Can Deficits Finance Themselves?

Marios AngeletosChen LianChristian WolfNorthwesternBerkeleyMIT

NBER ME Meeting, Spring 2023

How are deficits financed? (when r > g)

gov't debt = PDV of primary surpluses

• Classical margin: fiscal adjustment—raise taxes (or cut spending) in the future

How are deficits financed? (when r > g)

gov't debt = PDV of primary surpluses

- Classical margin: fiscal adjustment—raise taxes (or cut spending) in the future
- We'll investigate another margin that arises with liquidity frictions [HANK, OLG, ...]
 - Simple mechanism: deficit today → demand-driven boom → inflation ↑, tax base ↑
 Will operate even if fiscal policy is "passive/Ricardian", and even if the Taylor principle is satisfied.
 - We'll call this "self-financing"—improve budget without tax rate/spending adjustment

How are deficits financed? (when r > g)

gov't debt = PDV of primary surpluses

- Classical margin: fiscal adjustment—raise taxes (or cut spending) in the future
- We'll investigate another margin that arises with liquidity frictions [HANK, OLG, ...]
 - Simple mechanism: deficit today → demand-driven boom → inflation ↑, tax base ↑
 Will operate even if fiscal policy is "passive/Ricardian", and even if the Taylor principle is satisfied.
 - We'll call this "self-financing"—improve budget without tax rate/spending adjustment

Q: how important is such self-financing? can there be full self-financing?

Environment: finite lives/liquidity constraints + nominal rigidities

Policy: full **fiscal adjustment** promised at future date H + monetary policy is "neutral" (fix $\mathbb{E}(r)$)

Environment: finite lives/liquidity constraints + nominal rigidities Policy: full fiscal adjustment promised at future date H + monetary policy is "neutral" (fix $\mathbb{E}(r)$)

- Main result: complete self-financing by delaying fiscal adjustment
 - 1. Monotonicity: as H increases, the actual required future tax hike gets smaller and smaller
 - 2. Limit: the future tax hike vanishes, i.e., we converge to full self-financing

Split depends on nominal rigidities. All via output/tax base \uparrow if rigid, all via prices \uparrow if flexible.

Environment: finite lives/liquidity constraints + nominal rigidities Policy: full fiscal adjustment promised at future date H + monetary policy is "neutral" (fix $\mathbb{E}(r)$)

- Main result: complete self-financing by delaying fiscal adjustment
 - 1. Monotonicity: as H increases, the actual required future tax hike gets smaller and smaller
 - 2. Limit: the future tax hike vanishes, i.e., we converge to full self-financing

Split depends on nominal rigidities. All via output/tax base \uparrow if rigid, all via prices \uparrow if flexible.

• 1-word intuition—discounting: "ignore" far-ahead tax + front-loaded Keynesian cross

Environment: finite lives/liquidity constraints + nominal rigidities Policy: full fiscal adjustment promised at future date H + monetary policy is "neutral" (fix $\mathbb{E}(r)$)

- Main result: complete self-financing by delaying fiscal adjustment
 - 1. Monotonicity: as H increases, the actual required future tax hike gets smaller and smaller
 - 2. Limit: the future tax hike vanishes, i.e., we converge to full self-financing

Split depends on nominal rigidities. All via output/tax base \uparrow if rigid, all via prices \uparrow if flexible.

- 1-word intuition—discounting: "ignore" far-ahead tax + front-loaded Keynesian cross
- **Practical relevance:** holds in many environments & quantitatively powerful general aggregate demand (incl. HANK), active monetary policy, investment, distortionary taxation, ...

Environment

Non-policy block

• Aggregate demand

• Unit continuum of OLG households with survival probability $\omega \in (0, 1]$. Nests standard PIH model with $\omega = 1$, and mimics HANK (break Ricardian equivalence) with $\omega < 1$.

