Average value or token value X 

group), we only find that one out of eight coefficients is significant. This indicates that, apart from 

group 5, the positive and significant interaction of the transaction value with the gas price does not 

differ across the groups of dApps and suggests that dApps that receive a higher average transaction 

value exhibit a less elastic demand curve.  

Next to the requirements of a transaction with a dApp, we also computed average performance 

indicators for each dApp. Table 5 reports the interaction result regarding the average daily number 

of transactions, the average daily number of externally owned accounts (EOA), and the average 

daily transactions per EOA.  

----- insert Table 5 about here ----- 

For the average daily transactions and average daily EOA, we find a positive and significant 

two-way interaction with the gas price. This suggests that the demand for gas for transactions with 

dApps with a high average of daily transactions and users is less impacted by changes in the gas 

price. However, by adding the group dummies to these two-way interactions, we find that this 

interaction significantly differs between dApps in group one and all other groups. Whereas dApps 

in group 1 still seem to benefit from more transactions and EOAs—as indicated by the positive 

and significant two-way interactions between the gas price and the average number of transactions 

(Column 4, 0.39) and the average number of daily EOA (Column 5, 0.39)—the three-way 

interactions with all other groups are highly significant and negative. This indicates that for dApps 

in these groups, the effect of receiving, on average, more transactions or having more unique EOAs 
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transacting with them is less prevalent or even makes them more sensitive to changes in the gas 

price. Again, network effects could be a plausible explanation for this observation. Particularly, 

finance dApps and cryptocurrency exchange dApps should highly benefit from network effects. A 

gas price increase caused by an influx of additional users could be compensated by the additional 

utility the growing number of users provides to finance and exchange dApps. Simultaneously, 

because dApps from other groups benefit less from network effects, they cannot compensate for 

the additional gas fees their users would have to pay to transact with them. Especially, for dApps 

that already have a high average number of users but fail to benefit from network effects, this effect 

can lead to an increase in the sensitivity towards the gas price and a decline in demand for 

transactions with these dApps—especially in times when there is less supply of gas and fierce 

price competition. For the average number of transactions per EOA (Columns 3 and 6), we only 

obtain a few significant results that do not allow us to infer systematic patterns.  

----- insert Table 6 about here ----- 

To further investigate network effects, we analyze the impact of dynamic usage indicators that 

vary for each dApp over time. Table 6 reports the interaction results of the daily ratio of 

transactions per EOA and the average price users were willing to pay above market gas price. 

Regarding the number of transactions per EOA, we find a positive interaction (0.08, Column 2) 

between the number of transactions per EOA and the gas price (log(Market gas price)). According 

to the three-way interactions, except for group 5, this moderation does not significantly differ 

between the different groups of dApps. Because for dApps in group five, the interaction is even 

stronger than for all other dApps, attracting heavy users might be a valid strategy for these dApps 

to survive the competition in a market for transactions. Considering that group 5 comprises dApps 
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such as storage or energy services and given the strong lock-in effects these services typically 

exhibit, also these findings seem plausible.  

Finally, regarding the average surplus gas price transaction senders are willing to pay on a 

given day for transacting with a dApp, we also observe a positive interaction with the gas price 

(0.16, Column 5). Again, except for group 5, this moderation approximately remains its direction 

and magnitude across the different groups. Only for group 5, the three-way interaction has a 

negative sign. This implies that, in comparison to dApps in group 1, dApps in group 5 are more 

sensitive to changes in the gas price in periods where their users overpay the market gas price. 

Such periods could be periods with high fluctuations in the gas price that expose users to high 

uncertainty regarding the gas price and forces them to overpay for a certain inclusion of their 

transaction. Therefore, a possible explanation for the negative three-way interaction could be that 

users of dApps in this group are more sensitive to this form of uncertainty related to overpaying 

and thus react by becoming more price sensitive.  

Additional robustness checks 

To assess the robustness of our analysis, we tested them against several alternative measures and 

samples. For example, we used the transaction count instead of gas used, applied different levels 

of winsorization to restrict the impact of possible outliers, used different percentile and levels of 

winsorization for the market gas price together with the average gas price, and also a different 

measurement of the difficulty bomb where we subtracted the observed number of blocks from the 

target number of blocks given the targeted block time. Further, we also conducted our analysis 

only for the periods where the difficulty bomb was active. Table 7 reports the coefficients we 

obtain through the robustness tests. Overall, we find the results to be consistent with the results of 

our baseline specification. 
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------------ insert Table 7 about here ------------ 

Moreover, we further report two additional analyses that corroborate our results in the 

appendix. The first analysis replicates parts of our analysis on the network level. For this analysis, 

we aggregated all transactions on the network and group level instead of the dApp level. Rather 

than using the group as an interaction term, this allows us to estimate a dedicated demand curve 

for each group of dApps. The results we obtain are qualitatively the same, except that we do not 

observe an upwards sloping demand curve for group 1 (finance dApps) but a slightly downwards-

sloping demand curve. The second analysis is a survival analysis that shows that dApps from 

different groups are subject to different hazard rates.  

8. Conclusion 

Decentralized blockchain platforms like Ethereum have been hailed for challenging the dominance 

of centralized digital platforms that currently prevail in the digital economy (Murray et al. 2019, 

Vergne 2020). Yet, little is known about how the decentralized transaction verification mechanism, 

which distinguishes blockchain platforms from their centralized counterparts, impacts the 

platform's performance by determining its usage and complements. To investigate this question, 

we study Ethereum’s transaction verification mechanism as a market for transactions and use a 

panel data set of 1,590 dApps together with a novel supply-side instrument to estimate different 

price elasticities of the demand for transactions with dApps. We find strong evidence that 

Ethereum’s gas price mechanism leads to negative network effects (i.e., a growth of the transaction 

demand makes transacting more expensive) that counteract the positive network effects usually 

present on multi-sided platforms. Further, we find that the relative magnitude of these effects 

depends on characteristics of a dApp that are mostly predetermined. Particularly, the type and 

complexity of the service a dApp offers are decisive factors. For instance, across the board, the 
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demand for transactions with finance or exchange dApps seems to be less impacted by changes in 

the gas price than dApps that offer games, gambling, social, or media-related services. This is 

especially problematic as the transaction verification mechanism adds a new externality to the 

existing competition on such platforms: all dApps—no matter what service they offer—must 

compete for the limited gas supply. Hence, it favors some dApps over others and finally forces 

disadvantaged dApps to leave the platform leading to a decrease in the heterogeneity of dApps 

offered on Ethereum and a reduced value for platform users who joined because of the variety of 

complements offered on the platform.  

