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Abstract

What happens when rating systems are introduced? Demand may respond, with

consumers moving to higher-rated and higher-quality producers. Yet if prices cannot

adjust and capacity is constrained, congestion may occur at the top of the quality

distribution. I find evidence of a demand response as well as a congestion effect after

physician star ratings are disclosed. I use a discontinuity-based strategy and both pre-

and post-disclosure data to estimate the causal effect of disclosing physician ratings.

A higher rating causes more patients to visit physicians, yet patients wait longer for

care. Without price adjustment, wait times may equilibrate the market.
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1 Introduction

Quality disclosure can have a profound impact on market outcomes. On the one hand, quality

disclosure has been shown to enhance welfare by increasing demand for high-quality products,

stimulating competition, and ameliorating adverse selection (Jin and Leslie 2003; Luca and

Vats 2013). On the other hand, disclosure might lead to unintended consequences, such as

causing multitasking problems (Holmstrom and Milgrom 1991; Feng Lu 2012) or inducing

inefficient effort on the part of suppliers (Dranove et al., 2003). Although the literature has

numerous studies about the effect of quality disclosure on market outcomes, one understudied

domain is the impact of quality disclosure on markets with potential congestion effects and

wait times. If quality ratings sort consumers to highly rated sellers whose supply is not

perfectly elastic, a glut of buyers may seek to purchase from these high-rated sellers if prices

cannot adjust to reflect varying quality. One market where this might occur is in health care,

where patients often pay the same price for care from any in-network provider regardless of

quality. In the absence of a price, wait times may serve as an equilibrating factor to clear

the market.

I study this phenomenon in the market for family medicine physicians. This market is

a setting where quality ratings are widespread (e.g., ZocDoc.com and Healthgrades.com)

and where many consumers search the internet for information before selecting a provider.

According to a 2019 University of Michigan National Poll on Healthy Aging, 43% of adults

aged 50-80 reported looking at doctor ratings online (Hanauer et al., 2020). While the

market for doctors and other medical providers is not the only setting where star ratings are

important (other examples are Amazon for retail products, Yelp for restaurants, or Centers

for Medicare and Medicaid Services [CMS] Compare for nursing homes), ratings may be

particularly relevant in the market for family medicine and primary care because patients

typically have a large number of potential providers to choose from and their insurance

benefits often force an active choice of a family doctor. This directly contrasts with the

choice of a specialist (e.g., cardiologist), where choice sets are often more limited and another

factor—referrals—might crowd out the role of consumer-facing quality information such as

star ratings.

In this paper, I focus on three primary economic outcomes: quantity demanded, sorting over

quality, and congestion spillovers. These three outcomes encompass a range of possible effects

of quality disclosure in equilibrium. I study these effects using a novel data set comprised of

a combination of electronic health records (EHRs) and the universe of online doctor reviews

that was collected and later disclosed by a large, integrated health system in the United
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States with more than 40 hospitals and nearly 1,500 employed physicians.

I use a regression discontinuity design to estimate the causal effects of an increase in provider

rating on new patient visits which leverages the fact that actual provider quality ratings are

continuous but are rounded into discrete bins on the health system website. In the spirit

of Anderson and Magruder (2012), I exploit the rounding of online ratings, focusing on

doctors just above and just below the rounding thresholds—these physicians have nearly

identical underlying scores but different displayed scores. Additionally, and uniquely among

papers in the literature that examine the demand response to ratings data, I exploit the fact

that the health system collected ratings long before it ever decided to disclose them to the

public. Using this distinctive pre- and post-disclosure variation in the information available

to consumers, I estimate a difference-in-discontinuities model to capture the effects of quality

disclosure.

This health system and the quality disclosure policy that I study have a number of unique

attributes that make the setting an ideal laboratory for exploring the impact of ratings.

First, the disclosed ratings are highly salient for consumers in this market. Prominent star

ratings for doctors are available in a standardized format and are centrally located on each

provider’s website (an example is found in Appendix Figure A1). In addition, the manner

in which ratings are gathered from patients differs from other well-known online sources so

these ratings may be of higher fidelity than other star ratings. Ratings disclosed by this

health system are calculated from randomly-sent, post-visit surveys that are designed and

implemented in consultation with the Agency for Healthcare Research and Quality (AHRQ).

In contrast to this standardized survey, any person (patient or not) is able to submit a review

of a provider on Yelp or other sites. The random sending of surveys to patients eliminates

much of the selection bias that arises due to which individuals are contributing to online

ratings. There is also relatively low availability of other sources of online quality data

about medical providers (e.g., from HealthGrades, Zocdoc, and Yelp) in the health system’s

region, which suggests that this quality disclosure represents a major source of information

about providers. Lastly, unlike on other websites, these quality scores apply universally to

all providers; no provider can opt out of having their rating disclosed or pay for a more

prominent placement.

The unique data source is also an advantage of this setting because it allows me to focus

directly on the subset of the population most impacted by star ratings: new patients. Using

the EHR data, I can identify which patients in the health care system have never before

visited a given provider, allowing me to focus directly on the subset of shoppers who are

actively searching for physicians but have not yet received a signal via previous consump-
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tion. I use the EHR data to construct a volume measure of new patients at the level of

a provider–month, which allows me to zoom in directly on the component of health care

shopping that might be most impacted by quality disclosure. These data also allow me to

explore heterogeneity in the effect of quality disclosure across different provider specialties.

This approach is important due to the nature of insurance design. Plans such as health

maintenance organizations (HMOs) frequently force members to make active choices about

their family medicine providers. These chosen primary care doctors act as gatekeepers via

referrals to specialists. Accordingly, I focus on family medicine as the subset of providers

who might be most impacted by quality disclosure, but also analyze the effects separately

for different types of specialists.