Non-policy block

• Aggregate demand

- Unit continuum of OLG households with survival probability $\omega \in (0, 1]$. Nests standard PIH model with $\omega = 1$, and mimics HANK (break Ricardian equivalence) with $\omega < 1$.

$$c_{t} = \underbrace{(1 - \beta \omega)}_{\text{MPC}} \times \left(\underbrace{d_{t}}_{\text{wealth}} + \underbrace{\mathbb{E}_{t}\left[\sum_{k=0}^{\infty} (\beta \omega)^{k} (y_{t+k} - t_{t+k})\right]}_{\text{post-tax income}} - \underbrace{\gamma \mathbb{E}_{t}\left[\sum_{k=0}^{\infty} (\beta \omega)^{k} r_{t+k}\right]}_{\text{real rates}}\right) \quad (1)$$

Key features: (i) elevated MPC + (ii) addt'l discounting of future income & taxes

Non-policy block

• Aggregate demand

- Unit continuum of OLG households with survival probability $\omega \in (0, 1]$. Nests standard PIH model with $\omega = 1$, and mimics HANK (break Ricardian equivalence) with $\omega < 1$.
- Optimal consumption-savings behavior yields aggregate demand relation:
 Details

$$c_{t} = \underbrace{(1 - \beta \omega)}_{\text{MPC}} \times \left(\underbrace{d_{t}}_{\text{wealth}} + \underbrace{\mathbb{E}_{t} \left[\sum_{k=0}^{\infty} (\beta \omega)^{k} (y_{t+k} - t_{t+k})\right]}_{\text{post-tax income}} - \underbrace{\gamma \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} (\beta \omega)^{k} r_{t+k}\right]}_{\text{real rates}}\right) \quad (1)$$

Key features: (i) elevated MPC + (ii) addt'l discounting of future income & taxes

Aggregate supply

Nominal rigidities + union bargaining gives a standard NKPC relation:

 Details

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right] \tag{2}$$

- Monetary policy
 - $\circ~$ Monetary authority responds to output fluctuations:

$$\underbrace{\underbrace{i_t - \mathbb{E}_t \left[\pi_{t+1} \right]}_{\equiv r_t} = \phi \times y_t \tag{3}$$

 \circ First consider "neutral" monetary policy with $\phi = 0$ —no monetary help. Later generalize.

- Monetary policy
 - $\circ~$ Monetary authority responds to output fluctuations:

$$\underbrace{i_t - \mathbb{E}_t \left[\pi_{t+1} \right]}_{\equiv r_t} = \phi \times y_t \tag{3}$$

- $\,\circ\,$ First consider "neutral" monetary policy with $\phi=0$ —no monetary help. Later generalize.
- Fiscal policy
 - Issue nominal debt. Log-linearized government budget constraint (in real terms):

$$d_{t+1} = (1+\bar{r}) \times (d_t - t_t) + \frac{\bar{d}}{\bar{y}} r_t - \frac{\bar{d}}{\bar{y}} (\pi_{t+1} - \mathbb{E}_t [\pi_{t+1}])$$
(4)

- Monetary policy
 - Monetary authority responds to output fluctuations:

$$\underbrace{i_t - \mathbb{E}_t \left[\pi_{t+1} \right]}_{\equiv r_t} = \phi \times y_t \tag{3}$$

- $\circ~$ First consider "neutral" monetary policy with $\phi=0-\!\!\!\!-\!\!\!\!$ no monetary help. Later generalize.
- Fiscal policy
 - Issue nominal debt. Log-linearized government budget constraint (in real terms):

$$d_{t+1} = (1+\bar{r}) \times (d_t - t_t) + \frac{\bar{d}}{\bar{y}} r_t - \frac{\bar{d}}{\bar{y}} (\pi_{t+1} - \mathbb{E}_t [\pi_{t+1}])$$
(4)

• Taxes adjust **gradually** to balance gov't budget, where au_d parameterizes **delay**:

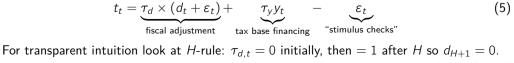
- Monetary policy
 - Monetary authority responds to output fluctuations:

$$\underbrace{i_t - \mathbb{E}_t \left[\pi_{t+1} \right]}_{\equiv r_t} = \phi \times y_t \tag{3}$$

