Gender, Ethnicity and Funding of Early Career Researchers: Evidence from the UK

Charitini Stavropoulou ${ }^{1}$ and Ian Viney ${ }^{2}$
${ }^{1}$ City, University of London, UK
${ }^{2}$ Medical Research Council, UK

April 21, 2023 - NBER

Overview

(1) Background
(2) Empirical Context
(3) Data and Methods
(4) Results
(5) Discussion

Background

- Securing funding in early stages of one's research career is crucial.
- Funding bodies have established early career schemes to support post-doctoral researchers:
- USA: Pathway to Independence Awards (NIH);
- UK: Career development awards and fellowships from Medical Research Council, the Wellcome Trust or the NIHR;
- EU: Starting Grants (European Research Council).
- Yet, empirical evidence of the effect that early career schemes have on individual researchers is scarce.

Previous literature

Two studies on the topic provide conflicting results:

- Bol et al (2018) support the Matthew effect hypothesis: previous successes positively affect future successes in terms of research income, but not other academic outcomes.
- Wang et al (2019) show that near misses are more likely to win grants in the future, due to a perseverance mechanism; near misses are more likely to apply for more grants.

Recent debate

- The more recent debate is shifting towards who is more likely to benefit from research funding.
- Prior literature on socio-demographic characteristics and research grant success has focus on disparities in grant submission and success rates (Cruz-Castro, Ginther, and Sanz-Menendez 2022).
- What happens to these groups after they receive a grant, remains unexplored.

Aim

- To explore the impact of funding of early career researchers, defined as those applying to secure their first grant as Principal Investigators (PI), on researchers' subsequent academic performance.
- Subgroup analyses of specific groups for whom the impact may be different, including female applicants and those of Black, Asian and Minority Ethnic (BAME) background.

Empirical context

- The Medical Research Council (MRC) is the largest public funding body of medical research in the UK and one of the largest in the world (Viergever and Hendriks, 2016).
- The MRCs early career schemes include:
- two fellowship programmes: the Career Development Award and Clinician Scientist Fellowships and
- one grant scheme that is aimed for early career researchers only: the New Investigator Research Grant.

Data - Sample

- Our sample consists of every individual researcher who applied for an MRC early career fellowship or award between 2006 and 2016.
- For the purposes of the main analysis, we focus only on those applicants who were assessed at the board level.
- We exclude applicants:
- who are no longer in academia as these are not applying for grants and are less likely to publish in peer review journals;
- who appear as unsuccessful in our dataset, but secured an early career award from another funding body.

Datasets and variables

We match three databases:
(1) The MRC's own records for key baseline characteristics (SIEBEL);
(2) Dimensions, a database compiling research information of individual researchers, on research outcomes for research income and publication outcomes;
(3) Manually identified information from Linkedln and Google for career progression.

Variables and sources

Variable	Description	Source
Gender	Female (0) or male (1)	SIEBEL
BAME	White (0) or Black, Asian and Minority Ethnic (1)	SIEBEL
Age	Applicant's age at submission in years	SIEBEL
Elite institution	No (0) Yes (1)	SIEBEL
Year	Year of applying for an early career scheme	SIEBEL
Success	Applicant was successful (1) or not (0)	SIEBEL
Publications	Total and last authorship publications, standardised	SIEBEL
Citation variables	Total citations, standardised; Relative Citation Ratio	Dimensions
Research income	(RCR); Field Citation Ratio (FCR); Altmetrics	
Field of Research	Field and PI income secured in £, standardised	Dimensions
Destinations	Applicant still in academia (1) or not (0)	Dimensions
	Applicant still in the UK (1) or not (0)	Linkedln
		Google

Table 1: Description of variables and data sources

Empirical investigation

We use propensity score weighting (Rosenbaum and Rubin 1983). By conditioning on the probability of receiving an award on observed covariates, we estimate the average treatment effect (ATE) that the award has on academic outcomes.

$$
A T E=E\left[Y^{T}-Y^{C} \mid T\right] \times P(T)+E\left[Y^{T}-Y^{C} \mid C\right] \times P(C)
$$

where:

- Y^{T} is the outcome for the treated group T (successful applicants)
- Y^{C} is the outcome for the control group C (unsuccessful applicants)
- $P(T)$ is the individual's probability of receiving the award
- $P(C)$ is the probability of being unsuccessful

Descriptive characteristics

		Unsuccessful	Successful	Total
Sex	Female	749		
	Male	988	159	908
BAME			263	1251
	White	1,378	355	1,733
Elite Institution	BAME	296	54	350
	No	914	209	1,123
Average Age	Yes	853	215	1,068
Still in the UK in 2021		36.71	36.21	36.62
	No	605		
Still in academia in 2021	Yes	1,043	30	635
	No	670	394	1,437
	Yes	976	12	682
			412	1,388

Table 2: Descriptive characteristics of full sample

Results - Effect of award on academic outcomes

- Our findings support the Matthew effect hypothesis for the overall sample

	Publications Total per year b/se	Last Authorship per year b/se	Citations per year b/se	Average RCR b/se	Citations Average FCR b/se	Average Altmetrics b/se	Research Income Total per year b/se income	PI per year b/se
ATE								
Success	-0.033	-0.01	0.043	0.063	0.057	0.075	$2.995^{* * *}$	$6.783^{* * *}$
	0.07	0.07	0.06	0.07	0.07	0.07	0.47	0.439
POM								
No	0.031	-0.083	-0.037	-0.06	-0.06	-0.06	$7.695^{* * *}$	$5.621^{* * *}$
	0.06	0.05	0.04	0.06	0.05	0.05	0.41	0.39

