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Abstract

This paper explores key features of China’s patent system, embedding

them in a growth model that allows us to explore their consequences for long-

run innovation, economic growth, andwelfare. We first show that China’s sys-

tem is characterized by narrow patent protection, reflecting three key features:

a strong bias towards incremental innovation, weak patent enforcement, and a

decline in the quality of patent examination. Based on these stylized facts, we

build a growth-theoretic model to show how narrow patent protection distorts

innovation incentives. By skewing R&D efforts toward “incremental” innova-

tion, China’s patent system slows technological progress and lowers national

economic growth. These results suggest that strengthening patent infringe-

ment damage awards and raising patent application fees could significantly

accelerate China’s economic and technological progress.
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1 Introduction

Although China has become the world’s largest generator of patented inventions, the

quality of its intellectual property system remains the subject of considerable controversy

inside and outside of China. A recent wave of (mostly empirical) research has documented

specific shortcomings of Chinese patent policy (Chen et al., 2021; Dang and Motohashi,

2015; Li, 2012; Wei et al., 2021; Sun et al., 2021), but more work is needed to analyze the

consequences of these failings for innovation within China. This paper intends to address

these gaps by documenting key features of China’s patent system and embedding them in a

theoretical model that facilitates exploration of the consequences for innovation, economic

growth and social welfare.

We start with a description of China’s patent system that documents some important

facts and points to three key conclusions. First, Chinese patented inventions appear to

skew heavily in the direction of incremental rather than more substantive inventions. We

argue that this distribution reflects the inadequate protection offered to broad, substantive,

or “radical” inventions. Second, we show that the legal sanctions that punish patent

infringement inChina are extremelyweak compared to othermajor jurisdictions. This leads

to high rates of infringement, especially for more socially valuable, significant inventions.

Low damages for infringement reinforce the incremental nature of Chinese innovation.

Third, we show evidence suggesting that China’s recent tidal wave of patent applications,

combined with a political directive to limit patent examination delays, has weakened the

ability of the Chinese patent system to apply a consistent standard of quality and novelty

across inventions. The surge of applications has itself been driven, in part, by policy-driven

subsidies that have reduced the cost of patenting to very low levels. This makes it all but

impossible for China’s hardworking patent examiners to distinguish adequately between

incremental and more substantive inventions or to draw intelligent boundaries between

related patented ideas. Like low damage awards, inadequate examination reinforces the

incremental nature of Chinese invention by limiting the degree to which truly innovative

breakthroughs are distinguished from minor modifications of prior inventions.

Whydoes thismatter? Because national inventive progress is constrainedwhen big leaps in
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technological progress are insufficiently protected. We show this with a growth-theoretic

model in which Chinese patent policy determines the nature and extent of firm innovative

efforts. Any Chinese firm that takes on the higher risk and cost of substantive invention

and actually succeeds in producing a much higher quality product, process, or service is

quickly imitated. Low infringement damage awards are insufficient to deter infringement

of high quality inventions. Infringement lowers the net benefit of “radical” innovation and

leads firms to focus on incremental innovations that are less costly and risky, but yield less

of an inventive step. In equilibrium, this leads to slower technological progress for China,

lowering national economic welfare. We calibrate the theoretical model using real-world

data, obtaining key parameters of the model, such as the research aptitude distribution,

the distribution of innovation step size and the innovation rate.

We then consider the implications of our model for future Chinese patent policy. We argue

that the effective breadth or scope of protection for substantive or radical inventions must

be increased. How can this be achieved? First, the distribution of patent damage awards

must shift significantly to the right. Second, to truly become the innovation superpower

it aspires to be, China needs fewer patents but better ones. Higher application fees could

reduce the flow of duplicative, low-quality inventions and simultaneously provide Chinese

patent examiners with the resources needed to engage in a more careful review of these

applications. Movement in these directions will benefit China, expand technological pos-

sibilities for the entire world, and do much to address the trade frictions that beset China’s

economic and political interactionswith itsmost important trading partners. China’s grow-

ing share of the world’s innovation resources makes these reforms an urgent priority for

the entire human race.

This paper contributes to several lines of research. First, our study is closely related to a

recent wave of empirical research on Chinese patent policy (Chen et al., 2021; Dang and

Motohashi, 2015; Li, 2012; Wei et al., 2021; Sun et al., 2021; Hu and Jefferson, 2009; Hu,

2014). Building on the shortcomings of the Chinese patent system documented by these

studies, we take the crucial step of embedding the policy problems and distortions in a

growth theoretical model and investigating the implication of these problems on China’s
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innovation system and the economic growth. Our theoretical model and calibration of the

model to data allow us to quantify how and to what extent China’s patent system lowers

the nation’s welfare by limiting the kinds of innovations Chinese firms choose to pursue.

Finally, our growth-theoretic model points us to specific reforms of the patent system that

could substantially improve Chinese and, by implication global economic well-being.

This paper also contributes to the extensive theoretical and empirical literature exploring

the role of patent protection in incentivizing innovation (Qian, 2007; Hall and Ziedonis,

2001; Branstetter and Sakakibara, 2002; Moser, 2005; Lerner, 2009). Prior research has ex-

plored optimal patent length and breadth (Nordhaus, 1969; Klemperer, 1990; Gilbert and

Shapiro, 1990). Our research has been particularly influenced by the work of O’Donoghue

et al. (1998), who note the distinction between lagging and leading patent breadth and

consider the optimal design of patents in terms of both length and breadth when fac-

ing a stochastic innovation process. Hopenhayn and Mitchell (2001) and Cornelli and

Schankerman (1999) build on this by also considering the possibility of having a menu of

different patent types. Other relevant work in this research stream has explored the role

of patents in exhibiting innovators’ capabilities (Agarwal et al., 2009; Ganco et al., 2015)

and improving welfare gains by facilitating the market for technology (Arora et al., 2004;

Arora and Gambardella, 1994). Prior research has also considered the challenges faced

by countries with relatively weak intellectual property rights (IPR) regimes, where weak

enforcement hampers technological advance (Lamin and Ramos, 2016; Belderbos et al.,

2021; Branstetter et al., 2006). As a result, innovating firmsmay need alternative innovation

strategies to protect their inventions (Zhao, 2006; Beukel and Zhao, 2018; Paik and Zhu,

2016). We demonstrate that economies with weak IPR regimes could substantially benefit

from improvement in patent protection.

Finally, our paper builds on the insights andmechanismdeveloped in a number of different

areas of the applied theoretical literature on economic growth. The model employed is one

of fully endogenous growth, and so builds on the seminal contributions of both Grossman

and Helpman (1991) and Aghion and Howitt (1992), particularly in the importance of

creative destruction to the growth process. In addition, a number of more recent papers
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have studied heterogeneity in the innovation process along a variety of dimensions: Akcigit

and Kerr (2018) look at the dichotomy between internal innovation to improve a firm’s own

products and external innovation to capture new product lines; Acemoglu et al. (2018)

consider a setting in which firms vary in their intrinsic aptitude for generating innovations;

Akcigit et al. (2021) study a setting in which firms choose between two types of innovation

technologies, applied and basic. We focus on the distinction between incremental and

radical modes of innovation, an area in which there is already some existing research.

In particular, Acemoglu et al. (2020) study a setting in which firms can choose between

incremental and radical innovation and consider the properties of managers (primarily

age) that make themmore or less likely to engage in radical innovation. We differ from this

work in that we focus primarily on how the nature and design of patent policy influence

firms’ propensity to undertake radical innovation.

2 Key Features of China’s Patent System

2.1 A strong bias toward incremental innovation

China did not establish a modern patent system until 1985. It has witnessed rapid growth

in patent applications since then. However, a variety of indicators suggest that the quality

of patents filed in China is far less impressive than their quantity. The growth in invention

patents—the type of patents which undergo a formal examination process, analogous to

US utility patents—is dwarfed by growth in utility model patents—a form of intellectual

property protection for more incremental inventions whose grants are not contingent on

any examination of the novelty of the invention. This suggests that China’s vaunted patent

explosion is mostly driven by incremental inventions.