- $\,\circ\,$ First consider "neutral" monetary policy with $\phi=0$ —no monetary help. Later generalize.
- Fiscal policy
 - Issue nominal debt. Log-linearized government budget constraint (in real terms):

$$d_{t+1} = (1+\bar{r}) \times (d_t - t_t) + \frac{\bar{d}}{\bar{y}} r_t - \frac{\bar{d}}{\bar{y}} (\pi_{t+1} - \mathbb{E}_t [\pi_{t+1}])$$
(4)

• Taxes adjust gradually to balance gov't budget, where au_d parameterizes delay:



Angeletos, Lian, and Wolf

Equilibrium & sources of financing

• Eq'm existence & uniqueness • Full eq'm characterization

Proposition

Suppose that $\omega < 1$ and $\tau_y > 0$. The economy (1) - (5) has a unique bounded eq'm.

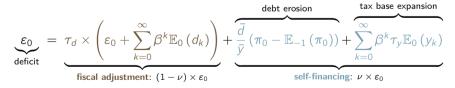
Equilibrium & sources of financing

• Eq'm existence & uniqueness • Full eq'm characterization

Proposition

Suppose that $\omega < 1$ and $\tau_y > 0$. The economy (1) - (5) has a unique bounded eq'm.

- Our **Q**: how are fiscal deficits in this eq'm financed?
 - From the intertemporal gov't budget constraint:



• Next: characterize ν as a function of fiscal adjustment delay (τ_d or H)

The Self-Financing Result

Theorem

The self-financing share ν has the following properties:

1. **[Monotonicity]** It is increasing in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).

Theorem

The self-financing share ν has the following properties:

- 1. **[Monotonicity]** It is increasing in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).
- 2. **[Limit]** As fiscal financing is delayed more and more (i.e., as $H \to \infty$ or $\tau_d \to 0$), ν converges to 1. In words, delaying the tax hike makes it vanish.

Theorem

The self-financing share ν has the following properties:

- 1. **[Monotonicity]** It is increasing in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).
- 2. **[Limit]** As fiscal financing is delayed more and more (i.e., as $H \to \infty$ or $\tau_d \to 0$), ν converges to 1. In words, delaying the tax hike makes it vanish. In this eq'm:
 - a) Gov't debt returns to steady state even without any fiscal adjustment:

$$\mathbb{E}_t \left[d_{t+1} \right] = \rho_d (d_t + \varepsilon_t), \quad \rho_d \in (0, 1)$$

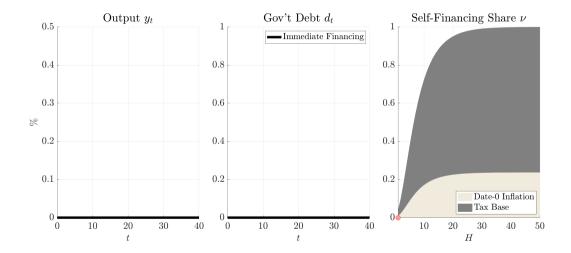
Theorem

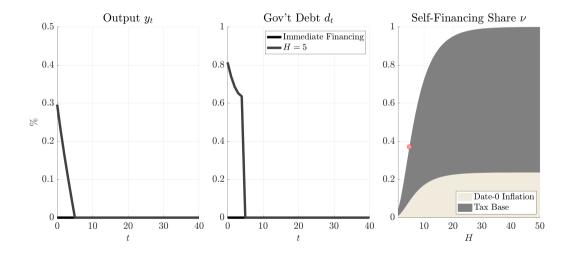
The self-financing share ν has the following properties:

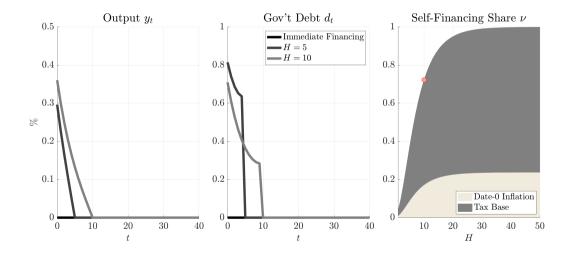
- 1. **[Monotonicity]** It is increasing in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).
- 2. **[Limit]** As fiscal financing is delayed more and more (i.e., as $H \to \infty$ or $\tau_d \to 0$), ν converges to 1. In words, delaying the tax hike makes it vanish. In this eq'm:
 - a) Gov't debt returns to steady state even without any fiscal adjustment:

