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Abstract

Algorithmic pricing can improve efficiency by helping firms set prices that are
more responsive to changing market conditions. However, widespread adop-
tion of the same algorithm could also lead to price coordination, resulting in
elevated prices. In this paper, we examine the impact of algorithmic pricing
on the U.S. multifamily rental housing market using hand-collected adoption
decisions of property management companies merged with the data of market-
rate multifamily apartments from 2005 to 2019. Our findings suggest that
algorithm adoption helps building managers set more responsive prices: build-
ings with the software increase prices during booms but lower prices during
busts, compared to non-adopters in the same market. However, we also find
evidence that greater algorithm penetration can lead to higher prices, raising
rents among both adopters and non-adopters in the same market. Such empiri-
cal patterns are consistent with either price coordination through the algorithm
or widespread pricing errors before software adoption.
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1 Introduction

The recent advances in computing technology have shifted the paradigm of price-

setting practices of firms through software that dynamically and automatically set

prices. These types of software often leverage high-frequency data collected across

firms operating in the same industry or in the same market to suggest optimal prices

for managers. The algorithms also make decisions based on the past behaviors of other

firms and forecast market demands, which makes them especially prone to be the hub

that facilitates price coordination across firms using similar technologies. Moreover,

these programs are often powered by artificial intelligence (AI), raising concerns that

these pricing agents might just learn to jointly play a collusive strategy rather than

price competitively. For these reasons, the technology has recently attracted lots of

attention from researchers, policy-makers, and antitrust agencies alike (Fortin, 2020;

Mcsweeny and O’Dea, 2017; OECD, 2017).

The industry that has recently come under heavy scrutiny of antitrust authorities

for using such technology is the multifamily housing industry of the U.S. Following

an article by ProPublica with the title “Rent Going Up? One Company’s Algorithm

Could Be Why.”1 accusing the pricing software of RealPage, a multifamily manage-

ment solution IT company, of pushing “prices above competitive levels,” a series of

class action lawsuits were filed against both the software company and landlords using

the software (Yusupov v. RealPage, Inc. et al, 2023; Navarro v. RealPage, Inc. et

al, 2022; Bason v. RealPage, Inc., 2022). It is also reported that the Department of

Justice has opened an investigation to look for evidence of price coordination among

landlords using the software.2 However, it is not known that whether the algorithm

helped landlords to set efficient and competitive prices in light of the booming multi-

family rental market, or it facilitated price coordination among the buildings driving

up the prices. Moreover, understanding the economic impact of pricing algorithms

in the context of multifamily rentals becomes especially important given its colossal

size. At least $100 billion of rent payments are made annually, representing a sector

that is over $2 trillion in asset size.3 At the household level, rent payments are often

the biggest share of household expenditure among renters.

Aside from the importance of the setting, there is a growing need for a deeper

1https://www.propublica.org/article/yieldstar-rent-increase-realpage-rent
2https://www.propublica.org/article/yieldstar-realpage-rent-doj-investigation-antitrust
3https://cre.moodysanalytics.com/insights/market-insights/

the-fed-and-banks-are-putting-the-squeeze-on-multifamily-cap-rate-spreads/. Based
on REIS data and a conservative assumption of 5% cap rate.
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understanding of the economic impact of pricing algorithms, especially in terms of

how they interact with varying market environments in practice. Many theoretical

studies have been conducted under synthetic environments, yet there is no theoretical

consensus on whether the algorithms end up facilitating collusion (Asker et al., 2022;

Calvano et al., 2020; Miklós-Thal and Tucker, 2019; Brown and MacKay, 2021).

To our knowledge, the only existing extensive empirical study is that of Assad et

al. (2020), which examines the effect of algorithmic pricing on the German retail

gasoline market. In contrast to the previous studies that focused on the potential

for the algorithms to collude, we seek to provide a more comprehensive view of the

issue. The algorithms can be a channel for coordinating on prices which has negative

implications on welfare, but they can also be used to efficiently set rents in response to

changing market conditions which may be welfare-enhancing. We seek to disentangle

the two effects in this paper.

To empirically analyze the impact of pricing algorithms on a given industry, we

construct a novel data set of algorithm adoption dates merged with the universe of

multi-family rentals. We hand-collected the adoption decisions of management com-

panies from a variety of sources. It includes unstructured data from internet archives

of industry surveys, media updates of the relevant software companies, and market in-

telligence reports using internet traffic. We then merge the adoption dates with rental

information from REIS, which consists of a panel of all market-rate multifamily rental

buildings in the top 50 metro markets from 2005 to 2019.

Overall, we find that at least 25% of buildings or 30% of units in the data were

using pricing algorithms as of 2019. Indeed, we find that 19 out of the top 20 man-

agement companies have adopted pricing software. Our data is well-suited to our

study because of its long panel structure, covering periods of varying macroeconomic

conditions, as well as its rich cross-sectional variations across geographical markets

with varying degrees of penetration of the technology.

With this data, we empirically assess the impact of pricing software adoption

on rents. We first lay out a stylized model of competition in homogeneous good

space with hard capacity constraint to show prediction of prices and quantity under

different conduct assumption. Then we specify the empirical estimand of interest that

characterizes the aggregate impact of the algorithm adoption across markets that can

be decomposed into building-level efficiency gain from the algorithm and market-level

equilibrium effect including the non-adopters sharing the market with varying share

of algorithm adopters.
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First, to assess the potential improvement in pricing efficiency, we use the stag-

gered rollout of the adoption decisions to compare the difference in price and occu-

pancy between adopters and non-adopters in the same market. We find that the adop-

tion of algorithmic pricing indeed appears to help managers to price more efficiently,

supported by its heterogeneous effect across the calendar year through business cy-

cles. During the Great Financial Crisis, we find that the adopters lowered their prices

compared to peers and gained occupancy when compared to non-adopters in the same

market. During the boom market starting in 2013, we find that adopters increased

rents while sacrificing some occupancy. The time-varying nature of the treatment

effects of adoption suggests an important channel through which algorithmic pric-

ing affects the market is by helping managers set prices that are more responsive to

changing market conditions.

However, the building-level comparison within the same market is not suited for

identifying the total effect because of the strategic responses from competing non-

adopters. In the literature that measures the price impact of mergers, a typical threat

to identification is the competitive response of the non-merged parties, which are

usually competing firms in the same market (Dafny, 2009). A similar concern applies

to our setting: if algorithm adopters raise their prices through coordination, it is in

the non-adopters’ best interest to raise prices as well to a comparable level.4 In other

words, analyses that only look at building-level variations within the same market

cannot capture the increases in prices resulting from the potential price coordination

channel. Thus, the analysis of the impact of varying degree of algorithmic penetration

calls for market-level variations involving non-adopters.

When evaluating market-level outcomes, we find suggestive evidence that higher

penetration of algorithm pricing software leads to higher rents. We first show markets

that experienced a sudden sharp increase in software adoption charge considerably

higher rents and have lower occupancies, compared with markets that do not expe-

rience such jumps in adoption rates. Moreover, we find that market-average rent

increases monotonically as the penetration of the algorithm increases. The positive

relationship is robust to controlling for observable market characteristics and local

market conditions such as levels and changes in the unemployment rate, the house

price index, household income, and net migration. It is also robust to controlling for

various fixed effects, including the metro-year fixed effect.