If we set utility models aside, we still see impressive growth in the number of invention

patents applied for and granted in China. However, there is strong evidence that even

these Chinese inventions, which go through a formal evaluation process that supposedly

confirms their novelty, are of far lower quality than their foreign counterparts. Figure 1

shows the percentages of domestic patents filed by inventors in five major countries which
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Figure 1: Fraction of Invention Patents Filed Abroad by Country

Source: WIPO

forego foreign patent protection. The percentages in Germany, the US, Japan, and South

Korea are 60%, 40%, 20-40%, and around 20%. In striking contrast, Chinese inventors

only obtain foreign patent protection for 5% of their domestic inventions, and this fraction

has not budged in recent years even as Chinese patenting has exploded and measured

R&D expenditures have grown sharply. This might be reasonable if Chinese firms had no

economic interests abroad, but China is the world’s largest exporter of goods. Despite this

deep integration with the global economy, Chinese inventors clearly view about 95% of

their invention patents as being not worth patenting in a single nation outside of China.

2.2 Weak patent enforcement

The second major point we wish to make is that enforcement of patent rights in China

remains, despite decades of patent reform, very weak by international standards. As

many patent lawyers point out, strong patent systems confer on patent owners not a

shield but a sword—the sword is the ability to sue infringers for damages sufficiently

large to deter patent infringement, or credibly threaten to do so. In China, infringement

damages remain far too low to have deterrent value. Although statutory infringement

compensation was enhanced, in principle, to the range of ten thousand to one million RMB
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Table 1: Summary Statistics for Patent Infringement Lawsuits

Invention Utility Design Total

Average damage awards (2021 USD) 68,000 16,838 7,606 17,400

Average proceeding time (months) 8.6 6.2 5.1 5.9

Compensation received / claimed 38% 28% 29% 33%

Win rate 63% 71% 83% 77%

Source: CIELA, https://www.ciela.cn/en/analysis/patents.

(USD 1,553 to 155,300) by the patent reform implemented in 2008 1, in practice, the average

compensation received by invention patent ownerswho seek infringement remedies is only

around 440,000 RMB (USD 68,000).2 This could be less than the amount of money it would

take to buy a single high-end luxury car in China in which to transport the executives

of a single patent-infringing firm. This small amount accounts for only 38 percent of the

infringement compensation claimed by the patent owner, on average, and is less than half

of the statutory damage awards stipulated by the law, as shown in Table 1. The average

legal compensations for infringement of utility model and design patents are even lower—

108,388 RMB (USD 16,838) and 48,965 RMB (USD 7,606) respectively. Even when courts

rule in favor of the incumbent patent holder, these decisions are imperfectly enforced, and

Chinese inventors often fail to collect what the courts have awarded them.

A comparison with other major patent systems demonstrates that China’s system is char-

acterized by extremely low damage awards. Table 2 shows a comparison of China, Japan

and the US in terms of major features of patent litigation practice. At every point of the

distribution, damage awards in China are only a small fraction of those in the U.S. For

instance, the average andmedian of damage awards received by Chinese patent owners are

merely 0.3 percent and 0.9 percent of those received by US patent owners, and at the 75th

percentile and the maximum, damage awards are still well below 1 percent of their U.S.

1China enacted its newest version of patent law in 2021, which stipulates the statutory damage

awards to be from USD 4660 to USD 776500. Though our discussion is mostly restricted to the

period before the newest round of patent reform, the new damage awards range is still low by

international standards.

2This data is collected from CIELA, a private firm providing patent litigation data. See https:
//www.ciela.cn/en/.
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Table 2: Comparison of Patent Litigation Statistics in China, Japan, and the U.S.

China Japan US

Damage awards (2010 US$)

min 1,291 44 1,873

25th percentile 15,838 27,201 500,000

mean 67,825 1,282,778 18,879,257

median 31,515 170,429 3,196,139

75th percentile 65,425 806,029 13,608,450

max 1,500,150 22,068,481 575,283,461

Avg proceeding time (months) 6-18 12-15 18-42

Avg lawsuit costs (2010 US $) 20k-150k 300k-500k 1m-6m

Avg damage awards / avg lawsuit costs 3.4-0.45 4.3-2.6 18.9-3.1

Win rate 77% 21.80% 53%-76%

Note: Chinese win rate is from CIELA data. Japanese win rate is recalculated from Yamaguchi (2010); data
window is from 2010 to 2014. US win rate is from Barry et al. (2017); the data collection window is from
2011 to 2016. Distribution of damage awards is from Hu et al. (2020). The rest of the figures are from a
WIPO report (Helmers et al., 2018).

levels. The patent system adopted by China in the 1980s was based on Japan’s system at

the time, and even now Japan’s patent litigation system is characterized by a relatively low

level of damage awards (Helmers et al., 2018). However, China’s distribution of damage

awards lies far to the left of Japan’s. To put it bluntly, damage awards in China are far too

low to deter rampant infringement (Economist, 2020).

Defenders of China’s patent enforcement system often point to other dimensions in which

it fares better in international comparison. The average time from initiation to initial

judgment for first-instance patent infringement cases in China is merely half of that in

Japan, and one-third of the average in the US. The average monetary cost (court fees and

lawyer compensation) for a standard infringement proceeding is also much lower in China

(Table 2). However, when taking into account the average damage awards divided by

the average lawsuit costs (the last row of Table 2), China’s ratio ranges from 3.4 to 0.45,

while these ratios for Japan and the US are all above one, suggesting that the expected

returns to Chinese patent owners from pursuing a patent lawsuit could be negative, even

when they “win.” Defenders of the Chinese system often point out that the “win rate”
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in China—the probability that patent owners successfully defend their patents against

infringers in court—is comparable to that in the US and significantly higher than the rate

observed in Japan. However, this matters little if what is “won” is a paltry judgment

that is little more than a minor inconvenience for a determined infringer. Finally, one

might also argue that an injunction to infringement is awarded in almost all winning cases.

The actual effects are reduced by another chronic problem: judicial rulings of damage

awards and injunctions are often not fully enforced. For some patent holders, winning

an infringement lawsuit might only be the start of another frustrating process—ensuring

that damage awards get paid in a reasonable amount of time and, more importantly,

infringement stops. In any case, these efforts to paint Chinese patent litigation trends in a

positive light are powerfully undermined by a more comprehensive view of the data. The

magnitude of China’s infringement rate, even at its peak of around 0.13%, is much lower

than the corresponding level in other countries. (e.g. the litigation rate in theUS is reported

to be around 4% (Bessen and Meurer, 2005)). The low and rapidly declining infringement

rate in China is understandable if infringement damages are too low to deter infringement.

2.3 Deterioration of patent examination

The next major characteristic of China’s patent system on which we wish to focus is the

deterioration of the examination process. China is perhaps unprecedented among major

patent jurisdictions in submitting the vastmajority of the patents it issues—utilitymodels—

to no examination. The other major patent jurisdictions that grant utility models, such as

Japan and Germany, do so sparingly. In striking contrast, China now grants more than

three times as many utility models as invention patents, and Chinese courts do not treat

these two categories of patents that differently. Utility models expire sooner than invention

patents and damage awards tend to be somewhat lower, but these differences are not orders

of magnitude, and they are partly offset by the ease and speed with which utility models

can be obtained.

Chinese invention patent applications have also seen a rapid increase in recent years,

placing an internationally unprecedented workload upon the shoulders of Chinese patent
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examiners. China’s patent examiners, on average, have far more patents to process than

their American and European counterparts, and this gap is increasing over time. By 2016,

Chinese examiners were evaluating 66% more patents per examiner than their American

counterparts and 115% more patents per examiner than their European counterparts. It

is difficult to imagine high-quality evaluation of patent applications given these burdens

and the relatively low level of monthly salary Chinese patent examiners receive (anecdotal

evidence suggests a salary of around 10,000 RMB, which is USD 1,600). Moreover, the

recent policy reforms initiated by the central government to reduce patent filing backlogs

by reducing examination time could potentially aggravate the burdens of Chinese patent

examiners and thus further degrade the quality of examination.