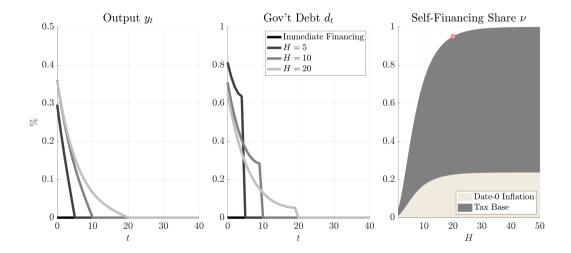
$$\mathbb{E}_t [d_{t+1}] = \rho_d (d_t + \varepsilon_t), \quad \rho_d \in (0, 1)$$

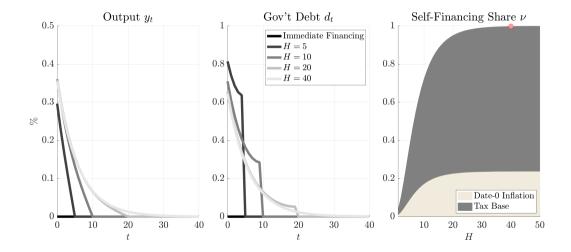
b) The share of self-financing coming from the tax base expansion is increasing in the strength of nominal rigidities. With rigid prices the cumulative output multiplier is $\frac{1}{\tau_v}$.











• Background: self-financing in a "static" Keynesian cross

• Transfer at t = 0, tax (if needed) at t = 1, assume static KC at t = 0.

- Background: self-financing in a "static" Keynesian cross
 - Transfer at t = 0, tax (if needed) at t = 1, assume static KC at t = 0. Then:

$$y_0 = rac{\mathsf{mpc}}{1 - \mathsf{mpc}(1 - \tau_y)} imes arepsilon_0, \implies
u = rac{ au_y imes \mathsf{mpc}}{1 - \mathsf{mpc}(1 - au_y)}$$

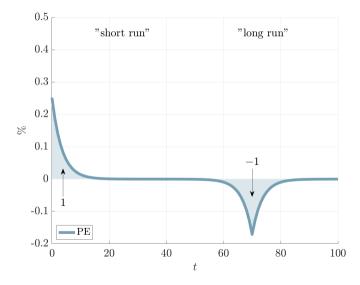
 $\circ~$ We see: ν is increasing in the mpc, with $\nu \rightarrow 1~{\rm for}~{\rm mpc} \rightarrow 1$

- Background: self-financing in a "static" Keynesian cross
 - \circ Transfer at t = 0, tax (if needed) at t = 1, assume static KC at t = 0. Then:

$$y_0 = rac{\mathsf{mpc}}{1 - \mathsf{mpc}(1 - au_y)} imes arepsilon_0, \implies
u = rac{ au_y imes \mathsf{mpc}}{1 - \mathsf{mpc}(1 - au_y)}$$

 $\circ~$ We see: ν is increasing in the mpc, with $\nu \rightarrow 1$ for mpc $\rightarrow 1$

- Our th'm: features of static model have analogues in dynamic economy [for now: $\kappa = 0$]
 - PE Largely discount date-H tax hike + spend date-0 gain quickly, so short-run PE effect reaches 1 far before H—akin to numerator above. Then get later demand bust around H.



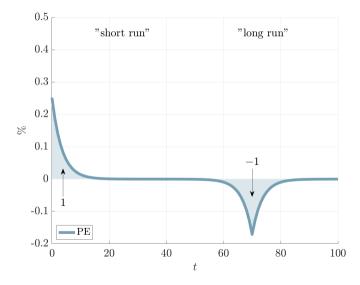
• Background: self-financing in a "static" Keynesian cross