We find this positive relationship between market-level rent and algorithm pen-

4Under the assumption that the buildings are competing on prices.
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etration to hold across all years in our sample period, regardless of macro-economic

conditions. On aggregate, the building-level efficiency gain during the downturn is

masked by low adoption rate across markets resulting in only −.015% point decrease

in average rents across markets, compared to markets with zero penetration. During

the boom period, however, the impact on average rent is substantial. On aggregate,

markets with positive penetration spanning over 70% of all markets experience 1.5%

point increase in rents. We find this is a substantial effect, because this also involves

non-adopters in those markets.

While our empirical exercise cannot make statements towards whether the empiri-

cal pattern is driven by coordination without adding more assumptions and structure,

our findings are largely consistent with the theoretical studies of Asker et al. (2022)

and Calvano et al. (2020) as well as the empirical findings of Assad et al. (2020). The

algorithm exhibits heterogeneous effects on participants in markets with varying de-

grees of software penetration. In addition, we find that algorithms, when used right,

can be welfare-improving in helping landlords set efficient prices, which has not been

empirically analyzed before.

The remainder of the paper proceeds as follows. Section 2 briefly provides back-

ground on the U.S. multifamily housing market and the pricing software used. Section

3 describes the data, shows stylized facts from the data, which motivates the stylized

model presented in Section 4. We show evidence that the algorithm helps landlords

set efficient prices in Section 5.2, and we also measure its implication on the market-

level rents in Section 5.3, giving a rough estimate of the total impact of proliferation

of the software. Finally, Section 6 concludes.

2 Multifamily Market and Pricing Software

2.1 Industry Background

The U.S. multifamily housing industry has experienced fast-paced growth after the

Great Recession, with 158% increase in value per square feet from 2010 to 2019.5

While it has been an attractive investment opportunity for institutional investors

with 80% increase in average nominal rents and 50% decrease in vacancy rates,6

renters of these multifamily units spend a substantial share of their income on their

5https://www.nmhc.org/research-insight/quick-facts-figures/

quick-facts-investment-returns-on-apartments
6https://www.nmhc.org/research-insight/quick-facts-figures/

quick-facts-market-conditions
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rents.

Institutional investors often outsource the day-to-day operation of buildings in

their portfolio to a management company. The management companies then “run”

the buildings, setting monthly rents, managing lessees, running promotions, alongside

with various maintenance activities. While there has been some noticeable consolida-

tion of apartment owners that has caught the media’s attention recently,7 more pro-

nounced concentration has happened among the management companies. Greystar,

the biggest management company in the U.S., has increased its number of units man-

aging by 337% from 2010 to 2021,8 and other top 20 management companies as of

2022 have also shown a steady increase in the number of units managing.

2.2 Algorithmic Pricing Software

The management companies rely on IT infrastructure to streamline their operation

across thousands of units in dozens of buildings they manage across states. The

management companies contract with enterprise solutions who develop proprietary

property management software for implementation. These software companies pro-

vide a suite of services to construct a central database, manage bookkeeping, engage

with tenants, automate lease renewals, monitor vacancies, assess market conditions,

etc.

In addition to these services, three major companies started to offer rent optimiza-

tion solutions starting in the early 2000s.9 The “revenue management” solution is

an automated pricing algorithm that suggests optimal rents in real-time by unit type

and lease lengths to property managers. It aims to take guess out of pricing rents in

both new lease signing and renewal process. Investors often prioritized maintaining

near full occupancy, which many property managers found as a suboptimal way of

maximizing the return.10 By 2011, around 15% of apartment units had adopted a

version of pricing software,11 and in 2017, it is reported that 3 million units were

using RealPage’s Yieldstar after its acquisition of the largest competitor, Rainmaker

LRO. In a report from Fitch, approximately 30% of total units in the U.S. were using

7https://www.propublica.org/article/when-private-equity-becomes-your-landlord
8https://www.nmhc.org/research-insight/the-nmhc-50/top-50-lists/

2022-top-managers-list/
9Yardi RentMAXImizer, RealPage Yieldstar, and Rainmaker LRO

10”If you’re at 97% or 98% occupancy, your rents are probably too low.”
https://www.investors.com/news/landlords-consider-how-to-raise-rent/

11https://web.archive.org/web/20110824021635/http://www.multifamilyrevenue.com/

revenue-management-users-multifamily/
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a RealPage software in 2021.12 While it is unclear that all 19 million units use the

company’s pricing algorithm, it suggests that there has been a great proliferation of

algorithmic pricing across multifamily apartment management companies.

The details of how exactly the software computes optimal rents is not well-known.

We were able to obtain a copy of presentation slides made in 2014 that showcases

the inner workings of one of the software, RealPage’s Yieldstar. The most notable

point is that the software estimates demand elasticity and forecasts dynamic demand

at the bedroom-level based on lease length and renewal probability by fully utilizing

selected competitors’ prices and vacancies. See Appendix Figure A1 for the exact

wordings from the slide deck, and Figure A2 and A3 shows the dashboard views for

a property manager that displays price recommendations made by the software. All

of this information is purely for providing data points to manager and the cognitive

burden for a manager to act on this myriad of information is minimal; a manager can

simply click either the “Accept Rates” or the “Review Rates” (if something seems so

out of place) button located on both top and bottom of the table. ProPublica reports

that managers accept recommended rents up to 90% of the time.

The pricing software both reacts to changes in market conditions and heavily

utilizes the detailed, high-frequency data of competitors down to the granularity of

daily prices for individual units. The question is then, where do they get the data

from? In one of its promotional videos, Yieldstar claims that they

“leverage the statistical analysis collected from the industry’s largest lease

transaction database, spanning over 11 million units and millions of trans-

actions a year. No one else has this tremendous scope of real-time data

that determines daily exceptions and opportunities for maximizing rents

and reducing vacancy with utmost accuracy.”13

While it is almost certain that Yieldstar utilizes its own clients’ data to maximize

other clients’ profits, it is not clear whether this feature should be attributed to

achieving competitive, efficient pricing or used to coordinate and maximize the joint

profits of the using buildings.

12https://www.fitchratings.com/research/corporate-finance/

fitch-assigns-first-time-b-idr-to-realpage-inc-outlook-stable-11-02-2021
13Yieldstar Revenue Management Overview Presentation Webinar, accessed by registration on

Dec 1st, 2022.
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3 Data

To shed more light on the two conflicting channels empirically, we use two main

datasets. The first contains the data of market-rate multifamily buildings in the

U.S. from REIS by Moody’s Analytics. The second contains the adoption year of

pricing software or “revenue management” software by management companies, hand

collected from various sources. We discuss the advantages and limitations of each data

in the following sections, then present stylized facts to motivate the main empirical

analysis.

3.1 REIS

REIS by Moody’s Analytics contains information on the market-rate buildings in the

U.S., from 2005 to 2019. There are 37,216 unique buildings with 7.2 million units

covered in the data, covering the top 50 metro markets. According to Fannie Mae,

there were approximately 375,000 market-rate properties with 17 million market-rate

units in 2021.14 Considering there were about 1.5 million new units constructed in

between 2019 and 2021,15 our data covers about half of the market-rate apartment

units in the U.S. Table 1 shows summary statistics of the data.

Market-rate buildings are a particularly attractive sample since they are not sub-

ject to special subsidies or legal compensation. In the fourth quarter of each year,

Moody’s surveys owners and managers of these buildings and collect information

on asking rents, occupancy, concessions, and various amenities. The dataset contains

building-year level observations spanning 14 years from 2005 to 2019 with the identity

of management companies. REIS also provides its own definitions of markets. They

assign each building to one of 625 “submarkets” in one of 50 “metros.” Submarkets

completely partition a metro without overlaps.