If patents are poorly evaluated and poorly enforced, why have somany Chinese firms taken

out somany patents? To answer that, we can appeal to a growing literature that documents

the powerful financial incentives the Chinese government has implemented to encourage

patent applications. Details can be found in our Online Appendix.

3 Model

3.1 Introduction to the Model

Having laid out some of the critical shortcomings of China’s patent system, we now intro-

duce a growth-theoretic model that illustrates their impact on Chinese growth, innovation,

and welfare. We use a variant of the familiar quality ladder model (Aghion and Howitt,

1992), in which there is a continuum of differentiated intermediate goods. In each goods

market at every point in time there is one firm which possesses a technological advantage

over all others. In equilibrium, this market leader supplies all demand and practices limit

pricing to keep the second best firm from entering the market at a lower price. However, by

innovating, another potential entrant can seize technological leadership from the previous

market leader and displace it in the market.

In the model, incremental and radical innovation are distinguished by their inventive step
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size distributions, which represent proportional improvements in productivity.3 Once

a new innovation is introduced, the technology embodied in that product quickly dif-

fuses to follow-on innovators, enabling them to build on even a radical innovation at low

cost. (This presumes a large potential number of entrants with advanced manufacturing

capabilities—which likely exists in contemporary China.) The patent system itself facil-

itates this knowledge transfer, by requiring inventors to disclose the workings of their

technologies. However, disclosure may not be balanced by the appropriate breadth of

protection in a weak patent system. As soon as a follow-on innovator creates even a very

minor, incremental improvement to the work of the radical innovator, this follow-on inno-

vator can introduce a product that is slightly better, and can therefore displace the radical

innovator from the market, perhaps long before the profit stream earned by the innovator

has compensated her for the higher cost of radical innovation. We will show that this can

lead to equilibria where firms underinvest in radical innovation.

The introduction of broad, effectively enforced patents restores the incentives for radical

innovation. A market leader can still be displaced, but only by an innovator that offers a

substantive improvement. The higher the bar required to constitute a patentable innovation

(the breadth), the more profitable radical innovation looks, as it generates more weight in

the tails of the distribution. Intuitively, technological progress becomes characterized by

fewer steps, but longer strides along the quality ladder. This shift leads to an acceleration

of innovation, a higher rate of economic growth, and a higher level of national welfare.

In a quality ladder model, our theoretical representation of patent breadth or scope is

“vertical” in the sense that innovations lie on a line. A level of patent breadth sufficient to

inducemore radical or substantive innovationwill feature both adequate “leading breadth”

(reserving a sufficient space on the quality line ahead of the focal idea to protect it from

minor improvements) and adequate “lagging breadth” (reserving a sufficient space on

the quality line behind the focal idea to protect it from minor “downgrades” that limit

3The use of the term “radical innovation” may suggest to some readers truly revolutionary

advances like Watt’s steam engine or, at least, the initial introduction of the iPhone. We use the

term loosely. A small number of the innovations we label “radical” will be truly revolutionary, in

this sense. The majority, however, will fall short of “revolutionary,” but will represent a greater

inventive step than the incremental innovations with which we are comparing them.
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performance but lower the price). In this, we are inspired by the taxonomy of O’Donoghue

et al. (1998), and our notion of optimal patent breadth is similar in some ways to theirs.4

Similarly to our paper, Chen et al. (2018) focus on the distinction between “safe” and “risky”

innovation, and allow firms to choose among these twomodes of research. This dichotomy

may seem very similar to that of “incremental” and “radical”, but ends up producing a

somewhat different effect of patent breadth on risky/radical innovation, specifically an

inverted-U shape, rather than an increasing relationship as we see in our paper. This

difference arises from the fact that in our model, both types of innovation are in fact risky,

radical innovation is simply more risky than incremental.

The next several pages present our formal derivation of the model. First we will solve for

the static product market outcome of the model, after which we will analyze the dynamic

incentives for innovation and the resulting equilibrium. Finally, we will solve the social

planner’s problem for this same model, characterize the nature of the inefficiency present,

and consider potential policy remedies.

3.2 Product Market

There is a composite final good that is produced using a unit continuum of intermediate

goods j ∈ [0, 1]. There is also a continuum of firms, indexed by f , each with a particular

productivity in a given product line qjf . Though it is not assumed, the equilibriumoutcome

will be that each intermediate good is produced by the sole producer having the highest

productivity for the production of the particular line. This “productivity” can be viewed as

either a marginal cost of production or a vertical measure of product quality—a “hedonic

q”. Given the context of our model, the latter interpretation may be more useful. We will

often refer to the productivity of the state-of-the-art producer as qj .

Each intermediate is produced linearly according to yj = qj`j , where `j denotes the amount

of production labor used in producing line j. They are then aggregated into a final product

4As we think about how to map the representation of innovation in our model to the necessarily

more complicated “real world,” we implicitly posit a level of patent breadth that protects a focal

innovation from horizontal competition with close substitutes of equivalent quality. Our notion

of adequate patent breadth therefore has an implicit horizontal dimension, as well as the explicit

vertical dimension formally incorporated into our model.
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according to the Cobb-Douglas style production function

log(y) =

∫ 1

0
log(yj)dj

We assume that the intermediate goods are aggregated competitively, that is, there are

many firms that can operate this technology, and competition among them will drive

profits of final good aggregators to zero. Given this arrangement, intermediate firms post a

price pj and the final good aggregators decide how much to purchase conditional on that.

This implies an inverse demand function for a given intermediate good j of the form

pj =
∂y

∂yj
=

y

yj

Of particular interest here is that the implied revenue level of an intermediate producer

will be y, regardless of the price posted. Thus in the absence of competition, they would

optimally like to choose an arbitrarily high price (and low quantity) in order to yield a

maximal profit of πj = y. However, they do face competition in the form of the firm with

the next best productivity in producing intermediate good j, whose productivity we will

refer to by q−j . The “hedonic” approach suggested above reframes the productivity level

of the next best producer as a quality level.

We will be particularly interested in the ratio of these productivities (or quality levels)

λj ≡ qj/q−j ≥ 1. In this case, the optimal choice of the leading producer will be to charge

a price equal to the marginal cost (or quality level) of the next best producer (this is often

called limit pricing). Given a wage for production workers of w, this implies

pj = MC−j =
w

q−j
=
λjw

qj
⇒ yj =

qjy

λjw

With a bit of algebra, we can derive the following outcome in terms of profits and labor

costs, which also functions as a sort of income decomposition between profits and labor at

the product line level

π̃j = 1− λ−1j and w̃`j = λ−1j
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where ∼ denotes a variable that is normalized by total output y, so for instance w̃ ≡ w/y.

Aggregating this to the economy wide level by integrating over j, we find the relations

Π̃ = 1− Λ−1 and w̃P = Λ−1

where Λ−1 ≡
∫ 1
0 λ
−1
j dj and P ∈ [0, 1] is the share of labor devoted to production. The

above relation between the normalized wage w̃ and production labor P will prove useful

in solving for the model equilibrium. The final piece of the puzzle can be obtained by

plugging the expression for yj above back into the final good production function. In

conjunction with the wage equation, this yields

y = PQ · Λ

Ω

where we must additionally define the following aggregates log(Q) ≡
∫ 1
0 log(qj)dj and

log(Ω) ≡
∫ 1
0 log(λj)dj. Notice that in the case where there is no heterogeneity in terms of

λj , this reduces to y = PQ. In any case, we must have y ≤ PQ since Λ ≤ Ω as show below

using Jensen’s inequality

log(Ω−1) =

∫ 1

0
log(λ−1j )dj ≤ log

(∫ 1

0
λ−1j dj

)
= log(Λ−1)

In this way, the ratio Λ/Ω can be seen as a measure of labor misallocation across product

lines induced by markup heterogeneity.

