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Abstract

Using a quantitative sovereign default model, we characterize constrained efficient
borrowing by a Ramsey government that commits to income-history-contingent bor-
rowing paths taking as given ex-post optimal future default decisions. The Ramsey
government improves upon the Markov government because it internalizes the effects
of borrowing decisions in period t on borrowing opportunities prior to t. We show
the effect of borrowing decisions in t on utility flows prior to t can be encapsulated
by two single dimensional variables. Relative to a Markov government, the Ramsey
government distorts borrowing decisions more when bond prices are more sensitive to
borrowing, and changes in bond prices have a larger effect on past utility. In a quantita-
tive exercise, more than 80% of the default risk is eliminated by a Ramsey government,
without decreasing borrowing. The Ramsey government also has a higher probability
of completing a successful deleveraging (without defaulting), while smoothing out the
fiscal consolidation.
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1 Introduction

In response to the COVID-19 pandemic, most economies have implemented large fiscal stim-

ulus programs that pushed public debt to their historical highest levels, as illustrated in

Figure 1. These developments have brought the need to plan for future deleveraging strate-

gies to the forefront of policy debates.1 Fiscal rules that constrain authorities are often at the

center of deleveraging debates and debt sustainability analyzes have been useful in gauging

the magnitudes of fiscal consolidations needed to stabilize debt ratios.2 Yet, there is little

formal analysis regarding desirable debt paths during deleveraging. In this paper, we show

how to compute constrained efficient borrowing paths for governments facing default risk.

We thus provide a benchmark to inform the design of deleveraging plans for highly indebted

countries, and against which to compare simpler policies to enhance fiscal discipline.

Figure 1: Update of World Economic Outlook, June 2020

Formally, we study a standard quantitative sovereign default framework à la Eaton and

1See, for instance, Reinhart and Rogoff (2020) and Gelpern et al. (2020). These debates are not novel.

Abbas et al. (2011) study public debt cycles since 1880.
2As defined by the IMF (2017), “A fiscal rule is a long-lasting constraint on fiscal policy through numerical

limits on budgetary aggregates.” Hall and Sargent (2015) study the effectiveness of federal debt limits in

the U.S. Poterba and Rueben (1999) study the effectiveness of fiscal rules in U.S. states and Thornton and

Vasilakis (2017) study the effectiveness across countries. D’Erasmo et al. (2016) summarize work on debt

sustainability.
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Gersovitz (1981) with long-term debt. The Eaton-Gersovitz model has been widely used

in studies of fiscal policy for countries with default risk. At the beginning of each period,

the government first observes the aggregate endowment and the continuation value under

defaulting, which are both stochastic. Then, the government decides whether to default on

its debt. If the government repays, it can issue bonds priced by competitive risk-neutral

foreign investors.

We solve the model using two equilibrium concepts. In the Markov Perfect Equilibrium

(MPE), the government optimally chooses its default and borrowing actions each period

taking as given future default and borrowing strategies. This is the equilibrium concept that

the quantitative sovereign default literature has focused on.3 In the Ramsey equilibrium,

in period zero or in the first period after a default, the government commits to an income-

history-contingent borrowing plan, taking as given ex-post optimal default decisions. We

show in our quantitative exercise that the threat of permanently switching to the MPE after

a deviation from the committed borrowing plan is enough to support the Ramsey equilibrium.

The “Ramsey government” improves upon the “Markov government” because the Ramsey

government takes into account how borrowing decisions in period t affect the borrowing

sets prior to t. If borrowing more in t raises default risk after t, it lowers the price of

bonds issued prior to t, thus shrinking the borrowing sets in those periods. The Ramsey

government takes these borrowing costs into account when choosing its borrowing plan,

while the Markov government does not. By internalizing this intertemporal price effect, the

Ramsey government implements the constrained efficient borrowing path.

Our contribution is to show the effect of borrowing decisions in period-t on welfare prior

to t can be encapsulated by two single dimensional variables (which under conditions verified

in our numerical implementation, can be collapsed into one variable). This result enables us

to propose an algorithm to solve for the Ramsey government’s borrowing plan.4 Using the

3Aguiar and Amador (2020) show that in an Eaton-Gersovitz model with long-term debt, there may be

multiple MPE equilibria. We rule out this possibility by focusing on the equilibrium that is the limit of the

equilibrium of the finite-horizon economy.
4We cannot show the problem faced by the Ramsey government is convex, but by being able to compute

the first-order derivative, we can numerically back out the shape of the Ramsey government’s objective

function. We use this information to verify numerically the optimal borrowing we find is indeed a global
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optimality condition for the Ramsey government, we show it is optimal to distort the Markov

government’s borrowing decisions more in states where: i) bond prices are more sensitive to

borrowing and ii) changes in bond prices have a larger effect on past welfare.

We impose discipline to our quantitative exercise by calibrating the MPE to match data

from Mexico, a representative economy with sovereign risk and a standard reference in the

literature. We also verify that the model’s key testable implications for the relationship

between the spread, income, and debt are aligned with the ones estimated for a sample of

emerging economies. The overall match between the simulations for the Markov government

and the data makes the model a plausible laboratory for the quantitative exercises we conduct

in this paper. We measure the effects of commitment to future borrowing by comparing

simulations between the Markov and Ramsey governments.

We find the welfare gain from permanently switching to an economy with a Ramsey

government ranges from 0.3% to 0.7%, with larger gains for lower income.5 The average

spread is 0.5% in the economy with the Ramsey government and 3.3% in the economy with

the Markov government. The Ramsey government achieves this significant reduction in

default risk not by lowering average borrowing but by fanning out its borrowing: it reduces

borrowing in later periods and in states where default risk is most affected by borrowing, and

it expands borrowing in the remaining states. Since default risk is more sensitive to borrowing

in low income states, the Ramsey government conducts a more procyclical fiscal policy than

the Markov government. More dispersed borrowing even leads the Ramsey government to

buy back debt in some low-income states because it internalizes that an increase in bond

prices in period t may allow it to issue debt at better prices prior to t. In contrast, the

Markov government never buys back debt because it does not benefit from the increase in

bond prices implied by a buyback, as shown by Aguiar et al., 2019 and Bulow and Rogoff,

1988, 1991.

We also show that starting from a state with high debt, the Ramsey government has

maximum.
5It should also be emphasized that our model underestimates the gains from committing to a long term

borrowing plan. First, we are not considering the windfall gains of bondholders, who benefit from the increase

in bond prices implied by the enhanced commitment. Second, the lower spreads implied by commitment are

not reflected in higher aggregate income.
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a higher probability of completing a successful deleveraging (without defaults) than the

Markov government. In addition, the Ramsey government can afford to smooth out the

initial adjustment during the deleveraging path by effectively reducing future default risk.

Commitment to a simpler policy plan implemented through the optimal sequence of debt

limits imposes harsher initial austerity and delivers 60% of the welfare gains achieved by the

Ramsey government. Overall, these results are indicative of the quantitative importance of

enhancing long-term fiscal discipline to reduce sovereign risk and to ensure the success of

fiscal programs aiming at reducing debt levels.

We also find that fiscal discipline has a significant effect on the optimal duration of

sovereign debt. If the Markov government could choose the optimal ex-ante debt duration

(i.e., if it could choose the debt duration in the initial period and commit to that duration

thereof), it would want to issue debt with a duration of 2.3 years.6 The optimal ex-ante

duration is much higher (over 30 years) for the Ramsey government.

1.1 Related literature

While some studies of inefficient borrowing with default risk have been able to characterize

the constrained efficient allocation using tractable two-period models (see, for example, Bizer

and DeMarzo, 1992 or Bolton and Jeanne, 2009), quantitative work has circumscribed to

relatively simple policies that limit borrowing incentives: Hatchondo et al. (2016) and Chat-

terjee and Eyigungor (2015) consider alternative debt contracts, and Aguiar et al. (2020) and

Hatchondo et al. (2015) consider simple borrowing constraints.7 This paper computes the

constrained efficient borrowing path in a quantitative sovereign default model with inefficient

borrowing.

Aguiar et al. (2019) characterize efficient deleveraging in an Eaton-Gersovitz model

without income uncertainty and with endogenous maturity. They show the MPE is con-

strained efficient and thus implements the borrowing plan a Ramsey government would

choose–conditional on ex-post optimal defaults. This is so because a Markov government

6Our quantitative results are robust to assuming a debt duration of 2.3 years instead of the 4.8 years

duration in our calibration.
7While Hatchondo et al. (2016) find allocations without debt dilution, the constraint efficient borrowing

path features dilution.

5



has no incentive to actively trade long-term bonds and only rebalances its stock of one-period

bonds during deleveraging. Relatedly, Aguiar and Amador (2019) shows that borrowing is

constrained efficient in an Eaton-Gersovitz model with one-period bonds and income uncer-

tainty. We consider an environment with income uncertainty and long-term bonds in which

there is a hedging benefit of actively trading long-term bonds in the MPE.8 Because of that,

the MPE is not constrained efficient and there is a role for constraining borrowing by future

governments.9

Mateos-Planas and Ŕıos-Rull (2016) derive a generalized Euler equation for borrowing

with long-term bonds that isolates how the default and borrowing decisions in the next

period affect the current bond price and current utility. They further show that when the

government can commit to default and borrowing policy rules one period in advance, there

is no difference between issuing one-period or long-term bonds. We study the case with

commitment to borrowing in every future period but not to future default decisions. We

show that issuing long-term bonds with commitment is different from issuing one-period

bonds.

Adam and Grill (2017) study the effects of committing to the next-period default rule in

an environment with one-period debt. Our focus on commitment to the future borrowing

path without commitment to future defaults is motivated by discussions of how to design

debt reduction programs and policies that weaken governments’ incentives to borrow, either

through fiscal rules or through changes in debt instruments (Chatterjee and Eyigungor, 2015;

Hatchondo et al., 2016).10 Hatchondo et al. (2015) show that, for empirically plausible values,

commitment to repayment yields welfare gains orders of magnitude larger than commitment

to restricting future borrowing. They also show that a rule which eliminates defaults could

be too costly to enforce to be credible, which may explain why in practice fiscal rules do not

8Arellano and Ramanarayanan (2012) discuss the hedging benefits of issuing long-term debt.
9Unlike Aguiar et al. (2019), we assume an exogenous maturity structure. However, we do not see this

as an important limitation for studying gains from committing to the constrained efficient borrowing plan.

Hatchondo et al. (2016) shows the possibility for welfare enhancing policies that reduce borrowing in a model

with endogenous maturity. We show that even for the Markov government’s optimal ex-ante maturity, there

are gains from constraining future borrowing.
10The enforcement for debt reduction programs can be partially, albeit imperfectly, provided by institutions

like the IMF or Eurozone partners in the case of European countries, for example.
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restrict defaulting (see IMF, 2017 for a description of existing fiscal rules).

Bianchi et al. (2019) study an Eaton-Gersovitz model with production, nominal rigidi-

ties and a fiscal sector richer than the one we consider. Their setup features a trade-off

between the role for expansionary fiscal policies when nominal rigidities bind and the cost

of expansionary fiscal policies in terms of higher default risk. They show that when the

government can commit to the spending level one period in advance, an austerity program

can be beneficial. We analyze long-lasting fiscal consolidations plans with commitment but

abstract from the multiplier effects considered by Bianchi et al. (2019).

Nunes and Debortoli (2010, 2013) consider a time inconsistency problem generated by the

turnover of policymakers with heterogenous preferences and they study how commitment to

fiscal policies affect tax rates and debt levels. Jarred et al. (2017) study the optimal matu-

rity with and without commitment in a model with domestic debt. The time-inconsistency

problem in those environments is generated by the incentive to manipulate domestic con-

sumption, and through that, the pricing kernel that pins down government’s bond prices.

Those papers consider closed economies with non-defaultable bonds. Our focus on an en-

vironment with default risk is motivated by the vast quantitative work that follows Aguiar

and Gopinath (2006) and Arellano (2008), and studies aggregate dynamics and fiscal policy

in emerging economies using the Eaton-Gersovitz model.

Lustig et al. (2008) study the optimal fiscal and monetary policies in a closed economy

when the government issues non-contingent nominal bonds of different maturities. The

government wants to mitigate fluctuations in tax rates driven by exogenous government

expenditure shocks. Issuing bonds with different maturities is a useful hedge against those

shocks. However, the government can only affect the real value of its bonds through changes

in (distortionary) inflation or variations in the term structure. In our model, long-term

debt presents hedging benefits because it moderates consumption falls when default risk

increases and the government’s borrowing set shrinks. Lustig et al. (2008) show that a

recursive formulation for the Ramsey planner can be achieved with additional state variables

that summarize the implicit promises embedded in the history of first order conditions up

to period t. Our additional state variables fulfill a similar role, but instead increasing the

spanning of the debt portfolio, ours correct for a time inconsistency problem in debt issuance.
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Dovis (2019) characterizes the dynamically optimal contract between a risk-neutral lender

and a risk averse sovereign that privately observes a local productivity shock. The con-

strained efficient allocation is sustained by the threat of permanent autarky. Net transfers

between the lender and sovereign depend on the entire history of productivity realizations.

Dovis (2019) provides a recursive structure of the problem by introducing promised utility

to the sovereign as a state variable. He shows how the constrained efficient allocation can

be implemented with non-contingent bonds of different maturities and mimics patterns of

debt maturity composition, and the dynamics of output, consumption, imports, and exports

during and after debt crises. We study a standard Eaton-Gersovitz model with outright

defaults and perfect information and an exogenous maturity structure. In our paper, the

additional state variables that render the problem recursive and capture how borrowing in t

affects utility flows prior to t.

Our approach need not be the only one that can be used to compute the constrained effi-

cient borrowing path. We study an optimization problem with forward-looking constraints,

where actions in periods t + s > t constrain the feasible set at t (in our case, borrowing at

t+s > t affect the price of bonds issued at t and thus the feasible set at t). The seminal work

by Marcet and Marimon (2019) elaborates a recursive formulation for this class of problems

that has been used in several applications. The applications closest to our work are intro-

duced by Faraglia et al. (2016, 2019), who present recursive formulations for real models

with bonds that mature M periods ahead. They study a closed economy in which bonds are

priced by local consumers. The government can affect real bond prices by “manipulating”

the consumption path through changes in tax rates. They show that using the formulation

by Marcet and Marimon (2019) requires keeping track of M additional co-state variables.

Faraglia et al. (2016) also study a setup with perpetuities, like the ones we assume, and

show that a recursive formulation of the Ramsey problem requires a single additional state

variable. As in our model, the state variable in Faraglia et al. (2016) captures the benefits

before t of changing the real interest rate in t. We study a small open economy in which the

government does not affect the risk-free interest rate but affects the default premium.