There are several interesting results. First, I find that consumer demand is highly responsive

to online digital disclosure of quality scores. In particular, I find that an increase of one

interval in the rating scale in a provider’s online profile causes them to see 54% more new

patients per month (2.96 new patients). This result is consistent with a number of other

studies about the demand response to online disclosure of ratings (Chevalier and Mayzlin

2006; Anderson and Magruder 2012; Hunter 2020). However, I obtain estimates that are

larger in magnitude. This can likely be explained by the standardized nature of quality

disclosure in this setting and potentially by the paucity of other reputable sources of physician

quality information. Second, I find that the effect of quality disclosure is concentrated among

family medicine providers (as opposed to other specialties), highlighting the role of referrals

in consumer choice of specialist providers. Family medicine doctors are selected from a large

choice set relative to other specialists, and it is not surprising that the effects of quality

disclosure are large for these gatekeepers of patient health. I also find that the effect of

quality disclosure is greatest among the younger population (ages 18-34) as compared to older

individuals, potentially because this age group is more accustomed to searching online about

product quality more generally. Previous literature has been unable to examine heterogeneity

in ratings effect by age.

In addition to these findings about the demand response to quality disclosure, I provide

evidence on equilibrium effects. Specifically, I examine equilibrium consequences of disclosure

on supply and demand by studying three dimensions of sorting: (1) examining whether

information disclosure shifts patients to physicians who supply greater inputs to health, (2)

studying whether information disclosure results in market expansion (new patients to the

system) or switching (reallocation of existing patients), and (3) investigating whether quality

disclosure causes congestion at high-quality sellers.

I first examine whether information shifts patients to physicians who supply greater inputs
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to health. One common criticism of online disclosure of doctor quality ratings is that stars do

not reflect actual provider quality but instead reflect orthogonal concerns such as the quality

of the magazines in the waiting room lobby. In contrast to these concerns, I show previously

undocumented evidence that the online disclosure sorts patients to providers who more

frequently perform medically-recommended inputs to patient health such as vaccinations,

screenings, and behavioral health services. Second, I study whether the quality disclosure

has market expansion effects or switches existing patients (or both). I find that the quality

disclosure largely switches current patients at the health system to higher-rated providers

rather than affecting choices of individuals who have never before visited the system, thus

suggesting the main margin of action is that disclosure effects established patients in the

system.

Finally, I address a previously understudied question about congestion and wait time that

is relevant in markets such as health care where prices cannot easily adjust in response to

quality scores being released. In contrast to restaurants, for example, which can raise prices in

response to an increase in consumer demand, physicians employed by a health system cannot

immediately raise prices after receiving a high score (or cannot lower prices after receiving

a low score). In this health system, the patient pays the same out-of-pocket price for family

medicine irrespective of quality. If a significant mass of new patients is shifted towards the

high-quality sellers after quality disclosure, those sellers will face congestion in the absence of

a monetary price which rations the scarce quality (Richards-Shubik et al., 2021). I document

that congestion is occurring at high-quality sellers, and that this congestion is affecting

both new patients (who wait 30.5% longer for an additional increment of quality score) as

well as established patients, who were previously seeing a high-quality provider but now

wait longer for appointments with the exact same provider due to congestion. This finding

helps underscore the winners and losers of quality disclosure and provides the first revealed

preference evidence of a willingness-to-pay for provider stars. I calculate that patients are

willing to wait 3 additional days for a one standard deviation increase in provider quality,

and this wait time serves as a shadow price for quality which rations demand at high-quality

sellers.

Taken as a whole, these results paint a multidimensional picture of the economic consequences

of online quality disclosure. As markets in health care and beyond increasingly adopt star

ratings and quality certification as a means to ameliorate market woes caused by imperfect

information, they will face trade-offs between increased ease of shopping for experience goods

and congestion at high-quality sellers. The theoretical model which I introduce along with the

empirical evidence I uncover suggests that quality disclosure creates a new market for quality
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even in the absence of differential prices, as wait times can serve as an equilibrating force.

This insight is useful for policymakers who are interested in designing, implementing, and

evaluating quality disclosure policies, such as those at the Centers for Medicare and Medicaid

Services (CMS), because it suggests that increased wait times for highly rated physicians

may reflect a market-driven process in the absence of potential capacity adjustments and

price variation.

The rest of this paper proceeds as follows. Section 2 reviews the existing literature. Section 3

lays out a model of patient choice and waiting. Section 4 describes the data and institutional

setting and Section 5 presents the empirical strategy. Section 6 presents the results, discusses

heterogeneity, and institutes robustness checks. Section 7 concludes.

2 Related Literature

In this section, I broadly separate the literature about quality disclosure into two components,

the demand-side response and the supply-side response. Before summarizing the literature,

I offer a brief introduction to the theory on how incomplete information can cause market

failures, a key problem that disclosure policies hope to remedy. A comprehensive review of

the economics of disclosure can be found in a survey article by Dranove and Jin (2010).

2.1 Information, Market Failures, and Disclosure

Studies on the relationship between and market outcomes emerged shortly after the de-

velopment of general equilibrium theory. A finding of general equilibrium theory, the first

fundamental welfare theorem, holds that under a certain standard set of assumptions, such

as well-behaved preferences and perfectly competitive markets, the competitive market equi-

librium will be Pareto efficient in that it will exhaust all gains from trade. However, an

important condition of the welfare theorem that must hold for the results to obtain is the

assumption of perfect information. Suggesting that the market for medical care falls short

on this dimension, Arrow (1963, p. 951) writes, “uncertainty as to the quality of the product

is perhaps more intense here [medical care] than in any other important commodity.”

Akerlof (1970) proves that in markets featuring asymmetric information, less-than-efficient

levels of trade might occur if one side of the market sorts on quality and the other side cannot

readily observe quality ex ante but nonetheless knows that low-quality goods will be put on

the market first. This creates an adverse selection problem, with consumers who are wary of
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poor quality products, or “lemons”. For disclosure to ameliorate adverse selection, disclosed

quality information must be (1) noticed by the market participants and (2) acted upon.

Nelson (1970) introduces a useful taxonomy of search goods versus experience goods, with

search goods allowing consumers to inspect products for quality prior to consumption while

experience goods requiring consumers to learn about quality after purchase. In addition to

search versus experience goods, a credence good is a product for which quality may not be

observable by the consumer until long after consumption, if ever. The market studied in

this paper, physician services, has elements of search, experience, as well as credence goods.

Broadly speaking, the more information that is available ex ante in a market with quality

heterogeneity, the more the product is similar to a search good than a credence or experience

good, and disclosure can be used as a lever to moderate if a good is search, experience, or

credence type.