3.3 Innovation

Innovation is the process by which productivity (or quality) gains are realized. There is

a large pool of potential entrants that employ researchers in hopes of innovating. Upon

successfully innovating, they increment the state-of-the-art productivity (or quality) for a

randomly chosen product line j by some random factor.

There are two types of innovation: incremental (i) and radical (r), wherewill usek ∈ {i, r} to

denote a generic type. Each type of innovation has a certain per-researcher-skill probability
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of success ηk and a distribution of realized innovative step sizes γ > 1 given by a Pareto

distribution based at 1, which has distribution functions

Fk(γ) = 1− γ−αk ⇒ fk(γ) = αkγ
−αk−1

It is natural andwithout loss of generality to assume that αi > αr, meaning the distribution

of innovative step sizes associated with radical innovation has a higher mean and thicker

tails. This situation is depicted visually in Figure 2, where we plot the respective density

functions and the ratio of survival functions (the probability of exceeding a certain level)

between radical and incremental innovations.5

The notion of a patent here affords a firm protection for their technology, as well as pro-

tection against technologies that are sufficiently similar or insufficiently novel. We opera-

tionalize this formally by saying that the patent extends to technologies with productivity

Bqj or less, where we refer to B > 1 as the patent breadth. Given that new innovations

build upon the current state-of-the-art qj , this means innovators must achieve a step size

of at least B to be viable given the incumbent’s patent protection. In order for patents to

protect a space of breadth B, it must be the case that patent infringement damage awards

are large enough to deter entry by a potential innovator. In Appendix B.1 we show that

the expected damage award has to exceed the expected profit that would accrue to any

minor innovator whose efforts would land within B units of the focal invention, and that

this damage award is increasing in B.

On the labor market side, there is a common pool of workers of mass 1 that can either

engage in production or research. However, though each worker has common aptitude in

production, they are heterogeneous in their aptitude for research. In particular, worker

i ∈ [0, 1] has research aptitude of (1−β)i−β . Thus, if the total research share isR, assuming

5To analyze the various expectations and probabilities in the derivations that follow, it will be

useful to know the following facts about Pareto distributions

Eα

[
B

γ

∣∣∣γ > B

]
=

α

1 + α
Eα

[
log
( γ
B

) ∣∣∣γ > B
]

=
1

α
Pα[γ > B] = B−α

Note that the former two equations are essentially statements that the Pareto distribution is memo-

ryless in its conditional expectation.
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Figure 2: Incremental and Radical Innovation Step Size Distributions

this constitutes the most productive researchers, then the effective amount of research

undertaken is

A ≡
∫ R

0
(1− β)i−βdi = R1−β

We assume that firms cannot observe researcher type, so they expect to get the average

research aptitude a(R) ≡ A/R = R−β . The net effect of this arrangement, compared to one

withhomogeneousworkers, is that there aredecreasing returns to research in the aggregate,

as higher research intensity leads firms to employ less and less skilled researchers. Note

that we still assume that the current stock of knowledge enters linearly into the production

of new ideas, meaning our model would feature scale effects in the overall population size

(which we assume to be fixed at 1) as demonstrated in Jones (1995).

Finally, the government can also subsidize innovation costs. We denote this subsidy rate

by s ∈ [0, 1]. The costs of this subsidy program is funded by a lump-sum tax on consumers

that balances the government’s budget at each moment in time.

3.4 Equilibrium

Now we can derive the value of obtaining a new product line for both incremental and

radical innovation. In general, the value of a product line j satisfies

rvj − v̇j = πj − τvj
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where τ is the combined rate of creative destruction from both incremental and radical

innovation, which we take as given for now. Letting gv ≡ v̇j/vj , this leads to the equation

vj =
πj

r − gv + τ

We will restrict attention to steady state outcomes. In this case, note that we will have

gv = gπ = gy = gQ ≡ g. Under the assumption of log utility on the part of consumers, the

Euler equation is r = ρ + g. Since the normalized value ṽj depends only on λj via π̃j , we

can write it as a generic function of λ rather than a specific j

ṽ(λ) =
π̃(λ)

ρ+ τ
=

1− λ−1

ρ+ τ

To determine the equilibrium level of innovation, we must calculate the expected present

value of successful innovation. This will result from the combination of the probability

of an innovation large enough to exceed B and the expected profits conditional on that

happening. Thus the value of innovation of type k being given by

z̃k =

∫ ∞
B

ṽ
( γ
B

)
dFk(γ) =

1

1 + αk

Pk
ρ+ τ

wherePk = Pk [γ > B] = B−αk is the probability of an innovation of a given type exceeding

the patent novelty threshold B. Given an overall research share of R, the innovation rate

of research type k will be τk = R−βηkRk. This then leads to the aggregate innovation

rate τ = τiPi + τrPr. In the case where there are positive amounts of type-k research in

equilibrium, we will have the following free entry condition

R−βηkz̃k = (1− s)w̃ (1)

Since firms can choose costlessly between incremental and radical innovation, we will in

general only see one type of innovation in equilibrium, and this will depend on whichever

type maximizes the quantity ηkz̃k. We now arrive at an equation characterizing the equi-
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librium value of research labor Rk for the case when type k innovation is predominant

1

1 + αk

ηkR
−β
k Pk

ρ+ ηkR
1−β
k Pk

=
(1− s)Λ−1

1−Rk
(2)

Since creative destruction at the product line level occurs at rate τ , regardless of product

characteristics, the distribution over λj will be identical to that of the incoming distribution

Fk, and so we will have Λ−1 = αk
1+αk

. Thus we arrive at the simplified equation

ηkR
−β
k B−αk

ρ+ ηkR
1−β
k B−αk

=
(1− s)αk

1−Rk

It is clear due to monotonicity and Inada-like conditions that this equation has a unique

and interior solution inRk. Furthermore, the equilibrium value ofRk will be decreasing in

B. The growth rate resulting from this research share, accounting for researcher aptitude

and patent policy B will be

gk =

[
1

αk
+ log(B)

]
· ηkB−αk ·R1−β

k (3)

This specifies the equilibriumallocationof labor towards research conditional on innovation

of type k prevailing. Exactly which type of innovation prevails in equilibrium will depend

on the relative values of ηkz̃k, which reduces to the comparison

ηiB
−αi

1 + αi
≶

ηrB
−αr

1 + αr

3.5 Effect of Policy

Because αi > αr, an increase in the patent breadth B will have a greater effect on the

incentives for incremental innovation, as its thinner tails make it less likely to exceed a

given threshold. Generally, we will also assume that in the absence of any appreciable

patent breadth (B = 1), incremental innovation prevails, meaning

ηi
1 + αi

>
ηr

1 + αr
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Figure 3: Output Growth and Grant Probability as a Function of Patent Breadth

Note: Lines denoted “Radical” and “Incremental” are conditional rates, while the line denoted “Equilibrium”
is that which prevails in equilibrium.

In this case, there is a specific B∗ above which radical innovation becomes dominant, and

this is given by

B∗ =

[
ηi
ηr

1 + αr
1 + αi

] 1
αi−αr

> 1

However, it is important to note that, conditional on type k, increasing B depresses both

the amount of labor allocated to innovation and the rate of successful innovation, as some

(small) innovations are effectively thrown out. Thus a fully optimal policy will have

to manage both the margin between radical and incremental innovation and the overall

innovation allocation.

It is useful at this point to visualize the effect of patent breadth on particular outcomes

such as the growth rate and overall welfare. For the following figures we use αi = 9.01,

αr = 2.25, ηi = 0.80, and ηr = 0.22. As can be seen in Figure 3, this ensures that with no

patent breadth (B = 1) incremental innovation prevails, and that past a certain threshold

(B∗) there is a discrete switch to radical innovation. This transition to radical innovation

yields large gains in terms of output growth, though it comes as the cost of throwing away

some innovations that fall below B, as can be seen by the fact that the type-conditional

growth values are decreasing in B.