The main contribution of this work is to unpack the consequences of using a market mechanism 

instead of a central authority to allocate transactions for the dApps offered on a blockchain 

platform.  Our results have several important implications for the platform provider, the 

complementors, and policymakers. First, regarding platform providers: as we find that the type of 

service and its complexity determine a dApps sensitivity towards gas prices and thus their 

likelihood of entry or exit, platform providers have to consider these discriminatory effects when 

designing the transaction verification mechanism. Especially because the decentralized nature of 

blockchain platforms limits the strategic toolset that can be used to orchestrate complements, such 

as entry restrictions or other means of prioritization, a careful design of the transaction verification 

mechanism is warranted and has to align with the platform strategy. Carelessly expanding the 

complementor side on such a platform in the hope that it naturally benefits the platform's 

performance might be detrimental to the long-run goals of the platform. Our analysis provides a 

case in point, as it shows that the current version of Ethereum’s gas price mechanism favors finance 

and exchange dApps over other dApps and thus contradicts Ethereum’s vision of becoming a 
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general-purpose platform that caters to all sorts of dApps. Further, it questions whether platforms 

with similar transaction verification mechanisms are viable options for Web 3.0.  

Second, regarding complementors: in a market for transactions, platform complementors not 

only need to pay attention to their direct competition but also need to carefully analyze the current 

and future congestion of the network and consider their own sensitivity towards gas fees in 

comparison to all other dApps offered on the platform. Further, as our analysis shows that the gas 

requirement of a transaction with a dApp is another important determinant for its gas price 

elasticity, dApp providers need to consider how to bundle or split interactions with the dApp into 

one or multiple transactions.  

Finally, regarding policymakers: policymakers and regulators are frequently concerned about 

antitrust competition between platforms. From this perspective, reduced heterogeneity of 

complements on one platform might be desirable as it gives rise to other platforms that are more 

closely tailored to the need of the complements and thus reduces the likelihood of one platform 

that dominates the whole industry. Although addressing the general impact of the transaction 

verification mechanism on the market via the creation of multiple other platforms is beyond the 

scope of this paper, our results need to be considered in the regulatory process. In particular, a 

transaction verification mechanism like in the case of Ethereum could be a self-regulation tool that 

mitigates the “winner-takes-it-all” typically associated with digital platforms that strongly rely on 

network effects.  

This paper has some limitations that open opportunities for further research. One limitation is 

that we only observe one platform. Even though our analysis suggests that the gas price mechanism 

on Ethereum might lead complementors to leave the network and join other platforms, this paper 

abstains from addressing cross-platform competition and substitution patterns. A natural extension 
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of our work is to extend our analysis to other blockchain platforms that offer dApps and study 

platform complements' switching and multi-homing behavior. Another limitation is our sample of 

dApps and their associated smart contracts. Although we tried to include as many dApps as 

possible in our analysis and even manually matched smart contracts to these dApps, more dApps 

are running on Ethereum than our sample reflects. Particularly, dApps that are only accessible 

through Chinese websites might have slipped our attention and are not represented in our sample. 

Therefore, and although in some periods, our sample accounts for as much as 85% of all Ethereum 

transactions, our results should be seen as initial empirical evidence and would profit from 

replications that incorporate a different set of dApps or take a more fine-grained perspective on 

the rich available data. Particularly, zooming in on single days and following the bidding behavior 

of individual users or studying the usage pattern of a single dApp in light of changing gas prices 

could be promising. Finally, due to the infancy of and the rapid development in this field, our 

results should be treated as preliminary and could be reevaluated after major protocol updates. One 

such change will be Ethereum’s long-announced update from PoW to PoS. Given that we predict 

that this update will only get rid of the computationally expensive puzzle of finding a hash that 

fulfills some properties required by the protocol but not the computation and verification of the 

transaction, the gas price mechanism should even become more important as it remains the most 

important driver of the costs of verifying transactions. Therefore, it would be interesting to see 

how validators prioritize transactions and influence the usage of dApps after the PoS update.  
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Figure 2: Hash rate and the impact of the difficulty bomb 

 

Figure 1: Daily gas used and gas price 
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Tables 

Table 1: Groups of dApps 
Groups dApp categories Examples # dApps 

Group 1 
finance, exchanges, wallets, 
insurance, security 

Sushi Swap, OmiseGo, Status, Nexus 
Mutual, Chainlink 

507 

Group 2 identity, property ENS Manager, Decentraland 45 

Group 3 games, marketplaces Axie Infinity, Cryptokitties 464 

Group 4 gambling, social, health FunFair, Minds, BEAT 397 

Group 5 energy, governance, media, storage Dovu, Aaragon, CryptoTunes, XCloud 177 

 

 



 

 

 

Table 2: Summary statistics and correlations (dApp level) 
 N Mean SD Min Max (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) 

(1) Gas used 370,748 180,178 1,288,645 21 85,346,148 1                   

(2) Transaction activity 370,748 893 9,213 1 518,357 0.89 1                  

(3) EOA 370,748 288 3,143 1 168,900 0.82 0.97 1                 

(4) Average transaction gas 

price 
370,748 28 44 0.00 6,250 0.05 0.05 0.05 1                

(5) Market gas price 370,748 8 14 1 54 0.06 0.06 0.06 0.71 1               

(6) Difficulty bomb 370,748 65 210 0.00 1,610 -0.01 -0.01 -0.01 -0.09 -0.13 1              

(7) Network utilization 370,748 301 195 84 1,385 0.02 0.02 0.02 0.25 0.23 -0.20 1             

(8) Network utilization2 370,748 0.24 20 -228 153 0.01 0.01 0.01 0.01 0.06 0.001 0.06 1            