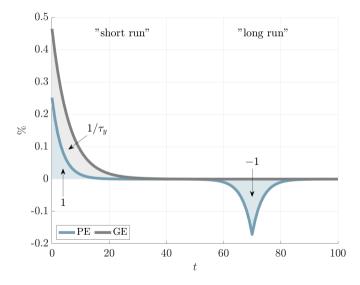
 \circ Transfer at t = 0, tax (if needed) at t = 1, assume static KC at t = 0. Then:

$$y_0 = rac{\mathsf{mpc}}{1 - \mathsf{mpc}(1 - \tau_y)} imes arepsilon_0, \implies
u = rac{ au_y imes \mathsf{mpc}}{1 - \mathsf{mpc}(1 - \tau_y)}$$

 $\circ~$ We see: ν is increasing in the mpc, with $\nu \rightarrow 1$ for mpc $\rightarrow 1$

- Our th'm: features of static model have analogues in dynamic economy [for now: $\kappa = 0$]
 - PE Largely discount date-H tax hike + spend date-0 gain quickly, so short-run PE effect reaches 1 far before H—akin to numerator above. Then get later demand bust around H.
 - GE Spend GE income gains quickly, so multiplier converges to size $1/\tau_y$ quickly—akin to denominator above. Thus debt stabilizes on its own before *H*, and tax hike is not needed.





- Background: self-financing in a "static" Keynesian cross
 - Transfer at t = 0, tax (if needed) at t = 1, assume static KC at t = 0. Then:

$$y_0 = rac{\mathsf{mpc}}{1 - \mathsf{mpc}(1 - au_y)} imes arepsilon_0, \implies
u = rac{ au_y imes \mathsf{mpc}}{1 - \mathsf{mpc}(1 - au_y)}$$

 $\circ~$ We see: ν is increasing in the mpc, with $\nu \rightarrow 1$ for mpc $\rightarrow 1$

- Our th'm: features of static model have analogues in dynamic economy [for now: $\kappa = 0$]
 - PE Largely discount date-H tax hike + spend date-0 gain quickly, so short-run PE effect reaches 1 far before H—akin to numerator above. Then get later demand bust around H.
 - GE Spend GE income gains quickly, so multiplier converges to size $1/\tau_y$ quickly—akin to denominator above. Thus debt stabilizes on its own before H, and tax hike is not needed.

With imperfectly rigid prices: boom partially leaks into prices instead of quantities.

Practical Relevance

Extensions & generality

1. Policy Details

\circ Fiscal policy

- a) Tax adjustment: limit result unaffected if far-ahead adjustment is distortionary
- b) Form of stimulus: result applies with little change to gov't purchases instead of transfers
- Monetary response: ρ_d in self-financing eq'm is increasing in ϕ . Full self-financing as long as ϕ is not too big (need $\phi < \overline{\phi}$, where $\overline{\phi} > 0$), otherwise partial self-financing.
- 2. Economic environment

 Details
 - Demand relation: need discounting—break Ricardian equivalence + front-load spending Second condition for example fails in spender-saver environment, but holds in OLG/BiU/HANK.
 - Rest of the economy: can change NKPC, add wage rigidity, allow for investment, ...

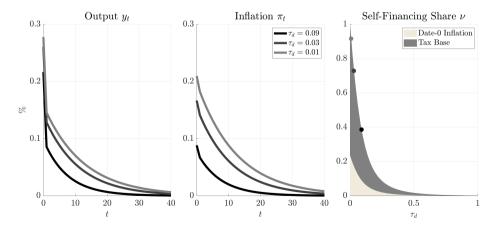
Quantitative exploration

Environment: match evidence on dynamic (tail) MPCs + speed of fiscal adjustment

Details, extensions, & alternative calibration strategies

Quantitative exploration

Environment: match evidence on dynamic (tail) MPCs + speed of fiscal adjustment



Details, extensions, & alternative calibration strategies

10

Takeaways

• Main result: if fiscal adjustment is delayed, then financing will instead come from debt erosion & tax base boom—i.e., self-financing

Implications

- a) **Theory**: grounded in a classical failure of Ricardian equivalence, robust to information perturbations, consistent with Taylor principle
- b) Practice: self-sustaining stimulus may be less implausible than commonly believed In particular if supply constraints are slack—get self-financing via output boom.
- Future work: (optimal) policy implications for fiscal-monetary interaction

Thank you!