To understand the net effect of these changes, in Figure 4 we plot the consumption equiva-
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Figure 4: Total Welfare as a Function of Patent Breadth

Note: Values denote consumption equivalents of welfare (W1) relative to equilibrium welfare when B = 1

(W0), calculated using CE = 100× exp(W1 −W0).

lent welfare levels corresponding to the various outcomes as a function of patent breadth

B. In addition to changes in aggregate growth rates, this accounts for changes in over-

all output arising from changes in production labor levels and the misallocation of input

factors due to monopoly distortions.

3.6 Social Planner

Now let’s solve the social planner’s problem. Given our distributional assumptions, the

growth rate of the aggregate productivity index Q (and hence steady state output Y ) can

be expressed as

g = τiEi[log(γ)] + τrEr[log(γ)] =
τi
αi

+
τr
αr

At this point, we can construct the Hamiltonian corresponding to the social planner’s

optimization problem. This amounts to choosing Ri and Rr, which determines the overall

growth rate g and the level production via P = 1−Ri −Rr. Note that this already builds

in an efficient allocation of production labor wherein an equal quantity of labor `j = P is
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devoted to each product line, and hence Y = QP . The Hamiltonian is then

H = log(Q) + log(1−Ri −Rr) + µQ(Ri +Rr)
−β
(
ηiRi
αi

+
ηrRr
αr

)

Given the frictionless choice between incremental and radical innovation, we would once

again expect a so-called “bang-bang” result, whereby only one form of innovation arises at

the optimum and the transition between the two occurs abruptly at some cutoff value. And

so the determination of which form of innovation is actually dominant at the optimumwill

depend upon the relative values below

ηi
αi

≶
ηr
αr

In this case, the first order condition corresponding to the non-dominant formof innovation

will be strictly negative, while that of the dominant form will hold with equality. Condi-

tional on some dominant form of innovation k, we then arrive at optimality conditions

0 = HRk = − 1

P
+ µQ(1− β)R−βk

ηk
αk

ρµ− µ̇ = HQ =
1

Q
+ µg

Finally, we can manipulate these equations so as to eliminate the costate variable µ. In

steady state, regardless of the dominant form of innovation, we should have

ηk
ρ

R−βk
1− β

=
αk

1−Rk

and the resulting growth rate is gk = ηk
αk
R1−β
k .

3.7 Optimal Policy

Given knowledge of the true model parameters, one can induce radical innovation with

minimal loss of ideas by setting exactly B = B∗. Thus one approach to optimal policy is to

set B = B∗ when it is optimal to induce radical and B = 1 otherwise. Whether inducing

radical is optimal will depend on whether the gains from switching to the higher step
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size distribution are outweighed by the additional research costs and the need to “throw

away” innovations with step size falling below B. This is an interesting objective, but it

should be noted that although it will ensure the “right” type of innovation occurs, it doesn’t

necessarily get the overall split between production and innovation right.

That said, one could couple this with an overall subsidy on research to try and achieve

something closer to a full optimum. It is straightforward to show that in the presence

of a uniform (across radical and incremental) research subsidy, the equilibrium research

allocation is a monotone increasing function of s ranging from zero to one, hence there is a

unique ŝ that yields the socially optimal level of research, whichwill satisfyR∗k(ŝ, B
∗) = R̂k.

Additionally, since the research subsidy is uniform, it doesn’t further distort the margin

between incremental and radical innovation, so employing the B∗ policy still ensures that

the optimal type of innovation prevails.

It may be useful to reflect on how the research subsidy modeled here is reflected in real

world policies. Here we think of the subsidy as investment in education and basic R&D,

both of which enable (some) workers to become researchers. For a country at its level of

income per capita, China has arguably done an impressive job of investing in the human

capital of its urban workforce and the establishment of scientific research capabilities in

its leading research universities. Rozelle and Hell (2020) point to much lower levels of

investment in the education and health of the rural population as a cause of concern,

but note that increasing these investments to close the education/health gap with urban

populations lies well within the fiscal capacity of the Chinese state. If that goal were met,

China might be close to the optimal level of “research subsidy” featured in our model.

The only remaining source of inefficiency is the labor misallocation induced by monopoly

distortions. Neutralizing these would require a product line specific labor subsidy that

depends on that line’s realized step size λj . Supposing this policy is employed, one can

then use the same B∗ and a modified ŝ to implement the first best optimum.
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4 Patent Fee Based Policy

Now consider an alternative policy in which there is no explicit novelty threshold B, but

firms must pay a fee d in terms of final good to acquire a patent. Since granting is not

stochastic conditional on innovation size, this can be seen as either an application fee or a

granting fee. As the expected present value of an innovation is increasing in innovation

size (γ), a fixed fee will induce a cutoff above which firms will choose to file a patent. We

will also call this cutoff B, as it will operate similarly, but we will construct a mapping

between d and B.

Because total output is growing continually, wemust index d to output to achieve stationar-

ity. Thus we will define d = d̃Y and think of the indexed d̃ as the primary variable chosen

by the policymaker. Now it is straightforward to see that a firm will only file for a patent if

ṽ(γ) ≥ d̃, and so the cutoff value B will satisfy

1−B−1

ρ+ τ
= ṽ(B) = d̃

If d̃ too large, it will preclude any patenting. Thus we will assume it is small enough for

a finite B and verify this condition ex post. In that case, we find that B is implicitly (as τ

depends on B itself) given by

B =
1

1− d̃(ρ+ τ)

The full derivation can be found inAppendix B.2, but themain takeaway is that, contrary to

the baseline case, this type of policy induces a smooth transition between incremental and

radical innovation regimes. For sufficiently large or small d̃, either incremental or radical

innovation will prevail. In this case, we can show that the equation characterizing the

equilibrium is identical to the B policy case. However, there will be a range of d̃ values for

which the implied B will be constant at B∗ and firms will collectively undertake a mixture

of incremental and radical innovation. This arises because when firms switch between

incremental and radical innovation, the change in τ changes the linkage between B and d̃.

Letting τ∗i and τ∗r be the respective innovation rates for the case where B = B∗, these pure
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Figure 5: Growth and Welfare as a Function of Patent Fee

regimes will arise when

d̃ ≤ d̃0 ≡
1− 1/B∗

ρ+ τ∗i
or d̃ ≥ d̃1 ≡

1− 1/B∗

ρ+ τ∗r

For d̃ ∈ (d̃0, d̃1), the effective B will remain constant at B∗, meaning

τ =
1− 1/B∗

d̃
− ρ

and there will be an interior outcome, with some firms engaging in incremental innovation

and others engaging in radical innovation. The effect of patent fee policy on aggregate

growth and welfare using our estimated parameters is depicted in Figure 5.

4.1 Additional Extensions

In theOnlineAppendix, we cover three additional extensions. The first (OA.I) allows for the

possibility of imperfect adjudication of patent novelty, which reflects the fact that examiners

are not simply given a numerical step size (γ) but must estimate this based on a technical

description of the invention. The second (OA.II) considers the case where innovation costs

(ηk) are not fixed but are instead drawn from some joint distribution. This yields outcomes

that are continuous in the patent breadth, as opposed to the abrupt transition that we see in

the baselinemodel. The third (OA.III) replaces incremental innovationwith a deterministic

outcome so as to isolate the risk channel yielding very similar results to the baseline model.
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5 Data and Calibration

In this section, we briefly discuss the data and strategy we use to calibrate key parameters

of the growth model we introduced in the previous section.

5.1 Data Sources

We compile a dataset containing all Chinese invention patents filed by domestic Chinese

firms from 2001 to 2008 6. This time period gives us sufficient time to observe the full

life cycle of a patent (e.g. citations to the patent), thus mitigating truncation problems.

Restricting to this time period, which is between two major patent reforms, also keeps

the regulatory environment stable across the sample. We collect the data from IncoPat, a

private data provider widely used by scholars and Chinese patent examiners. Our sample

contains 738,974 invention patents filed by 40,691 domestic Chinese firms.