(9) log(Ether price) 370,748 0.85 0.10 0.30 0.98 0.03 0.04 0.04 0.37 0.54 -0.12 0.34 0.04 1           

(10) log(Ether volatility) 370,748 0.73 0.17 0.09 0.97 0.04 0.04 0.04 0.40 0.57 -0.12 0.36 0.04 1.00 1          

(11) Gas limit 370,748 9,278 1,739 6,704 12,485 0.06 0.06 0.06 0.49 0.77 -0.21 0.12 0.06 0.51 0.54 1         

(12) Age 370,748 415 322 1 1,280 0.05 0.08 0.08 0.23 0.33 -0.11 -0.15 0.03 0.24 0.24 0.49 1        

(13)Average gas 

requirement 
370,748 322 478 21 9,900 0.04 -0.02 -0.02 -0.05 0.01 -0.02 -0.08 -0.001 0.01 0.01 0.05 -0.10 1       

(14) Average value sent 

USD 
370,748 366 3,656 0.00 99,002 0.01 -0.001 

-

0.0002 
0.01 0.01 -0.001 0.02 0.001 0.01 0.01 0.01 0.01 0.01 1      

(15) Average token value 

sent USD 
370,748 2,781 13,909 0.00 185,968 0.05 0.04 0.03 0.02 0.01 0.01 0.02 0.003 -0.002 0.0004 0.001 0.07 -0.03 0.01 1     

(16) Average daily 

transactions 
370,748 893 5,695 1.00 71,089 0.53 0.62 0.61 0.02 0.01 -0.004 0.002 

-

0.0004 
0.01 0.01 0.01 0.05 -0.04 -0.002 0.06 1    

(17) Average daily EOA 370,748 288 1,954 1.00 24,975 0.50 0.61 0.62 0.02 0.01 -0.01 0.002 -0.001 0.01 0.01 0.01 0.05 -0.04 
-

0.0002 
0.05 0.99 1   

(18) Average transactions 

per EOA 
370,748 6 20 1.00 354 0.03 0.01 -0.01 0.01 0.04 -0.005 -0.02 0.01 0.02 0.02 0.05 -0.04 0.09 -0.01 -0.02 0.01 -0.02 1  

(19) Transactions per EOA 370,748 6 44 1.00 4,488 0.07 0.02 -0.01 0.002 0.01 0.01 -0.01 0.001 -0.01 -0.01 0.003 -0.04 0.04 -0.01 -0.01 0.01 -0.01 0.46 1 

(20) Surplus gas price paid 370,748 19 30 -129 6,249 0.04 0.05 0.04 0.93 0.44 -0.06 0.23 -0.01 0.25 0.27 0.29 0.15 -0.08 0.01 0.03 0.02 0.02 0.002 -0.001 



 

 

Table 3: Demand curve estimation – baseline model (dApp level) 
 (1) (2) (3) 

 
log(Market gas 

price) 
log(Gas used) log(Gas used) 

Difficulty bomb 0.20*** (0.0000)   

log(Market gas price)  -0.64*** (0.21) 0.27*** (0.05) 

log(Ether price) -0.0004 (0.01) 0.15*** (0.04) 0.18*** (0.04) 

log(Ether volatility) -0.01*** (0.0004) 0.01** (0.004) 0.02*** (0.003) 

Network utilization -2.36*** (0.06) -1.20** (0.47) 0.30*** (0.11) 

Network utilization2 16.30*** (0.37) 8.59*** (3.29) -1.89*** (0.68) 

log(Gas limit) 2.40*** (0.03) 1.89*** (0.53) 0.13 (0.20) 

Age 0.001*** (0.0000) 
-

0.002*** (0.0003) 

-

0.002*** (0.0002) 

Year2018 -0.82*** (0.02) -0.68*** (0.22) -0.09 (0.15) 

Year2019 -1.09*** (0.02) -0.66*** (0.25) 0.07 (0.15) 

Year2020 -0.95*** (0.02) -0.28 (0.24) 0.36** (0.16) 

weekdayThursday -0.02*** (0.001) -0.03*** (0.01) -0.01* (0.01) 

weekdaysFriday 0.02*** (0.001) -0.02** (0.01) -0.03*** (0.01) 

weekdaysWednesday -0.005*** (0.001) -0.001 (0.01) 0.002 (0.01) 

weekdaysMonday -0.02*** (0.001) -0.03*** (0.01) -0.02** (0.01) 

weekdaysSaturday 0.01*** (0.002) -0.07*** (0.01) -0.08*** (0.01) 

weekdaysSunday 0.01*** (0.002) -0.08*** (0.01) -0.09*** (0.01) 

log(Market gas price) × group 2   -0.43*** (0.15) 

log(Market gas price) × group 3   -0.64*** (0.12) 

log(Market gas price) × group 4   -0.49*** (0.10) 

log(Market gas price) × group 5   -0.28*** (0.09) 

 

Observations 370,392 370,392 370,392 

R2 0.78  0.11 

Incremental F 121.39   

C-D Wald F Stat.  2542.47 118.07 

Stock-Yogo Critical Value  16.38 26.87 

Kleibergen-Paap LM Stat.  70.04*** 25.16*** 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in 

parentheses. Interacted and squared variables are centered before interacting or squaring 

them. 