The economics literature draws a distinction between voluntary and mandatory information

disclosure. With mandatory disclosure, all sellers must post or publish quality information.

With voluntary disclosure, it is ambiguous whether firms will choose to disclose the quality

of their offering. The theory literature (Grossman and Hart 1980; Grossman 1981; Jovanovic

1982) finds that when disclosure is costless and verifiably truthful, all sellers should volun-

tarily disclose quality because consumers assume if a seller does not disclose, that seller

is low-quality. When disclosure is costly, only sellers with sufficiently high quality should

choose to disclose (Jovanovic, 1982). In contrast, Bederson et al. (2018) find that voluntary

disclosure might not occur by high-quality sellers due to counter-signaling; in essence, high

quality sellers choose not to disclose their quality, sending a signal to buyers that they are

such high quality that they do not need to disclose. In the setting studied in this paper, dis-

closure is mandated throughout the health system, and questions about voluntary disclosure

are not applicable.

2.2 Demand-Side Responses to Disclosure

Until fairly recently, there was very little empirical evidence that consumers observe and act

upon disclosed quality information. A paper by Mathios (2000) finds that when the Nutrition

Labeling and Education Act required disclosure of fat content on salad dressings, high-fat

dressings experienced a significant reduction in sales. Chevalier and Mayzlin (2006), focusing

on online reviews, also find that consumers are responsive to disclosure. The authors looked

at the same book that sold on both Amazon.com and BarnesAndNoble.com and found that

books with a higher review score on one site had higher sales on that same site. By focusing
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on the same exact book at two online retailers, they cleverly controlled for actual quality of

the product.

To measure the effect of information disclosure, most studies rely on panel data methods. For

example, in a wide variety of health care contexts, the literature shows that consumers are

responsive to disclosure in the form of report card ratings. Studying health plans, Scanlon

et al. (2002) show that people avoid health plans with many below-average ratings. The

authors controlled for fixed, unobserved plan traits by leveraging a natural experiment when

General Motors released plan report cards. Dafny and Dranove (2008) study Medicare HMO

report card disclosure and find that consumers switch to high-quality plans independently

of report cards (driven by word-of-mouth information), but also that disclosure induces a

response to satisfaction scores. This effect is larger when there is large variation in quality.

Demand-side responses to quality report cards are shown to occur for hospitals (Dranove and

Sfekas 2008; Pope 2009), fertility clinics (Bundorf et al., 2009), and (in a stated preferences

experiment) for joint replacement practices (Schwartz et al., 2021).

Identifying the effect of information disclosure on demand-side decisions is complicated by

the fact that in almost all settings, rating scores (which are observable to the researcher)

are correlated with other factors that are unobservable to the researcher, but observable to

the economic agents. One such example is word-of-mouth reputation. These unobserved

factors will cause biased estimates in the cross-section, and estimates of the ratings effect on

demand will be overstated if publicized ratings are positively correlated with unobservable

factors. Of course, the bias could run in the opposite direction, too (e.g., if provider panels

are limited in size and high quality providers are full, a form of capacity constraint). Jin

and Sorensen (2006) address the omitted variable bias by assessing the demand response to

health plan rating disclosure from the National Committee for Quality Assurance, exploiting

a data set that includes both disclosed ratings as well as non-public plan ratings. They

find that ratings have an effect on patient choice, particularly for first-time decisionmakers.

Disclosed information affects only a small number of individuals, but the welfare gains for

those individuals are large. The similarities between the Jin and Sorensen study and my

research include the presence of both public and non-public ratings data as well as the

importance of first-time decisionmakers (in my context, new patients) versus established

consumers. Jin and Sorensen also develop a discrete choice framework for estimating the

value of information as a function of estimated parameters. Chernew et al. (2008) studied

a similar setting of health plan report cards and found a small but significant effect of

information on plan choices (average value of a report card to employees was about $20 per

year). In contrast to Jin and Sorensen (2006), Chernew et al. (2008) specified a Bayesian
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learning model to quantify the value of information. They assume patients hold priors about

the distribution of quality and update to form a posterior proportional to the prior times the

likelihood. They allowed for both continuous or discrete priors and signals, with discreetness

reflecting real-world disclosure methods such as stars.

Another approach to identifying the causal impact of ratings on demand is a regression

discontinuity design first initiated by Anderson and Magruder (2012) in a study looking

at the market for restaurant services in the context of Yelp.com. The authors find that

increasing a restaurant’s Yelp score by a half-star (the smallest increment displayed on the

website) causes restaurants in their study sample to sell out 19 percentage points more

frequently compared to a restaurant without the benefit of a higher rating. That paper not

only provides credible estimates of demand effects of ratings in the food service industry,

but is also notable for introducing a novel application of regression discontinuity design for

the purposes of identifying the effect of ratings on quantity demanded. The authors point

out that the underlying distribution of actual, raw ratings for restaurants is continuous, yet

the website displays ratings only in discrete, rounded bins. Leveraging this rounding, which

is widespread in internet-based rating systems, they used the mass of restaurants just below

and just above the rounding cutoff thresholds to identify the causal effect of an increased

score on volume, laying the groundwork for the identification strategy used in this paper.

Anderson and Magruder’s regression discontinuity design has been applied to a variety of

settings where credence and/or experience goods are bought and sold. Some of this has been

in the context of health care, where physician quality is heterogeneous and difficult to discern

ex ante. For example, in an unpublished manuscript, Luca and Vats (2013) collect ratings

from a crowdsourced online doctor platform (ZocDoc) and find that a half-star improvement

in a doctor’s rating boosts the likelihood that the doctor will have an appointment booked

through ZocDoc by 10%. A drawback to this study is that provider participation on ZocDoc

is voluntary as opposed to mandatory (in my paper, ratings are required for all doctors

in the system). Providers on ZocDoc can additionally choose to pay a subscription to

achieve a “verified” status and optimal placement on the webpage, suggesting that there

may be unobserved selection into prominent disclosure. In another unpublished manuscript,

Brown, Hansman, Keener, and Veiga (2022) look at General Practice (GP) clinics in the

English National Health Service (NHS) and find that a half-star improvement for a GP

practice increases quarterly enrollment in the practice by 0.13 patients, an implied increase

in enrollment of 22%. The Brown et al. (2022) paper is the study most similar to mine.