We identify unique inventors based on the firm they work with, the distribution of techno-

logical areas they filed patents in, and their names 7. This procedure yields 340,724 unique

Chinese inventors. We measure their productivity using the number of patents they have

filed and the forward citations received by these patents within a 10-year horizon (from the

patent filing year to the year the patent was cited). Additionally, we count the number of

years in which an inventor filed patents to control for entry into and exit from the sample.

5.2 Identification

In the baseline model, we assume that the enforced patent breadth is minimal (B = 1) and

that parameters are such that incremental innovation prevails in equilibrium. As such, we

can only identify incremental research production parameters (αi and ηi) from the data, in

addition to general parameters such as the research aptitude distribution (β). Below we

provide some intuition for how we calibrate these parameters.

6For the forward citations in Table 6, we extend the data window to the year 2013.

7Chinese names usually contain two or three characters without any middle names. It is not

uncommon for many Chinese people to share the same name. By controlling the firm inventors

patent with and the technological areas they mainly invent in, it is easier for us to identify unique

inventors via their names.
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Research Aptitude Distribution. To calibrate the parameter controlling the distribution of

research aptitude across the populace (β), we need to gauge the research productivity of

a group of active inventors in China. Previous studies (Azoulay et al., 2010, 2019) look at

the research productivity of top academic scholars, commonly measured by the number of

citations to their papers. It is typically a complicated process for academic knowledge to be

transferred to specific applications andutilizedbyfirms (Jensen andThursby, 2001; Thursby

and Thursby, 2002). We instead look at the productivity of active inventors employed by

domestic Chinese firms.

Given data on the productivity of inventors in terms of number of patents per year, we can

use these to construct an empirical cumulative distribution function (CDF), which we can

call G. Since worker i has research aptitude a(i) = (1− β)i−β , this resuls in CDF of

G(a) = 1− a−1(a) = 1−
(

a

1− β

)− 1
β

By looking at the log of the survival function (oneminus the CDF), we arrive at an equation

amenable to linear regression

log (1−G(a)) =
1

β
log(1− β)− 1

β
log(a)

The non-intercept coefficient of this regression yields an estimate of 1/β, which we use

directly as one of our moments and can clearly yield information on β itself.

Step Size Distributions. The parameter αi governs the distribution of inventive step sizes

for incremental innovation. Severalmetrics areusedby the literature tomeasure innovation,

most ofwhich are based on citations and technological classifications of patented inventions

(March, 1991; Fitzgerald et al., 2021). We use total forward citations as our main metric of

the innovation step size for a given patent.

Of course, we can’t simply equate citation counts with the inventive step size, as they

have different scales and one is a continuous variable while the other is discrete. Thus we

employ an auxiliary model to describe the distribution of citation counts (c) conditional on

a particular step size (γ) for some scaling factor κ > 0, namely E[c|γ] = V[c|γ] = κ(γ − 1),
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which would be consistent with a Poisson distribution. In this case, integrating out γ,

which is Pareto distributed, yields unconditional expectations

E[c] =
κ

α− 1
and V[c] =

κ

α− 1
+

κ2α

(α− 1)2(α− 2)

The full derivation for these equations can be found in Appendix B.3. Using these, we can

construct an index of dispersion that depends only on α but not κ

D ≡ V[c]− E[c]

E[c]2
=

α

α− 2

For a pure Poisson process, this dispersion parameter would be zero. The overdispersion

caused by variation in γ causes it to be larger. Thus we can cleanly identify this parameter

from citation data in the case that α > 2.

Innovation Cost Parameters. Innovation cost in our model corresponds to a value for

ηi, which is actually an innovation rate and so inverse cost. In general, innovation cost

parameters influence both the growth rate and the fraction of labor devoted to research.

Higher costs directly mediate the linkage between the research share and the aggregate

growth rate. In addition, higher costs will influence the research share directly via the

incentives for innovation.

5.3 Calibration Results

We calibrate the model by targeting a set of moments that are informative about the

underlying parameters. Though we will give intuition about how and why the calibration

works, the system is not diagonal and each moment can be influenced by a number of

parameters. Further, because we do not have standard errors for some of the moments,

we cannot produce standard errors for the estimated parameters, though we do provide

certain robustness checks.

In Table 3 we list the moments used for the calibration along with their source, data values,

and predicted values at optimum. The estimated parameters are listed in Table 4. Note

that we are implicitly assuming that innovation is entirely incremental in the baseline, and
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Table 3: Moments Used for Calibration

Moment Name Data Model

Aggregate researcher share (R) 0.10 0.103

Aggregate TFP growth (g) 0.04 0.039

Citation coefficient of variation (C) 1.30 1.285

Inventor distribution tail index (1/β) 1.56 1.560

Table 4: Estimated Parameter Values

Parameter Name Value

Discount rate — fixed (ρ) 0.050

Research aptitude distribution (β) 0.641

Incremental step size distribution (αi) 9.009

Incremental innovation rate (ηi) 0.800

so we only have estimates for general parameters and incremental parameters (αi and ηi).

We have a separate calibration for the radical parameters and also entertain a wide variety

of parameter values when considering radical innovation.

5.4 Radical Innovation

Step Size Distribution. The scenario we consider is special in the sense that we need to

evaluate radical innovations in an economy that is still transitioning to the technological

frontier (China), as opposed to one the is operating at the frontier and extending it (e.g. the

US). That said, we need a group of inventions whose inventive steps could be measured in

both systems. To this end, family patents, a group of patents protecting the same invention

filed in a variety of jurisdictions, might be a useful phenomenon here.

Specifically, we use the aforementioned data set on Chinese patents. We identify the group

of Chinese patents made by domestic Chinese firms that were also registered as patents

in the U.S. (i.e. family patents). We use these Chinese patents with U.S. counterparts

as a proxy for radical innovations and label all the Chinese patents without any foreign

family patents as incremental innovations. While this metric for incremental versus radical

innovations might not be suitable for patent systemswith relatively high volumes of family
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patents such as US or the EU, it may be suitable in the context of China where very few

patents attain such a status (see Section 2).

We use the number of forward citations received by the focal patent within 10 years of

patent filing as the measure for inventive step size. Table 5 lists the distribution of 10-year

citations for several groups of patents we use in our calibration 8. Row 1 and 4 are the

same group of patents, Chinese patents made by domestic Chinese firms that are also

filed with foreign patent offices, measured by forward citations received in the US and

forward citations received within China, respectively. The US patent data is collected

from PatentsView. Thus, rows 1 and 4 serve as a “bridge” connecting our measure for the

inventive step size of Chinese patents with the inventive step sizes of patents registered in

the US. The distribution of forward citations to the population of the US patents is listed

in row 2. Row 3 reports the forward citations to US patents with self-citations excluded9.

Row 5 reports the distribution of forward citations to Chinese patents made by domestic

Chinese firms that have not been registered as patents in the US, the proxy for incremental

innovations in China.

Innovation Cost Parameters Calibrating the cost by innovation type, however, is com-

plicated due to the difficulty of clearly distinguishing different types of innovation. For

instance, firms might invest a lump-sum fixed cost before any meaningful R&D activities

begin, such as the cost of hiring researchers and acquiring equipment. These costs, in

theory, need to be spread across all innovation outputs the firm produces later, regardless

of the type. With these complexities on mind, we implement two approaches and exploit

another two data sets to calibrate the innovation cost, attempting to cross-validate the

calibration for this parameter.

To start with, we compile a database comprising Chinese manufacturing companies, which

tend to have fewer diversified product lines and smaller sizes. We begin with the Chinese

Annual Survey of Manufacturing (ASM), a longitude survey conducted by the Bureau

of Statistics which is widely used by scholars. After matching these firms with their

8Only patents with positive citations are included.