The rest of the article proceeds as follows. Section 2 introduces the environment. Section

3 characterizes the optimality conditions in an economy with a Markov government and in

one with a Ramsey government. Section 4 discusses the calibration. Section 5 presents the
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quantitative results. Section 6 concludes.

2 The environment

We study an infinite-horizon small open economy that receives a stochastic endowment

stream {yt}∞t=0 of a single tradable good. The endowment process yt takes values in the set

Y = {y1, ..., yJ} and follows a Markov process with probabilities Pr(yt+1 = yj | yt = yi) > 0

for all i, j = 1, ..., J .

Preferences over consumption streams are characterized by

E
∞∑
t=0

βtu(ct),

where β ∈ (0, 1), and u is defined over the non-negative reals and characterized by u′ > 0

and u′′ < 0.

If the government defaults, it writes off its entire debt obligations and, as in Aguiar

et al. (2019), the economy receives a continuation value Ut. The continuation value under

default follows a stochastic process with support (−∞,∞) and may be correlated with the

endowment. That is, after an endowment realization yt = yj, the random variable Ut is

drawn from a probability distribution with a continuous p.d.f. fj at all U ∈ (−∞,∞) and

c.d.f. Fj.
11 We further assume that

∫ ∞

x
Ufj(U)dU <∞ for all x ∈ (−∞,∞) and j = 1, ..., J,

which implies finite expected continuation values under default.12

11The unbounded support for U allows for realizations above the value of autarky. However, we do not

find this has a significant role in the simulations. For our benchmark calibration, U exceeds the value of

autarky 0.003 percent of the time in the MPE and 0.01 percent of the time in the economy with a Ramsey

government. In addition, that occurs for income realizations that are more than 4 standard deviations below

the mean, for which either government almost never repays.
12The main role for the random variable U is to smooth out the Ramsey government’s objective function, so

we can exploit first-order conditions to compute the constrained efficient borrowing plan. The dependence

of the probability distribution of Ut on the income realization in the period is used in the quantitative

application, where we assume the expected continuation value under default coincides with the continuation

value implied by stochastic exclusion from debt markets and an endowment loss (as usually assumed in the
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As long as the government has not defaulted, it borrows by issuing long-term bonds as in

Hatchondo and Martinez (2009). A bond issued at t pays a coupon stream δ {(1− δ)s−1}∞s=1

in period t+ s, until the government defaults. Thus, the parameter δ ∈ [0, 1] determines the

exogenous debt duration. Bonds are priced by competitive risk-neutral lenders that discount

future payoffs at the rate r.

Timing. At the beginning of period t, the government observes the endowment yt and the

continuation value under defaulting Ut, and chooses whether to default. If the government

repays, it can issue bonds or save by buying back outstanding bonds. The government

announces an issuance volume and is committed to this announcement. Bonds are sold at

the price offered by risk-neutral competitive lenders. These standard timing assumptions

rule out multiplicity a là Calvo (Lorenzoni and Werning, 2019 and Navarro et al., 2018).

We also rule out self-fulfilling crises a là Cole-Kehoe (Conesa and Kehoe, 2017, Bocola and

Dovis, 2019).

The government makes economic decisions on behalf of the small open economy and its

objective is to maximize consumers’ welfare. We study two economies depending on when the

government chooses the number of bonds issued in each period: (i) the Markov government

chooses its borrowing sequentially, and (ii) the Ramsey government chooses in period 0 the

borrowing path contingent on future income histories.

2.1 Markov government

As long as it has not defaulted, the Markov government acting in period t chooses how

many bonds to issue in t. The only payoff-relevant state variables at the borrowing stage

are the income realization yt and the number of bonds outstanding at the beginning of the

period, which we denote by bt. The continuation value under default Ut carries no additional

information about the probability distributions of {Ut+s}∞s=1 and thus is not payoff-relevant

after the government has decided to repay. The government acting in t chooses its borrowing

to maximize

Et

∞∑
s=t

βs−tu (cs) .

quantitative default literature).
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The government acting in t cannot commit to future default and borrowing decisions.

Instead, it takes into account the strategies followed by future governments to evaluate how

current borrowing decisions will affect the future consumption stream.

We use V to denote the continuation value under repayment, x′ to denote the next-period

value of variable x, πj(y) = Pr (y′ = yj | y), and q denotes the bond price function. It is

optimal for the government to repay only when the realization of the continuation value

under defaulting U is below the continuation value under repayment V . Given this, we

compute the MPE by solving the following Bellman equation:

V (b, y) =Max
b′


u(c) + β

J∑
j=1

πj(y)



Repayment prob
for y′=yj︷ ︸︸ ︷

Fj (V (b′, yj))V (b′, yj) +
∫ ∞

V (b′,yj)
U fj(U)dU︸ ︷︷ ︸

Exp. cont. value under
default for y′=yj




(1)

s.t. c = y − δb+ q(b′, y) [b′ − (1− δ)b] ,

and

q(b′, y) =
1

1 + r

J∑
j=1

πj(y)Fj (V (b′, yj))
[
δ + (1− δ)q(b̂(b′, yj), yj)

]
. (2)

The budget constraint says that a government that has repaid in the current period,

pays δ coupons per outstanding bonds (b) and issues b′ − (1 − δ)b new bonds at a price

q. Competition in financial markets between risk-neutral lenders implies that lenders make

zero expected profits: in states where the government repays in the next period, bondholders

receive the coupon payment δ and can trade the claims to subsequent coupon payments (that

add up to 1− δ) at prices q(b̂(b′, yj), yj), which depend on the next-period income realization

y′ = yj and next-period borrowing b̂(b′, yj). The function b̂ solves the optimization problem

(1) for all b, y.13

13The government can accumulate assets by choosing b′ < 0. We still use equation (2) to price bonds in

those cases, which implies allowing the government to default on its assets. We follow this route to avoid

a discontinuity in the bond price function at b′ = 0, which would invalidate the general use of first-order

conditions to compute the solution of the Ramsey government’s problem. Given that we do not observe states

with b′ < 0 in the simulations of the economies with a Markov or a Ramsey government, the equilibrium

will not be affected by enabling the government to save at the risk-free rate.
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Appendix A provides a description of the Markov game and equilibrium definition that

support the above Bellman equation. We use the same equilibrium concept used in Aguiar

and Gopinath (2006), Arellano (2008), and the papers that followed them.

2.2 Ramsey government

In the Ramsey economy, the government acting in t > 0 does not control its borrowing.

Instead, it implements the borrowing level prescribed in the plan chosen by the Ramsey

government in period 0. On the other hand, the government acting in t > 0 decides whether

to repay in t and, as in the MPE, it chooses to repay when that yields a higher continuation

value than defaulting.

Let yt = {y0, ..., yt} denote the income history until period t and Y t denote the set of all

possible income histories until period t. In period 0, the Ramsey government chooses the

borrowing path for every future period and income history. That is, at t = 0, the Ramsey

government chooses the path b⃗ = {bt+1(y
t)}∞t=0 for all yt = {y0, ..., yt} ∈ Y t. This path will

be implemented until there is a default.

The Ramsey government may want to condition borrowing in t on the realization of

the continuation value under defaulting Ut in order to expand the repayment set, and thus

increase bond prices prior to t. We rule out this possibility mainly for tractability reasons.

If the Ramsey government could condition on (yt, Ut), kinks would appear in the Ramsey

government’s objective. Suppose there is a cutoff U∗
t (⃗b, y

t) at which the government acting

in t would be indifferent between repaying and defaulting. The government could expand the

repayment region with a borrowing rule bt+1(y
t, Ut) that increases the value or repayment Vt

only for realizations of Ut over a range (U∗
t (⃗b, y

t), U∗
t (⃗b, y

t) + ∆). In this case, the trade-offs

determining bt+1(y
t, Ut) would be different for Ut ∈ (−∞, U∗

t (⃗b, y
t)) and (U∗

t (⃗b, y
t), U∗

t (⃗b, y
t)+

∆). We discuss this possibility in Appendix B. In addition, while income has a clear empirical

counterpart (GDP) and borrowing rules that depend on GDP are observed in reality (consider

for example escape clauses in some fiscal rules), it is unclear how to map the utility cost of

defaulting to a verifiable variable that could affect borrowing rules.

The continuation value under repayment, Vt, is determined by the borrowing path chosen
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by the Ramsey government, namely

Vt(⃗b, y
t) = u(ct(⃗b, y

t)) + β
J∑

j=1

πj(yt)
[
Fj(Vt+1,j)Vt+1,j +

∫∞
Vt+1,j

Ufj(U)dU

]
(3)

where Vt+1,j = Vt+1

(⃗
b, (yt, yj)

)
, and

ct(⃗b, y
t) = yt − δbt(⃗b, y

t−1) + qt(⃗b, y
t)
[
bt+1(⃗b, y

t)− (1− δ)bt(⃗b, y
t−1)

]
, (4)

where to simplify notation, we write the value of repayment at t as a function of the entire

borrowing path b⃗, even though Vt only depends on the initial debt in t bt and the borrowing

path that follows after history yt. The government acting in period t defaults whenever the

realization of the continuation value under defaulting Ut is higher than Vt(⃗b, y
t).

Investors observe the borrowing plan b⃗ and price bonds accordingly. The equilibrium

bond price follows the recursion

qt(⃗b, y
t) =

J∑
j=1

πj(yt)Fj

(
Vt+1

(⃗
b, (yt, yj)

)) [
δ + (1− δ)qt+1

(⃗
b, (yt, yj)

)]
1 + r

(5)

for all t = 0, 1, ....

Let U denote the Ramsey government’s objective function evaluated in the initial period.

This function depends on consumption flows under repayment for histories (yt, U t) without

a default and on the continuation value under default Ut for histories (yt, U t) where the

government defaults in t. Formally,

U (⃗b, y0) = u(c0) +
∞∑
t=1

βt
∑

yt∈Yt

Pr(yt)
t−1∏
n=1

FI(n,yt)(Vn(⃗b, y
n))

 FI(t,yt)(Vt(⃗b, y
t))u(ct(⃗b, y

t))

+
∫∞
Vt (⃗b,yt)

U fI(t,yt)(U)dU

 ,
(6)

where I(n, yt) denotes the income realization index in period n < t for an income history

yt, Pr(yt) denotes the probability of observing an income history yt given y0, and yn the

sub-history of income realizations until period n given yt. The government derives utility

u(ct(⃗b, y
t)) in period t after repaying and expects

∫∞
Vt (⃗b,yt)

U fI(t,yt)(U)dU after defaulting.

Both scenarios are relevant only if the government repays in every period before t, which

occurs with probability
∏t−1

n=1 FI(n,yt)(Vn(⃗b, y
n)).
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The Ramsey government’s optimization problem consists of

Max
b⃗

U (⃗b, y0) (7)

s.t. (3), (4), and (5).

3 Optimality conditions

This section presents the optimality conditions for both the Markov and the Ramsey gov-

ernments. For the Markov government, we do not establish that the objective function is

differentiable. We only assume differentiability of q and V w.r.t. b′ to illustrate the trade-off

faced by each government. We do not rely on the optimality conditions to solve for the MPE

numerically. In contrast, for the Ramsey government, we show that the objective function

is differentiable.

3.1 Optimality condition for the Markov government

The next equation presents the standard optimality condition for the Markov government:

u′(c)

[
q(b′, y) +

∂q(b′, y)

∂b′
ι

]
︸ ︷︷ ︸

Marginal proceeds from
issuing an extra bond

= β
J∑

j=1

πj(y)Fj(V
′
j )u

′(c′j)
[
δ + (1− δ)q′j

]
, (8)

where V ′
j = V (b′, yj), q

′
j = q

(
b̂(b, yj), yj

)
, c′j = ĉ(b, yj), and we use ι = b′− (1− δ)b to denote

the number of bonds issued in the period. The above equation uses the envelope condition

∂V (b, y)/∂b = −u′(c)[δ + (1− δ)q(b̂(b, y), y)].

The left-hand side of equation (8) represents the current marginal benefit from issuing

an extra bond. The government collects q(b′, y) + ∂q(b′, y)/∂b′ι additional units of the con-

sumption good when it issues an extra bond, where the second term shows it is costly for

the government to lower the current bond price, which lowers the proceeds the government

obtains from issuing bonds. To measure the effect on welfare of issuing an extra bond, the

marginal change in current consumption is weighted by the current consumption valuation

u′(c).

The right-hand side of equation (8) represents the cost of transferring more debt to future

periods. In the states in which the government repays in the next period, it pays the coupon
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δ and carries a stream 1− δ of coupon obligations to future periods. The value of the latter

is q
(
b̂(b, yj), yj

)
for y′ = yj.

3.2 Optimality condition for the Ramsey government

We first establish differentiability of the Ramsey government’s objective (the proof of Propo-

sition 1, which illustrates the role played by the shocks Ut in ensuing differentiability, is

presented in Appendix C.1):

Proposition 1. U is continuously differentiable w.r.t. bt+1(y
t) for all t = 0, 1... and yt ∈ Y t.

Differentiability implies that the optimal borrowing path chosen by the Ramsey govern-

ment satisfies the following condition for bt+1(ỹ
t), for t=0,1,... and all ỹt ∈ Y t (to simplify

notation, we spared the arguments of cs, qs, and Vs for s ≤ t):

Effect of bt+1(ỹt) on utility flows before t along the income path y0,ỹ1,...ỹt︷ ︸︸ ︷
∂

[
u(c0) +

t−1∑
k=1

βkPr(ỹk)
k−1∏
n=1

FI(n)(Vn)
[
FI(k,ỹt)(Vk)u(ck) +

∫∞
Vk
U fk(U)dU

]]
∂bt+1(ỹt)

+

βtPr(ỹt)
t∏

n=1

FI(n,ỹt)(Vn)︸ ︷︷ ︸
Prob of arriving at
t without defaults

×

 u′(ct)
[
qt +

∂qt
∂bt+1(ỹt)

ιt
]
− β

∑J
j=1 πj(ỹt)×

Fj(Vt+1,j)u
′(ct+1,j) [δ + (1− δ)qt+1,j]


︸ ︷︷ ︸

Effect of bt+1(ỹt) on Vt: it resembles the optimality
condition for the Markov government

= 0, (9)

with Vt+1,j = Vt+1(⃗b, (ỹ
t, yj)), qt+1,j = qt+1(⃗b, (ỹ

t, yj)), ct+1,j = ct+1(⃗b, (ỹ
t, yj)), and ιt(⃗b, ỹ

t) =

bt+1(⃗b, ỹ
t)− (1− δ)bt(⃗b, ỹ

t−1) denotes the number of bonds issued in period t after history ỹt.

Comparing equations (8) and (9) illustrates the time inconsistency problem in the stan-

dard default model with long-term debt. The Ramsey government considers the effect that

debt choices in period t (bt+1(ỹ
t)) have on utility flows prior to t. This is represented by

the first line in equation (9). In contrast, as illustrated in equation (8), the Markov govern-

ment acting in t only takes into account the effects of changing consumption in t and t+ 1.