*p<0.1; **p<0.05; ***p<0.01 
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Table 4: Interactions with transaction requirements (dApp level) 
 (1) (2) (3) (4) (5) (6) 

 log(Gas used) log(Gas used) log(Gas used) log(Gas used) 
log(Gas 

used) 

log(Gas 

used) 

log(Market gas price) -0.66*** (0.21) -0.64*** (0.21) -0.73*** (0.21) -0.59** (0.26) -0.62** (0.27) 
-

0.82*** (0.30) 

log(Market gas price) × log(Average gas 

requirement) 
-0.06 (0.04)   0.02 (0.05)   

log(Market gas price) × log(Average value 

sent USD) 
 0.14*** (0.04)   0.15** (0.06)  

log(Market gas price) × log(Average token 

value sent USD) 
  0.31*** (0.04)   0.40*** (0.09) 

log(Market gas price) × group 2    -0.17 (0.17) -0.08 (0.18) 0.10 (0.20) 

log(Market gas price) ×group 3    -0.28* (0.15) -0.24 (0.15) 0.03 (0.16) 

log(Market gas price) × group 4    -0.17 (0.14) -0.15 (0.14) 0.09 (0.16) 

log(Market gas price) × group 5    0.04 (0.14) 0.09 (0.14) 0.23 (0.16) 

log(Market gas price) × log(Average gas 

requirement) × group 2 
   -0.58*** (0.16)   

log(Market gas price) × log(Average gas 

requirement) × group 3 
   -0.24** (0.11)   

log(Market gas price) × log(Average gas 

requirement) × group 4 
   -0.19* (0.10)   

log(Market gas price) × log(Average gas 

requirement) × group 5 
   -0.003 (0.08)   

log(Market gas price) × log(Average value 

sent USD) × group 2 
    -0.25 (0.17)  

log(Market gas price) × log(Average value 

sent USD) × group 3 
    0.18 (0.16)  

log(Market gas price) × log(Average value 

sent USD) × group 4 
    -0.02 (0.08)  

log(Market gas price) × log(Average value 

sent USD) × group 5 
    -0.10 (0.11)  

log(Market gas price) × log(Average token 

value sent USD) × group 2 
     -0.19 (0.15) 

log(Market gas price) × log(Average token 

value sent USD) × group 3 
     -0.05 (0.13) 

log(Market gas price) × log(Average token 

value sent USD) × group 4 
     -0.21 (0.14) 

log(Market gas price) × log(Average token 

value sent USD) × group 5 
     -0.24** (0.11) 

Controls YES YES YES YES YES YES 

log(Ether volatility) 0.01* (0.004) 0.01** (0.004) 0.01* (0.004) 0.01* (0.004) 0.01* (0.004) 0.01* (0.004) 

Network utilization -1.24*** (0.47) -1.18** (0.47) -1.31*** (0.48) -1.27*** (0.48) 
-

1.25*** (0.48) 

-

1.34*** (0.49) 

Network utilization2 8.87*** (3.30) 8.48** (3.30) 9.37*** (3.36) 9.06*** (3.32) 8.96*** (3.36) 9.54*** (3.40) 

log(Gas limit) 1.94*** (0.53) 1.88*** (0.53) 1.95*** (0.54) 1.95*** (0.54) 1.94*** (0.54) 1.99*** (0.55) 

Age 
-0.002***  

(0.0003) 

-0.002***  

(0.0003) 

-0.002***  

(0.0003) 

-0.002***  

(0.0003) 

-0.002***  

(0.0003) 

-0.002***  

(0.0003) 

Year dummies YES YES YES YES YES YES 

Weekday dummies YES YES YES YES YES YES 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in parentheses. 
Interacted and squared variables are centered before interacting or squaring them. 

*p<0.1; **p<0.05; ***p<0.01 
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Table 5: Interactions with average performance indicators (dApp level) 
 (1) (2) (3) (4) (5) (6) 

 log(Gas used) log(Gas used) log(Gas used) log(Gas used) log(Gas used) log(Gas used) 

log(Market gas price) -0.67*** (0.21) -0.68*** (0.21) -0.64*** (0.21) -0.81*** (0.29) -0.81*** (0.29) -0.59** (0.26) 

log(Market gas price) × log(Average 

daily transactions) 
0.16*** (0.06)   0.39*** (0.08)   

log(Market gas price) × log(Average 

daily EOA)  
 0.21*** (0.06)   0.39*** (0.07)  

log(Market gas price) × log(Average 

transactions per EOA)  
  -0.03 (0.04)   0.02 (0.06) 

log(Market gas price) × group 2    0.08 (0.19) 0.06 (0.19) -0.02 (0.15) 

log(Market gas price) × group 3    -0.12 (0.15) -0.13 (0.15) -0.33** (0.15) 

log(Market gas price) × group 4    0.01 (0.16) 0.02 (0.16) -0.16 (0.14) 

log(Market gas price) × group 5    0.22 (0.15) 0.22 (0.15) 0.06 (0.14) 

log(Market gas price) × log(Average 

daily transactions) × group 2 
   -0.51*** (0.17)   

log(Market gas price) × log(Average 

daily transactions) × group 3 
   -0.64*** (0.14)   

log(Market gas price) × log(Average 

daily transactions) × group 4 
   -0.47*** (0.13)   

log(Market gas price) × log(Average 

daily transactions) × group 5 
   -0.45*** (0.11)   

log(Market gas price) × log(Average 

daily EOA) × group 2 
    -0.28* (0.16)  

log(Market gas price) × log(Average 

daily EOA) × group 3 
    -0.55*** (0.13)  

log(Market gas price) × log(Average 

daily EOA) × group 4 
    -0.38** (0.15)  

log(Market gas price) × log(Average 

daily EOA) × group 5 
    -0.46*** (0.11)  

log(Market gas price) × log(Average 

transactions per EOA) × group 2 
     -0.46*** (0.10) 

log(Market gas price) × log(Average 

transactions per EOA) × group 3 
     -0.28** (0.12) 

log(Market gas price) X log(Average 

transactions per EOA) × group 4 
     -0.12 (0.08) 

log(Market gas price) × log(Average 

transactions per EOA) × group 5 
     0.03 (0.10) 

log(Ether price) 0.15*** (0.04) 0.15*** (0.04) 0.15*** (0.04) 0.14*** (0.04) 0.15*** (0.04) 0.15*** (0.04) 

log(Ether volatility) 0.01** (0.004) 0.01* (0.004) 0.01** (0.004) 0.01 (0.004) 0.01 (0.004) 0.01* (0.004) 

Network utilization -1.22** (0.48) -1.25*** (0.48) -1.21** (0.47) -1.40*** (0.50) -1.42*** (0.50) -1.28*** (0.48) 

Network utilization2 8.73*** (3.34) 8.92*** (3.36) 8.66*** (3.29) 10.02*** (3.48) 10.16*** (3.51) 9.12*** (3.33) 

log(Gas limit) 1.88*** (0.53) 1.89*** (0.53) 1.90*** (0.53) 2.08*** (0.55) 2.10*** (0.56) 1.95*** (0.54) 

Age 
-

0.002*** (0.0003) 
-

0.002*** (0.0003) 
-

0.002*** (0.0003) 
-

0.002*** (0.0003) 
-

0.002*** (0.0003) 
-

0.002*** (0.0003) 

Year dummies YES YES YES YES YES YES 

Weekday dummies YES YES YES YES YES YES 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in 
parentheses. Interacted and squared variables are centered before interacting or squaring them. 