9We do not report the self-citations-excluded measures for Chinese patents because, contrary to

the US, Chinese patents have very limited number of citations coming from the same patentee.
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patent records, we regress the proxies for radical and incremental innovations on firms’

R&D spending. We relegate the details to Appendix E. Table 7 reports the results. As a

robustness check, we investigate different transformations of these variables: standardized

variables in columns 1 and 2; logarithm transformed variables in columns 3 and 4; raw

numbers in columns 5 and 6. These results indicate that the ratio of family patents—aproxy

for radical innovations—to non-family patents—a proxy for incremental innovations—is

around 2.12.

One might be concerned that the data we use for this approach might only reflect the

situation 10 years ago or more. Therefore, we try an alternative approach on a recent

sample of all publicly traded companies listed in mainland China which have records of

R&D activities for at least two consecutive years. In addition to regressing patent output on

R&D spending, as we have done in Table 7, we also regress R&D spending on the proxies

for radical innovations and the number of incremental innovations. We relegate details on

specifications and results to Appendix E. The estimates from this approach indicate that

the ratio of the average cost of one radical innovation to that of an incremental innovation

ranges from 15.8 to 21.3. While these ratios are higher than our previous estimates, they

imply an alternative scenario inwhich radical innovation ismuchmore expensive relative to

incremental innovation. The takeaway here is that we do not stick to any specific parameter

calibration for the radical innovation parameters. We simply explore possible scenarios

using different sets of parameters. Indeed, it is unlikely that a fast-changing innovation

system like the one in China “sticks to” a particular set of parameters over time.

5.5 Sensitivity Analysis

Due to the substantial uncertainty surrounding the exact values of the radical innovation

parameters αr and ηr, we attempt to provide a comprehensive picture of the efficiency

properties and policy implications for a wide range of values. To this end, we construct

a phase diagram delineating the various segments of this space. In Figure 6, we plot the

relative values of αr and ηi in logarithmic space. Shaded in gray, there is a large region

of ηr values for which radical innovation is always the equilibrium outcome, even when
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Figure 6: Sensitivity of Breadth Policy Outcome to Radical Parameters

B = 1, which in essence meansB∗ = 1. This is relatively uninteresting and we assume this

is not the case throughout. More interesting are the areas shaded in color. The red area

corresponds to values for which a social planner would choose radical innovation, while

the blue area corresponds to values for which using the implies B∗ policy would lead to

welfare improvements.

Interestingly, while these two areas unsurprisingly share a large amount of overlap, there

are exceptions to this in either direction. There are regions where radical innovation is in

principle socially optimal, but actually achieving it with policywould involve setting a very

large B∗ and ultimately throwing away too many good innovations. Conversely, there are

regions where radical innovation is not socially optimal but implementing B∗ nonetheless

leads to a welfare improvement. This arises because switching to radical innovation leads

to a substantial reduction in the rate of creative destruction (though with larger step sizes),

thus alleviating a business stealing inefficiency present in equilibrium. This could be

partially corrected if one were to also implement an optimal subsidy in addition to the

optimal breadth policy.

Finally, one might be interested in the nature of the jointly optimal patent breadth (B)

and subsidy (s) policy. This becomes harder to visualize in two dimensions for a range
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of parameter values. In general, we find that there are parameterizations where one may

wish to use only a subsidy and not induce radical innovation with a patent breadth B > 1.

However, this subsidy is usually quite large, in the range of 60%, while the optimal subsidy

once the switch to radical innovation is made falls to roughly 25%. This arises because of

the aforementioned business stealing effect is much weaker with radical innovation, which

has lower rates of creative destruction. Thus if one is constrained to set relatively low

subsidy values, radical innovation is almost always optimal to induce.

6 Policy Implications and Conclusions

Achieving optimal patent breadth. Incentives for substantive innovation are likely to

remain weak while infringement damages are low. A substantial increase in damage

infringement fees for invention patents would strengthen infringement deterrence, and,

therefore, the incentives formore substantive innovation. Maintaining current low levels of

damage awards for utility models would tilt incentives for patent applicants against utility

models and in favor of invention patents, whose quality evaluation should be substantially

strengthened in the manner described below. Much higher infringement damage awards

will make it more important for courts to correctly adjudicate complicated patent cases.

Changes in legal regulations that encourage courts to employ expert witnesses and that

permit foreign experts, foreign law firms, and evidence from related patent litigation in

foreign courts to be used in reaching appropriate conclusions are likely to accelerate the

pace at which Chinese courts can acquire the ability to make these difficult judgments

accurately and fairly.

Promoting more rigorous patent examination and increasing patent fees. The ability of

the Chinese patent office to evaluate patent quality will be increased if the number of

low-quality applications is reduced and the resources devoted to patent evaluation are

increased. Recent government restrictions on direct patent subsidies represent a useful

step in this direction (see the online Appendix for details on China’s patent subsidies). The

flow of low-quality patent applications will be further reduced if the incentives to patent

embodied inChina’s current tax codeare recalibrated to rewardquality rather thanquantity.
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The ending of government directives that set formal or informal patent application and

grant targets for regions, industries, or firms could further weaken incentives to file low-

quality patent applications. A significant increase in invention patent application and

renewal fees would have a similar effect; the revenues generated by these (much) higher

fees could increase the resources within the patent office to evaluate patent applications,

raising the quality of patent examinations. Similarly, a significant increase in utility model

application and renewal feesmight further limit future growth inutilitymodel applications.

Requiring Chinese patent applicants to choose at the time of initial application between a

utility model or an invention patent will eliminate current incentives for firms to take out

multiple utility models for every invention patent.

A well-resourced post-grant review system could play an important role in the winnowing

of China’s existing "thicket" of low-quality patents and in the reinforcement of higher

standards for inventive novelty throughout the patent system. This creates an argument for

the direction of some portion of the additional revenues generated by substantially higher

application and renewal fees were directed to support the expansion and acceleration of

China’s post-grant patent review system. New legislation that imposed a relatively high

burden of proof on the parties in this post-grant review procedure seeking to defend the

validity of their patents could further shift the costs generated by this system onto the

patent-holder defendants and limit their incentives to defend their weakest patents.

6.1 Concluding Remarks

China has grown (very) rapidly for four decades, despite a weak patent system. This is

not a contradiction of the model presented in this paper, merely a repeat of longstanding

East Asian development trends. Like its East Asian predecessors on the pathway to rapid

industrialization, Japan, Taiwan, and South Korea, mainland China has been able to grow

rapidly through the absorption, application, andmodification of foreign ideas. Like China,

these areas grew fastest when their patent systems were relatively weak. This was not

because weak patents are optimal in the long run, but because they were a limited imped-

iment to growth when growth was driven primarily by imitation/absorption of foreign
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technology rather than indigenous innovation. But like those onetime Asian tigers, China

will approach the exhaustion of opportunities for growth by catch-up, and will need to

increasingly generate more substantive innovations of its own.

The model presented in the current paper has clear policy implications, providing impor-

tant theoretical and empirical guidance to a longstanding debate over the shortcomings

of Chinese IP policy that has often been long on vitriol but short on specifics. The model

suggests that China will most effectively reach its innovative potential with fewer but bet-

ter patents, (much) higher damage awards, higher patent fees, and greater discrimination

between invention patents and utility models. Will these reforms be adopted? Only time

will tell.
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A Tables
Table 5: Calibration of Inventive Steps for Incremental Versus Radical Innovation

U.S. fam-

ily patents

of Chinese

patents

U.S. patents U.S. patents

(self citations

excluded)