Some important differences, however, relate to the setting. Brown et al. study the causal

impact of star ratings in the market for GP practices in England whereas this paper studies
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the market for doctors and other providers in the United States. The English NHS and

the United States health systems differ substantially with respect to autonomy of patient

choice at all levels of the health system. For example, GPs in England operate according

to geographic catchment areas and only since 2015 have patients who live outside of a GP’s

practice area been allowed to register with that GP. And health care in Great Britain is

marked by long waiting times and failure to provide certain types of treatments (Feldstein,

2007). Furthermore, the GP practices in the Brown et al. paper have an average of 5.9

practitioners per practice, so ratings are not specific to individual providers, while my study

focuses on individual providers rather than practices.

The effect of ratings on demand is not limited to health care and restaurants. Hunter (2020)

finds that demand for automotive repair services is responsive to online star ratings, and

Magnusson (2019) finds that increasing a home furnishing product rating by a half star on

Wayfair.com leads to a 5% increase in demand for that item. Both papers use the regression

discontinuity from rounded ratings to identify the causal effect.

2.3 Supply-Side Responses to Disclosure

In addition to the demand-side response to quality disclosure, supply-side responses also

may have an effect on market performance. Jin and Leslie (2003) find that disclosure of

restaurant report cards causes firms to improve product quality. The authors show that

restaurants obtaining an “A” relative to a “B” grade causes restaurants to have 5% greater

revenue, but also that grade cards cause a 20% decrease in foodborne illness hospitalizations,

a decrease not fully explained by consumers switching from low to high hygiene restaurants.

This implies that disclosure causes firms to increase quality, a fact that they attribute to

reducing adverse selection via disclosure.

However, Dranove et al. (2003) observe that disclosure can have countervailing effects which

may be welfare-reducing. Using a difference-in-difference design in a study of heart attack

patients and coronary artery bypass graft (CABG) surgeries, the authors found that report

cards improved matching of patients to hospitals, increased the amount of CABG surgeries,

and shifted this treatment from ex ante sicker to ex ante healthier patients, who derive

less of a benefit from the more intense CABG procedure, resulting in higher costs and

worse outcomes. On net, the authors conclude that report card disclosure caused doctors to

change behavior in a welfare-reducing way. Similar unintended consequences are highlighted

by Werner and Asch (2005).

A major concern is that disclosing ratings might incentivize suboptimal behavior on the
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part of sellers, particularly when quality is multidimensional. Building off the multitasking

literature of Holmstrom and Milgrom (1991), Feng Lu (2012) finds that an initiative to report

nursing home quality data that discloses some product attributes but not others had the effect

of realigning the relative returns across different quality dimensions, leading to improvement

on reported quality dimensions but deterioration along other dimensions. Given that patient

demand was responsive to this disclosure, the reallocation of effort across tasks might reduce

welfare if there is large misalignment between the social planner’s objectives and what can be

measured (Baker 2002; Gibbons 2010). In the context of a health system disclosing aggregate

survey ratings for each doctor, if ratings reflect different quality attributes than what patients

actually desire, disclosure could be harmful. In the context of credence goods, where the

consumer might have difficulty assessing quality, this problem might be particularly severe.

For example, if a patient values medical care and amenities, but faces challenges in observing

the medical skill of a doctor, that patient might rate the provider based on only amenities

(such as the magazines in the waiting room) and be unable to opine on other elements that

enter into their utility. This situation creates a rating score that is misaligned with provider

quality. As observed by Baker (2002), the misalignment between what can be measured by

scores and what is valued by consumers may inhibit success of a disclosure policy such as

doctor ratings.

Finally, Kolstad (2013) found that cardiologists, when faced with report card disclosure,

responded to both financial and non-financial (intrinsic motivation) incentives to increase

quality. Using the risk-adjustment model that underlies report cards, Kolstad identified the

magnitude of the effect of new information by exploiting the fact that different surgeons gain

more or less information about their relative performance compared to substitute surgeons.

He concluded that not only does profit motivate reductions in relative average mortality risk,

but intrinsic non-pecuniary motivations are relatively large. This result implies that in a

model with no immediate differentiation on prices, sellers may still respond to information

disclosure because of non-financial determinants of provider utility.

Richards-Shubik et al. (2021) point out that, in equilibrium, prices serve to ration quality

when quality is scarce, and in the absence of prices for quality (which may be the case in

health care), congestion serves the role of equilibrating the market. They discuss the bias

that can result from estimating models of consumer demand that include taste for quality

but do not account for disutility from congestion. Studying the market for heart surgery,

they found that this bias can be empirically large.

I next present a model about the equilibrium effects of disclosure and turn to the institutional

setting studied in this paper.
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3 Rationing Demand byWait List: A Theoretical Model

In this section, I introduce a theoretical model which ties together two related empirical

observations that I observe in the data (that demand is responsive to star ratings and that

a higher star rating causes a longer wait times, ceterus paribus). This model is inspired by

Lindsay and Feigenbaum (1984) and introduces a way in which wait times function very

much like a price and clear the market when prices are absent.1 A key feature of the model

is attacking the assumption that demand for care is unchanged throughout the wait (Cullis

and Jones, 1985) and I link wait time to demand by recognizing that the value of care decays

the longer care is postponed. For example, a high-quality doctor might refer a patient with

coronavirus symptoms to get monoclonal antibodies, which are helpful if given early but

which decay in effectiveness the longer the duration between illness and infusion, whereas a

low quality doctor might not refer a patient for monoclonal antibodies at all.

The insight of the model’s equilibrium conditions derives from the idea that wait times

equilibrate a queue by rising or falling until the number of individuals who join the queue

is equal to the number of patients who get treatment in a given time period. I first start by

modeling the marginal joiner of a queue.