The second line in equation (9) shows that the Ramsey government also considers the same

trade-off considered by the Markov government acting in t: borrowing more in t allows for

more consumption in t at the expense of lowering consumption in t+ 1.
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Sufficiency of the first-order condition. We do not show that U is concave and con-

dition (9) is sufficient for finding the optimum. In the numerical application, we calculate

∂U/∂bt+1(ỹ
t) for a range of bt+1(ỹ

t) and approximate the shape of U(..., bt+1(ỹ
t), ...) over that

range to verify we are finding a global maximum (Appendix D provides more details).

3.2.1 Recursive optimality condition for the Ramsey government

In this subsection we first show the cumulated effects of borrowing in t on utility flows

prior to t can be condensed in two single dimensional state variables that follow recursive

laws of motion. Second, we show that under a condition that we numerically verify in our

quantitative application, those two variables can be condensed into one, which enables us to

find the constrained efficient allocation by solving a recursion with only one additional state

variable relative to the MPE.

Note first that the Ramsey government’s commitment to borrow an extra unit in t after

history yt = (yt−1, yi) affects (i) qt(⃗b, y
t) by changing the repayment probability in t+ 1 and

(ii) the repayment probability in t by changing the value of repayment in t, Vt(⃗b, y
t). Thus,

the effect of bt+1(y
t) on the price of debt in period t − 1 for history yt−1 can be written as

function of the effect of bt+1(y
t) on qt and Vt:

∂qt−1(⃗b, y
t−1)

∂bt+1(yt)
=

Effect of changing the repayment probability in t+ 1 on qt−1︷ ︸︸ ︷
Pr(yi | yt−1)Fi

(
Vt(⃗b, y

t)
)(1− δ

1 + r

)
∂qt(⃗b, y

t)

∂bt+1(yt)

+Pr(yi | yt−1)fi
(
Vt(⃗b, y

t)
)δ + (1− δ)qt(⃗b, y

t)

1 + r

 ∂Vt(⃗b, y
t)

∂bt+1(yt)
.

︸ ︷︷ ︸
Effect of changing the repayment probability in t on qt−1

(10)

More generally, bt+1(y
t) affects the price of debt in every previous period t−n for subhistories

yt−n through ∂qt (⃗b,yt)
∂bt+1(yt)

and ∂Vt (⃗b,yt)
∂bt+1(yt)

. Proposition 2 shows how the effects of bt+1(y
t) on utility

flows until t − 1 can be expressed as a weighted sum of ∂qt (⃗b,yt)
∂bt+1(yt)

and ∂Vt (⃗b,yt)
∂bt+1(yt)

, and that the

weights follow a recursive structure (the proof is in Appendix C.2).

Proposition 2. The optimal borrowing plan for the Ramsey government b⃗∗ satisfies first

order conditions

hqt (⃗b
∗, yt)

∂qt(⃗b
∗, yt)

∂bt+1(yt)
+ hVt (⃗b

∗, yt)
∂Vt(⃗b, y

t)

∂bt+1(yt)
= 0 (11)
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for all t and yt = (yt−1, yi) ∈ Y t, with

hqt =
(1− δ)Fi (Vt)

1 + r

[
hqt−1 + u′(ct−1)ιt−1h

V
t−1

]
, (12)

hVt =
fi (Vt) [δ + (1− δ)qt]

1 + r

[
hqt−1 + u′(ct−1)ιt−1h

V
t−1

]
+ βFi (Vt)h

V
t−1, (13)

with initial values hq0(⃗b
∗, y0) = 0 and hV0 (⃗b

∗, y0) = 1, and ιt(⃗b
∗, yt) = b∗t+1(y

t)−(1−δ)b∗t (yt−1).

To simplify notation, the arguments (⃗b∗, yt) and (⃗b∗, yt−1) of variables in period t and t − 1

are omitted in equations (12)-(13).

The term hqt factors how a change in qt affects expected utility flows from period 0 until

period t− 1, while hVt factors how a change in Vt affects expected utility flows from period

0 until period t − 1, plus the direct effect of changing Vt on U . Equations (12)-(13) show

that the laws of motion for those terms can be expressed as non-linear functions of variables

in periods t − 1 and t. This enables us to recast the optimality condition for the Ramsey

government using a recursive structure.

Law of motions for hq and hV . When contracting more debt in t increases the default

probability in t+1, it reduces qt. A lower qt reduces bond prices prior to period t. In equation

(12), the direct effect of changing qt on bond prices prior to t − 1 is captured by hqt−1. In

addition, if qt−1 changes, that affects ct−1 and thus the value of repaying in t− 1. The effect

of that on utility flows prior to t− 1 is captured by hVt−1 (and weighted by u′(ct−1)ιt−1).

Contracting more debt in t changes consumption in t and thus the continuation value Vt

and the repayment probability in t. The change in the repayment probability in t affects

bond prices and utility flows until t−1. As discussed in the previous paragraph, these effects

are captured by hqt−1 + u′(ct−1)ιt−1h
V
t−1, as presented in the first term of the law of motion

(13). The second term in (13) arises because by changing Vt, contracting more debt in t also

changes Vt−1 and the repayment probability in t − 1, and the effect of that on utility flows

prior to t− 1 is captured by hVt−1.

Equations (11)-(13) in Proposition 2 are possible because of the recursive structure of

the bond price function (5), which in turn is the result of the assumption of geometrically

declining coupon payments.
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A formulation with only one state variable. As hinted by equation (11), what matters

for the optimality condition is the relative weight on ∂qt(⃗b, y
t)/∂bt+1(y

t) and ∂V (⃗b, yt)/∂bt+1(y
t).

If hVt (⃗b, y
t) ̸= 0, we can define the variable

ht(⃗b, y
t) =

hqt (⃗b, y
t)

hVt (⃗b, yt)
+ u′(ct(⃗b, y

t))ιt(⃗b, y
t) (14)

that encapsulates the relative effects of changing bond prices in period t on utility flows

until period t. Armed with that auxiliary variable, the following lemma provides a simplified

version of the optimality condition (the proof is in Appendix C.2).

Lemma 3. If hVt (⃗b, y
t) ̸= 0 for all t = 0, 1, ... and yt = (yt−1, yi) ∈ Y t, the optimal borrowing

path for the Ramsey planner satisfies

u′(ct)qt +
∂qt

∂bt+1(yt)
ht − β

J∑
j=1

πj(yi)Fj (Vt+1,j)u
′(ct+1,j)[δ + (1− δ)qt+1,j ] = 0, (15)

with the following law of motion for h:

ht =
Fi (Vt) (1− δ)ht−1

fi (Vt) [δ + (1− δ)qt]ht−1 + β(1 + r)Fi (Vt)
+ u′(ct)ιt. (16)

The terms Xt+1,j refer to functions Xt+1(⃗b, (y
t, yj)) for X = V, q, c. We also omitted the

arguments for variables in periods t− 1 and t to simplify notation.

Equation (16) shows that the history variable ht consists of a non-linear function of

bond issuances until period t weighted by their corresponding consumption valuations. It

represents the welfare cost of reducing the bond price in period t (hqt ) relative to the one

of changing Vt (h
V
t ), as presented in equation (14). Those welfare costs consist of current

and prior consumption sacrifices derived from lowering the prices at which debt is issued in

periods t− n with n = 0, 1, ...t.

Comparing the Markov and Ramsey optimality conditions. There are three differ-

ences between the Ramsey optimality condition (15) and the one for a Markov government

(8). First, the Ramsey government weights the bond price derivative in t by ht and the

Markov government by u′(ct)ιt. This means that if ht−1 > 0 (as it is always the case in the
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simulations) and thus ht > u′(ct)ιt, the bond price derivative is weighted by a higher num-

ber in the Ramsey optimality condition, indicating that the marginal cost of issuing debt is

higher for the Ramsey government than for the Markov government. This captures the main

difference between the two optimization problems: the Ramsey government internalizes the

welfare effect of changing the proceeds from bond sales in all periods up to t, but the Markov

government only internalizes the welfare effect of changing the proceeds from bond sales in

t.

Second, the derivative ∂qt
∂bt+1(yt)

in the Ramsey condition computes the effect of changing

the debt stock in t + 1 alone, keeping the subsequent debt path after t + 1 constant. This

implies that changes in bt+1(y
t) only affect the default probability in t. In contrast, the

derivative ∂q/∂b′ in the Markov condition takes into account how changes in the debt stock in

the next period (b′) affect future debt paths. This implies that when the Markov government

increases bt+1, it affects all default probabilities after t.

Third, given that the path of future default probabilities are differentially affected, qt+1,j

are different from their counterparts in the MPE. Since the debt path from period t + 2

onwards is unaffected by changes in bt+1(y
t), no default probability after t + 1 is affected,

and thus the bond prices qt+1,j are invariant to changes in bt+1(y
t). In contrast, in the

MPE, next-period bond prices change with b′ because all future default probabilities are

affected. This introduces a discrepancy in the marginal cost of increasing bt+1(y
t), which is

β
J∑

j=1
πj(y)Fj (Vt+1,j)u

′(ct+1,j)[δ + (1− δ)qt+1,j] after using the envelope condition.

The above discussion means that if h = 0 (for instance, in period 0 or after a default),

the trade-offs in the optimality conditions for the Ramsey and Markov government coincide:

the derivative of the bond price is only weighted by the marginal utility and issuances in the

current period. However, the debt choice need not coincide because ∂qt/∂bt+1(y
t) and qt+1,j

are different from their counterparts in the MPE.

Comparison with one-period debt. Comparing equations (8) and (15) also shows that

with one-period debt (δ = 1), the incentives of the Ramsey and Markov governments coin-

cide. If δ = 1, ht = u′(ct)bt+1 and h is no longer a relevant state variable.
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Law of motion for h. Equation (16) shows that ht is higher for states with a high

repayment probability Fi(Vt). The reason is that borrowing has a larger effect on prior bond

prices after reaching a state with a high repayment probability, and it is thus optimal for

the Ramsey government to borrow less after transiting through those states.

Equation (16) also shows that ht decreases with respect to the density fi(Vt).
14 A higher

value of the p.d.f. fi(Vt) means the repayment probability is more sensitive to increases in

the continuation value Vt, inducing the Ramsey government to increase Vt by allowing for

more borrowing in t and in subsequent periods (a lower ht achieves that by lowering the

marginal cost of borrowing in t).

Finally, equation (16) shows that for states with high marginal utility or with a high

number of bonds issued, ht takes a higher value. Recall that in the optimality condition,

ht represents the marginal cost of lowering the bond price. Intuitively, the Ramsey planner

wants to increase the price at which it issues debt in states with high consumption valuation

and/or a high debt issuance. A higher ht achieves that by lowering borrowing in subsequent

periods. Note also that ht is higher when ht−1 is higher, and ht−1 is higher when previous

states in the history feature high consumption valuation and/or high debt issuance. This

effect from consumption valuations and debt issuance in previous periods is absent in the

MPE.

Recursive representation with state variable h. Armed with Lemma 3, we find the

constrained efficient borrowing plan by solving the recursion below, which requires keeping

track of the history variable h in addition to the state variables used in the MPE. Formally,

we find the repayment value V , bond price q, and policies
{
ĉ, b̂, ĥ

}
that satisfy the following:

14This assumes ht > 0, which is always true in our simulations.
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1) V solves

V (b, yi, h) = u(c) + β
∑
j

πj(yi)

[
Fj

(
V ′
j

)
V ′
j +

∫
V ′
j

Ufj(dU)

]
(R)

subject to the resource constraint:

c = yi − δb+ q(b′, yi, h
′)ι, with b′ = (1− δ)b+ ι; (Rc)

the necessary condition for an optimum:

u′(c)q(b′, yi, h
′) + ∆q(b

′, yi, h
′)h′ − β

∑
j

πj(y)Fj(V
′
j )u

′(c′j)
(
δ + (1− δ)q′j

)
= 0, (Rb′)

where the function ∆q(b
′, yi, h

′) = −
∑

j πj(yi)fj(V
′
j )u

′(c′j)
(
δ + (1− δ)q′j

)2
1 + r

V ′
j = V (b′, yj, h

′), c′j = ĉ(b′, yj, h
′), q′j = q

(
b̂(b′, yj, h

′), yj, ĥ(b
′, yj, h

′)
)
;

and the law of motion for h :

h′ =
Fi(V (b, yi, h))(1− δ)h

fi(V (b, yi, h)) [δ + (1− δ)q(b′, yi, h′)] + β(1 + r)Fi(V (b, yi, h))
+ u′(c)ι, (Rh′)

for all (b, yi, h) given
{
q, ĉ, b̂, ĥ

}
;

2) the policy functions
{
ĉ, b̂, ĥ

}
satisfy equations (Rc), (Rb′), and (Rh′), for all (b, yi, h)

given {q, V }; and

3) the bond price q satisfies

q(b′, yi, h
′) =

1

1 + r

∑
j

πj(yi)Fj(V (b′, yj, h
′))
[
δ + (1− δ)q

(
b̂(b′, yj, h

′), yj, ĥ(b
′, yj, h

′)
)]

for all (b′, yi, h
′) given

{
b̂, ĥ, V

}
.

Equation (Rh′) is based on the law of motion for the history variable in equation (16).

The recursion above uses h to denote ht−1 in terms of equations (15)-(16). The advantage

of this approach is that we only need to solve for one value of h′. If instead we had chosen h

to represent ht, we would have had to solve for J equations determining h′j for each possible

income realization in the next period.

The necessary condition for optimum in equation (Rb′) is based on equation (15) and the

bond price derivative function ∆q is based on

∂qt(⃗b, y
t)

∂bt+1(yt)
=

−
J∑

j=1
πj(y)fj (Vt+1,j)u

′(ct+1,j)[δ + (1− δ)qt+1,j]

1 + r
.
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The policy functions
{
ĉ, b̂, ĥ

}
are found by solving the system of equations (Rc), (Rb′),

and (Rh′), which requires solving for non-linear equations in (b′, h′). We find there is a

unique solution to both equations for our baseline parameterization. Furthermore, we verify

that the sign of the left-hand side of equation (Rb′) changes from positive to negative around

the unique root, indicating we are finding a global maximum. Appendix D describes our

numerically algorithm.

4 Calibration

We present a standard calibration such that the simulations of the MPE match data from

Mexico. Mexico is a common reference in the default literature because its business cycle

displays the same properties that are observed in other economies with sovereign default risk

(Aguiar and Gopinath, 2007; Neumeyer and Perri, 2005). Unless otherwise specified, we use

quarterly data from 1993 to 2018.

The utility function displays a constant coefficient of relative risk aversion, that is,

u (c) =
c1−γ − 1

1− γ
, with γ ̸= 1.