 *p<0.1; **p<0.05; ***p<0.01 
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Table 6: Interactions with usage indicators (dApp level) 
 (1) (2) (3) (4) (5) (6) 

 log(Gas used) log(Gas used) log(Gas used) log(Gas used) log(Gas used) log(Gas used) 

log(Market gas price) -0.44** (0.17) -0.43** (0.17) -0.38* (0.22) -0.66*** (0.21) -0.71*** (0.22) -0.71** (0.29) 

log(Transactions per EOA) 1.27*** (0.03) 1.28*** (0.04) 1.17*** (0.06)    

log(Market gas price) × 

log(Transactions per EOA) 
 0.08*** (0.03) 0.08** (0.04)    

log(Market gas price) × group 2   -0.15 (0.17)   -0.002 (0.19) 

log(Market gas price) × group 3   -0.28** (0.13)   -0.15 (0.16) 

log(Market gas price) × group 4   -0.21* (0.12)   -0.02 (0.16) 

log(Market gas price) × group 5   0.05 (0.12)   0.12 (0.15) 

log(Transactions per EOA) × group 2   -0.03 (0.15)    

log(Transactions per EOA) × group 3   0.35*** (0.08)    

log(Transactions per EOA) × group 4   0.01 (0.09)    

log(Transactions per EOA) × group 5   0.17 (0.11)    

log(Market gas price) × 

log(Transactions per EOA) × group 2 
  -0.13 (0.15)    

log(Market gas price) × 

log(Transactions per EOA) × group 3 
  -0.001 (0.07)    

log(Market gas price) X 

log(Transactions per EOA) × group 4 
  -0.02 (0.05)    

log(Market gas price) × 

log(Transactions per EOA) × group 5 
  0.16*** (0.06)    

log(Surplus gas price paid)    0.08*** (0.03) -0.14*** (0.04) -0.07 (0.07) 

log(Surplus gas price paid) × 

log(Market gas price) 
    0.16*** (0.02) 0.16*** (0.03) 

log(Surplus gas price paid) × group 2      -0.39*** (0.11) 

log(Surplus gas price paid) × group 3      -0.35*** (0.11) 

log(Surplus gas price paid) × group 4      -0.18 (0.11) 

log(Surplus gas price paid) × group 5      0.14 (0.11) 

log(Market gas price) × log(Surplus 

gas price paid) × group 2 
     0.11** (0.05) 

log(Market gas price) × log(Surplus 

gas price paid) × group 3 
     0.09* (0.05) 

log(Market gas price) × log(Surplus 

gas price paid) × group 4 
     -0.05 (0.05) 

log(Market gas price) × log(Surplus 

gas price paid) × group 5 
     -0.18*** (0.05) 

log(Ether price) 0.18*** (0.03) 0.18*** (0.03) 0.18*** (0.03) 0.14*** (0.04) 0.14*** (0.04) 0.13*** (0.04) 

log(Ether volatility) 0.005 (0.003) 0.005 (0.003) 0.004 (0.003) 0.004 (0.005) 0.0003 (0.01) -0.001 (0.01) 

Network utilization -0.73* (0.38) -0.72* (0.38) -0.82** (0.39) -1.15** (0.46) -1.41*** (0.48) -1.48*** (0.49) 

Network utilization2 5.45** (2.66) 5.38** (2.67) 6.07** (2.72) 8.23** (3.20) 10.20*** (3.38) 10.67*** (3.44) 

log(Gas limit) 1.39*** (0.45) 1.39*** (0.45) 1.47*** (0.46) 1.71*** (0.48) 1.85*** (0.49) 1.88*** (0.50) 

Age -0.001*** (0.0002) -0.001*** (0.0002) -0.001*** (0.0002) -0.002*** (0.0003) 
-

0.002*** (0.0003) 
-

0.002*** (0.0003) 

Year dummies YES YES YES YES YES YES 

Weekday dummies YES YES YES YES YES YES 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in parentheses. Interacted 

and squared variables are centered. 
*p<0.1; **p<0.05; ***p<0.01 
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Table 7: Robustness checks 
 (1) (2) (3) (4) (5) (6) (7) 

 Baseline 
Alternative 
Dependent 

variable 

Alternative market 
gas price (25th 

percentile) 

Alternative market 
gas price (average 

gas price) 

Alternative 
instrument (block 

difference) 

Outliers (5th-95th 
percentile gas 

used) 

Subsample 

(specific 

difficulty bomb 
period) 

 
log(Gas 

used) 

log(Transaction 

count) 
log(Gas used) log(Gas used) log(Gas used) log(Gas used) log(Gas used) 

log(Market 

gas price) 

-

0.64*** (0.21) 
-0.42** (0.19) -0.57*** (0.18) -0.82*** (0.26) -1.03** (0.45) -0.58*** (0.20) -1.48* (0.87) 

Observations 370,392 370,392 370,392 370,392 370,392 370,392 35,756 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown 
in parentheses. 

*p<0.1; **p<0.05; ***p<0.01 
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Appendix A – Additional formulas 

Block time 

Ethereum adjusts the mining difficulty for every new block according to the following 

function:  

𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒𝑏 =  
𝑚𝑖𝑛𝑖𝑛𝑔 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑏

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ℎ𝑎𝑠ℎ 𝑟𝑎𝑡𝑒𝑏−1
 

Where 𝑚𝑖𝑛𝑖𝑛𝑔 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦𝑏 is the average number of hashes it requires to find a new block 

and 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ℎ𝑎𝑠ℎ 𝑟𝑎𝑡𝑒𝑏−1 is the number of hashes computed per second by all miners while 

searching for the previous block.  