3.1 Marginal Joiner of a Queue

I assume that patients who are seeking care from a highly-rated family medicine physician

might not be able to see that physician right away. The fundamental economic decision

faced by the patient when they need care is whether to join the queue and wait to see the

highly-rated physician or not. The patient follows the following intuitive cost vs. benefit

decision rule: if the present value of the care (when it is eventually delivered) exceeds the

cost of joining the wait list, they will schedule an appointment. The binary decision J for a

person to join the wait list to see the higher-rated physician is:

J =

{
1, if c < ve−dt

0, if c > ve−dt

The present value of care is determined by the product of the current value of the care, v,

which may include the value derived from a timely referral to a specialist, and an expo-

1This intuition of this model is used extensively in the study of the National Health Service in the United
Kingdom, where wait lists for elective surgeries are frequent. See Cullis et al. (2000) and Propper (2000),
for example.
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nential function of the decay rate of demand, d, and wait time, t. The model parameters

depend on the differential levels (of cost, value, and decay) between the low and high rated

providers. The costs of joining the queue for care are denoted by c (e.g., calling to schedule

the appointment).2 For the ith individual, their value is

vi(d, t) = vie
−dt

Appendix Figure 2 shows the cost-to-benefit tradeoff of a patient adding their name to a

wait list for given values of c, v, and d as a function of the wait time t. If the value of joining

the queue for care at the date of scheduling an appointment is v1 and the decay rate is d1

and costs to join the queue are c, then the critical length of time for joining the queue or

not is t̂1. If the wait time t is greater than t̂1, then costs exceed benefits: c > ve−dt. So the

patient would not add their name to the queue.

As v, c, differ among demanders of care, the critical value t̂ will vary. For queue joiners, t̂

must be such that the net present value of the benefit exceeds the cost. I next focus on the

marginal joiner, the individual whose t̂ = t. Accordingly, for the marginal joiner, expected

benefits must equal expected costs: ve−dt = c and we can observe the following first order

conditions which follow from differentiation and substitution:

∂v/∂d = vt > 0

∂v/∂t = vd > 0

An increase in the decay rate of the value of care will make someone previously on the margin

of joining the queue not join. This is seen in Figure A2 holding v1 fixed and moving from the

curve v1e
−d1t to v1e

−d2t. Furthermore, holding the decay rate constant at d2 while increasing

the expected wait time from t̂2 to t̂1 increases the marginal queue joiner’s value placed on

the care from v1 to v2.

3.2 Rate of Joining the Queue

Next, given a fixed out-of-pocket price of the medical care (e.g., the patient pays only a

pre-set copay for all family medicine), what is the rate of joining the queue? The rate of

joining is determined by variation in t̂ driven by decay rate d and fixed consumer attributes.

As a first step, assume everyone in the population has the same rate d. Then, the only

2Note that unlike earlier models of queuing, e.g., Barzel (1974), the costs of joining the wait list do not
involve physically standing in a line, but merely placing your name on a list.
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factor that gives rise to variation in t̂ in the population is v, the valuation of care at the

moment of illness onset. Assume v is distributed in the population according to f(v), which

is continuous and has finite range 0 ≤ v ≤ v̄. Someone at an expected wait of t1 must then

value the good at v1 or more to join the queue. The number of people who join the queue

per period, as a function of v and N , the population size, is given by

h(v) = N

∫ v̄

v

f(v)dv = N [1− F (v)]

and can be converted to t-space by substituting for v = ce−dt̂ to get

j(t̂) = N [1− F (ce−dt̂)]

Which is the number of people for whom the critical delay time (i.e., to join/not join queue)

is t̂ or greater. Accordingly,

j(t) = N [1− F (ce−dt)]

is the number of people who would queue at wait time t. Now, I point out the j-intercept:

j(0) = N [1− F (c)]

which is the number of people who value the care more than the cost of simply joining the

queue. This is also known as the “potential joiners”.

The slope of the queue-joining function with respect to t is:

∂j

∂t
= −Nf(v)

∂v

∂t
= −Nf(v)dv

This slope is negative which implies as t goes up, the number of queue joiners goes down.

The slope of the joining function with respect to the decay rate, ∂j
∂d
, does not change at the

intercept of the joining function because at t = 0, there is no change in j(t). However, for a

positive t queue time, as d goes up, the number of queue joiners goes down.

3.3 Supply of Family Medicine Rate Given Queue

Beyond whatever exogenous factors influence the quantity supplied (e.g., input cost shifters,

regulation, etc.), queues may also influence the rate of supply. Supply at any given time h

depends on those exogenous factors w̃ plus the wait time t and we assume that supply is
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positively affected by wait time:

sh(w̃, t), such that ∂sh/∂t > 0

The queue size at any given moment h is written as Qh =
∑∞

k=0(jn−k − sn−k).
3 And the rate

of change in the queue size at any point in time h is written as

Q̇h = jh(th)− sh(th)

The expected wait time in period h is th, the total number of people waiting in a given time

divided by the supply service rate:

th =
Qh

sh

3.4 Equilibrium and the Implications for the Empirical Setting

This system reaches an equilibrium at t∗ when th = th+1. This occurs (by definition) when

the rate of change in the queue length equals zero, Q̇h = 0.

The equilibrium of this supply and demand system is wait time t∗ and queue size Q∗ such

that j(t∗) = s(t∗); the number of people who would join the queue at wait time t∗ equals the

service rate (supply rate) at that t∗. And in this state, equilibrium queue size is Q∗ = j(t∗)·t∗.

This equilibrium is one in which wait times function very much like a price. In contrast to

markets with prices, where clearing the market occurs via an increase in the price of the good

and the demanders sort by willingness to pay, in this model, wait times clears the market by

making the medical care less valuable as time in the queue increases. Since there is variation

in the population according to initial value v of the care as well as d (the decay rate), the

patients seeking care who have high values v and low decay factors d will crowd out those

with lower v and higher d.

This model has testable implications. I expect to see longer wait times at higher rated

physicians (t∗ > 0). This also implies that at a given moment in time, the relative number

or people in the queue is higher at higher-rated physicians. In my empirical setting, star

ratings may causes an increase in demand at highly-rated physicians but at the same time,

those physicians do not have an ability to modify their prices in the short run as a response

to the disclosure. This model suggests market such as the one I study can be equilibrated

3See Lindsay and Feibenbaum section I.B for exposition on normalizing the number of potential joiners
in each queue.
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by wait times instead of prices. There is an important implication that follows from this

model: although an observer might at first believe that an empirical finding of higher wait

times for higher quality reflects an inefficient backlog of health care services, instead that

same queue might actually be reflective of a market clearing process. In the short run, before

high-quality providers can expand capacity or adjust prices, what does the disclosure do? It

might lead to the creation of a brand-new “market for quality” that is cleared via a queuing

mechanism rather than a price mechanism.