The income process is a discretization of log(yt) = ρlog(yt−1) + (1− ρ)µ+ εt.

We endogenize the mean continuation utility of defaulting V D(y) by incorporating the

standard assumptions on the cost of defaulting from the quantitative default literature:

stochastic exclusion from debt markets and income losses. The continuation utility of de-

faulting U incorporates a gaussian shock to V D(y): U ∼ N(V D(y), σU), where

V D(y) = u(y(1− d0 − d1y)) + β
∑
j

πj(y)
[
ψV (0, yj, 0) + (1− ψ)V D(yj)

]
, (17)

and V denotes the continuation value under repayment in equations (1) or recursion (R),

for the Markov and Ramsey governments, respectively. The exclusion period is stochastic,

with ψ denoting the probability of exiting this period. While the economy remains excluded,

the government looses a proportion d0 + d1y of its income. As in Chatterjee and Eyigungor

(2012), having two parameters in the cost of defaulting gives us the flexibility to match the

levels of debt and spread in the data. Note that in equation (17), the history variable h resets

to 0 after a default. This assumption rules out the possibility of the Ramsey government
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Table 1: Parameter values.

Previous literature or estimated Calibrated to match targets

r 0.01 Standard σU 0.1 Std spread = 2.4%

β 0.97 Standard d0 0.17 Avg debt = 44.2%

ρ 0.94 Mexico GDP d1 1.2 Avg spread = 3.3%

σε 1.5% Mexico GDP γ 4.2 σ(c)/σ(y) = 1.1

µ −0.5σ2
ε E(y) = 1

ψ 0.083 E(excl. duration) = 3 years

δ 0.035 Debt duration = 4.8 years

manipulating the cost of defaulting with post-default borrowing promises.

Table 1 presents the values given to all parameters in the model. A period in the model

refers to a quarter. The value of the risk-free rate and the domestic discount factor are

standard in quantitative business cycle and sovereign default studies. Note that assuming

β(1+r) < 1 gives the government incentives to borrow. The parameter values that govern the

endowment process are chosen to mimic the cyclical component of the log-linearly detrended

GDP in Mexico from 1980 to 2014. Setting δ = 0.035 and targeting Mexico’s level of

sovereign spreads, implies an average debt duration in the simulations of 4.8 years, roughly

the average duration of public debt in Mexico.15

Our modeling of the continuation utility of defaulting requires calibrating the value of

an additional parameter relative to other quantitative papers: the volatility of the utility

cost, σU . In order to calibrate this parameter, we choose to add as a target the volatility

of the sovereign spread, a statistic of interest for our exercise that is strongly affected by

σU (Appendix G.2). The targets for the mean and the standard deviation of the spread are

3.3% and 2.3%, respectively, and corresponds to the J.P. Morgan EMBI spread from the first

quarter of 1994 to the first quarter of 2018. As in Bianchi et al. (2018), we make the domestic

risk aversion part of the calibration. This is a key parameter determining the government’s

willingness to tolerate consumption fluctuations and thus the optimal cyclicality of fiscal

15We use the Macaulay definition of duration. The data for duration corresponds to the average Modified

Duration for Mexican government bonds computed by J.P. Morgan between January 2002 and March 2018.
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policy. Overall, we use the simulations to calibrate the value of four parameters: the values

for the default cost d0 and d1 mainly determine the average debt and spread levels (Hatchondo

and Martinez, 2017), σU mainly determines the spread volatility, and γ is determined mainly

by the consumption-volatility target.

5 Quantitative results

Subsection 5.1 shows that the economy with a Ramsey government features a significantly

lower spread but a higher average market value of debt claims, and that the welfare gain from

permanently switching to an economy with a Ramsey government ranges from 0.3% to 0.7%.

Subsection 5.2 shows that the Ramsey government reduces borrowing in low-income states

where bond prices are more sensitive to borrowing, and expands borrowing in the remaining

states. Subsection 5.3 shows the borrowing path chosen by the Ramsey government can be

sustained with a trigger to the MPE. Subsection 5.4 shows that compared with a Markov

government, the Ramsey government has a higher probability of completing a successful

deleveraging (without default), even when smoothing out the initial adjustment. Subsection

5.5 discusses two robustness exercises that show: i) that our main quantitative findings do

not depend on the assumed debt duration and that the optimal ex-ante debt duration is

significantly higher for the Ramsey government than for the Markov government, and ii)

that the role of shocks to the utility of defaulting.

5.1 Default risk and welfare

Table 2 reports long-run moments in the data and in the simulations. The table shows

that the constrained efficient allocation features a significantly lower spread than the MPE.

Compared with the Markov government, the Ramsey government eliminates more than 80%

of both the average level and the volatility of the sovereign spread. While the mean debt

level is lower with the Ramsey government, the mean market value of debt claims is higher,

indicating that on average the Ramsey government does not borrow less (this is illustrated

in the right panel of Figure 2). Our assumption of risk neutral lenders and competitive

debt market implies that the market value of debt equals the present discounted value of

net payments to lenders, so the market value of debt is a better gauge of the expected debt
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Table 2: Data and model simulations

Data Markov Ramsey One-period

Mean debt (% ) 44.2 44.0 39.5 26.6

Mean debt mkt. value (%) 37.7 38.2 26.4

Mean spread (in %) 3.3 3.3 0.5 0.2

Std dev spread 2.4 2.4 0.4 0.7

Corr(spread, y) -0.4 -0.8 -0.8 -0.5

σ(c)/σ(y) 1.1 1.1 1.4 1.4

We simulate 1,000 samples of 500 periods (quarters) each, and then select

samples of 88 periods without defaults and with the last default occurring at

least 30 periods before the beginning of the sample. We report the average

value of each moment. The debt level in the simulations is calculated as

the present value of coupon payments discounted at the risk-free rate, i.e.

bδ/(r + δ). The market value of debt corresponds to q × b. Debt ratios are

computed using annualized income levels.

payments than the face value of debt.

Welfare gains. The left panel of Figure 2 presents welfare gains between 0.3% to 0.7%

from permanently switching from the MPE to an economy where borrowing is decided by the

Ramsey government. By correcting the time inconsistency problem, the Ramsey government

can achieve a better allocation of resources across time and states. Given a β(1 + r) < 1

parameterization (as in most of the quantitative literature on sovereign default), a better

allocation is characterized by higher consumption in earlier periods, as illustrated in the

right panel of Figure 2.

Table 3 present the sources of welfare gains following Aguiar et al. (2020) (details are

presented in Appendix E. The decomposition of welfare gains is computed using consumption

paths and does not incorporate the welfare effects of the shocks to the continuation value

under defaulting, which are present when comparing value functions (first line). The first

two lines of Table 3 show that shocks to the continuation value under defaulting do not play

a significant role in welfare comparisons. The table illustrates that most of the welfare gains
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Figure 2: Welfare and net borrowing. The initial levels of debt and the history variable h are assume

to be zero. Welfare gains are measured as the permanent proportional change in consumption that

would leave consumers indifferent between staying in the economy with a Markov government and

moving either to an economy with a Ramsey government or to an economy in which the government

only issues one-period debt (δ = 1 and all other parameter values as in the benchmark calibration).

The right panel illustrates the average net transfer the economy receives from lenders in periods

with repayment.

are accounted for by the lower default frequency with a Ramsey government, which reduces

the deadweight costs of defaulting. The second contributor to welfare gains stems from a

more front-loaded consumption profile. The more volatile consumption process implemented

by a Ramsey government has a negative contribution to welfare.

If the government only issues one-period bonds, there is no time inconsistency in bor-

rowing decisions (Aguiar and Amador, 2019). Table 2 shows that in this case default risk is

lower than in our benchmark MPE with long-term debt, but Figure 2 shows welfare is also

lower. This is, consumers are better off with a Markov government that issues debt with

a duration of 4.8 years than with one that issues one-period debt. While one-period debt

eliminates time inconsistency in borrowing decisions, it magnifies the exposure to shifts in

borrowing opportunities. When the government issues only one-period bonds, it has to roll

over its debt every period, and thus it is more vulnerable to adverse income shocks that

contract its borrowing set. The optimal response to this source of risk is to issue less debt

and reduce consumption frontloading (right panel of Figure 2).
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Table 3: Decomposition of welfare gains

Welfare gain y0 = E(y)− 2σ(y) y0 = E(y) y0 = E(y) + 2σ(y)

From value functions 0.52 0.45 0.36

From consumption paths 0.55 0.47 0.37

From lowering income losses during default 0.38 0.33 0.26

From lowering consumption volatility -0.12 -0.11 -0.10

From tilting consumption 0.30 0.25 0.21

Welfare gains from consumption paths are obtained using simulations of 25,000 samples of 750 periods

each. All simulations start from an initial period with zero debt, h0 = 0, and an initial continuation value

under defaulting for which the government prefers to repay in t = 0 in both economies. The three bottom

lines are computed using consumption paths.

5.2 Borrowing incentives and the cyclicality of fiscal policy

The top-left panel of Figure 3 shows that the borrowing policies of both the Markov and

Ramsey governments are hump-shaped across income levels, with less issuances at high and

low income realizations. Two opposing forces determine how equilibrium borrowing depends

on the income level. On the one hand, as in models without default, borrowing is shaped

by consumption-smoothing incentives. This implies that borrowing is lower when income is

higher, as occurs for high income levels in the figure.

On the other hand, the main difference between the first-order conditions in default

models (equations 8 and 11) and in models without default risk, is that in default models,

borrowing may increase default risk and thus may lower the price of debt, weakening in-

centives to borrow. The top-right panel of Figure 3 shows that the effect of borrowing on

the bond price is stronger for lower income levels.16 If income is sufficiently low, this effect

becomes dominant, and equilibrium borrowing is typically increasing with respect to income.

16The top-right panel of Figure 3 also shows that the derivative of the bond price is lower in the economy

with a Markov government. In this economy, adding more debt in t has a persistent effect on the debt

stock and thus raises the default probability also in subsequent periods. This is the case because unlike the

Ramsey government, the Markov government acting in t does not control subsequent borrowing.
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Figure 3: Cyclicality of fiscal policy. All functions plotted assume initial debt levels bt equal to

the mean debt in the simulations of each of the two economies, and history variable ht equal to

the average in the simulations of the economy with a Ramsey government. The range of income

realizations included in the plots is such that the equilibrium repayment probability for Fi(Vt) is

above 5 percent in each of the two economies. Income takes values in a discrete set but to facilitate

the comparison across economies, continuous lines are used to illustrate functions for the Ramsey

government.
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The top-left panel of Figure 3 also shows a jump in borrowing by the Ramsey government

at the lowest income realizations. The optimality condition (11) shows that the Ramsey

government weights the effect of the derivative of the bond price by hqt/h
V
t , which in turn

depends on the repayment probability Fi(Vt). Intuitively, the Ramsey government is less

concerned about lowering the bond price for income realizations where repayment is unlikely.

This occurs because lowering the bond price in those states has a small effect on bond prices

and welfare in previous periods. The bottom-right panel of Figure 3 shows that for the

lowest income realizations, Fi(Vt) and thus hqt/h
V
t are low, lowering the cost of borrowing for

the Ramsey government.

Table 2 shows that with either the Markov or the Ramsey government, consumption

volatility is higher than the volatility of income. This indicates that the government tends

to borrow less when income is lower. This is, governments prefer to conduct a procyclical

fiscal policy.

Table 2 also shows that consumption volatility is higher with the Ramsey government,

indicating that the Ramsey government prefers a more procyclical fiscal policy. This is

further illustrated in the left panels of Figure 3. Lower debt issuances at lower income in

the top-left panel lead to consumption being more sensitive to income (bottom-left panel).

The Ramsey government curbs borrowing more than the Markov government at mod-

erately lower income levels because those are the states where both, bond prices are more

sensitive to borrowing, and prior welfare is more sensitive to changes in bond prices. In effect,

the top-right panel of Figure 3 shows that the derivative ∂qt/∂bt+1 becomes significantly neg-

ative in the Ramsey economy for yt < 0.96, while the bottom-right panel shows that hqt/h
V
t

is significantly away from zero for yt > 0.92. Thus, for 0.92 < yt < 0.96, it is optimal for

the Ramsey government to curb borrowing more than the Markov government. Since the

Ramsey government curbs borrowing more for relatively low levels of income, it implements

a fiscal policy that is more procyclical than the one chosen by the Markov government.

In the economy with a Ramsey government, for income realizations above the mean,

∂qt/∂bt+1 ≃ 0 (top-right panel of Figure 3). The nearly zero value of this derivative reflects

that, at high income realizations, the debt chosen by the Ramsey government commands

almost no default risk for the next period and, given a gaussian distribution for Ut+1, default

risk is insensitive to borrowing at the margin. Therefore, for income levels higher than the
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Figure 4: Debt issuance in the simulation periods used to compute the moments in Table 2.

mean, the Ramsey government does not have significant incentives to issue less debt than

the Markov government.

Finally, the top-left panel of Figure 3 shows that in contrast to the Markov government,

the Ramsey government may choose to buy back debt. While the Markov government does

not benefit from the increase in bond prices implied by a buyback in the current period

(Aguiar et al., 2019; Bulow and Rogoff, 1988, 1991), the Ramsey government may find it

optimal because it internalizes the benefits that the increase in bond prices in t has on utility

flows before t.

Higher borrowing dispersion with a Ramsey government. Figure 4 illustrates the

distribution of bond issuances in the simulations. The borrowing path chosen by the Ramsey

government entails a significant dispersion even after conditioning for income, underscoring

the importance of a history variable for disciplining borrowing. The figure also shows that

Ramsey borrowing is more dispersed mostly at low income realizations. As explained before,

it is in low income states where the bond price is more sensitive to borrowing (top-right

panel of Figure 3) and, thus, where dispersion in the history variable h generates borrowing

dispersion. The higher borrowing dispersion at lower income levels with a Ramsey govern-

ment is reflected in the higher consumption dispersion reported in Table 2. Finally, Figure

4 shows that the Ramsey government finds it optimal to repay at (low) income realizations

at which the Markov government never repays. This enables the Ramsey government to

borrow to buffer consumption drops over that income range.
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Cross country evidence of ∂q/∂b′. The policy prescription implied by the previous

results is that implementing the constrained efficient allocation necessitates restricting debt

issuances–a Markov government would choose–in states with a higher sensitivity of bond

prices (spreads) to the debt level. Regardless of the government’s type, in the model, the

spread is more sensitive to the debt level in states with lower income levels, which (as in the

data) coincide with higher spreads (see Table 2). This feature of the model seems consistent

with the data. In a panel of 33 emerging economies, we find that the spread increases more

with debt in years with high spread (at less than 1% statistical significance). The spread also

increases more with debt in years with low growth, albeit at a weak statistical significance

(less than 17%). Appendix F presents more details about these findings, showing that the

MPE captures remarkably well the relationship between debt, spread, and income in the

data. This makes the model a plausible laboratory for policy exercises.