Chinese

patents with

U.S. family

patents

Chinese

patents with-

out U.S. family

patents

1% 1 1 1 1 1

25% 2 3 2 2 2

50% 5 6 5 4 3

75% 11 15 14 7 6

95% 34 61 56 18 14

99% 88 170 159 30 25

Mean 10.05 16.81 15.4 5.68 4.8

Std 18.13 48.63 45.59 6.69 5.42

N 18068 1133267 1094413 19563 158560

Table 6: Distribution of Forward Citations Received by Invention Patents Made by

Domestic Chinese Firms

Application year Obs Mean Std. dev. Min Max

2001 6,398 3.718975 4.505303 1 146

2002 11,210 4.103747 4.940329 1 121

2003 16,097 4.194819 5.408678 1 370

2004 20,398 4.215953 4.639633 1 85

2005 28,206 4.361306 4.668211 1 147

2006 39,861 5.155214 5.906086 1 240

2007 56,241 5.770506 6.215057 1 249

2008 63,718 8.050159 9.300262 1 501

2009 63,915 7.441649 8.326586 1 220

2010 55,577 6.205553 8.428729 1 647

2011 79,287 5.562501 7.285456 1 536

2012 135,086 5.594577 6.80842 1 535

2013 210,072 5.314545 6.301471 1 258

Note: Forward citations received by patents filed before 2007 (including) are counted within 10 years since
the patent application years. For the rest patents, forward citations are the total number of citations the patent
has received till the data collection time (year 2021).
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B Proofs

B.1 Enforcement Damages

If an innovator arises with step size γ < B and decides to produce nonetheless, then

they will displace the incumbent firm and earn normalized profits π̃ = 1 − γ−1. Absent

legal intervention, they can expect to earn these profits until someone introduces a better

technology. Since they will not have patented, it is reasonable to suppose that subsequent

innovators will continue to build off of the original patent. Thus they will be displaced

when someone generates an innovation with step size larger than γ, which will happen at

the modified rate ηkR
1−β
k γ−αk , leading to a present value of production at any time of

1− γ−1

ρ+ ηkR
1−β
k γ−αk

=
1− γ−1

ρ+ τ(γ/B)−αk

which is strictly increasing in γ. Thus the largest expected value will arise for the largest

value of γ, which is γ = B in this case. Thus the maximal expected value will be

D̃(B) =
1−B−1

ρ+ τ

Note that because of the normalization we are using, this is implicity considered as a

fraction of average yearly product line revenue (since our discount rate is yearly). Thus if

we wished to enforce a breadth of B = 5%, given ρ = 5% and τ = 15%, we would need to

set damages roughly equal to 25% of a firm’s yearly revenue for a single product.

B.2 Patent Fees

The resulting type-conditional expected gain from innovation is now

z̃k =

∫ ∞
B

[
ṽk(γ)− d̃

]
dFk(γ) =

B−1

1 + αk

B−αk

ρ+ τ

The additional B−1 factor relative to the baseline arises because firms do not face compe-

tition from the partially imitating prior incumbent. This will nonetheless be cancelled out
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by wage effects in the free entry condition.

Because the effectiveB value depends on τ , wewill actually see a smooth transition between

incremental and radical innovation resulting from a sort of mixed strategy. Thus we need

to entertain a slightlymore general free entry condition, lettingR = Ri+Rr. Said condition

is still derived from R−βηkz̃k = (1− s)w̃, meaning

ηkB
−1

1 + αk

R−βB−αk

ρ+ τ
=

(1− s)Λ−1

1−R
(4)

For sufficiently large or small d̃ either incremental or radical innovation will prevail. In

this case, we can show that the equation characterizing the equilibrium is identical to the

B policy case. Because of the aforementioned markup effects, the distribution of λ will

shifted to the right by a factor B so that Λ−1 = B−1 αk
1+αk

, and thus we find

ηkR
−β
k B−αk

ρ+ ηkR
1−β
k B−αk

=
(1− s)αk

1−Rk

and B is implicitly now a function of d̃ and and Rk via τk = ηkR
1−β
k B−αk . Letting τ∗i and

τ∗r be the innovation rates for the case where B = B∗, these pure regimes will arise when

d̃ ≤ d̃0 ≡
1− 1/B∗

ρ+ τ∗i
or d̃ ≥ d̃1 ≡

1− 1/B∗

ρ+ τ∗r

Conversely, for d̃ ∈ (d̃0, d̃1), the effective B will remain constant at B∗, meaning

τ̃ =
1− 1/B∗

d̃
− ρ

and there will be an interior outcome, with some firms engaging in incremental innovation

and others engaging in radical innovation. LetH∗ denote the common value ofHk = ηkṽk

at the critical patent breadth B∗ or

H∗ ≡
(

ηi
1 + αi

) αr
αi−αr

(
ηr

1 + αr

) αi
αi−αr
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Plugging this into Equation (4), the free entry condition for both types becomes

H∗R−β

ρ+ τ̃
=

(1− s)B∗Λ−1

1−R
(5)

In this mixed setting, letting fk = Rk/R, we can write the aggregate innovation rate as

τ̃ = τ̃i + τ̃r = ηiR
−βRi(B

∗)−αi + ηrR
−βRr(B

∗)−αr

= H∗R1−β [(1 + αi)fi + (1 + αr)fr]

= H∗R1−β(1 + ᾱ)

where ᾱ ≡ αifi+αrfr. With thiswe canfind the averagemarkup, noting that this derivation

relies critically on Hk = H∗

Λ−1 =

(
τ̃i
τ̃

)
(B∗)−1

(
αi

1 + αi

)
+

(
τ̃r
τ̃

)
(B∗)−1

(
αr

1 + αr

)
⇒ (B∗)Λ−1 =

αifi + αrfr
(1 + αi)fi + (1 + αr)fr

=
ᾱ

1 + ᾱ

Plugging this into Equation (5), we ultimately find an equation characterizing ᾱ

τ̃

ρ+ τ̃
= ᾱ(1− s)

(
R

1−R

)
⇒ R =

τ̃

τ̃ + ᾱ(1− s)(ρ+ τ̃)

⇒ τ̃ = H∗(1 + ᾱ)

[
τ̃

τ̃ + ᾱ(1− s)(ρ+ τ̃)

]1−β
It can be show that the above equation is increasing in ᾱ if and only if

β(1 + ᾱ)− sᾱ > ρ

ρ+ τ̃

A sufficient condition for this to hold for any τ̃ is then β(1 + αk) > 1 + sαk for k ∈ {i, r}.

Given that we are assuming αr < ᾱ < αi, in the case where s < β, it suffices to assume that

(β − s)(1 + αr) > 1.

Given a value for ᾱ, one can derive the implied weights 1 − fi = fr = (ᾱ − αi)/(αr − αi).
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Finally, we can compute the aggregate growth rate

g =

[
1

αi
+ log(B∗)

]
τ̃i +

[
1

αr
+ log(B∗)

]
τ̃r

= H∗R1−β
[(

1

αi
+ log(B∗)

)
fi +

(
1

αr
+ log(B∗)

)
fr

]
= H∗R1−β

[
(1 + ᾱ) log(B∗) +

1 + α̂

α̂

]

where α̂ is the harmonic mean of α, defined by α̂−1 = fiα
−1
i + frα

−1
r .

B.3 Citation Distribution

To model citations, we specify a distribution for citation counts c conditional on a value

for γ. We then compute the unconditional mean and variance of citations under these

assumptions. First, the Law of Total Variance implies

V[c] = E [V[c|γ]] + V[E[c|γ]]

We will also need the following properties of the Pareto distribution

E[γ − 1] =
1

α− 1
and V[γ − 1] = V[γ] =

α

(α− 1)2(α− 2)

Our particular assumption for the citation data generating process is that both conditional

mean and variance are linear in the step size, so that E[c|γ] = V[c|γ] = κ(γ − 1), which

would be consistent with a Poisson distribution. The unconditional mean of citations is

then straightforward to calculate

E[c] = E[E[c|γ]] = E[κ(γ − 1)] =
κ

α− 1

For the unconditional variance, we use the equation above

V[c] = E[κ(γ − 1)] + V[κ(γ − 1)] =
κ

α− 1
+

κ2α

(α− 1)2(α− 2)
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With this we can compute the modified index of dispersion that depends only α but not κ

D̃ =
V[c]− E[c]

E[c]2
=

α

α− 2

Note that existing indices of dispersion, such asV[c]/E[c] or
√

V[c]/E[c] depend on κ, which

is a nuisance parameter in our case. Thus we use the modified index of dispersion (D̃) for

the calibration.
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