Mining Reward  

To incentivize miners to provide their computation service, they are rewarded with a mining 

reward for every block they find. This reward consists of a static block reward (at the time of 

writing, 2 Ether) for finding a new block plus the sum of all gas fees (usually measured in GWei; 

1 Ether = 109 GWei) paid by all transactions t which a miner includes in this block. Hence, the 

mining reward for every block b is: 

𝑚𝑖𝑛𝑖𝑛𝑔 𝑟𝑒𝑤𝑎𝑟𝑑𝑏 =  2 +  ∑
𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒𝑡  ×  𝑔𝑎𝑠 𝑢𝑠𝑒𝑑𝑡

109

∀𝑡𝜖𝑏

 

Transaction fees: 

On Ethereum, users only pay for the used gas if the computation is finished before reaching 

the limit. Also, only the actually used gas is considered for the block gas limit. Accordingly, the 

fees a user has to pay for a transaction t are computed as follows:  

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒𝑠𝑡 =  
𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒𝑡 𝑥 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑𝑡

109
 

 



58 

 

 

 

Appendix B – Network-level analysis 

In addition to the dApp-level analysis, we created a second data set that aggregates all network 

transactions. This additional analysis allows us to estimate network-level demand curves (i.e., one 

demand curve for all transactions), compare the demand curves between Ether transfers between 

two externally owned accounts and dApp transactions, and estimate a separate demand curve for 

every group of dApps by filtering only transactions to a specific group of dApps. Further, it ensures 

comparability with other studies that conduct their analysis only on the network level (e.g., 

Donmez and Karaivanov 2021, Ilk et al. 2021). The variables used in this analysis are analogous 

to the dApp level data set. Table 8 depicts summary statistics and correlations of this dataset.  

Table 8: Summary statistics and correlations (network level) 
Variables N Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12 

1. Gas used  1,280 45.42 17.15 1            

2. Gas used group 1 1,280 18.96 18.65 0.88 1           

3. Gas used group 2 1,280 0.39 0.66 -0.50 -0.28 1          

4. Gas used group 3 1,280 2.43 1.77 -0.04 -0.25 -0.23 1         

5. Gas used group 4 1,280 0.86 0.61 -0.09 -0.27 -0.12 0.46 1        

6. Gas used group 5 1,280 0.56 0.53 -0.21 -0.20 0.09 -0.14 -0.42 1       

7. Market gas price  1,280 6.75 12.29 0.73 0.86 -0.16 -0.33 -0.33 -0.15 1      

8. Difficulty bomb 1,280 1.08 2.92 -0.48 -0.23 0.25 -0.25 -0.06 -0.05 -0.12 1     

9. Network utilization 1,280 0.83 0.13 0.73 0.53 -0.60 0.01 -0.20 0.03 0.45 -0.18 1    

10. Ether price 1,280 327.48 218.96 0.10 0.11 -0.04 -0.19 -0.62 0.64 0.13 -0.16 0.27 1   

11. Ether volatility 1,280 0.36 23.46 0.03 0.05 -0.01 0.04 -0.01 0.04 0.05 0.01 0.03 0.07 1  

12. Gas limit  1,280 0.01 0.002 0.93 0.90 -0.41 -0.08 -0.02 -0.29 0.75 -0.31 0.53 0.001 0.03 1 

 

The baseline specification for our network level is analogous to our dApp level specification but 

without dApp-level fixed effects: 

log(𝐺𝑎𝑠 𝑢𝑠𝑒𝑑𝑡) =  𝛼0 +  𝛼1 log(𝑀𝑎𝑟𝑘𝑒𝑡 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒𝑡) +  𝛼2𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡 +

 𝛼3𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡
2 + 𝛼4log(𝐸𝑡ℎ𝑒𝑟 𝑝𝑟𝑖𝑐𝑒𝑡) + 𝛼5 log(𝐸𝑡ℎ𝑒𝑟 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡) +

𝛼6log(𝐺𝑎𝑠 𝑙𝑖𝑚𝑖𝑡𝑡) +  𝜇𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘 +  𝜇𝑦𝑒𝑎𝑟 +  𝑡𝑟𝑒𝑛𝑑 +  𝑢𝑡,  

 

where gas used is the equilibrium gas demand aggregated over all executed transactions on the 

network or per group of dApps in the period t (day), µdayofweek denotes the day of week fixed effects, 
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µyear the year fixed effects, and ut is the error term. We chose a log-log specification for gas used 

and market gas price to be able to interpret α1 as the price elasticity of the demand. Due to the 

skewed distributions of Ether price, Ether volatility, and the gas limit, we use log-transformed 

versions of these variables in our specification. In addition, we also control for the level of network 

utilization. This allows us to control for the degree to which miners use the available block gas 

limit on a given day and has been used by prior scholars as a measure of network congestion 

(Donmez and Karaivanov 2021). We also add a quadratic term to account for the nonlinear 

relationship between gas price and network utilization.20 

 

Baseline network-level results  

Following the network-level specification, Table 9 reports the results of our 2SLS demand curve 

estimation. Column 1 presents the first stage results, where we predict the gas price (log(Market 

gas price)) with our IV (difficulty bomb). Column 2 presents the second stage results, where we 

use the predicted gas price to estimate the price elasticity of the gas demand (log(Gas used)). 

Finally, column 3 provides an OLS model for comparison.  