5.3 Commitment to the borrowing plan chosen by the Ramsey
government

Assume that if the government acting in t deviates from the borrowing plan designed by

the Ramsey government in the initial period (or after a default), the government loses all

credibility to future borrowing commitments. Namely, the economy permanently switches to

the MPE. Figure 5 shows the distribution of welfare gains of those deviation across income

realizations.17 The figure shows that a trigger to the MPE suffices to enforce the Ramsey

government’s borrowing plan. The lowest welfare losses after permanently deviating to

the MPE correspond to moderately lower income levels, at which the Ramsey governments

constrains borrowing the most.

17Formally, let V R (V M ) denote the value of repayment with a Ramsey (Markov) government, and V D,R

(V D,M ) the expected value of defaulting with a Ramsey (Markov) government. Let the value of defaulting in
t in the economy with a Ramsey government be denoted as UR

t = V D,R(yt)+εUt , and the value of defaulting
in t in the economy with a Markov government be denoted as UM

t = V M,R(yt) + εUt . We assume the
innovation to the value of defaulting εUt does not depend on the type of government in office. We compute[

Max
{
V M (bt, yt), V

D,M (yt) + εUt
}

V R(bt, yt, ht)

] 1
1−σ

− 1

for simulation periods in the economy with the Ramsey government in which the government is not excluded
and V R(bt, yt, ht) ≥ V D,R(yt) + εUt . The above calculation allows the government acting in t to choose the
best deviation in the MPE, which may be defaulting.
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Figure 5: Welfare gains from permanently switching from the allocation chosen by the Ramsey

government to the MPE. Gains are computed using all simulations periods with repayment in the

economy with the Ramsey government.

5.4 Deleveraging

The COVID-19 outbreak has caused significant increases in budget deficits, sending public

debt ratios to historically record levels, as illustrated in Figure 1. This episode will likely fos-

ter discussions about the best strategies to unwind those high debt levels. In this subsection

we compute the debt path a Ramsey government would choose starting from a scenario with

high debt, and compare it with two alternative debt paths: (i) the debt path chosen by an

unconstrained Markov government, which allows us to quantify the importance of having full

commitment to future borrowing, and (ii) the debt path chosen by a Markov government

constrained by a sequence of debt limits, which allows us to measure the effectiveness of

simple fiscal rules relative to the constrained efficient allocation.

We study simulations for the Markov and Ramsey governments for an initial state with

average income, a debt-to-income ratio of 50%, and initial history h0 = 0 for the Ramsey

government. For the Markov government, this implies an initial spread of 6.6% and defaults

during the first six years of the deleveraging process in 33% of the simulation samples. The

Ramsey government achieves a significantly higher probability of a successful deleveraging,

reducing the probability of default during the first six years of deleveraging to 22%. Further-

more, in none of the income paths for which the Ramsey government defaults, the Markov

government finds it optimal to repay.
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Figure 6: Deleveraging paths in 25,000 samples of 10 years each. The average and standard

deviation in period t are computed using samples without defaults up to period t. All samples start

with at debt ratio of 50%, mean income level and initial history h0 = 0 for the Ramsey government.

The debt and net transfer to lenders (yt − ct) are expressed as a proportion of the unconditional

mean income E(y).
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Figure 6 illustrates how the Ramsey government implements a more successful delever-

aging even with weaker initial austerity. For the first year of deleveraging, compared with

the Markov government, the Ramsey government chooses on average a slower deleveraging

(top-left panel) and lowers net transfers to creditors (yt − ct; mid-left panel). This is a

consequence of the relative impatience of domestic consumers. Since β(1 + r) < 1, earlier

states are more valuable than later ones. Unlike in the case of zero debt (Figure 2), the

Ramsey government cannot front-load consumption when it starts with high debt, yet it can

moderate the adjustment in early periods.

The left panels of Figure 6 show that after the first year, the Ramsey government achieves

a faster debt reduction with a similar level of net transfers in repayment states. This is a

result of the higher repayment incentives in that economy: the higher prices at which the

government issues debt (bottom-left panel of Figure 6) enables the government to collect the

same proceeds from debt issuances with a lower number of bonds issued.18 The bottom-left

panel of Figure 6 shows that the lower probability of default with a Ramsey deleveraging

path is reflected immediately by lower sovereign spreads.

Consistently with the discussion in the previous subsection, the right panels of Figure

6 illustrate that the conditionality imposed by the Ramsey government on its deleveraging

path increases consumption and debt volatility compared to the economy with a Markov

government.

Welfare is higher when the deleveraging plan is implemented by a Ramsey government.

The welfare gain is equivalent to a permanent consumption increase of 0.44% relative to the

MPE. In sum, our results indicate that the ability to commit to a long-term deleveraging

plan allows for a smaller early consumption sacrifice while greatly increasing the probability

of a successful deleveraging process that avoids default.19

18It should be noted that the Ramsey government repays in more states and thus on average transfers

more resources to its creditors.
19Bi et al. (2013) show that expectations about future fiscal consolidations are an important determinant

of the success of fiscal adjustments.
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5.4.1 Deleveraging with debt limits

In this subsection, we compare the deleveraging plan chosen by a Ramsey government with

the one chosen by a Markov government that is constrained by a sequence of debt limits.

This exercise will enable us to measure the relative effectiveness of simpler deleveraging

paths, as the ones implemented in practice. Formally, we solve the following problem

V (b, y, t) =Max
b′

u(c) + β
J∑

j=1

πj(y)

[
Fj

(
V ′
j

)
V ′
j +

∫ ∞

V ′
j

U fj(U)dU

]
s.t. c = y − δb+ q(b′, y, t) [b′ − (1− δ)b] , V ′

j = V (b′, yj, t+ 1),

b′ ≤Max
{
b̄(t+ 1), (1− δ)b

}
, (18)

where b̄(t+ 1) denotes the debt limit in period t and the constraint (18) says that the

government is not forced to buy back bonds when b̄(t+ 1) < (1− δ)b.

For tractability reasons, we search over the following family of debt limit sequences.

First, we assume b̄(0) = b0, where b0 denotes the number of bonds outstanding at the

beginning of the deleveraging process. Second, we assume the debt limit evolves according

to b̄(t) − b̄(t + 1) = a0 + a1t. This formulation is flexible enough to allow for different

adjustment paths. For instance, it allows for milder initial adjustments for a0 < 0 and

a1 > 0, or faster initial adjustments for a0 > 0 and a1 < 0. Third, we assume that once the

economy reaches period T , the debt limit becomes constant, i.e., b̄(t) = b̄(∞) ∀t ≥ T . This

enables us to introduce long-run discipline with only one parameter. We find the optimal

sequence of debt limits by optimizing over
{
T, b̄(∞), a1

}
.

The optimal sequence of debt limits features a transition of 8 years (T = 32), a final

debt limit of 38.25%, with a slope a1 = −0.000235 and a0 = 0.0223. The top-left panel of

Figure 6 presents the path of average debt, which in the case of the deleveraging process

with debt limits almost coincide with the sequence of debt limits. This is because the debt

limits are almost always binding in the simulations. Indeed, the top-right panel shows the

debt volatility is close to zero during the deleveraging process. The top-left panel of Figure

6 shows that compared with the Ramsey deleveraging, the optimal sequence of debt limits

imposes a much faster deleveraging. The Ramsey government imposes austerity in states
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where austerity is most effective at reducing default risk, while placing milder constraints in

other states. A debt limit constrains borrowing in almost all states and thus imposes excessive

austerity in states where it need not be necessary, driving the average debt down. The middle-

left panel of Figure 6 shows that on average the deleveraging process with debt limits forces

the government to transfers more net resources to lenders during the deleveraging period

compared with the average net transfers chosen by the Ramsey government. The bottom-

left panel of Figure 6 shows that the Ramsey government is more successful in reducing the

spread than a Markov government with debt limits.

The inability to fine tune the states in which austerity is imposed leads to a lower welfare

gain than with a Ramsey government. However, we find that simple constraints on future

borrowing go a long way in terms of generating welfare gains. The optimal deleveraging

with debt limits achieves a welfare gain of 0.26%, equivalent to 59% of the one achieved by

a Ramsey government.

5.5 Robustness exercises

The inefficiency studied in the paper hinges on the government issuing long-term debt.

While we assume an exogenous maturity structure, Arellano and Ramanarayanan (2012),

Hatchondo et al. (2016), Dvorkin et al. (2020), and others show that with plausible cali-

brations of the government’s incentives to hedge against changes in the borrowing cost, the

Eaton-Gersovitz model can account for the debt maturities observed in the data. In Ap-

pendix G.1, we show that i) our main quantitative results do not change if we assume a

debt duration equal to the optimal ex-ante value preferred by the Markov government (2.3

years vs. 4.8 years in our benchmark), and ii) once the Ramsey government corrects the

time inconsistency in borrowing decisions, the optimal ex-ante debt duration is significantly

higher than in our benchmark (more than 30 years).

The shock to the utility cost of defaulting enables us to exploit first-order conditions

to solve for the Ramsey government’s problem. The importance of the shock to the utility

cost of defaulting is given by the volatility of U conditional on income (σU), which in our

benchmark calibration is disciplined by the sovereign spread volatility.

We find that for the parameter values in Table 1, the shock to U plays a minor role in

determining default decisions. For instance, the bottom-right panel of Figure 3 shows that for
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most income realizations, the government either repays or defaults almost surely regardless

of the realization of U . This property is also confirmed in our simulations, where defaults are

mostly driven by low income realizations. One can interpret shocks to U as encompassing

default determinants that are not related to income. A higher σU would capture a higher

role for those default determinants, which would make bond prices sensitive to borrowing

even at high income realizations. Equation (11) indicates that in such scenarios, the Ramsey

planner would also want to restrict borrowing at high income realizations. This is verified in

Appendix G.2, where we show that higher values of σU moderate the additional procyclicality

of fiscal policy chosen by the Ramsey government. Appendix G.2 also shows that the Ramsey

government achieves significant welfare gains and significant reductions in sovereign default

risk for different values of σU .

6 Conclusions

We solve a quantitative Eaton-Gersovitz sovereign default model with long-term debt in

which a Ramsey government decides the entire borrowing plan taking as given ex-post op-

timal default decisions. The Ramsey government improves upon the Markov government

because it takes into account how borrowing decisions in period t affect borrowing opportu-

nities, and thus welfare, prior to t. Our contribution is to show that the effect of borrowing

decisions in t on utility flows prior to t can be encapsulated by two single dimensional vari-

ables, and by one variable under conditions that we verify are satisfied in our quantitative

exercise. This allows us to propose a tractable algorithm to find the constrained efficient bor-

rowing policy. Relative to a Markov government, the Ramsey government distorts borrowing

decisions more when i) bond prices are more sensitive to borrowing and ii) changes in bond

prices have a more significant effect on past utility flows. For empirically plausible parameter

values, more than 80% of the default risk is eliminated by a Ramsey government, without

lowering average borrowing levels. An efficient reduction in default risk prescribes a higher

volatility in borrowing and debt levels. The welfare gain of having a Ramsey government

instead of a Markov government ranges from 0.3% to 0.7%, depending on initial income.

The Ramsey government carries a more procyclical fiscal policy that includes debt buybacks

in some states with low income. This higher procyclicality of fiscal policy is mitigated in
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economies where default determinants are less correlated with income.

Starting from a state with high debt, the Ramsey government has a higher probability

of completing a successful deleveraging (without defaults) than the Markov government.

In addition, compared with the Markov government, by effectively reducing future default

risk, the Ramsey government can afford to smooth out the initial adjustment during the

deleveraging path. The Markov government’s commitment to a simple deleveraging plan

consisting of a sequence of debt limits imposes harsher initial austerity and delivers 60%

of the welfare gains achieved by the Ramsey government. These results are indicative of

the quantitative importance of enhancing long-term fiscal discipline for the success of debt

reduction programs.

Our methodology could be extended to study other aspects of debt management in which

time inconsistency plays a role. Similar inefficiencies arise when governments issue debt in

local and foreign currency, when they decide fiscal and monetary policy, when they issue

debt with different maturities, and when they accumulate debt and assets (Bianchi et al.,

2018). Extending our analysis to study and quantify these issues and inform the on the role

of fiscal rules to regulate other debt management aspects is an interesting avenue for future

research.
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Online Appendix

A Definition of the Markov Perfect Equilibrium

Let x′ denote the next-period value of variable x, b̂ denote the borrowing strategy followed

by future governments (number of bonds outstanding at the end of the period), d̂ denote

the defaulting strategy followed by future governments, and V denote the continuation value

under repayment when future governments follow the strategies b̂ and d̂. The function V is

given by

V (b, y) = u(c) + β
J∑

j=1

πj(y)
{∫

U ′

[
d′jU

′ + (1− d′j)V (b′, yj)
]
f(U ′)dU ′

}
(19)

where c = y − δb+ q(b′, y′)[b′ − (1− δ)b],

d′j = d̂(b′, yj, U
′), and

b′ = b̂(b, y).

In states where the government acting in the next period defaults (d̂(b′, yj, U
′) = 1), it

receives the continuation value U ′.

Competition in financial markets between risk-neutral lenders implies a bond price func-

tion where lenders break even in expectation:

q(b′, y) =

J∑
j=1

πj(y)
{∫

U ′ [1− d̂(b′, yj, U
′)]
[
δ + (1− δ)q(b′′j , yj)

]
f(U ′)dU ′

}
1 + r

. (20)

In states where the next-period government repays, bondholders receive the coupon pay-

ment δ and can trade the claims to subsequent coupon payments (that add up to 1− δ) at

prices q(b′′j , yj), which depend on the next-period income realization y′ = yj and next-period

borrowing decisions b′′j = b̂(b′, yj).

Let V denote the maximum welfare a government can attain in the current period if it
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chooses to repay and expects future governments to follow strategies b̂ and d̂. Formally,

V(b, y) =Max
b′

u(c) + β
J∑

j=1

πj(y)
{∫

U ′

[
d′jU

′ + (1− d′j)V (b′, yj)
]
f(U ′)dU ′

} (21)

s.t. c = y − δb+ q(b′, y′)[b′ − (1− δ)b], and

d′j = d̂(b′, yj, U
′).

The problem above illustrates that the current government has a limited ability to affect

future debt levels.

At the beginning of the period the government observes its continuation value under

defaulting U and chooses its defaulting decision according to

d = Max
d∈{0,1}

{dU + (1− d)V(b, y)} . (22)

A Markov Perfect Equilibrium is characterized by strategies d̂ and b̂ such that

(a) Given d̂ and b̂, the value function under repayment V satisfies the functional equation

(19).

(b) Given d̂ and b̂, the bond price function q satisfies the functional equation (20).

(c) The function d̂ solves problem (22) for all b, y, U .