The limitations come from two sources. The first source is that the manage-

ment companies were based on our sample of the REIS data as of 2019, making the

management company field for each building time-invariant even, which ignores prior

management company changes. The decision to adopt pricing software is made at the

management company level, and as mentioned in Section 2.1, and the property man-

agement industry had experienced some consolidation over the past decade. These

14https://multifamily.fanniemae.com/news-insights/multifamily-market-commentary/

assessing-market-rate-affordable-multifamily-sector
15https://www.jchs.harvard.edu/sites/default/files/reports/files/Harvard_JCHS_

The_State_of_the_Nations_Housing_2020_Report_Revised_120720.pdf
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two facts can potentially lead to over-counting of adopters in earlier periods. Because

we are misclassifying non-adopted buildings to be adopters (measurement error in

the independent variable), this would lead to an attenuation bias towards zero for the

estimates.

The second source of limitation is a lack of high-frequency price data. One ad-

vantage of higher frequency data is that it shed light on additional price dynamics

and responses to changes in competitors’ prices at a higher frequency, such as those

illustrated in Figure A2. However, we believe that our annual data sample remains

sufficient to investigate the potential problem of price coordination. Another advan-

tage of high-frequency pricing data is that it can be used to detect structural breaks

to infer adoption in absence of accurate adoption data as done in Assad et al. (2020).

This is not a major concern either, because we were able to collect a reasonably con-

fident data set of management companies who adopted the software along with when

each of them had adopted.

3.2 Software Adoption Data

We collected the adoption data from three major sources. Our first source is yearly

snapshots of a website that maintained and updated the list of management companies

and owners who had adopted pricing software. The owner of the website solicited

survey responses from participants at a major multifamily housing conference from

2008 to 2011 and updated the list every year. See Figure 1 for an example of the

website snapshots.

Our second source is various media outlets. Both Rainmaker LRO and Yieldstar

had active media presence announcing their major customer acquisitions. Through

their main news outlets, they not only announced customer acquisitions but also

major updates (or “patches”) to their price optimization software. See Figure 2 for

an example of an article.

Lastly, we supplement the data using the list from AppsRunTheWorld.com. This

company collects data on the adoption of enterprise IT applications and sells insights

to salesforces of IT companies for better targeting. We use the list of companies who

use Yieldstar. While they also survey the companies and record adoption dates, it

could be noisy because some of the adoption dates are inferred from web-scraped

data, which may trail behind actual adoption dates. Fortunately, this data contains

only a small fraction of adopters compared to the other two more credible sources.

The main limitation is, of course, the measurement error. We expect that we
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underestimate the number of adopters because our collection methods are designed

towards identifying the adoption decision of major management companies. We con-

ducted a validation exercise against the current list of buildings that are RealPage

customers.16 We estimate the fraction of false positives to be minimal at about 2.3%,

but the fraction of false negatives may be up to 42%, likely concentrated in buildings

managed by small management companies.17 However, the presence of measurement

error in the adoption decisions likely leads to attenuation bias in our estimates.

3.3 Descriptives

In this section, we present stylized facts by combining the REIS data with the hand-

collected data on software adoption and discuss sample selection for the main analysis.

Figure 3 shows the penetration trend of pricing software across buildings in REIS.

We were able to identify which software the management companies had adopted for

most of them and the big jump in the market share of Yieldstar in 2017 is due to

their acquisition of Rainmaker.18 Since we are focusing on the sample of market-rate

buildings, we expect these buildings to adopt pricing software more aggressively than

other types of multifamily apartments. Compared to the guess of 15% penetration in

2012 made by the surveyor mentioned in Section 3.2, about 19% of units in the REIS

data had adopted the software. At the end of our data in 2019, about 2.4 million, or

33% of units, and 9,124, or 25% of buildings in the data had adopted the software.

Despite the concern that the hand-collected adoption data may be prone to false

negatives, it is assuring that the adoption data merged with REIS covers 19 out 20

top management companies, as shown in Table 2. These management companies not

only have large shares of buildings in our data but also according to the National

Multifamily Housing Council (NMHC). More importantly, this subset includes man-

agement companies involved in recent lawsuits, allowing us to examine the raw rent

16https://www.realpage.com/explore,AccessedDec.2022
17We randomly selected 641 buildings in our data set and compare them to the list of RealPage cus-

tomers as of 2022. Out of these buildings, we correctly identify 206 buildings (38%) as adopters and
146 buildings (22%) as non-adopters. There are minimal false positives. Only 15 (2.3%) buildings
were flagged as adopters in 2019 but not using RealPage in 2022. The majority of these buildings
were said to be using Rainmaker LRO, so it is possible that they decided not to switch over to
RealPage following its acquisition in 2017. We find that 274 buildings (42%) were using RealPage
products as of 2022 but were not flagged as adopters in 2019. However, we believe that it represents
an upper bound on false negatives because RealPage’s algorithmic pricing tool YieldStar is only one
of the many property management products offered by RealPage.

18https://www.businesswire.com/news/home/20171204006136/en/

RealPage-Closes-Acquisition-of-Lease-Rent-Options-LRO
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and occupancy trends of those compared to non-adopters.

Figure 4 illustrates the pricing dynamics following the software adoption of two

specific companies. Both Essex and Greystar have appeared in multiple lawsuits

accusing them of price fixing through their software, especially in the Seattle metro

area. Essex adopted the software in 2008 shortly before the financial crisis. Panel (a)

shows that Essex aggressively dropped prices and retained much of their occupancy

amid the crisis in 2009. In comparison, the rest of Seattle experienced sharp declines

in occupancy rates in the same period. Greystar, who adopted the software in 2010,

raises their rent more aggressively than the rest of the market and loses occupancy

during the period of economic recovery. As such, these charts hint at the presence

of the efficiency channel, evidenced by lowering rents to gain occupancy during the

downturn and increasing rents during the upturn. If any coordination channel exists,

it will suppress rent drop during the downturn and exacerbate rent increase during

the upturn.

Prior to moving onto more rigorous analysis, we compare key variables along

with building characteristics between adopters and non-adopters. These differences

motivate the inclusion of relevant controls in our empirical specification. Table 3

compares key variables as well as some available characteristics of buildings between

adopters and non-adopters. Adopters tend to have higher rents and lower occupancy

rates than non-adopters, and they seem to be comprised of buildings with higher

quality. They are more recently built, tend to be taller in the number of floors, and

tend to have more amenities that can be found in “luxury” apartments. It suggests

that carefully controlling for building-specific covariates and covariate-specific time

trend is necessary to measure the impact of adopting the pricing software on buildings.

4 Stylized Model

In this section, we outline a stylized model of the multi-family rental market. We first

illustrate when prices are more responsive to demand changes, it produces efficiency

gains. We then describe how the market functions when a fraction of the market is

priced by a software with the objective of joint profit maximization for its adopters.

We show that greater penetrations of the software will lead to weakly increasing prices

and weakly decreasing quantities when it is set to maximize profit jointly.

Here are the primitives of the model: Assume that a market is comprised of

10



homogeneous products with no differentiation,19 but a total capacity constraint at

QF . Each building owner is infinitesimal and is also capacity constrained. Further,

we assume that the marginal cost of operating the building is 0 up to the capacity

constraint, and +∞ above the capacity constraint. Let D(p) denote the quantity

demanded at price p and the competitive market equilibrium is achieved at pE such

that the total quantity demanded equals the capacity constraint D(pE) = QF , where

E denotes the efficient outcome.