${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *}{ }^{*}<0.001$
ATE: Average treatment effects
POM: Potential-outcome means
Table 3: Effect of award on publications, citations and research income

Subgroup analysis by gender

- The Matthew effect does not hold for female applicants

	Publications		Citations				Research Income	
	Total per year b/se	Last Authorship per year b/se	Citations per year b/se	Average RCR b/se	Average FCR b/se	Average Altmetrics b/se	Total per year b/se	PI income per year b/se
FEMALE ONLY								
ATE								
Success	$\begin{aligned} & -0.001 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.193^{* *} \\ & 0.07 \end{aligned}$	$\begin{aligned} & 0.155^{*} \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.185 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.219 * \\ & 0.09 \end{aligned}$	$\begin{aligned} & 0.209 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 3.754^{* * *} \\ & 0.75 \end{aligned}$	$\begin{aligned} & 7.445^{* * *} \\ & 0.58 \end{aligned}$
POM 0.115								
No	$\begin{aligned} & -0.115 \\ & 0.13 \end{aligned}$	$\begin{aligned} & -0.276^{* * *} \\ & 0.04 \end{aligned}$	$\begin{aligned} & -0.257^{* * *} \\ & 0.04 \end{aligned}$	$\begin{aligned} & -0.200^{*} \\ & 0.09 \end{aligned}$	$\begin{aligned} & -0.24^{* * *} \\ & 0.07 \end{aligned}$	$\begin{aligned} & -0.171 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 6.829^{* * *} \\ & 0.66 \end{aligned}$	$\begin{aligned} & 4.907^{* * *} \\ & 0.58 \end{aligned}$
MALE ONLY								
ATE								
Success	$\begin{aligned} & -0.092 \\ & 0.1 \end{aligned}$	$\begin{aligned} & -0.15 \\ & 0.1 \end{aligned}$	$\begin{aligned} & -0.028 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.1 \end{aligned}$	$\begin{aligned} & -0.007 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.037 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 2.890 * * * \\ & 0.65 \end{aligned}$	$\begin{aligned} & 6.655^{* * *} \\ & 0.55 \end{aligned}$
No	$\begin{aligned} & 0.141 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.039 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.07 \end{aligned}$	$\begin{aligned} & -0.011 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 2.444^{*} \\ & 1.04 \end{aligned}$	$\begin{aligned} & 5.574^{* * *} \\ & 0.87 \end{aligned}$

${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$
ATE: Average treatment effects
POM: Potential-outcome means
Table 4: Subgroup analysis by gender

Subgroup analysis by ethnic background

- Weaker evidence the Matthew effect does not hold for BAME applicants

	Publications		Citations				Research Income	
	Total per year b/se	Last Authorship per year b/se	Citations per year b/se	Average RCR b/se	Average FCR b/se	Average Altmetrics b/se	Total per year b/se	PI income per year b/se
BAME ONLY								
ATE								
Success	-0.015	-0.183	0.033	0.054	0.076	0.865*	2.444*	5.574***
	0.16	0.17	0.11	0.11	0.1	0.42	1.04	
POM 0.16 0.17 -								
No	$\begin{aligned} & 0.117 \\ & 0.09 \end{aligned}$	$\begin{aligned} & -0.04 \\ & 0.14 \end{aligned}$	$\begin{aligned} & -0.05 \\ & 0.07 \end{aligned}$	$\begin{aligned} & -0.118 \\ & 0.09 \end{aligned}$	$\begin{aligned} & -0.119 \\ & 0.07 \end{aligned}$	$\begin{aligned} & -0.183^{* * *} \\ & 0.05 \end{aligned}$	$8.327^{* * *}$	$6.792^{* * *}$
WHITE ONLY								
ATE								
Success	-0.047	0.15	0.054	0.068	0.068	0.061	3.144***	7.038***
	0.08	0.07	0.07	0.09	0.08	0.07	0.51	
POM 0.08 0.00 0.07								
No	0.012	-0.09	-0.042	-0.052	-0.056	-0.04	7.576***	$5.371^{* * *}$
	0.06	0.06	0.05	0.07	0.06	0.06	0.45	0.42

*p<0.05, **p<0.01, ***p<0.001
ATE: Average treatment effects
POM: Potential-outcome means
Table 5: Subgroup analysis by ethnic background

Discussion

- In the overall sample, we find evidence of a Matthew effect; early success results in further future funding, but no other differences in academic outputs.
- However, there are gender and ethnic differences.
- Successful female researchers improve their citation outreach and influence in their field more than those females who did not win an award.
- Successful applicants from an ethnic minority background improve their research outreach more than those who were not successful.

Conclusions and implications

- First study in the area of public funding of early career researchers that provides evidence of a positive effect on female applicants, and to a less extent on applicants from ethnic minority background.
- The effect is mostly on scientific influence and academic outreach and has significant implications for these groups that often face more challenges in academic progression.

References

- Bol T, de Vaan M and van de Rijt A (2018) The Matthew effect in science funding. PNAS: 115 (19) 4887-4890.
- Cruz-Castro L, Ginther DK, and Sanz-Menendez L (2022) Gender and Underrepresented Minority Differences in Research Funding. NBER Working Paper No. 30107
- Ginther D (2022) Gender, Race/Ethnicity and Research Funding. NBER, March 22.
- Rosenbaum PR and Rubin DB (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41 55.
- Wang Y, Jones BF, and Wang D (2019) Early-career setback and future career impact. Nat Commun 10, 4331.