(d) The function b̂ solves problem (21) for all b, y.

B Ramsey government’s choice set

Let Vt(·, bt+1(y
t), ·) denote the repayment value for the Ramsey government in period t after

an income history yt. The assumption that the Ramsey government cannot condition its

borrowing in t on Ut implies that Vt does not depend on Ut. Thus, the optimal repayment rule

for the Ramsey government in t after income history yt is to repay whenever Ut ∈ (−∞, U∗
t ].

If, instead, the Ramsey government could condition its borrowing in t on Ut, it may find

it optimal to do it as long as there is room to increase Vt. This is because by expanding

the repayment set in t (after history yt) the Ramsey government can increase the repayment
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Figure 7: When the Ramsey government cannot condition the choice of bt+1 after history yt on the

realization of Ut, it repays when Ut ∈ (−∞, U∗
t ]. When the Ramsey government can condition bt+1

on Ut, it can expand the repayment region to Ut ∈ (−∞, Ũ∗
t ] by only distorting bt+1 over [U∗

t , Ũ
∗
t ].

probability in t, and therefore, bond prices prior to t. Figure 7 illustrates how distorting

bt+1 for Ut ∈ [U∗
t , Ũ

∗
t ] could expand the repayment set. This can be achieved by a borrowing

rule that increases Vt just enough to leave the government indifferent between repaying and

defaulting over [U∗
t , Ũ

∗
t ] (we assume the government repays if indifferent).20 Incorporating

this possibility would significantly complicate the analysis and we rule it out.

C Proofs

C.1 Proof of proposition 1

Proof. Consider a particular history ỹt. Changes in bt+1(ỹ
t) only have effects in periods

s ≤ t + 1. Given that the debt path after t + 1 is not affected, neither is the consumption
path after period t+ 1 and therefore the path of repayment probabilities after t+ 1.

Step 1 : Differentiability in t+ 1.
If the economy starts with more debt in period t + 1 and there is no change in the

subsequent debt path, the only effect on Vt+1 is due to the decrease in ct+1. The following
first-order derivative

∂Vt+1(⃗b, (ỹ
t, yj))

∂bt+1(ỹt)
= −u′

(
ct+1(⃗b, (ỹ

t, yj))
) [
δ + (1− δ)qt+1(⃗b, (ỹ

t, yj)
]
,

20More borrowing in t would also reduce the bond price in t. This deviation would be beneficial if the
increase in the repayment set in t more than compensates the fall in qt. Also, note that the borrowing rule
for Ut > Ũ∗ is not payoff relevant as long as it yields Vt ≤ Ũ∗

t .
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exists and is continuous w.r.t. bt+1(ỹ
t) because u′ is continuous, and ct+1(⃗b, (ỹ

t, yj)) is con-

tinuous in bt+1(ỹ
t). Moreover, the repayment probability in t+1, Fj

(
Vt+1(⃗b, (ỹ

t, yj))
)
is also

continuously differentiable w.r.t. bt+1(ỹ
t) because Fj is continuously differentiable.

Step 2 : Differentiability of effects in t.
A higher amount of debt in t+ 1 affects the repayment probability in t+ 1 and thus

∂qt(⃗b, ỹ
t)

∂bt+1(ỹt)
=

J∑
j=1

πj(ỹ)fj
(
Vt+1

(⃗
b, (ỹt, yj)

))
∂Vt+1 (⃗b,(ỹt,yj))

∂bt+1(ỹt)

[
δ + (1− δ)qt+1

(⃗
b, (ỹt, yj)

)]
1 + r

is continuously differentiable w.r.t. bt+1(ỹ
t) because of Step 1. As a consequence,

∂Vt(⃗b, ỹ
t)

∂bt+1(ỹt)
=u′(ct(⃗b, ỹ

t))

qt(⃗b, ỹt) + ∂qt(⃗b, ỹ
t)

∂bt+1(ỹt)

(
bt+1(ỹ

t−1)− (1− δ)bt(ỹ
t)
)

+ β
J∑

j=1

πj(ỹ)Fj

(
Vt+1

(⃗
b, (ỹt, yj)

)) ∂Vt+1(⃗b, (ỹ
t, yj))

∂bt+1(ỹt)

is also continuously differentiable w.r.t. bt+1(ỹ
t) because u, qt and Vt+1 are continuously

differentiable w.r.t. bt+1(ỹ
t).

Step 3 : Even though there is no change in the number of bonds issued in period t − 1,
the price at which those bonds are traded can change because the repayment probability
and bond price in t for the income realization yt = ỹt may change. The derivative

∂qt−1(⃗b, ỹ
t−1)

∂bt+1(ỹt)
=
Pr(ỹt | ỹt−1)

1 + r

 fI(t,ỹt)
(
Vt
(⃗
b, ỹt

))
∂Vt (⃗b,ỹt)
∂bt+1(ỹt)

[
δ + (1− δ)qt

(⃗
b, ỹt

)]
+FI(t,ỹt)

(
Vt
(⃗
b, ỹt

))
(1− δ) ∂qt (⃗b,ỹt)

∂bt+1(ỹt)



exists and is continuous w.r.t. bt+1(ỹ
t) because qt and Vt are continuously differentiable w.r.t.

bt+1(ỹ
t). The term I(t, ỹt) denotes the income index realization in t for income history ỹt.

The derivative

∂Vt−1(⃗b, ỹ
t−1)

∂bt+1(ỹt)
= u′(ct−1(⃗b, (ỹ

t−1)))
∂qt−1(⃗b, ỹ

t)

∂bt+1(ỹt)

[
bt(ỹ

t−1)− (1− δ)bt−1(ỹ
t−2)

]

+ βPr(ỹt | ỹt−1)FI(t,ỹt)

(
Vt
(⃗
b, ỹt

)) ∂Vt(⃗b, (ỹt, yj))
∂bt+1(ỹt)

exists and is continuous because u, qt−1, and Vt are continuously differentiable.
Step 4 : The same logic applied in Step 3 extends to periods s = t− 2, t− 3, ..., 0.

C.2 Proof of Proposition 2

Proof. The proof is structured in four steps. Firstly, we show that the derivative of the
Ramsey government’s objective with respect to bt+1(ỹ

t) can be expressed as a function of
the derivatives of the repayment value in t and bond prices up to t. Secondly, we show
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that the derivatives of bond prices up to t can be written as functions of ∂qt/∂bt+1(ỹ
t) and

∂Vt/∂bt+1(ỹ
t). Thirdly, we show how the coefficients that weight the current derivatives

of the bond price and the expected utility under repayment follow a recursive structure.
Finally, we combine the previous steps to establish the recursive structure of the necessary
condition for the optimum.

Notation. To simplify notation, we drop the arguments (⃗b, ỹs) for variables evaluated in
period s ≤ t after income-history ỹs, we use I(s) to denote the income realization index in

s, I(s, ỹt) for s ≤ t, and we use u′s to denote u′(cs(⃗b, ỹ
s)). We use Vt+1,j, qt+1,j to denote

Vt+1(⃗b, (ỹ
t, yj)), and qt+1(⃗b, (ỹ

t, yj)), respectively.
First, note that the derivative of the Ramsey government’s objective U w.r.t. bt+1(ỹ

t),
can be written as:

∂U (⃗b, y0)
∂bt+1(ỹt)

=
∂V0

∂bt+1(ỹt)
=
∂
[
u(c0) + βPr(ỹ1 | y0)

[
FI(1) (V1)V1 +

∫∞
V1
UfI(1)(U)dU

]]
∂bt+1(ỹt)

,

where we assume it is optimal to repay in the initial period. Since the continuation values

under repayment and default are identical at V1(⃗b, ỹ
1), changing the repayment probability

FI(1)

(
V1(⃗b, ỹ

1)
)
does not affect the expected continuation value. Therefore,

∂U (⃗b, y0)
∂bt+1(ỹt)

= u′0ι0
∂q0

∂bt+1(ỹt)
+ βPr(ỹ1 | y0)FI(1) (V1)

∂V1
∂bt+1(ỹt)

(23)

= u′0ι0
∂q0

∂bt+1(ỹt)
+ βPr(ỹ1 | y0)FI(1) (V1)

×
[
u′1ι1

∂q1
∂bt+1(ỹt)

+ βPr(ỹ2 | ỹ1)FI(2) (V2)
∂V2

∂bt+1(ỹt)

]
,

where the second line substitutes ∂V1(⃗b, ỹ
1)/∂bt+1(ỹ

t). If we continue substituting away the

derivatives ∂Vt−n (⃗b,ỹt−n)
∂bt+1(ỹt)

for all 0 < n < t, we obtain

∂U (⃗b, y0)
∂bt+1(ỹt)

=
t∑

n=1

βt−nPr(ỹt−n | y0)
t−n∏
m=1

FI(m) (Vm)u
′
t−nιt−n

∂qt−n

∂bt+1

+ βtPr(ỹt | y0)
t∏

m=1

FI(m) (Vm)
∂Vt
∂bt+1

, (24)

where sure repayment in the initial period implies F (V0) = 1.
The following lemma states that the effect of bond issuances in t on bond prices in periods

t−n ( ∂qt−n

∂bt+1(ỹt)
) can be written as a function of the effect of bond issuances on the bond price

in the issuance period ( ∂qt
∂bt+1(ỹt)

), and of the effect of bond issuances on the expected utility in

the issuance period ( ∂Vt

∂bt+1(ỹt)
). The latter affects the probability of a default in that period,

which is not captured in the bond price for that period, but affects bond prices in previous
periods.
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Lemma 4. The derivative of the bond price in t− n w.r.t. bt+1(ỹ
t) satisfies

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ...ỹt | ỹt−n)

[
Aq

t,t−n

∂qt
∂bt+1(ỹt)

+Bq
t,t−n

∂Vt
∂bt+1(ỹt)

]
. (25)

Proof. First, consider n = 1. The derivative

∂qt−1

∂bt+1(ỹt)
=
Pr (ỹt | ỹt−1)

[
fI(t)(Vt) [δ + (1− δ)qt]

∂Vt

∂bt+1(ỹt)
+ FI(t)(Vt)(1− δ) ∂qt

∂bt+1(ỹt)

]
1 + r

, (26)

indicating the bond price in t − 1 may change because there is a change in the repayment

probability in t + 1 (captured by ∂qt/∂bt+1(ỹ)) and/or because there is a change in the

repayment probability in t (captured by ∂Vt/∂bt+1(ỹ)). Equation (26) implies equation (25)

for

Aq
t,t−1 =

FI(t)(Vt)(1− δ)

1 + r
and Bq

t,t−1 =
fI(t)(Vt) [δ + (1− δ)qt]

1 + r
.

Second, consider n = 2. The derivative

∂qt−2

∂bt+1(ỹt)
=
Pr (ỹt−1 | ỹt−2)

1 + r

[
fI(t−1)(Vt−1)

∂Vt−1

∂bt+1(ỹt)
[δ + (1− δ)qt−1]

+ FI(t−1)(Vt−1)(1− δ)
∂qt−1

∂bt+1(ỹt)

]
,

Using

∂Vt−1

∂bt+1(ỹt)
= u′t−1ιt−1

∂qt−1

∂bt+1(ỹt)
+ βPr (ỹt | ỹt−1)FI(t)(Vt)

∂Vt
∂bt+1(ỹt)

and equation (26), ∂qt−2/∂bt+1(ỹ
t) can be written as

∂qt−2

∂bt+1(ỹt)
= Pr(ỹt−1,ỹt|ỹt−2)

1+r
fI(t−1)(Vt−1) [δ + (1− δ)qt−1] βFI(t)(Vt)

∂Vt

∂bt+1(ỹt)

+Pr(ỹt−1,ỹt|ỹt−2)
1+r

[
fI(t−1)(Vt−1) [δ + (1− δ)qt−1]u

′
t−1ιt−1 + FI(t−1)(Vt−1)(1− δ)

]

×
[
Aq

t,t−1
∂qt

∂bt+1(ỹt)
+Bq

t,t−1
∂Vt

∂bt+1(ỹt)

]
,
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implying that it can be recasted as in equation (25) for

Aq
t,t−2 =

[
fI(t−1)(Vt−1) [δ + (1− δ)qt−1]u

′ (ct−1) ιt−1 + FI(t−1)(Vt−1)(1− δ)

]
1+r

Aq
t,t−1

and

Bq
t,t−2 =


fI(t−1)(Vt−1) [δ + (1− δ)qt−1] βFI(t)(Vt)+[
fI(t−1)(Vt−1) [δ + (1− δ)qt−1]u

′ (ct−1) ιt−1FI(t−1)(Vt−1)(1− δ)

]
Bq

t,t−1


1+r

.

For any other n > 2, we can recast ∂qt−n/∂bt+1(ỹ
t) as in (25) after iterating on the bond

price and repayment value functions as above.

The next lemma shows how the coefficients that determine the effect of debt issuances
in t+1 on the bond price in period t− n, Aq

t+1,t−n and Bq
t+1,t−n, can be written as functions

of Aq
t,t−n and Bq

t,t−n.

Lemma 5. Consider an income-history ỹt−1 and continuation history ỹt = (ỹt−1, yi) with

yi ∈ Y. For any n > 1, the coefficients are

Aq
t,t−n =

(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) (1− δ)Fi(Vt)

1 + r
, (27)

Bq
t,t−n =

(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) fi(Vt) [δ + (1− δ)qt]

1 + r
+Bq

t−1,t−nβFi(Vt). (28)

For n = 1, the coefficients are

Aq
t,t−1 =

(1− δ)Fi(Vt)

1 + r
, (29)

Bq
t,t−1 =

fi(Vt) [δ + (1− δ)qt]

1 + r
. (30)

Proof. Changes in borrowing in t affect qt−1 and Vt−1. Applying Lemma 4 to express the
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effects of borrowing in t on qt−n through changes in qt−1 and Vt−1, implies

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ...ỹt | ỹt−n)

[
Aq

t−1,t−n

∂qt−1

∂bt+1(ỹt)
+Bq

t−1,t−n

∂Vt−1

∂bt+1(ỹt)

]
. (31)

After using
∂Vt−1

∂bt+1(ỹt)
= u′t−1ιt−1

∂qt−1

∂bt+1(ỹt)
+ βPr(yi | ỹt−1)Fi(Vt)

∂Vt
∂bt+1(ỹt)

to substitute ∂Vt−1

∂bt+1(ỹt)
into equation (31), we obtain

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)

[
Aq

t−1,t−n

∂qt−1

∂bt+1(ỹt)

+ Bq
t−1,t−n

[
u′t−1ιt−1

∂qt−1

∂bt+1(ỹt)
+ βPr(yi | ỹt−1)Fi(Vt)

∂Vt
∂bt+1(ỹt)

]]
,

∂qt−n

∂bt+1(ỹt)
=Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)

[(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

) ∂qt−1

∂bt+1(ỹt)

+ Bq
t−1,t−nβPr(yi | ỹt)Fi(Vt)

∂Vt
∂bt+1(ỹt)

]
. (32)

Recall that

∂qt−1

∂bt+1(ỹt)
=
Pr(yi | ỹt−1)

1 + r

[
fi(Vt) [δ + (1− δ)qt]

∂Vt
∂bt+1(ỹt)

+ (1− δ)Fi(Vt)
∂qt

∂bt+1(ỹt)

]
.