To further parametrize the problem, we assume a linear demand system

D(p) = −ap+ b (1)

where we can solve the fully competitive benchmark analytically

pE =
b−QF

a
, QE = QF (2)

where the equilibrium quantity is the capacity. Equivalent, the competitive price is

the solution when the software is setting price to maximize individual firm profits:

max
p

πE(p) = p ×QF s.t. D(p) ≤ QF . (3)

4.1 A Stylized Model of Efficient Price Setting

In this subsection, we illustrate the efficiency gains from more responsive price setting

when faced with changing market conditions. Consider a negative aggregate demand

shock such that D′(p) = D(p) − µ. For instance, one may consider a contraction of

aggregate demand for housing during the great financial crisis. In this model, price

is sticky p1 = p0 and quantity adjusts first. In other words, the effect of the negative

demand shock is first reflected in an increase in vacancies:

Q1 = D′(p1) = D(p0)− µ = QF − µ < QF (4)

19The model can be readily extended to a differentiated product setting, in which case, the presence
of markup itself is not evidence of price coordination. However, prices above Nash-Bertrand that
are consistent with the internalization of fellow-adopters in the same market would be consistent
with a model of price coordination.
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where p0 denotes the equilibrium price prior to the shock. Eventually, equilibrium is

restored at a lower price at p2 such that D′(p2) = QF :

p2 = D−1(QF + µ) < p0 (5)

as demand D−1()̇ is assumed to be downward sloping. If prices were set responsively,

then social welfare would have increased by

DWL =

∫ QF

QF−µ
D′−1(q)dq ≥ 0. (6)

In this stylized model, with a positive demand shock, a more efficient price setting

results in a net transfer from renters to owners and total welfare are unchanged.

However, the fact that total welfare is weakly positive is an artifact of the simplifying

assumption on the marginal cost. In a more realistic model of rapidly increasing

marginal cost near capacity, more responsive prices following a positive demand shock

will also generate strictly positive welfare gains.

Therefore, the stylized model above motivates our empirical analysis we examine

the price and quantity differences between adopters and non-adopters in the same

market across market conditions (i.e., time) to obtain estimates of the impact of the

responsive price-setting channel.

4.2 A Stylized Model of Coordinated Price Setting

In this subsection, we illustrate the intuition behind how adopting a software by a

fraction h ∈ (0, 1] of the owners that jointly maximizes profit leads to higher prices

and lower quantity. Moreover, we also illustrate the crucial insight that even non-

adopters will best respond by increasing their prices while renting out its full capacity.

In other words, because of capacity constraints, prices are strategic complements.

The competitive benchmark is denoted by pE such that D(pE) = QF . The

monopoly benchmark is determined by profit maximization

max
p

πM(p) = pD(p) s.t. D(p) ≤ QF . (7)

Taking the first-order condition yields that the monopoly price pM is set at where the
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demand elasticity is 1:

− D(pM)/pM

∂D(pM)/∂p
= 1 (8)

For a linear demand system, we can solve the monopoly benchmark analytically and

find that the monopoly price is higher than the competitive benchmark and the

monopoly quantity is lower than full capacity:

pM =
b

2a
> pE (9)

QM =
b

2
< QE (10)

as long as the monopoly price does not breach capacity constraint (i.e., b/2 ≤ QF ).

Next, we show the impact when only a fraction of the market has adopted a piece

of software to perform joint profit maximization. In this case, the best response from

non-adopters (NA) is to “undercut” the coordinated price set by adopters (A) by ε

and reach its full capacity:

pNA = pA = pJ , QNA = (1− h)QF (11)

In other words, because they are capacity constrained, there is no incentive for non-

adopters to charge below-market prices as they cannot sell more than their capacity.20

It is also why building-level differences between adopters and non-adopters within the

same market cannot be the test for price coordination.

The residual demand faced by adopters (A) with the fraction of adopters h be-

comes

DA(p) = D(p)− (1− h)QF (12)

When the software solves a joint maximization problem among all adopters, then it

20Presumably, this model implies that there will be incentives for adopters to drop out of the
adoption. However, we assume the decision to adopt the software comes with a bundle of services
that one cannot easily opt out of separately.
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solves the following problem

max
p
πA(p) = pDA(p) = p (D(p)− (1− h)QF ) (13)

s.t. DA(p) ≤ hQF . (14)

The solution for the joint maximization problem is characterized as follows:

pJ =
b− (1− h)QF

2a
(15)

QJ =
b

2
+

1− h
2

QF (16)

when h ≥ b/QF − 1 and pJ = pE, QJ = QE when h < b/QF − 1.

Combined with the previous section, we have

pM ≥ pJ ≥ pE (17)

QM ≤ QJ ≤ QE (18)

indicating that the optimal price set for the joint maximization problem is weakly

higher than the price in the competitive equilibrium and the optimal quantity is

higher than the competitive equilibrium.

Moreover, we have

∂pJ(h)

∂h
≥ 0,

∂QJ(h)

∂h
≤ 0. (19)

Hence, the takeaway of the model is that joint maximization leads to higher

prices as software penetration increases, compared to the price at the competitive

benchmark, or equivalently, the price set by a software that is maximizing profit for

each adopter individually. A second takeaway is that any price differentials between

adopters and non-adopters within the same market (perhaps due to different pricing

responsiveness to changing market conditions) are not appropriate tests for price

coordination in this model. Therefore, the stylized model motivates our empirical

analysis where we leverage variations in the level of software penetration at the market

level to test for the price coordination channel through joint profit maximization.
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5 Measuring Impact of Algorithmic Pricing

5.1 Estimand of Interest

Motivated by the stylized model, we formally describe the estimand that quantifies

the total impact of algorithm penetration in a given market. Consider a geographical

market m at time t and to fix idea, let the average rent of market m at time t, rmt,

be the outcome of interest. We are interested in the treatment effect of algorithmic

penetration in market m on the market’s average rent,

TE(sA) = E[rmt | sAmt = sA]− E[rmt | sAmt = 0],

where sA is share of buildings in market mt that adopted the software. The first

term, E[rmt | sAmt = sA], is simply the weighted sum of average rent on adopters and

non-adopters within market with share sA:

E[rmt | sA] = sAmt · E[rjmt | at(j) = 1, sA] + (1− sAmt) · E[rjmt | at(j) = 0, sA],

where at(j) = 1 if building j is an adopter at time t and 0 otherwise. Expanding the

second term out and substituting it back into the expression for TE(sA), we get:

TE(sA) = sAmt(

=:TEA(sA)︷ ︸︸ ︷
E[rjmt | at(j) = 1, sA]− E[rjmt | at(j) = 0, sA])

+

=:TENA(sA)︷ ︸︸ ︷
E[rjmt | at(j) = 0, sA]− E[rjmt | at(j) = 0, sA = 0],

where E[rmt | sAmt = 0] can be replaced with E[rjmt | at(j) = 0, sA = 0] since every

building is a non-adopter in a market zero penetration, sAmt = 0.

Note that the first term, denoted it as TEA(sA), is the treatment effect of adoption

on the building-level, within market with identical sA. The second term, denoted it as

TENA(sA), is the market-level impact of algorithm adoption on non-adopters between

markets with sAmt = sA and sAmt = 0. Then the estimand of interest is

TE(sA) = sA · TEA(sA) + TENA(sA).
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Then acrossMmarkets, the total impact is taking the weighted sum of the impact:

TEt =
∑
m∈M

wmTE(sAmt),

where wm denotes the weight of the market m such that
∑

m∈Mwm = 1.

This concretely lays out the empirical objects we are after. As alluded, we esti-

mate TAA from the building-level regression in 5.2 and TANA from the market-level

regression in Section 5.3. Because we use difference-in-differences estimators, we can

only recover average treatment effect on the treated (ATT). Hence, we conduct a

back-of-the-envelope exercise to get a rough estimate of the total effect.