 

20 We also compute the same model with a threshold specification where we added only the linear term and dummy 

variable that takes on the value one if the utilization level exceeds 90%. The were qualitatively the same regarding the 

magnitude and significance of the coefficients we obtained. 
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Table 9: 2SLS model with 1st and 2nd stage and OLS benchmark (network level) 
 (1) (2) (3) 

 2SLS 1st stage 2SLS 2nd stage OLS 

 log(Gas price) log(Gas used) log(Gas used) 

Difficulty bomb 0.10*** (0.02)   

log(Market gas price)  -0.69*** (0.16) -0.04** (0.02) 

Network utilization -3.03*** (0.35) -1.58*** (0.43) 0.20 (0.19) 

Network utilization2 17.51*** (1.85) 10.38*** (2.60) -0.33 (0.87) 

log(Ether price) 0.09 (0.13) 0.06 (0.08) 0.12** (0.05) 

log(Ether volatility -0.02 (0.02) -0.01 (0.01) 0.001 (0.003) 

log(Gas limit) 3.08*** (1.11) 3.02*** (0.99) 0.53* (0.28) 

DThursday -0.04 (0.03) -0.03 (0.02) -0.001 (0.002) 

DFriday 0.01 (0.03) 0.005 (0.02) -0.001 (0.003) 

DWednesday -0.02 (0.02) -0.01 (0.02) 0.0002 (0.002) 

DMonday -0.05 (0.03) -0.03 (0.02) -0.01* (0.004) 

DSaturday -0.02 (0.04) -0.01 (0.02) -0.01 (0.01) 

DSunday -0.03 (0.04) -0.02 (0.02) -0.01 (0.01) 

D2018 -1.21*** (0.20) -0.85*** (0.26) 0.13 (0.19) 

D2019 -1.61*** (0.29) -1.11*** (0.30) -0.005 (0.24) 

D2020 -1.30** (0.62) -0.90** (0.40) -0.03 (0.27) 

Trend 0.001 (0.001) 0.001* (0.0005) 0.001*** (0.0003) 

Constant -13.30 (18.66) -2.97 (12.00) -7.81 (6.25) 

Observations 1,279 1,279 1,279 

R2 0.79  0.94 

F Statistic (df = 16; 1262) 305.20***  1,220.08*** 

C-D Wald F Stat.  85.06  

Stock-Yogo Critical Value  16.38  

Kleibergen-Paap LM Stat.  4.18**  
 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in parentheses, where the 
optimal bandwidth (23) is calculated following Newey and West (1987). 

*p<0.1; **p<0.05; ***p<0.01 
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To establish robustness, we ran a series of alternative models of the network-level analysis 

similar to the robustness checks reported in the main paper. Table 10 reports the results of these 

robustness checks. 

Table 10: Robustness checks 
 (1) (2) (3) (4) (5) (5) (6) (7) 

 Baseline Alternative Dependent variable 

Alternative 

market gas 

price (25th 

percentile) 

Alternative 

market gas 

price 

(average 

gas price) 

Alternative 

market gas 

price 

(normalized 

by ETH 

supply) 

Alternative 

instrument 

(block 

difference) 

Subsample (5th-

95th percentile 

gas used) 

Subsample 

(specific 

difficulty bomb 

period) 

 log(Gas used) log(Transaction count) 
log(Gas 

used) 

log(Gas 

used) 

log(Gas 

used) 
log(Gas used) log(Gas used) log(Gas used) 

log(Market 

gas price) 
-0.69*** (0.16) -0.63*** (0.15) 

-0.80*** 

(0.20) 

-1.83** 

(0.61) 
-0.57 (0.14) -0.75** (0.24) -0.69** (0.19) -2.70 (2.95) 

Observations 1,279 1,279 1,279 1,279 1,279 1,279 1,279 101 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors 

are shown in parentheses. 
 

 
*p<0.1; **p<0.05; ***p<0.01 

 

Differing Demand Curves per Group  

In addition to estimating a demand curve for all transactions on Ethereum, we also estimate a 

specific demand curve for every group of dApps along with their confidence intervals. Table 11 

reports the second stage result of this estimation. Each of these models uses the aggregated daily 

gas used by all dApps within the respective group as the dependent variable. Columns 2-6 depict 

that the coefficients of log(Market gas price) significantly vary between the groups of dApps and 

thus signal that the groups differ regarding their sensitivity to changes in the gas price.  
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Table 11: 2SLS models by group 
  

 (1) (2) (3) (4) (5) (6) 

 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 

 log(Gas used by 

all dApps) 

log(Gas used by 

group 1) 

log(Gas used by 

group 2) 

log(Gas used by 

group 3) 

log(Gas used by 

group 4) 

log(Gas used by 

group 5) 
 

log(Market gas price) -0.45*** (0.14) -0.29* (0.16) 0.09 (0.19) -2.09*** (0.63) -0.59*** (0.13) -0.48*** (0.17) 

Network utilization -1.04*** (0.36) -0.27 (0.41) -0.84 (0.61) -2.37 (1.67) -0.91* (0.48) -1.05** (0.51) 

Network utilization2 6.61*** (2.25) 2.51 (2.58) 2.89 (3.60) 17.04* (10.24) 5.44* (2.81) 7.20** (3.04) 

log(Ether price) 0.20** (0.08) 0.39*** (0.08) 0.03 (0.09) -0.02 (0.23) -0.93*** (0.09) 0.37*** (0.10) 

log(Ether volatility) -0.0000 (0.01) 0.01 (0.01) -0.02 (0.02) -0.005 (0.03) 0.02 (0.02) -0.02 (0.01) 

log(Gas limit) 2.49*** (0.92) 1.56 (1.05) -0.75 (1.07) 7.61*** (2.28) 1.88** (0.86) 2.68*** (0.91) 

DThursday -0.03 (0.02) -0.02 (0.02) 0.02 (0.04) -0.12 (0.08) -0.05* (0.03) -0.09** (0.04) 

DFriday 0.01 (0.02) 0.01 (0.02) -0.04 (0.04) 0.03 (0.07) -0.02 (0.03) -0.13*** (0.04) 

DWednesday -0.002 (0.02) 0.004 (0.01) -0.02 (0.03) -0.06 (0.05) -0.03 (0.02) -0.06* (0.04) 

DMonday -0.02 (0.02) -0.01 (0.02) -0.03 (0.04) -0.10 (0.07) -0.06** (0.03) -0.12*** (0.03) 

DSaturday -0.04 (0.03) -0.07*** (0.03) -0.09** (0.04) 0.13* (0.07) -0.06* (0.03) -0.13*** (0.05) 

DSunday -0.04 (0.02) -0.08*** (0.02) -0.08* (0.05) 0.14* (0.07) -0.07** (0.03) -0.13*** (0.05) 

D2018 -1.25*** (0.28) -1.36*** (0.35) -0.26 (0.31) -1.29 (1.15) -0.66** (0.28) -0.23 (0.30) 