After substituting the above equation into (32), we can recast ∂qt−n

∂bt+1(ỹt)
as a function of ∂Vt

∂bt+1(ỹt)

and ∂qt
∂bt+1(ỹt)

:

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)

[(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

)
Pr(yi|ỹt−1)

1+r

×
[
fi(Vt) [δ + (1− δ)qt]

∂Vt

∂bt+1(ỹt)
+ (1− δ)Fi(Vt)

∂qt
∂bt+1(ỹt)

]
+ Bq

t−1,t−nβPr(yi | ỹt)Fi(Vt)
∂Vt

∂bt+1(ỹt)

]
.
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Since Pr(ỹt−n+1, ..., ỹt−1, yi | ỹt−n) = Pr(ỹt−n+1, ..., ỹt−1 | ỹt−n)Pr(yi | ỹt−1),

∂qt−n

∂bt+1(ỹt)
= Pr(ỹt−n+1, ..., yi | ỹt−n)

{(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

)
(1−δ)Fi(Vt)

1+r
∂qt

∂bt+1(ỹt)

+
[(
Aq

t−1,t−n +Bq
t−1,t−nu

′
t−1ιt−1

)
fi(Vt)(δ+(1−δ)qt)

1+r
+Bq

t−1,t−nβFi(Vt)
]

∂Vt

∂bt+1(ỹt)

}
.

(33)

Equations (25) and (33) imply equations (27) and (28). Equations (29) and (30) follow

from (27), (28), Aq
t,t = 1, and Bq

t,t = 0.

Necessary condition for optimum and law of motions for hq and hV . If we use
equation (25) to substitute the derivatives ∂qt−n/∂bt+1(y

t) in the derivative (24), we can
recast the derivative of the Ramsey government’s objective as a function of the effect of
bond issuances on the bond price in the issuance period ( ∂qt

∂bt+1(yt)
), and of the effect of bond

issuances on the repayment value in the issuance period ( ∂Vt

∂bt+1(yt)
). Using the expression for

∂U/∂bt+1(y
t) in (24) and the previous lemma,

∂U (⃗b, y0)
∂bt+1(ỹt)

= Pr(ỹt | y0)
[
hqt

∂qt
∂bt+1(ỹt)

+ hVt
∂Vt

∂bt+1(ỹt)

]
(34)

for all t and yt ∈ Y t, with

hqt =
t∑

n=1
βt−n

t−n∏
m=1

FI(m) (Vm)u
′
t−nιt−nA

q
t,t−n, and (35)

hVt =
t∑

n=1
βt−n

t−n∏
m=1

FI(m)(Vm)u
′
t−nιt−nB

q
t,t−n + βt

t∏
m=1

FI(m)(Vm). (36)

The next lemma shows the welfare weights hqt , h
V
t can be written as functions of the

weights hqt−1 and hVt−1 in period t− 1.

Lemma 6. Given an income history up to period t ỹt ∈ Y t with yt = yi

hqt =
(1− δ)Fi (Vt)

1 + r

(
hqt−1 + u′t−1ιt−1h

V
t−1

)
, (37)

hVt =
fi (Vt) [δ + (1− δ)qt]

1 + r

(
hqt−1 + u′tιth

V
t−1

)
+ βFi (Vt)h

V
t−1. (38)

Proof. Using lemma 5 to substitute Aq
t,t−n by Aq

t−1,t−n and Bq
t−1,t−n in equation (35), we
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obtain

hqt =
t−1∑
n=1

βt−1−n
t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−n ×

(Aq
t−1,t−1−n+Bq

t−1,t−1−nu
′
t−1ιt−1) (1−δ)Fi(Vt)

1+r︷ ︸︸ ︷
Aq

t,t−1−n

+ βt−1
t−1∏
m=1

FI(m)(Vm)u
′
t−1ιt−1 Aq

t,t−1︸ ︷︷ ︸
(1−δ)Fi(Vt)

1+r

=
(1− δ)Fi(Vt)

1 + r

[
t−1∑
n=1

βt−1−n
t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nA

q
t−1,t−1−n+

u′t−1ιt−1

[
t−1∑
n=1

βt−1−n
t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nB

q
t−1,t−1−n + βt−1

t−1∏
m=1

FI(m)(Vm)

]]

=
(1− δ)Fi(Vt)

1 + r

[
hqt−1 + u′t−1ιt−1h

V
t−1

]
.

Likewise, using lemma 5 to substitute Bq
t,t−n by Aq

t−1,t−n and Bq
t−1,t−n in equation (36),

we obtain
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hVt =
t∑

n=1

βt−n
t−n∏
m=1

FI(m)(Vm)u
′
t−nιt−n

[
Aq

t−1,t−n

fi(Vt) [δ + (1− δ)qt]

1 + r

+Bq
t−1,t−n

[
u′t−1ιt−1

fi(Vt) [δ + (1− δ)qt]

1 + r
+ βFi(Vt)

]]
+ βt

t∏
m=1

FI(m)(Vm)

=
t−1∑
n=1

βt−1−n
t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−n

[
Aq

t−1,t−1−n

fi(Vt) [δ + (1− δ)qt]

1 + r

+Bq
t−1,t−1−n

[
u′t−1ιt−1

fi(Vt) [δ + (1− δ)qt]

1 + r
+ βFi(Vt)

]]

+βt−1
t−1∏
m=1

FI(m)(Vm)u
′
t−1ιt−1

fi(Vt) [δ + (1− δ)qt]

1 + r
+ βt

t∏
m=1

FI(m)(Vm)

=
fi(Vt) [δ + (1− δ)qt]

1 + r

[
t−1∑
n=1

βt−1−n
t−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nA

q
t−1,t−1−n+

u′t−1ιt−1

[
t−1∑
n=1

βt−1−n
t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nB

q
t−1,t−1−n + βt−1

t−1∏
m=1

FI(m)(Vm)

]]

+βFi(Vt)

[
t−1∑
n=1

βt−1−n
t−1−n∏
m=1

FI(m)(Vm)u
′
t−1−nιt−1−nB

q
t−1,t−1−n + βt−1

t−1∏
m=1

FI(m)(Vm)

]

=
fi(Vt) [δ + (1− δ)qt]

1 + r

(
hqt−1 + u′t−1ιt−1h

V
t−1

)
+ βFi(Vt)h

V
t−1,

where the second equality uses Aq
t−1,t−1 = 1 and Bq

t−1,t−1 = 0.

Since Pr(yt | y0) > 0 for all yt ∈ Y t, the borrowing plan b⃗∗ that solves the Ramsey
government’s problem must satisfy

hqt (⃗b
∗, yt)

∂qt(⃗b
∗, yt)

∂bt+1(yt)
+ hVt (⃗b

∗, yt)
∂Vt(⃗b

∗, yt)

∂bt+1(yt)
= 0 (39)

for all t and yt ∈ Y t.
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C.3 Proof of Lemma 3

Proof. It follows from (14), the optimality condition (11), and

∂Vt(⃗b, y
t)

∂bt+1(yt)
= u′(ct(⃗b, y

t))

qt(⃗b, yt) + ∂qt(⃗b, y
t)

∂bt+1(yt)
ιt(⃗b, y

t−1)


− β

J∑
j=1

πj(y)Fj

(
Vt+1

(⃗
b, (yt, yj)

))
u′(ct+1(⃗b, y

t+1))[δ + (1− δ)qt+1(⃗b, y
t+1)].

D Computation

We solve the MPE by iterating on the value and bond price functions as described in

Hatchondo et al. (2010). We assume the initial iteration corresponds to the final period

of the finite horizon model, implying that the equilibrium we find is the limit of the finite

horizon game. We use 50 grid points for b and 21 grid points for y. We use cubic spline

interpolation to evaluate V and q for debt levels in the grid [−0.4, 4], and we verify those

limits are never binding in the simulations. We do not extrapolate over b. We iterate until

the maximum deviation across iterations for the functions V and q is below 10−6.

We solve the Ramsey government’s problem by solving the fixed point described in page

21 and assuming an initial iteration identical to the last period of the finite horizon model.

We assume h ∈ [h, h̄].21 We use the same grids for b and y used for the MPE, and we

interpolate linearly over h. We do not extrapolate over b or h. The two computational

challenges relative to the standard default model are finding (h′, b′) that solve the non-linear

equations (Rb′)-(Rh′) and, more importantly, guaranteeing we are finding a global maximum.

D.1 Solving for h′ given (b, yi, h, b
′)

Each time we evaluate equations (R)-(Rh′), we first solve for the value of h′ that solves the

law of motion (Rh′) given the initial state (b, y, h) and debt choice b′. This implies solving

21We impose h = 0 and h̄ = 6, and verify these bounds are never binding.
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Figure 8: Finding the fixed point h′ = g(h′). The figure assumes (b, h) takes the average values in

the simulations, a mean income yi, and b′ = b̂(b, h, yi). The blue dashed line depicts g(h′), defined

in equation (40). The left vertical axis corresponds to the 45 degrees line and the right axis to

g(h′).

for the non-linear equation h′ − g(h′) = 0 where

g(h′) =
Fi(V )(1− δ)h

fi(V ) [δ + (1− δ)q] + β(1 + r)Fi(V )
h+ u′ (c) [b′ − (1− δ)b], (40)

with V = V (b, yi, h) and q = q(b′, yi, h
′). Assuming that h′ − g(h′) is increasing in h′ (see

below), we solve h′ − g(h′) using the following steps:

1. If h− g(h) > 0, we impute h′ = h. We do this to avoid extrapolating in h.

2. If h̄− g(h̄) < 0, we impute h′ = h̄.

3. If 1. and 2. do not hold, we search over a grid {h1, ...hn} starting from h1 = h and

find the lowest index i with hi − g(hi) < 0 and hi+1 − g(hi+1) > 0. We then search for

a root within the interval (hi, hi+1) using a bisection method.

Figure 8 presents a representative case where the root h′∗ s.t. h′∗ − g(h′∗) = 0 ∈ (h, h̄).

The figure shows that the slope of g is significantly below the 45 degrees line, which validates

our conjecture of an increasing h′−g(h′). We show below this property is more general than

the case depicted in the figure.
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Uniqueness of solution of h′−g(h′) = 0. Once we have found a fixed point in
{
V, b̂, ĥ, ĉ, q

}
,

we verify that it satisfies the fixed point conditions when we use two alternative procedures to

solve for h′−g(h′) = 0. In the first procedure: a) we impute h′ = h only when hi−g(hi) > 0

for all i = 1, ..., n; b) we impute h′ = h̄ only when hi − g(hi) < 0 for all i = 1, ..., n; and c)

otherwise, we use a bisection method to find a root in [h, h̄]. We find that the fixed point we

originally found also satisfies the fixed point conditions when using this alternative proce-

dure. The second procedure is identical to the one described above but where the search for

h′ in step 3 starts from the highest h on the grid (instead of from the lowest h as in step 3).

We also find this change makes no difference, indicating that the fixed point we find features

a unique solution for h′ − g(h′) = 0 for all (b, yi, h, b
′).

D.2 Finding the global maximum

We exploit the tractable formulation for ∂U/∂bt+1(y
t) to numerically verify the solution for

equation (Rb′) we find is a maximum. The borrowing plan chosen by the Ramsey government

(⃗b∗) satisfies

∂U (⃗b∗, y0)
∂bt+1(yt)

=Pr(yt | y0)
[
[ht − u′(ct)ιt]

∂qt
∂bt+1(yt)

+
∂Vt

∂bt+1(yt)

]
× (41)

[
fi (Vt) [δ + (1− δ)qt]

1 + r
ht−1 + βFi (Vt)

]
hVt−1︸ ︷︷ ︸

hV
t

= 0.

for all t and yt. For simplicity, we omit the argument (⃗b∗, yt) in equation (41). The equation

stems from taking hVt (⃗b
∗, yt) as common factor in equation (11), and applying the law of

motion (13) and ht−1 = hqt−1/h
V
t−1 + u′(ct−1)ιt−1.

Based on equation (41), for each initial state (b, h, yi), we define the function

O(b′) =
∫ b′

b



[
u′(c)q(b′, yi, h

′)−
∑

j
πj(yi)fj(V

′
j )u

′(c′j)(δ+(1−δ)q′j)
2

1+r
h′

−β∑j πj(y)Fj(V
′
j )u

′(c′j)
[
δ + (1− δ)q′j

]]
×
[
fi(W (b,yi,h,b

′))[δ+(1−δ)q(b′,yi,h′)]
1+r

h+ βFi (W (b, yi, h, b
′))
]


db′, (42)

with V ′
j = V (b′, yj, h

′), q′j = q(b′, yj, h
′), and where
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W (b, h, yi, b
′) = u (c) + β

∑
j

πj(yi)

[
Fj

(
V ′
j

)
V ′
j +

∫
V ′
j

Ufj(dU)

]

denotes the continuation value after repaying and choosing b′. The value of h′ used in

equation (42) is the one that solves equation (Rh′) given (b, yi, h, b
′).

The function O approximates the shape of the Ramsey government’s objective with

respect to bt+1 = b′ after arriving at t with (bt, ht, y) = (b, h, yi).
22 It does so because

the integrand in equation (42) is proportional to the derivative of the Ramsey government’s

objective. In terms of equation (41), the constant of proportionality is Pr(yt | y0)hVt−1(B⃗, y
t),

where B⃗ = b⃗∗ for all components except for bt+1(y
t).23 Equation (41) can be used to see

how ∂U(B⃗,y0)
∂bt+1(yt)

depends on hVt−1(B⃗, y
t−1), which depends on the choice of bt+1(y

t). This effect

is absent in the computation of O. For this reason, the function O is useful to identify

local maxima but not the global maximum. We show below this is not a problem in our

quantitative application.

We approximate O over a grid for b′ and use its shape to verify if the candidate for the

optimum is at the boundaries b, b̄ or if it is interior. In the first case, we do not extrapolate

and assume b′ is at one of the bounds. In the second case, we find b′∗ = Argmax
b′∈{b1,,....bn}

O(b′)

and use a non-linear equation solver with initial guess b′∗ to solve equation (Rb′). Figure 9

depicts the shape of O for the average values of (b, h, y) in the simulations. The flat segment

corresponds to b′ choices at which the government buys back so many bonds that current

consumption is too low to make repayment optimal for almost any possible realization of the

continuation value of defaulting U .