5.2 Building-level Impact of Algorithmic Pricing

We first show that buildings that have adopted the software respond to changes in

demand conditions more flexibly compared to non-adopters, suggesting that buildings

using the software havejmore information on the demand conditions than those who

do not, consistent with the qualitative evidence as well as the pricing pattern changes

shown in Figure 4, In doing so, we follow the reduced-form analysis of Leisten (2022).

Specifically, for building j in market m and time t, we run following regressions:

log(rentjt) = θrj + βr,commonXmt + βr,adoptXmt · at(j) + µrjt

Occjt = θoj + βo,commonXmt + βo,adoptXmt · at(j) + µojt,

where θj is the building fixed effects, Xmt contains the proxies for demand shifters

such as level and changes of unemployment, income, migration, and housing price

index, and the indicator at(j) is 1 if building j has adopted the software at time

t and 0 otherwise. Intuitively, the co-variation of prices and occupancies from the

non-interacted part,
(
β̂r,commonXmt, β̂

o,commonXmt

)
captures the pricing response of

buildings facing the demand shifts from the “common knowledge.” The interacted

part in addition to the common part,
(
β̂r,adoptXmt, β̂

o,adoptXmt

)
, captures the pricing

schedule of adopters. If the adopters have indeed more information on demand than

non-adopters, it should show more flexible price response to changes in occupancy

rates.

Figure 5 visually shows the difference in slopes of price response curves between

the two groups. The left-hand side imposes no sample restriction, and the right-hand
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side restricts to markets where there is only one adopter to condition out possible com-

petitive response of non-adopters to adopters’ pricing strategy. In both figures, the

price response of adopters are more flexible than that of non-adopters; adopters lower

prices more aggressively when occupancy is low, and raise prices more aggressively

when occupancy approaches 100%. Restricting to markets with only one adopter

shows starker information advantage that adopters have over non-adopters. Table 5

shows the difference in slopes between the two groups and statistical significance of

the difference. The estimates suggest that while adopters have significant informa-

tional advantage over non-adopters, the gap closes once there are enough adopters in

a given market due to the equilibrium effect that non-adopters are best responding

to adopters’ pricing decisions.

From the above exercise, it is straightforward to see why measuring the average

price effect of adoption on buildings compared to non-adopters does not make much

sense. First, the treatment effect of the software on buildings depends on the market’s

demand conditions. In a low-demand market, more responsive buildings will charge

cheaper rents and fill up occupancy compared to non-adopters, and when the demand

is high, these buildings will charge higher rents, staying below the 100% occupancy.

Hence the relevant empirical question to measure the degree of efficient pricing is to

estimate heterogenous treatment effects of the software during market downturns and

upturns.

We first show two event study plots for two different, but specific cohorts of

adopters to show the existence of treatment effect heterogeneity: a cohort of build-

ings adopted the software before the financial crisis and another cohort who adopted

after the crisis. The outcome of interest is log(rentjt) and occjt, which are log of

asking rents and occupancy rate of building j in year t, respectively. We regress

both outcomes on calendar-year dummies leading up to the adoption, and after the

adoption. Specifically, for cohort Y that adopted the software in year Y ,

log(rentYjt) =
Y−2∑

τ=Y−5

βY,rt 1{t = τ}a(j) +
Y+5∑
τ=Y

βY,rt 1{t = τ}a(j) + βrXjt + θrmt + θrj + µrjt

occYjt =
Y−2∑

τ=Y−5

βY,ot 1{t = τ}a(j) +
Y+5∑
τ=Y

βY,ot 1{t = τ}a(j) + βoXjt + θomt + θoj + µojt,

where Xjt are time-varying building level covariates, θmt is market-year fixed effects,

µjt are residuals, and βt are our coefficient of interest, which is plotted in Figure
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6 for the 2007 and 2013 cohorts, i.e. Y = 2007 and Y = 2013. Note that since

we are estimating the treatment effects for a single adoption cohort, and comparing

the outcome of interest with the never-treated buildings, we are not subject to the

concerns of estimating the dynamic treatment effects in the usual staggered diff-in-diff

research design.

Since adoption decisions are made at the management company-level, it is unlikely

that building-specific unobservable is correlated with company-level decision. All

of top 20 management companies in 2022 operates across dozens of states, and it

is plausible that these adoption decisions are not driven by any one specific time-

varying condition of a building.21 Importantly, we address the concern of luxury vs.

non-luxury apartments being on a different rental growth path by including metro-

level, pre-adoption rent quartile, year-fixed effects through θmt. In other words, these

fixed effects allow for full flexibility where buildings in the same metro market but

different quality segments could have differential rent growths each year.

Both cohorts as well as the aggregate event study across cohorts do not exhibit

pre-trend, further supporting the parallel trend assumption.

The figure shows the clear trade-off that the algorithm makes between occupancy

and asking rents. During the market downturn of 2009, the 2007 cohort aggressively

lowers their price and gains more in occupancy compared to the non-adopters. The

cohort who adopted the software in 2013, however, exhibits significant price growth

compared to non-adopters but with almost 1.5% point less occupancy.

To further highlight that the algorithm may help buildings set efficient prices in

response to demand conditions, we plot the estimates of the calendar-year treatment

effects across cohorts in Figure 7. That is, we are measuring the impact of adoption

in year t on the buildings that were using the software in that year. We measure this

by simply regressing outcomes of interest on calendar year dummies, interacted with

whether the building had adopted by then:

log(rentjt) =
2018∑

τ=2006

βrt 1{t = τ}aτ (j) + βrXjt + θrmt + θrj + µrjt

occjt =
2018∑

τ=2006

βrt 1{t = τ}aτ (j) + βoXjt + θomt + θoj + µojt.

Since this regression estimates treatment effects across all cohorts, we also show the

21https://www.nmhc.org/research-insight/the-nmhc-50/top-50-lists/2022-top-managers-list/
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coefficients estimated using the procedure of Callaway and Sant’Anna (2020) along

with the coefficients estimated from the regression above. This highlights the afore-

mentioned point that the algorithms help buildings price more efficiently. In between

2008 and 2010, the algorithm advised buildings to lower their rents and gain more oc-

cupancy. During the boom period starting in 2013, the adopters were charging higher

rents, and allows for some level of vacancy compared to the non-adopters. The fact

that the adoption leads to higher prices than non-adopters is not a direct evidence

that the algorithm grants market power to the treated. In fact, this may suggest that

buildings using the software are optimally pricing during the time of high-demand,

which may be socially optimal.

5.3 Market-level Impact of Algorithmic Pricing

We found that within-market, across-buildings, the adoption decision leads to het-

ergeneous treatment effect across time periods. To get at the market-level effect of

adoption among non-adopters, we first show an evidence that the penetration of al-

gorithm into a market raises rents and lowers occupancy regardless of the market

condition. We define our “market” as the interaction between the submarket prede-

fined by REIS and the quartile of rents. This mimics how the building managers and

the algorithm picks competitors to benchmark their rents as shown in Section 2.2.

We leverage variations coming from sudden increase in share of adopters in a given

market. We define the event as more than 30% point increase in the share over one

year period. That is, over a third of the buildings in a market become adopters in

one year.