Appendix

Aggregate demand

- Consumption-savings problem
 - Preferences

$$\mathbb{E}_t\left[\sum_{k=0}^{\infty}\left(\beta\omega\right)^k\left[u(C_{i,t+k})-v(L_{i,t+k})\right]\right]$$

• Budget constraint

$$A_{i,t+1} = \underbrace{I_t}_{\text{annuity}} \left(A_{i,t} + P_t \cdot \left(\underbrace{W_t L_{i,t} + Q_{i,t}}_{Y_{i,t}} - C_{i,t} - T_{i,t} + S_i \right) \right)$$

where S_i is a transfer to newborns that facilitates aggregation

• Aggregate demand relation

$$c_{t} = (1 - \beta \omega) \left(d_{t} + \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} \left(\beta \omega \right)^{k} \left(y_{t+k} - t_{t+k} \right) \right] \right) - \gamma \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} \left(\beta \omega \right)^{k} r_{t+k} \right]$$

Aggregate supply

• Unions equalize post-tax wage and average consumption-labor MRS. This gives

$$(1 - \tau_y)W_t = \frac{\chi \int_0^1 L_{i,t}^{\frac{1}{\varphi}} di}{\int_0^1 C_{i,t}^{-1/\sigma} di}$$

Log-linearizing:

$$\frac{1}{\varphi}\ell_t = w_t - \frac{1}{\sigma}c_t$$

• Combining with optimal firm pricing decisions we get the NKPC:

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right]$$

 $\circ~$ Note: no time-varying wedge since distortionary taxes τ_y are fixed

Equilibrium characterization

- · First step to eq'm characterization is a more concise representation of agg. demand
- Combining (1), (3), (4), (5), and output market-clearing, we get

$$y_{t} = \mathcal{F}_{1} \cdot (d_{t} + \epsilon_{t}) + \mathcal{F}_{2} \cdot \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} (\beta \omega)^{k} y_{t+k} \right]$$
(6)

$$\circ \ \, \mathsf{Here:} \ \, \mathcal{F}_1 \equiv \tfrac{(1-\beta\omega)(1-\omega)(1-\tau_d)}{1-\omega(1-\tau_d)} \ \, \mathsf{and} \ \, \mathcal{F}_2 = (1-\beta\omega)\left(1-\tfrac{(1-\omega)\tau_y}{1-\omega(1-\tau_d)}\right)$$

- Note: $\mathcal{F}_1 = 0$ if $\omega = 1$ —reflects lack of direct effect of deficit on consumer spending/ aggregate demand under Ricardian equivalence
- Equilibrium: (2), (6) and law of motion for government debt

Equilibrium characterization

- We will look for bounded equilibria in the sense of Blanchard-Kahn
 - Note: in our case—with $\omega < 1$ and $\tau_y > 0$ —this is enough to rule out sunspot solutions. Recover same eq'm through limit $\phi \to 0^+$.
- The unique bounded eq'm takes a particularly simple form:

$$y_t = \chi(d_t + \varepsilon_t), \quad \mathbb{E}_t [d_{t+1}] = \rho_d(d_t + \varepsilon_t)$$

where $\chi > 0$ (deficits trigger boom) and $0 <
ho_d < 1$ (debt goes back to steady state).

General monetary policy

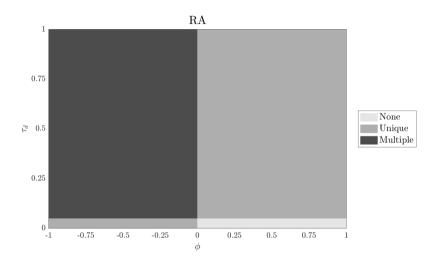
• Intuition: $\phi < 0$ accelerates the Keynesian cross, $\phi > 0$ delays it

Proposition

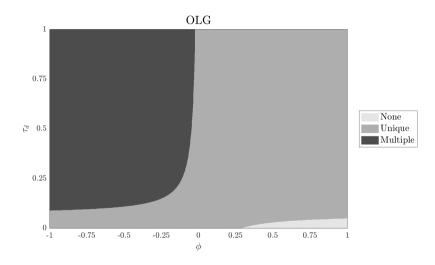
There exists a $\bar{\phi} > 0$ such that:

- 1. An equilibrium with full self-financing exists if and only if $\phi < \overline{\phi}$.
- 2. The persistence of $\rho_d(\phi)$ of gov't debt (and output) in the equilibrium with full self-financing is increasing in ϕ , with $\rho_d(0) \in (0, 1)$ and $\rho_d(\bar{\phi}) = 1$.
- What happens if $\phi > \overline{\phi}$? If fiscal financing is too delayed then no bounded eq'm exists. For such a monetary policy **fiscal adjustment** needs to be *fast enough*.