Uniqueness of local maxima. The shape of O in Figure 9 resembles the ones we find

for other states. In fact, once we have found the functions
{
V, b̂, ĥ, ĉ, q

}
that satisfy the

22The derivative used in O differs from the one in (11) because while in (11) we assume a one-time

deviation in the debt path, in equation (42) we assume the government reoptimizes its future borrow-

ing path after changing bt+1. This is so because we are using V ′
j = V (b′, h′, yj), c′j = ĉ(b′, h′, yj), and

q′j = q(b̂(b′, h′, yj), ĥ(b
′, h′, yj), yj), which change with b′. We verify the fixed point satisfies the optimality

condition with one-time deviations.
23We verify in our simulations that hV

t always takes positive values, which implies that O increases (de-

creases) if and only if the Ramsey government’s objective increases (decreases) in bt+1.
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Figure 9: Approximated shape of the objective function of the Ramsey government. The

figure assumes the average levels of b, h, and y in the simulations.

fixed point conditions on page 13, we verify that those conditions are also satisfied when we

use two alternative procedures to compute b′: i) choose the local maximum with the lowest

b′ and ii) choose the local maximum with the highest b′. That is, we find that both local

maxima coincide, for all (b, h, yi) on the grid, indicating that the solution we find is a global

maximum.

Robustness without income uncertainty. To further illustrate how our algorithm finds

the global maximum, we solve a version of the model without income uncertainty (σε = 0,

and all other parameter values as in the benchmark calibration). In this case, there is

no hedging motive for issuing long-term debt, and it is optimal to issue one-period bonds

(Aguiar et al., 2019), eliminating the time inconsistency problem and thus making the op-

timal solution for the Markov and Ramsey government coincide. We find that the optimal

paths of consumption with one-period bonds, and the optimal paths of consumption implied

by our algorithm (with long-term bonds and commitment to future borrowing) are almost

identical.
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E Decomposition of welfare gains

Let
{
ĉR, d̂R, b̂R

}
denote the consumption, default and debt accumulation policy rules with a

Ramsey government, and
{
ĉM , d̂M , b̂M

}
the ones with a Markov government. Let

WR(b0, y0, h0, U0) =
∞∑
t=0

βt
J∑

j=1

Pr(yt = yj | y0)
∫
u
(
ĉR
(
bRt , yj, ht, Ut

))
fR
j (Ut)dUt (43)

denote the present expected discounted value of future utility flows in the economy with a

Ramsey government starting from an initial state (b0, y0, h0, U0). The consumption rule ĉR

satisfies equation (Rc) when the government repays and ĉR(b, y, h) = y(1−d0−d1y) when the

government defaults. The paths for
{
bRt , ht

}∞
t=1

are computed using the debt accumulation

policy b̂R and equation (16). Similarly, let

WM(b0, y0) =
∞∑
t=0

βt
J∑

j=1

Pr(yt = yj | y0)
∫
u
(
ĉM

(
bMt , yj, Ut

))
fM
j (Ut)dUt (44)

denote the present expected discounted value of future utility flows in the economy with a

Markov government starting from an initial state (b0, y0, U0). The p.d.f. for the continuation

value under defaulting differ across the two economies because the value of being temporarily

excluded differ. By using only consumption paths, the functionsWR,WM do not incorporate

the innovations to the continuation value under default (U − V D) into the welfare measure.

We show below these innovations not play a critical role in accounting for welfare gains.

Define cR,ND ĉM,ND as the consumption policy rules when we strip out the income costs

of defaulting from the consumption path. Namely,

ĉR,ND(b, y, h, U) = d̂R(b, y, h, U)y + [1− d̂R(b, y, h, U)]ĉR(b, y, h, U) and

ĉM,ND(b, y, U) = d̂M(b, y, U)y + [1− d̂M(b, y, U)]ĉM(b, y, U).

Let c̄R,ND
t (b0, y0, h0, U0) = E

[
ĉR,ND(bRt , yt, ht, Ut) | b0, y0, h0, U0

]
denote the expected con-

sumption in t without the income default cost and starting from an initial state (b0, y0, h0, U0)

in the economy with a Ramsey government, and c̄M,ND
t (b0, y0, U0) = E

[
ĉM,ND(bMt , yt, Ut) | b0, y0, U0

]
denote the expected consumption in t without the income default cost and starting from an
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initial state (b0, y0, U0) in the economy with a Markov government. Finally, let

{
WR,ND, W̄R,ND,WM,ND, W̄M,ND

}

denote the expected present discounted value of utility flows computed using the consumption

policy rules
{
ĉR,ND, c̄R,ND

t , ĉM,ND, c̄M,ND
t

}
for t = 0,1,....

The consumption-based welfare gain of being in an economy with a Ramsey government

instead of one with a Markov government satisfies

(
WR

WM

) 1
1−σ

︸ ︷︷ ︸
1+λ

=

(
WR/WR,ND

WM/WM,ND

) 1
1−σ

︸ ︷︷ ︸
1+λD

×
(
WR,ND/W̄R,ND

WM,ND/W̄M,ND

) 1
1−σ

︸ ︷︷ ︸
1+λV

×
(
W̄R,ND

W̄M,ND

) 1
1−σ

︸ ︷︷ ︸
1+λT

. (45)

The first factor λD captures the role of income default costs and computes the percentage

increase in consumption necessary to compensate consumers for the resources lost in default

with a Markov government relative to resources lost in default with a Ramsey government.

The second term λV represents the welfare benefit from shutting down consumption volatility

(without the income cost of defaulting) in the economy with a Markov government relative

to shutting down consumption volatility with a Ramsey government. Finally, λT captures

the welfare benefit from consumption tilting, i.e., the percentage increase in consumption

needed to compensate for the different average consumption profiles.24

F Cross-country evidence on the relation between debt

and spreads

Akitoby and Stratmann (2008) and Jaramillo and Tejada (2011) document that fiscal vari-

ables and growth rates have statistically significant effects on sovereign spreads. We build on

those papers to estimate how the relationship between the spread and public debt depends

on income and spread levels. We use annual data from a sample of 33 emerging market

countries ranging from 1994 to 2015. In order to facilitate the comparison of the model’s

24Given that lenders are risk neutral
∑∞

t=0 c̄
R,ND/(1 + r)t =

∑∞
t=0 c̄

M,ND/(1 + r)t, meaning welfare
differences are only driven by a different consumption allocation across time.
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Table 4: Regressions using simulations of the MPE

Regression (1) (2) (3)

Constant -1.713 0.677 0.604

Public debt to GDP 0.167 0.106 0.109

Real GDP growth -0.045 -0.0291 -0.025

Debt × I (growth <0) 0.000

Debt × I (GDP < Mean GDP) 0.011

Debt × I (Spread > Mean spread) 0.014

R2 0.637 0.744 0.816

Annual variables are created out of the quarterly model simulations

in the economy with a Markov government. The dependent variable

is log(spread). The dummy variables I take a value of 1 when the

condition in brackets is satisfied and 0 otherwise.

testable implications with the data, we subtract to GDP growth rates the average growth

rate for each country (GDP is assumed to be stationary in the model). We remove country-

year observations in which the country was in default according to the definition of Standard

& Poor’s.

The empirical strategy in Akitoby and Stratmann (2008), Jaramillo and Tejada (2011),

and most of the references therein is based on Edwards (1984, 1986) and consists of regressing

the logarithm of the spread on a set of explanatory variables. Table 4 shows the result of

conducting that regression using the simulations of the economy with the Markov government

(we assume that the data is generated by governments that lack commitment to future

borrowing). All regressions show that more debt and lower growth rates are associated

with a higher spread. Regression (2) shows that the spread is more sensitive to debt when

aggregate income is below its long-run mean. Regression (3) shows the same result when

the spread is above its mean.25

We contrast the testable implications presented in Table 4 with data by estimating a

25Regression (1) shows the relationship between spread and debt does not depend on the growth rate.

This is an artifact of having a model with a stationary income process in which higher growth does not

necessarily mean a good income state.
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fixed effects panel regression with robust standard errors.26 Namely, we estimate

log (Spread)it = α + βXit + δi + ηit, i = 1, ..., N, t = 1, ..., T,

where i denotes the country index, Xit is a vector of control variables for country specific and

global macroeconomic factors; δi are country fixed effects; and ηit represents disturbances

that are independent across countries and time.

The results are summarized in Table 5. As in Jaramillo and Tejada (2011), Akitoby and

Stratmann (2008), and other studies, all the regressions in the table show that the spread

increases with the debt level and decreases with GDP growth. The model is consistent with

this and even implies a remarkably similar coefficient for the growth rate. The coefficient for

debt is higher than the one in the data but the model abstracts from other determinants for

borrowing and defaulting. Regression (2) shows that even though there seems to be evidence

that the spread increases more with debt in years with low growth, the statistical significance

is weak (17%). Regression (3) shows the spread increases more with debt in years with high

spread. Regression (4) shows that the spread seems to increase more with government net

borrowing but also at a low significance level (19%). Finally, regression (5) shows the spread

increases more with net government borrowing in years with high spread.

26The robust variance matrix estimator in Wooldridge (2002, p. 152) is implemented with the option

“hccme = 3 cluster” in SAS.
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Table 5: Panel regressions

Regression (1) (2) ( 3) (4) (5)

Public debt to GDP 0.020 0.019 0.004 0.020 0.017

(0.004) (0.004) (0.002) (0.004) (0.003)

Real GDP growth -0.042 -0.034 -0.031 -0.036 -0.036

(0.006) (0.009) (0.004) (0.007) (0.006)

Reserves to GDP -0.033 -0.033 -0.022 -0.033 -0.027

(0.017) (0.017) (0.010) (0.017) (0.014)

Net gov borrowing to GDP 0.020 0.021 0.017 0.012 -0.023

(0.014) (0.015) (0.009) (0.015) (0.017)

VIX 0.034 0.034 0.0194 0.035 0.028

(0.003) (0.003) (0.004) (0.003) (0.004)

Debtit × I (growthit < meani(growth)) 0.002

(0.001)

Debtit × I (spreadit > meani(spread)) 0.013

(0.001)

NGBit × I (growthit < meani(growth)) 0.020
(0.016)

NGBit × I (spreadit > meani(spread)) 0.102

(0.016)

Observations 523 523 523 523 523

R-squared 0.77 0.77 0.87 0.77 0.82

Number of countries 33 33 33 33 33

The dummy variables I(x) = 1 when condition x is met and 0 otherwise. NGB stand for

net government borrowing to GDP. Robust standard errors in parentheses.
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Table 6: Simulations with a debt duration of 2.3 years

Markov Ramsey

Mean debt-to-income ratio (in %) 35.4 35.1

Mean debt market value (in %) 34.3 34.8

Mean spread (in %) 1.5 0.5

Std dev spread 1.8 0.6

σ(c)/σ(y) 1.3 1.4

G Robustness exercises

G.1 Optimal ex-ante debt duration

We calculate the optimal ex-ante duration by choosing the value of δ in an initial period

with zero debt and income equal to the mean, and assuming the government commits to

issuing bonds with that δ thereof. Welfare is measured relative to the economy with one-

period bonds. The optimal ex-ante δ = 0.0963, implying an average debt duration of 2.3

years, around half the value used in our parameterization. Hatchondo and Martinez (2013)

quantify the optimal ex-ante duration and the endogenous duration in an Eaton-Gersovitz

model calibrated to Mexico. They find the endogenous duration is higher than the optimal

ex-ante duration, suggesting that if we allowed for an endogenous debt portfolio, the average

duration would be above 2.3 years.

Table 6 shows that the Markov government issues less debt and at a lower spread for a

debt duration of 2.3 years. The intuition is similar to the lower debt and spread discussed in

the economy with one-period bonds in Section 5. However, default risk is still inefficiently

high and a Ramsey government that issues bonds with the same coupon structure would

choose a borrowing path with a lower default risk and higher average borrowing. The

welfare gain from permanently switching to a Ramsey government in a period with no debt

and mean income is 0.16% (it is 0.42% for our benchmark parameterization).

We could not find an interior solution for the ex-ante optimal debt duration for the

Ramsey problem. We solved the Ramsey government’s problem for debt durations of up

to 30 years and found welfare always increases with duration over that interval. A debt
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duration of 30 years correspond to δ = −0.0016, i.e., bond payments increase over time

but at a lower pace than the risk-free interest rate.27 Hatchondo et al. (2016) show that

mitigating the government’s time inconsistency problem with debt covenants would lead the

Markov government to choose longer maturities. Once the inefficiency in the borrowing path

is corrected, the Ramsey planner benefits from extending the debt duration to exploit the

hedging benefits of long-term debt described by Arellano and Ramanarayanan (2012).

G.2 Shocks to the utility cost of defaulting

Table 7 presents simulation results for different values of σU , while keeping the benchmark

values for all other parameters. The table shows that for both the Ramsey and the Markov

governments, a higher σU implies lower debt levels and a higher mean and standard deviation

of sovereign spreads (the latter being consistent with our calibration strategy). Intuitively,

a higher σU increases the mass of states in which it is optimal to default. Lenders anticipate

that and offer worse bond price schedules, and the government borrows less. By the same

logic, a higher σU also increases the sensitivity of bond prices to debt at high income states.

In this scenario, equation (11) implies the Ramsey government would also want to distort

borrowing in those states, moderating the procyclicality of fiscal policy. This effect can be

seen in column 5: for instance when σU = 1, the Ramsey government chooses an allocation

with the same relative consumption volatility as the one chosen by the Markov government.

Despite the above differences in terms of debt and consumption volatility, Table 7 also

shows that the Ramsey government achieves significant welfare gains and significant reduc-

tions in sovereign default risk for different values of σU . As expected, welfare gains decrease

with σU . The lower the relative importance of income shocks as a default determinant, the

lower the gain from conditioning borrowing on income histories.

27We rescale the sequence of coupon payments to allow for longer durations. Formally, we assume a bond

issued at t pays a coupon (r + δ)(1− δ)n−1 in period t+ n, for n = 1, 2, ....
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Table 7: Importance of the shock to the utility cost of defaulting

Std. dev. Mean Mean Std dev σ(c)/σ(y) Welfare

shock to V D debt (%) spread (%) spread gain (%)

Markov

0.08 44.3 3.0 2.2 1.1

0.10 44.3 3.3 2.4 1.1

0.25 40.7 3.9 2.8 1.1

0.75 26.4 8.9 4.7 1.0

1.00 22.5 12.1 5.2 1.0

Ramsey

0.08 40.4 0.5 0.4 1.4 0.43

0.10 39.5 0.5 0.4 1.4 0.45

0.25 34.5 0.9 0.6 1.3 0.41

0.75 17.8 4.4 2.1 1.1 0.17

1.00 13.8 8.4 3.5 1.0 0.13

Rows in bold typeface correspond to our baseline calibration.
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