The parallel trend assumption needs to be justified. Again, we lean on the fact that

the adoption decisions are made on the company-level, and any specific market trend

would not be correlated with the decision of the adoption. To sufficiently control for

local, time-varying demand conditions that might have induced some companies to

base their adoption decision off of, we control for levels and changes in unemployment

rate, personal income, housing price index, and net migration. Then we run following

19



regressions for market m in year t:

log(rentmt) =
−2∑

τ=−5

βrτ1{t(m)− t = τ}+
5∑

τ=0

βrτ1{t(m) + t = τ}+ βrXmt + θrt + θrm + µrmt

occmt =
−2∑

τ=−5

βoτ1{t(m)− t = τ}+
5∑

τ=0

βoτ1{t(m) + t = τ}+ βoXmt + θot + θom + µomt,

(1)

where t(m) denotes the year of treatment for market m, Xmt contains vector of

market-level economic conditions, θm are market fixed-effects, θt are year fixed-effects,

and µmt are residuals. The coefficients of interest are βτ , which is plotted in Figure

8, along with those estimated from the procedure of Callaway and Sant’Anna (2020).

In both specifications, we do not see a strong evidence of pre-trend, and if any-

thing, the pre-trend gets even weaker with the robust method of Callaway and

Sant’Anna (2020). This suggests that there is an instantaneous increase in rents

which keeps on increasing after 5 years from the event. The effect on occupancy rates

show up slowly but it gets evident by the fourth year after the treatment. This is not

driven by additional “treatment.” We find that on average, post-treatment increase

in adopter share is much less than that of non-treated markets. Hence, just one-time,

but significant increase in the share of adopters leads to a persistent increase in rents

and a decrease in occupancy compared to the markets with lower shares of adopters.

Supported by the evidence, we examine differential treatment effects of the soft-

ware across markets by the degree of its penetration. The “market” definition we

consider is a submarket-rent quartile. We categorize the markets into four bins by

time periods and ten bins by the degrees of penetration. Each time-period bin has

three years: 2008-2010, 2011-2013, 2014-2016, and 2017-2019. We drop 2005 to 2007

due to low adoption shares, yielding noisy estimates and drop 2017 to 2019 period that

may suffer the most from the attenuation bias coming from actual adopters flagged

as non-adopters. Cross-sectional markets are binned by their absolute share of algo-

rithm adopters in 10% point increments. Table 6 shows the variation in penetration

by the binned years. We find considerable mass to be at 0% by our market definition,

and these markets will be considered as the “control” group. We then regress:
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ymt =
T=3∑
T=1

10∑
B=1

βT,B1{(T (t) = T}1{Bt(m) = B}+
10∑
B=1

βB1{Bt(m) = B}

+ βXmt + θm + θt + µmt,

where T (t) denotes the year bin that year t belongs to, Bt(m) denotes the binned

share of adopters that market m belongs to in year t. Xmt includes market-level

economic conditions as well as average building characteristics in the market. For

the outcomes of interest, log(rentmt) and Occmt, we plot β̂T,B + β̂B for each T,B as

shown in Figure 9. The coefficients that belong to the periods before and during

the financial crisis are in light blue, and the coefficients for the post-crisis period are

plotted in light red.

From 2008 to 2010, we find that the market-level adoption had zero to negative

effect on rents and strong, positive effect on occupancy gain, compared to markets

with zero adoption. From 2014 to 2016, the data shows a stark contrast; we find

that rent increases rapidly with the penetration of the algorithm, but occupancy

decreases with the penetration. Going back to our original hypothesis in Section

4, this speaks to our hypothesis that the efficient prices is lower than the jointly-

maximized prices and efficient occupancy is higher than the occupancy realization

under joint maximization. From the building-level evidence, we find that 2008-2010

period may be the period with substantial evidence of efficiency gain; this pattern

matches both the stylized model and the building-level effect across calendar years.

To get at the estimand of interest mentioned in Section 5.1, we run the same

regression but on the sample containing only non-adopters. Figure 10 shows the

coefficients. In general, regardless of the periods, the coefficients tend to increase with

the penetration of the software up to 4%, meaning that the greater the penetration

is, the larger the increase in average rents of the market. The positive relationship

between increase in average market rents of non-adopters and software penetration is

robust to a variety of alternative specifications. For example, the pattern is robust to

the market definition. We show coefficients from the same regression specifications

when the market(m) is defined by simple zip code in Figure A4. The relationship

is also robust to additional inclusions of metro-year fixed effects, suggesting that the

relationship is not driven by unobservable differential trends between metros.

To further check the robustness of the sign and magnitude of the regression, we

construct an instrumental variable for building-level adoption decision to instrument
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for the share of adopters in a given market. We exploit the fact that management

companies have presence in multiple areas across the nation, but decision to adopt

software is rather a centralized decision. Our conjecture is that the more exposure that

a management company has to markets with large share of adopters, the more likely

the management company itself decides to adopt one. This is the intuition behind the

relevance condition of the instrument. A management company’s decision to adopt

in a given market is driven only through its exposure to adopters in other markets.

The exposure instrument’s exclusion restriction is met as long as the exposure in

other markets is not correlated with the unobservable of the focal market we are

instrumenting for. Hence, it is crucial to define the market scope of exposure to

be large enough such that there is minimal possibility of spillover of demand shocks

across markets, as well as controlling for any nation or regional-level time-trend.

Our unit of analysis is submarket-rent quartile, year pairs, but we construct the

IV based on metro-level exposure. Metro is a lot coarser way of defining markets

compared to submarket-rent quartile, hence we believe that this is the most conser-

vative way of constructing the instrument. We proceed similarly as constructing a

“leave-one-out shift share” instrument; we take the weighted sum of the management

company’s share of buildings multiplied by share of adopters net of the focal man-

agement company’s adopted buildings, if they are flagged as adopted, across metros

and leaving out that of the focal metro. We predict the probability of a building j’s

adoption at year t using this variable through a probit regression, recovering ât(j).

We then construct the instrument for the penetration in market m in year t as

AlgoShareIVmt =

∑
j:m(j)=m Pr (ât(j))

Nmt

,

where Nmt is number of buildings in market m in year t. We then run following

two-stage least square regression:

AlgoSharemt = α1st + β1stAlgoShareIVmt + β1st,XXmt + θ1stm + θ1stt + µ1st
mt

log(RentNAmt ) = α + β ̂AlgoSharemt + βXXmt + θm + θt + µmt,

where the first row is regression equation for the first-stage regression, and logRentNAmt

is average log asking rent of non-adopters in mt. Table 7 shows the estimates of β̂1st

and β̂ when controlling for nation-wide time trend, θt and when controlling for metro-

wide time trend for each submarket-renttile belongs to, θMetro(m),t. As expected, we

have positive and significant β̂1st. The signs of the main coefficient of interest, β̂,
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across the OLS and the 2SLS specifications are consistent and does not lose the sig-

nificance, showing strong evidence towards penetration raising rents. The magnitude

of the 2SLS is larger in general than that of OLS, suggesting that companies may

have been targeting buildings in rather struggling markets than booming markets to

implement the software.

Given our estimates of T̂E
A

and T̂E
NA

for each time-period and bins of algorithm

penetration, we assess the total impact of the algorithm. Recall that across M
markets, the total impact is taking the weighted sum of the impact:

TEt =
∑
m∈M

wm
(
sA · TEA(sA) + TENA(sA)

)
.

Figure 11 shows the decomposition of the effects for the 2008 to 2010, and the 2014

to 2016 period estimates. Visually, they show impact of adoption weighted up to sA,

and not including wm. The market-level effect coming from non-adopters seems to

dominate the building-level effect, consistent with the stylized model. We weigh the

impact by the number of buildings in each market with corresponding penetration

levels in Table 6 to account for wm. The 08-10 period shows that building-level effect

on adopters is negative, but it visually seems net positive effect on rents. In fact,

the weighted total effect is -0.15% point decrease in rents. This is consistent with

the fact that 1) there were few markets were few markets above 30% penetration and

2) adopters’ treatment effect was negative compared to non-adopters. In addition,

the effect likely be even greater in magnitude once accounting for the noisy estimates

above 30%. However, for the 14-16 period, the total effect is roughly 1.5% increase

in rents across all buildings in markets with non-zero penetration of the algorithm.