General monetary policy: determinacy regions



General monetary policy: determinacy regions



Distortionary fiscal financing

Environment

• Fiscal adjustment now instead through distortionary tax adjustments. Specifically:

$$\tau_{y,t} = \tau_y + \tau_{d,t}(D_t - D^{ss})$$

• Only effect is to change (2) to

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right] + \zeta_t d_t$$

• Self-financing result

- Easy to see: exactly the same limiting self-financing eq'm as before
- · Why? tax adjustment not necessary, so distortionary vs non-distortionary is irrelevant

General aggregate demand relation

• Consider the following generalized AD relation:

$$c_t = M_d d_t + M_y \left(y_t - t_t + \delta \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k (y_{t+k} - t_{t+k}) \right] \right)$$

- A self-financing eq'm then exists under the following two assumptions:
 - 1. Discounting

 $\omega < 1$

Transfer today and taxes in the future redistribute from future generations to the present. Deficit directly shows up in AD representation.

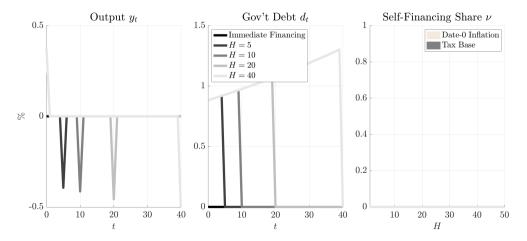
2. Fast boom

$$M_d + rac{1-eta}{ au_y}(1- au_y)M_y\left(1+\deltarac{eta\omega}{1-eta\omega}
ight) > rac{1-eta}{ au_y}$$

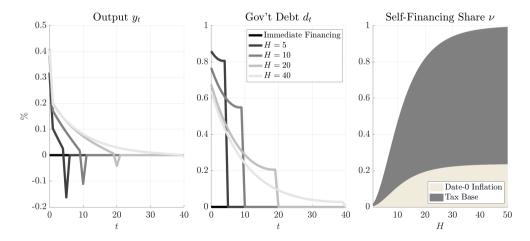
Self-financing boom is front-loaded enough to deliver $\rho_d < 1$.

The importance of discounting

spender-saver model



The importance of discounting



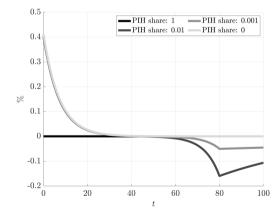
hybrid spender-OLG model

Angeletos, Lian, and Wolf

Self-financing with partial discounting

equilibrium selection matters if there's a margin μ of PIH households

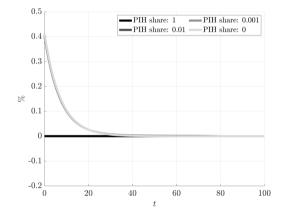
Variant I: $\phi \to 0^+$. Then $\nu = 0$ if $\mu > 0$ (i.e., discontinuity in μ). Get (very) persistent, delayed bust.



Self-financing with partial discounting

equilibrium selection matters if there's a margin μ of PIH households

Variant II: return economy to $y_t = 0$ after H. Then ν is continuous in μ , with $\lim_{\mu \to 0} \nu = \nu_{OLG}$.



Adding investment

• Environment

- **Households**: receive labor income plus dividends e_t . Pay taxes τ_y on both.
- Production: standard DSGE production block. Key twist: no tax payments anywhere.