I would expect, as well, that as the short run bleeds into the long run and capacity of

physician quality can adjust, the wait times may shrink back to zero. Accordingly, the pair

of twin empirical findings that (a) quality rating disclosure reallocates consumers to high-

quality sellers and (b) congestion increases at the highly-rated sellers in the absence of prices,

might not reflect a market inefficiency but instead reflect a market process in which wait

time takes the role of prices in rationing scarce demand.4 In the following sections, I show

that these two empirical predictions do in fact occur. The theoretical model relates these

empirical findings to a single economic process.

4 Institutional Setting and Data

4.1 The Large Midwestern Health System

This paper uses data from a large Midwestern Health System (“the health system”), a non-

profit integrated health system located in the upper United States. The health system has

46 hospitals (a mix of larger urban hospitals, such as in Fargo, Sioux Falls, Bismarck, and

Bemidji, as well as smaller rural hospitals and an acute care children’s hospital), more than

200 clinic locations, and nearly 1,500 providers. The health system is known for delivering

high quality care in the region: In recent years, U.S. News and World Report has ranked

the system’s teaching hospital the top hospital in the state. The health system employs the

majority of their physicians, and for all of the major insurance providers in the region, if the

health system is in-network, patients would have equal access to all health system providers.

Importantly, this uniform insurance coverage largely shuts down the role of out-of-pocket

price in patient choices conditional on the insured choosing to receive care at the system.

The majority of the health system’s doctors are compensated on a work relative value unit

(RVU) schedule.

4This implies that policymakers ought not to worry about an increase in short-run congestion when
quality ratings are disclosed because that could indicate an equilibrium sorting process.
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4.2 Rating Data

As part of the health system’s ongoing efforts to promote patient satisfaction, the system

has collected surveys using external consultants (“survey providers”). These national survey

providers, Press Ganey and NRC Health, administer post-visit questionnaires related to the

patients’ subjective experience with their health care provider. The questionnaires are sent

out randomly and ask a series of standardized questions based on a survey developed by

AHRQ called the Clinician and Groups Consumer Assessment of Healthcare Providers and

Systems (CG-CAHPS). Based on dividing the total number of visits by the total number

of submitted surveys, about 5% of total outpatient visits are followed up with a completed

survey. Each provider is evaluated according to seven questions, including “Using any num-

ber from 0 to 10, where 0 is the worst provider possible and 10 is the best provider possible,

what number would you use to rate this provider?”5

The answers to each of these questions are linearly transformed to a 5-point scale, and then

the arithmetic mean across questions is taken to create a score for each provider for a survey

visit. Details of this scaling transformation performed by the health system and their survey

provider are available from me upon request.

Data from survey responses (and accompanying provider ratings) date back to 2016. How-

ever, until late 2018, rating data were never disclosed on the website, but instead held

internally by the health system. On November 2, 2018, the health system launched online

quality disclosure through a major overhaul of its website to include ratings and reviews for

each doctor. Prior to this date, quality ratings were not available to patients and after that

date, visitors to the health system’s website see a prominently placed rating in large font

(on a scale of 1 to 5 in one-tenth intervals) with corresponding gold star symbols next to a

picture of each physician. The website also displays the number (raw count) of reviews. An

artistic rendition of what the star ratings look like to consumers is found in Appendix Figure

A1. According to the health system’s disclosure policy, which is common across the health

care industry, doctors with fewer than 30 ratings were not displayed until they reached the

30-rating minimum. For the November launch of rating, to “seed” the ratings with enough

data, the health system used a 2-year look-back window to late 2016. The health system reg-

ularly updates the ratings for each provider as new survey data arrived, such that, through

July 2020, the rating displayed for each doctor reflected the cumulative mean of all ratings

to that date, starting from the beginning of the look-back window. In my data, I observe

about 500,000 total surveys received by the health system between 2016 and 2020.

5The full list of survey questions is found in Appendix A1.
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Although the values for each patient survey may range from 0 to 5, the vast majority of

providers score highly on average and the overall distribution of average provider ratings is

quite compressed near the top of the star range.6 The provider-level ratings have a mean

of 4.78, standard deviation of 0.13, and a slight negative skewness. A histogram of the

distribution of average ratings is in Figure 1.

For each provider, I have information on listed specialty from the system website, their pro-

fessional licensing credential (e.g., MD, registered nurse, physician assistant, etc.), provider

gender, and a provider identifier (both the national provider identifier [NPI] as well as an

internal health system provider identifier). These data come from hospital human resources

data and the health system website. Using the entire history of individual patient surveys,

I reconstruct the average (mean) raw rating for each doctor at any given day; I then con-

struct what the website displayed historically and verify using the Internet Archive Wayback

Machine and internal communication with the health system. This results in a panel at the

month level for each doctor containing the raw rating for each doctor on the 15th day of

each month (the middle). From the raw, unrounded ratings, I also construct the rounded

rating (to the nearest one-tenth), which is the score that is displayed on the health system

website. To account for the fact that ratings drift slightly as more surveys are returned, I

restrict the panel to include only providers whose rating is displayed at the same value for

the duration of the month.7

4.3 Electronic Health Records Data

In addition to rating score data, I merge data that comes from a three-year extract of EHRs.

The EHR contains de-identified visit data for all patient encounters across all locations in

the health system during the three year period from 2017 to 2019. The EHR data contains

International Classification of Diseases (ICD), doctor and patient identifiers, location and

date of the service performed, and select health and demographic information, such as patient

age, gender, zip code, body mass index (BMI), blood pressure, and smoking status at time of

visit. Critically for this analysis, from the beginning of this window through August 2019, I

have a variable that encodes whether the patient visit was a brand-new relationship between

the patient and the provider or an existing relationship. The final months (quarter four of

6A top competitor in the region also posts star ratings and has a similar distribution of average provider
ratings. The competitor does not post star ratings for all providers (unlike the health system I study),
perhaps because it is not an employer of most providers.