D2019 -1.53*** (0.32) -1.80*** (0.40) -0.23 (0.38) -1.69 (1.43) -0.41 (0.35) 0.22 (0.38) 

D2020 -1.35*** (0.38) -1.61*** (0.42) -0.29 (0.44) -1.90 (1.35) -0.34 (0.40) 1.37*** (0.42) 

Trend 0.002*** (0.0004) 0.003*** (0.0005) -0.001** (0.001) 0.002 (0.001) 0.0004 (0.001) -0.003*** (0.001) 

Constant -0.03 (10.36) -18.54 (12.14) 35.66** (14.67) 16.61 (30.89) 24.97* (13.23) 83.40*** (12.13) 
 

Observations 1,279 1,279 1,279 1,279 1,279 1,279 

C-D Wald F Stat. 85.06 

Stock-Yogo Critical Value 16.38 

Kleibergen-Paap LM Stat. 4.19** 
 

Note: Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in parentheses, where the 
optimal bandwidth (23) is calculated following Newey and West (1987). All models use the first-stage regression reported 

in Table 4. 

*p<0.1; **p<0.05; ***p<0.01 

  

To compare the different gas price elasticities, we also compute their 95 percent confidence 

intervals. Figure 3 depicts these intervals and shows that not all elasticities can be distinguished 

with enough confidence, but some significant differences are still noticeable. Especially games 

and marketplaces (group 3) seem to be far more sensitive to changes in gas prices than dApps in 

group 1 and group 2. Considering that group 3 mainly comprises collectible games, such as crypto 

kitties, where the timing of the transaction does not matter as much as, for example, finance or 

cryptocurrency exchange dApps, where the timing often matters due to swift changes in prices of 

cryptocurrencies, this result seems plausible. Further, the one-time nature and relatively high 
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transaction values in group 2 (identify and property dApps) can explain why users are relatively 

insensitive to changes in the gas price.  

Figure 3: Price elasticities of demand per group of dApps 

 

 

 

Appendix C – Supplementary survival analysis 

To investigate the impact of Ethereum’s transaction verification mechanism on platform 

complements' heterogeneity, we examine our explanatory variables' simultaneous effect on the 

overall hazard-rate function by using the semi-parametric Cox proportional-hazards regression 

analysis (Cox 1972). Previous scholars have used Cox-proportional hazard models to study market 

exit or entry (e.g., Agarwal and Gort 2002, Huang et al. 2013). In our benchmark specification, we 

estimate the hazard of dApp d leaving the market on day t as: 

ℎ𝑑𝑡 = ℎ𝑜(𝑡) exp {𝛽′
𝑥

𝑥𝑡} 

Where h0(t) is the baseline hazard, 𝑥𝑡is a vector of explanatory and control variables pertaining 

to time t. With this model, we are not interested in predicting the exit time but the effect of gas 

price as a time-dependent covariate. For the analysis, we cluster the standard errors on the dApp 

level to control for heteroskedasticity and nonindependence of observations. Further, we stratify 
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our observations by the group of the dApp. This allows us to account for different baseline hazard 

rates between the groups of dApps. To measure market exit, we leverage the fact that 

stateofthedapps.com reports the status of dApps and classifies discontinued dApps as 

“abandoned.” For the exact timing of the market exit, we take the date of the last transaction a 

dApp has received. Table 12 reports the results of our analysis. Column 1 shows our benchmark 

specification. Column 2 depicts the gas price interacted with the group of the dApp.  

Table 12: Survival models 
 (1) (2) 

 all dApps all dApps 

 stratified by group stratified by group 

log(Market gas price) 0.02 (0.09) -1.7* (0.11) 

log(Market gas price) × group 2  0.49** (0.23) 

log(Market gas price) × group 3  0.15 (0.10) 

log(Market gas price) × group 4  0.21** (0.09) 

log(Market gas price) × group 5  0.22* (0.12) 

Network utilization -6.68 (8.24) -6.89 (8.18) 

Network utilization2 4.01 (5.32) 4.15 (5.28) 

log(Ether price) -0.04 (0.14) -0.02 (0.14) 

log(Ether volatility) 0.01 (0.04) 0.01 (0.04) 

log(Gas limit) 1.07 (0.71) 1.11 (0.71) 

Year of entry dummies YES YES 

Observations 783,619 783,619 

Market exit events 399 3991 

Log-likelihood -2,088.394 -2,083.793 

Note: Robust standard errors are clustered at the group level and 

reported in parentheses.  
Hazard ratios can be calculated by exponentiating the coefficients 

reported for each variable. 

 

*p<0.1; **p<0.05; ***p<0.01 

 

Our benchmark specification shows no significant impact of the gas price on the survival of a 

dApp. However, after interacting the gas price with the group of a dApp (Column 2), we find that 

a 10% increase in the Market price (~0.095 increase in log(Market price) is associated with a 

reduction of the hazard rate ( β = -1.7; hazard rate = exp(0.095*-1.7) = 0.851) by around 16.9% 

for our base category (group 1, finance dApps). The positive and (except for group 3) significant 

interactions indicate that all other groups of dApps profit less from a higher gas price and face a 
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higher likelihood of market exit. For instance, for group 2, the hazard rate decrease only equals 

10.9% (exp((-1.7 + 0.49)*0.095) = 0.891). 

The results of our hazard model suggest that an increase in the market gas price reduces the 

likelihood of a market exit on a given day, but groups differ significantly regarding this effect. 

Especially when considering that the gas price fluctuates quickly and sometimes doubles or even 

triples within a month (e.g., January 2018, June 2020 at the start of the Defi hype), these results 

can be of economic significance. Further, the result seems plausible as an increase in the gas price 

is typically the consequence of increased demand for gas caused by more transaction activity with 

dApps. Again, however, we can see that dApps from group one benefit more from this effect than 

other dApps and thus have an overall higher likelihood of staying in this market. This 

differentiating effect is problematic as it corroborates our main argument by showing that a market 

for transactions disproportionately favors a specific type of dApps and thus leads to a long-run 

reduction of the heterogeneity of dApps offered on the Ethereum platform.  