• Self-financing result

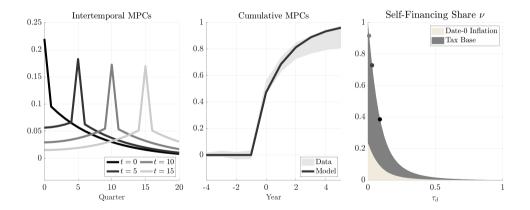
- For rigid prices exactly the same self-financing eq'm as before. Why? Keynesian cross & gov't budget both have c_t rather than y_t in them, so same pair of equations as before
- Partially sticky prices: more complicated mapping from $\{c_t\}_{t=0}^{\infty}$ back to π_0 , so fixed point is more complicated, but can still show that self-financing eq'm exists

Quantitative model

- Identical to baseline model, but with richer aggregate demand block
 - $\circ~$ Hybrid spender-OLG environment: fraction μ is hand-to-mouth, remainder $1-\mu$ is OLG as in our baseline model
 - Why? allows us to disentangle *level* impact MPC from *slope* of dynamic MPC profile (ω), consistent with empirical evidence
- Calibration strategy
 - 1. **Demand block**: match evidence on MPC level & slope from microeconomic data on consumer spending behavior Johnson-Parker-Souleles, Fagereng-Holm-Natvik
 - 2. Fiscal adjustment speed: empirical evidence on debt dynamics from (i) VARs, (ii) estimated structural GE models, & (iii) direct estimation of fiscal adjustment rules

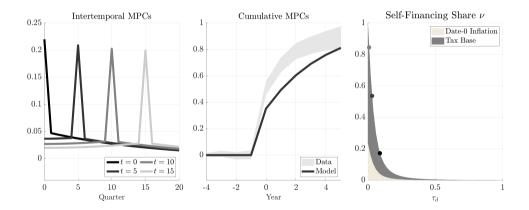
Three calibration strategies

Baseline: match impact and short-run MPCs, then extrapolate



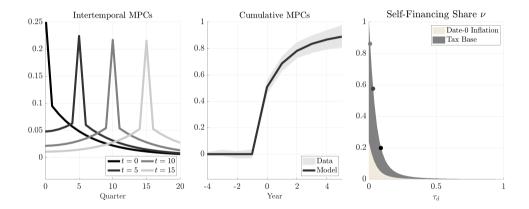
Three calibration strategies

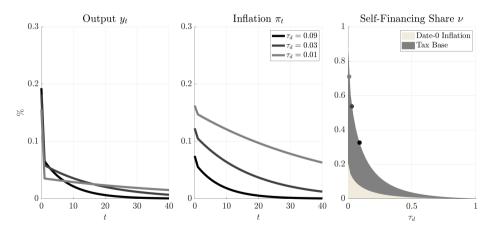
Variant I: match lower bound of six-year cumulative spending share



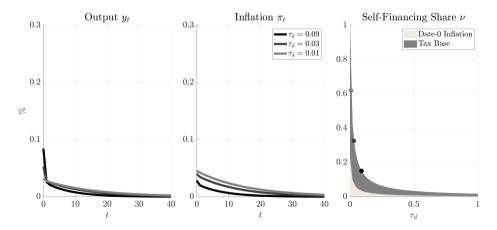
Three calibration strategies

Variant II: two-type OLG + spender model to match cumulative MPC time profile





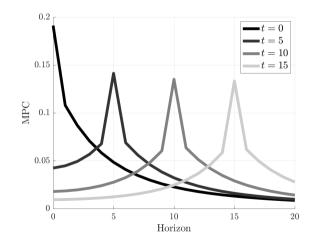
Environment: baseline + behavioral friction [strong cognitive discounting]



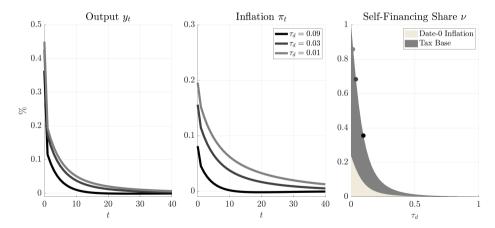
Environment: baseline + long-term debt + aggressive monetary policy ($\phi = 0.5$)

back

Angeletos, Lian, and Wolf



Environment: HANK model [similar to Wolf (2022)]



Environment: HANK model [similar to Wolf (2022)]