While this may not seem substantial, we find this as a substantial increase in average

rents considering around 70% of the markets had positive penetration during the

period.

6 Conclusion

In this paper, we examined the impact of algorithmic pricing software adoption on

the U.S. multifamily housing industry using hand-collected, unique datasets. We

show that the equilibrium impact of the penetration of the pricing algorithms can be

decomposed into two estimable, empirical objects.

First, we find robust evidence that the algorithm helps building managers price
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more efficiently. The adopters exhibit a more responsive pricing function to the

changes in local demand conditions. The treatment effect of the algorithm at the

building-level is heterogeneous across calendar years: in a down market, the algorithm

lowers rents and increases occupancy, and vice-versa during the boom.

Second, to measure the market-level, equilibrium impact of algorithm adoption,

we measure the market-level treatment effect of penetration. We find that across

markets, higher levels of penetration lead to higher rents. This pattern is robust

across time-periods, market definitions, and regression specifications.

Lastly, we aggregate two effects and compute the total impact across time periods

and markets. We find that during the bust period, the net effect on rent across

markets is negative, and during the boom period, the effect is positive. While this is

consistent with the efficient pricing by the adopters and non-adopters playing the best-

response, we conclude with a note that this can also be consistent with the pattern

of coordinated pricing, shown by the empirical pattern of price increase and quantity

restriction of the non-adopters as well as the previous theoretical and empirical work

on algorithmic pricing.
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7 Figures

Figure 1. Snapshot of Surveyed List of Adopters

https://web.archive.org/web/20110128035809/http://www.multifamilyrevenue.com/revenue-
management-users-multifamily/

Figure 2. Example Articles of Client Acquisition Made by Software Companies

(a) Rainmaker (b) Yieldstar

(Rainmaker) https://www.prweb.com/releases/rainmakerlro/adds30newcompanies/prweb10779081.htm
(Yieldstar) https://www.realpage.com/news/realpage-announces-that-wilkinson-selects-
yieldstar-price-optimizer/
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Figure 3. Share of Adoption by Software
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Figure 4. Case Study: Pricing and Occupancy Trend of Companies Adopted the
Software
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(b) Non-Adopters
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(c) Greystar
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(d) Non-Adopters
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Restricting samples to Seattle metro-area apartments. Solid, navy line follows Log(Rent) and
dashed, red line follows occupancy rate. The vertical dashed line indicates the year of adoption
of each management company.
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Figure 5. Pricing Schedule of Adopters vs. Non-Adopters

(a) All Adopters vs. Non-Adoters
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(b) Only Adopter in the market vs. Non-Adoters
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Binned scatterplots of predicted Log(Asking Rent) and occupancy as a function of market-
level variables including levels and changes of housing price index, unemployment rate, net
migration, average individual income, asking rents, and vacancies net of the building’s. These
variables are also interacted with whether the building had adopted the software or not. The
“market” is the pre-defined submarket segmented by quartile of asking rents.
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Figure 6. Dynamic TE of Adoption on Log(Asking Rent) and Occupancy Rate
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(b) 2013 Adopters

-.0
5

0
.0

5
.1

Lo
g.

 R
en

t (
$)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

TE in Log(Asking Rent), Cohort 2013

-3
-2

-1
0

1
O

cc
up

an
cy

 (%
)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

TE in Occupancy (%), Cohort 2013

Sample restricted to buildings built before 2005. Building-level and time trend (year) fixed
effects for the building’s metro and pre-treatment period rent quartile are included. Controls
include months of free rent offered, average concession offered in the submarket. Standard
errors are clustered at the management company level.
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Figure 7. Calendar Year TE on Adopted Buildings
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Sample restricted to buildings built before 2005. Building-level and time trend (year) fixed
effects for the building’s metro and pre-treatment period rent quartile are included. Controls
include months of free rent offered, average concession offered in the submarket. For the Call-
away and Sant’Anna (2020) specification (CSDID), building-level characteristic-specific time
trends are also controlled through the doubly robust estimator in addition to the fixed effects.
Standard errors are clustered at the management company level for both specifications.
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Figure 8. Market-level TE from Sudden Increase in Share of Adopters

(a) On Log(Asking Rent)
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Sample restricted to buildings built before 2005. Market is the pre-defined submarket segmented
by quartile of asking rents. The event is defined as more than 30% point increase over one year in
share of adopters relative to all buildings in a given market. Controls include levels and changes
of housing price index, unemployment rate, net migration, average individual income, average
characteristics of buildings in the market, as well as market and year two-way fixed effects. For
the Callaway and Sant’Anna (2020) specification (CSDID), market level characteristic time
trends are also controlled through the doubly robust estimator in addition to the fixed effects.
Standard errors are clustered at the market level for both specifications.
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Figure 9. Market-Level Treatment Effects by Degree of Penetration, Submarket-Rent
Quartile

(a) Y = log(rent)
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Figure 10. Market-Level Treatment Effects on Non-adopters by Degree of Penetration,
Submarket-Rent Quartile
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Figure 11. Decomposing Efficiency vs. Market-level Effect on Log(Asking Rent)
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Sample restricted to buildings built before 2005. Market is the pre-defined submarket segmented
by quartile of asking rents. For each period bin, markets are grouped into 10 absolute bins
based on the percentage of adopted buildings relative to the total buildings in the market-year.
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8 Tables

Table 1. REIS Summary Statistics

Avg. Asking Rent($) 1373.9
(825.8)

Occupancy Rate(%) 93.15
(7.807)

Avg. Units 193.9
(168.4)

Nbuilding 37,216
Ncompany 11,523
Nstate 30
Nmetro 50
Nsubmkt 663

35



Table 2. Top Multifamily Building Management Companies

Company Units Adoption Adoption NMHC
Managed Date Ranking (2019)

Greystar 320,598 1 2010 1
Lincoln Property Mgmt 123,920 1 2009 2
Pinnacle 91,977 1 2010 3
MAA 81,641 1 2007 7
Alliance Residential 74,281 1 2011 4
Equity Residential 70,979 1 2006 10
BH Management 63,650 1 2010 8
Avalon Bay 58,377 1 2008 11
Essex 54,361 1 2008 18
Camden 54,170 1 2006 21
Irvine Company 53,796 1 2010 17
Bozzuto 52,203 1 2010 12
United Dominion Realty 45,576 1 2007 30
Cortland 43,889 1 2013 26
Morgan Properties 42,527 1 2011 28
ZRS 36,594 1 2010 32
Bell Partners 35,979 1 2008 31
FPI Management 35,729 1 2011 5
Highmark Residential 32,490 0 - 19
Avenue5 32,353 1 2018 20

NMHC Ranking from https://www.nmhc.org/research-insight/the-nmhc-50/top-50-lists/2019-

managers-list/
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Table 3. Building characteristics comparison between adopters vs. non-adopters

Non-Adopters Adopters

Log(Avg. Asking Rent($)) 7.03 7.27
(0.47) (0.47)

Occupancy Rate(%) 93.64 91.63
(7.37) (8.84)

Free Rent(Month) 0.03 0.04
(0.02) (0.02)

Num. Floors 3.88 4.97
(4.38) (6.11)

Year Built 1979.67 1995.05
(23.93) (19.47)

Frac. Pool 0.64 0.83
(0.48) (0.38)