7Dropping provider-months that display more than one rounded rating per month allows for a sharp
regression discontinuity design but means that close to the discontinuity, there is a relatively smaller mass
of data compared to further away. Empirical robustness checks in subsequent sections address this issue.
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2019) do not have this new patient visit variable because the EHR system takes some time

to calculate and populate this field electronically. For my main analysis, I restrict providers

to those practicing the specialty of family medicine according to the health system website;

this is the most common specialty in the system (21% of providers) and is a specialty that

I hypothesize would permit comparison shopping or consumer search online. The analytic

data set comprises a panel of new patient visits at the doctor–month level and includes

average rating (the running variable) and displayed ratings for each provider in the system.

4.4 Summary Statistics

Table 1 displays summary statistics for the data used in this paper. The upper panel describes

the EHR data; there are more than 12 million total visits across 3 years and about 1 million

unique patients. Demographic information available to me in the EHRs is limited. The

average patient is 38 years old with a BMI of 27.5, indicating overweight but not obese. We

expect patients who interact with the health system to be somewhat less healthy than the

average person in the general population, and nothing about this health system suggests

atypical patient composition.

The lower panel of the summary statistics table contains provider-month level summary

statistics for the family medicine providers, the baseline cohort for this analysis. These

providers have (on average) 178 visits per month and see about 7 brand-new patients per

month. These volume measures are skewed such that the mean is larger than the median,

meaning there are some providers who have considerably larger visit volume and new patient

volume. The average provider rating is a 4.78 and the standard deviation is 0.13. Half of

providers have a rating that is rounded up, and the other half have a rating that is rounded

down. At the instant quality disclosure was launched, the average count of reviews used to

determine the average score of a provider was 228. As more ratings were added as more

surveys came in, the average rating count increased to 298.8 On the website, patients are

shown the number of ratings a provider received, and a higher number of ratings could

potentially send a stronger signal of quality to patients, all else equal. In total, 55% of

family medicine providers are physicians (MDs and Doctors of Osteopathic Medicine [DOs],

with the vast majority of these MDs), and the remainder are mid-level practitioners (such as

advanced registered nurse practitioners, physician’s assistants, etc.). There are 340 unique

family medicine providers and the provider-month panel has 2,730 observations.

8The ratings were “seeded” with a 2-year lookback of historical ratings which explains an N larger than
1 on launch of ratings.
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In Table 2, I assess the correlation between new patient visit volume at a given provider

and that provider’s online rating. I regress new patient visits per month on the provider’s

displayed rating score, and I estimate alternative specifications with month-year fixed effects,

professional credential fixed effects (e.g., MD vs. PA vs. Nurse Practitioner) and both. In all

specifications, I find an inverse relationship between rating score and new patient demand.9

This negative relationship between rating score and new patient visit volume can also be

seen in the slope of the points in the binned scatterplot in Appendix Figure A3.

I hypothesize that one driver of this inverse and unexpected relationship arises because

high-quality doctors are also frequently near capacity (have full patient panels). If matching

with a high-quality family medicine doctor is an absorbing state, then one would expect

higher-rated doctors to also be willing to accept fewer new patients because they are already

near capacity. Despite the negative correlation I find in Table 2, it is reasonable to believe

that patients value quality and that there is not a structurally negative relationship between

quality and volume. As a consequence, I approach the question with a causal design in the

next section.

5 Empirical Strategy

5.1 Baseline Regression Discontinuity

I use regression discontinuity methods to compute the effect of an increased provider rating

on demand for new patient visits (Thistlethwaite and Campbell 1960; Angrist and Lavy

1999; Hahn et al. 2001; Almond et al. 2010). In particular, the primary empirical strategy is

to estimate regression discontinuity and difference-in-discontinuities models, which combines

traditional regression-discontinuity estimation with difference-in-differences models (Lalive

2008; Grembi et al. 2016). This discontinuity approach to identification is pursued because

although providers’ actual ratings are continuous and smooth functions of the data, on the

health system website, displayed ratings are rounded to the nearest tenth. For example, a

doctor with a 4.749 will be rounded down to 4.7 stars, while a doctor with 4.750 will be

rounded up to 4.8 stars, even though the underlying ratings are very close. Figure 2 outlines

this identification strategy. I estimate the number of new patient visits per provider per

month approaching the cutoff from the left side as well as the right side. In the figure,

9I estimate the coefficient on score to be about -16, so a one-star increase is associated with 16 fewer
new patients per month. Scaling this by a factor of 1/10, since ratings are displayed on the website in 0.1
intervals, a one-tenth rating increase, say from 4.7 to 4.8, is associated with 1.6 fewer new patients per
month.
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Doctor A and Doctor B have similar unrounded survey scores, but because of the rounding,

their star rating is displayed differently on the website. The causal effect is the jump precisely

at the cutoff; the assumption required for identification is that the other variables that affect

new patient volume do not change discontinuously at the rounding cutoff. This is a sharp

regression discontinuity design, since all providers with ratings above the rounding threshold

are “treated” by being rounded up.

After constructing a panel at the level of provider-month, I estimate two series of regressions.

The first series of regressions are based on the classical regression discontinuity estimator:

Yit = β0 + β11(R̃it > 0) + β2R̃it + β3R̃it1(R̃it > 0) + γc + εit (1)

where Yit is the number of new patient visits per provider i in month t, R̃it is the running

variable, the standardized raw rating, which runs from -.05 to +.05. I standardize each

observation by the distance between the actual rating and the nearest one-tenth cutoff point

because there are multiple different rounding cutoffs (e.g., 4.75, 4.85, etc.). This is common

practice (Anderson and Magruder, 2012). Accordingly, β1 is the coefficient on whether the

provider’s rating was rounded up (the coefficient of interest) and β2 is the coefficient on the

distance to the rounding threshold. Lastly, β3 is the coefficient on the interaction between the

running variable and being rounded up. This allows for alternative slopes to the regression

line on both sides of the discontinuity. Also included are cutoff-specific fixed effects, γc. I

estimate this as a global polynomial of orders 1, 2, and 3. In robustness checks, I estimate

the regressions using alternative bandwidths (distances from the cutoff) both by varying the

bandwidth size by .005 and use optimal bandwidth construction of Calonico et al. (2014). I

weight these regressions based on review count, as higher number of reviews might have an

outsized impact on behavior; this is consistent with more ratings leading to a more precise

signal (Magnusson, 2019). Robustness tests in a subsequent section address the economic

importance of this weighting.