Frac. Doorman 0.03 0.05
(0.18) (0.21)

Frac. Tennis Court 0.00 0.01
(0.07) (0.08)

Frac. Parking Garage 0.04 0.09
(0.21) (0.29)

Frac. Clubhouse 0.35 0.65
(0.48) (0.48)

Nbuilding 28,092 9,124
Shrbuilding 75.5% 24.5%
Nunit 4,807,230 2,408,601
Shrunit 66.6% 33.4%
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Table 4. Building-level Calendar Year TE of Pricing Software Adoption

TWFE CSDID

Year Log(Ask Rent) Occ(%) Log(Ask Rent) Occ(%)

2006 0.029*** -0.061 0.003 -1.069
(0.005) (0.255) (0.022) (0.730)

2007 0.011*** -0.206 -0.017 -0.006
(0.003) (0.285) (0.015) (0.853)

2008 0.005 0.191 -0.032 0.787
(0.005) (0.198) (0.021) (0.587)

2009 -0.037*** 0.455** -0.100*** 0.993*
(0.009) (0.208) (0.030) (0.601)

2010 -0.015*** -0.052 -0.021** -0.321
(0.004) (0.116) (0.010) (0.254)

2011 -0.006** -0.064 -0.003 -0.321
(0.003) (0.107) (0.005) (0.209)

2012 0.001 -0.356*** 0.003 -0.894***
(0.002) (0.113) (0.005) (0.257)

2013 0.006** -0.325*** 0.013** -0.904***
(0.003) (0.115) (0.006) (0.247)

2014 0.013*** -0.421*** 0.020*** -0.942***
(0.003) (0.141) (0.006) (0.265)

2015 0.026*** -0.541*** 0.041*** -1.197***
(0.003) (0.127) (0.007) (0.251)

2016 0.027*** -0.356*** 0.035*** -0.923***
(0.003) (0.132) (0.008) (0.305)

2017 0.024*** -0.392*** 0.035*** -1.160***
(0.003) (0.136) (0.009) (0.315)

2018 0.022*** -0.110 0.031*** -0.757**
(0.004) (0.141) (0.009) (0.310)

Nobs 413,850
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Sample restricted to buildings built before 2005. Building-level and time trend (year) fixed
effects for the building’s metro and pre-treatment period rent quartile are included. Controls
include months of free rent offered, average concession offered in the submarket. For the Call-
away and Sant’Anna (2020) specification (CSDID), building-level characteristic-specific time
trends are also controlled through the doubly robust estimator in addition to the fixed effects.
Standard errors are clustered at the management company level for both specifications.
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Table 5. Slope of Price Response Curves, Adopters vs. Non-Adopters

Sample Estimate

All 0.0057***
(0.0010)

Num. Adopt = 1 0.0166***
(0.0019)

1 < Num. Adopt ≤ 5 0.0157***
(0.0012)

Num. Adopt > 5 0.0047***
(0.0015)

Table 6. Distributions of Markets by Penetration of Adopters

Year 0% 0-10% -20% -30% -40% -50% -60% -70% -80% -90% -100% Total

2005 2,506 0 0 0 0 0 0 0 0 0 0 2,506
2006 2,289 104 69 34 5 2 3 1 0 0 0 2,507
2007 2,108 142 135 83 20 9 8 2 0 0 0 2,507
2008 1,864 196 188 144 48 27 27 7 3 3 1 2,508
2009 1,627 256 266 197 76 33 37 8 3 3 2 2,508
2010 1,225 276 368 267 121 103 84 44 8 6 5 2,507
2011 896 277 388 326 198 128 140 85 25 27 18 2,508
2012 846 259 415 340 197 127 154 86 34 25 24 2,507
2013 799 258 413 345 198 155 164 94 28 32 22 2,508
2014 798 250 370 350 208 180 168 88 41 33 22 2,508
2015 771 256 377 322 229 146 172 123 56 34 22 2,508
2016 730 231 394 311 239 168 190 134 50 38 22 2,507
2017 684 244 385 324 247 195 196 115 53 40 25 2,508
2018 634 228 397 346 270 184 188 143 58 34 26 2,508
2019 596 252 371 374 271 177 216 147 53 33 18 2,508

The market definition used is submarket, rent quartile pair.
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Table 7. Market-level Impact of Algorithm Penetration on Rent of Non-Adopters

Outcome: log(RentNA) 1st Stage OLS 2SLS 1st Stage OLS 2SLS

Algo. Share 0.052*** 0.134*** 0.033*** 0.057***
(0.006) (0.018) (0.005) (0.015)

Share IV 0.804*** 0.799***
(0.029) (0.029)

Submkt-Rentile FE Y Y Y Y Y Y
Year FE Y Y Y - - -
Metro-Year FE - - - Y Y Y
F-Stat 755.5 611.3
N 22803 22803 22803 22798 22803 22803
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Sample restricted to never-treated units between 2008 and 2016. Controls include market
average months of free rent offered, average concession offered, building characteristics, as
well as levels and changes of macro variables such as household income, unemployment, net
migration, and house price index. The reported F-Stat is Kleinbergen-Paap rk Wald F statistics.
Standard errors are clustered at the submarket-rent quartile level for both specifications.
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A Appendix Figures

Appendix Figure A1. How Yieldstar optimizes rents

Appendix Figure A2. Manager’s view of dynamic pricing by Yieldstar
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Appendix Figure A3. Manager’s view of Yieldstar pricing dashboard

(a) Price recommendation made by Yieldstar

(b) Competitor data and recommendation acceptance
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Appendix Figure A4. Market-Level Treatment Effects on Non-adopters by Degree of
Penetration, Zip

-.0
2

0
.0

2
.0

4
TE

 o
n 

Lo
g 

R
en

t($
)

0 10 20 30 40 50 60 70 80 90 100
Algo Penetration (%)

08'-10' 11'-13' 14'-16'

43



Appendix Figure A5. Building-Level Treatment Effects by Degree of Penetration of
Software, Submarket-Rent Quartile
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B Appendix Tables

Appendix Table A1. Top and Bottom 5 Metro Areas by Penetration, as of 2019

Metro Adopted Blds Total Blds Penetration(%)

Top 5 Metros

Raleigh-Durham 219 504 43
Seattle 573 1331 43
Suburban Virginia 236 580 41
Charlotte 221 546 40
Austin 283 734 39

Bottom 5 Metros

Columbus 44 565 8
Cleveland 14 363 4
New Orleans 8 209 4
Cincinnati 16 486 3
Milwaukee 13 400 3
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Appendix Table A2. Top and Bottom 10 Submarket Areas by Penetration, as of 2019

Metro Submarket Adopted Blds Total Blds Penetration(%)

Top 10 Submarkets

Orange County Irvine 72 78 92
Orange County Newport Beach 14 17 82
Austin Far Northwest 35 47 74
Fort Lauderdale Plantation 20 27 74
Orange County Mission Viejo 34 48 71
Denver Arapahoe County 15 22 68
Austin Near South Central 17 25 68
Dallas Central Dallas 67 101 66
Seattle Redmond 43 65 66
Charlotte Carmel 33 50 66

Bottom 10 Submarkets

Cincinnati North 0 25 0
St. Louis Airport/I-70 0 43 0
Memphis Frayser 0 8 0
Milwaukee Greenfield/Greendale 0 54 0
New Orleans Southeast Orleans 0 10 0
Cincinnati Highway 27/127 0 37 0
New Orleans Kenner 0 13 0
New Orleans Jefferson/River Ridge 0 23 0
Kansas City North Kansas City 0 31 0
Fort Worth Central Arlington 0 61 0
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