My preferred specification is a global linear (first-order) polynomial with alternative slopes

on both sides of the discontinuity, with cutoff-specific fixed effects and weighting by review

count.10 The linear polynomial is preferred because a visual examination of the binned

10I also estimate a model that does not include cutoff fixed effects. Although the literature on rating
response, e.g. Anderson and Magruder (2012) includes these cutoff specific fixed effects, I want to ensure
that the estimation is robust to not including this fixed effect. According to Cattaneo et al. (2016), the pooled
regression discontinuity estimator without cutoff fixed effects can be interpreted as a “double average”; the
weighted average across cutoffs of the local average treatment effect for all units facing each particular cutoff
value. The weighted average gives higher weights to the particular cutoffs that are most observed in the
data in terms of observations.
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scatterplot of the running variable and the outcome of interest showed no obvious nonlinear

trend, but I report variations by polynomial order and according to global and local linear

regression. Standard errors are clustered at the provider level to account for potential error

correlation within providers.

5.2 Difference-in-Discontinuities

The second series of estimators I construct are difference-in-discontinuities estimators (Grembi

et al., 2016). In addition to the previously mentioned variables, I construct a new variable,

POSTit that evaluates to 1 if the provider-month observation occurs while the ratings were

publicly disclosed online, and evaluates to 0 before they were disclosed.11 I am able to imple-

ment the difference-in-discontinuities estimator because although the health system publicly

disclosed provider rating scores only from November 2018 onward, they had been collect-

ing ratings for many years beforehand. The difference-in-discontinuities regression takes the

following form:

Yit = β0 + β11(R̃it > 0) + β2R̃it + β3R̃it1(R̃it > 0) + β4POSTit1(R̃it > 0)+

β5POSTit + β6POSTitR̃it + β7POSTitR̃it1(R̃it > 0) + γc + εit
(2)

where just like above, Yit is the number of new patient visits per month. I recover separately

the parameters β1 and β4; β1 captures the causal effect of an increased rating on new patient

visit volume when information was not disclosed, and β4 captures the relative causal effect

of an increased rating score on new patient visit volume when the information was disclosed.

Again, I include cutoff-specific fixed effects, allow for alternative slopes on both sides of the

discontinuity, and weight by count of reviews. As in the previous regressions, standard errors

are clustered at the provider level.

6 Results

In this section, I show results on market responses to quality disclosure. I present two sets

of results about quantity demanded, a baseline regression discontinuity analysis, which iden-

tifies a causal effect based on the rounded star rating, and a difference-in-discontinuities

analysis that further leverages the time variation in patient exposure to online ratings. Next

I discuss heterogeneity in the demand response to rating disclosure along a number of dimen-

11In these specifications, I drop November 2018, a partially treated month. The disclosure began on
November 2, and results are robust to considering this to be a fully treated month.
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sions including provider specialization, patient age and health, and the density of providers

in a given geographic area. I then show the effects of an increased star rating on wait times

using a regression discontinuity identification strategy similar to what is used when analyzing

the demand response but examining individual wait times. Finally, I test the robustness of

my results by implementing a number of standard checks from the regression discontinuity

literature.

6.1 Information Disclosure and Demand Response

6.1.1 Baseline Regression Discontinuity

In Figure 3, I begin by showing the relationship between the monthly new visits for a given

family medicine provider and the distance that the provider’s rating is from being rounded

up (the running variable), with the distance normalized to zero. This binned scatterplot with

40 equally-sized bins provides a non-parametric way of visualizing the relationship between

the running variable and the outcome of interest and assists with evaluating the presence

of an effect at the discontinuity. Points to the left of the vertical dashed line represent the

conditional mean within a bin for providers with ratings that are rounded down; points to

the right of the vertical line correspond to the conditional mean of providers who have a

rating which is rounded up. Overlaid on this plot are linear regression lines fit separately

for data on each side of the rounding cutoff.

I observe a large and economically meaningful jump in the quantity demanded of new patient

visits that takes place precisely at the discontinuity. In Figure 3, providers who have their

ratings rounded down see approximately 5.5 new patients per month, whereas precisely at

the cutoff, I observe a level increase in the number of additional new patients a doctor sees

of approximately 3 new patients.

In Table 3, I provide a regression-based estimate of the causal impact of an increased provider

rating on new patient visits. Columns 1-6 of Table 3 present various alternative specifications

of Equation 5: linear, quadratic, and cubic in the running variable and allowing for vs. not

allowing for alternative slopes on each side of the discontinuity. Based on the absence of a

non-linear relationship between the running variable and the outcome variable in Figure 3,

my preferred specification is a linear first order polynomial with an interaction between the

running variable and the indicator for a provider’s rating being rounded up; this is shown

in Column 4 of Table 3. The estimated jump persists regardless of whether I assume the

relationship between the running variable (distance to rounding) and the outcome variable
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(new patient visits) is linear, quadratic, or cubic. I estimate that an increase in a provider’s

rating causes 2.96 additional patients per month to visit that provider (on a baseline of 5.475,

this corresponds to a 54% increase). This causal estimate of the demand response is robust

to alternative functional form specifications.

6.1.2 Leveraging Time Variation in Disclosure via Difference-in-Discontinuities

In Figure 4, I show the results of exploiting the unique institutional setting in which the

health care system collected ratings for more than two years prior to ever disclosing provider

quality scores to patients. I plot two separate series in a single graph: the blue dots represent

the conditional mean of the outcome variable, breaking the data into 40 equally-sized bins,

for the period of time when the ratings were disclosed online and when I have data on new

patient visit volume (December 2018-August 2019). In contrast, the red triangles represent

the conditional mean of the running variable, but for the “pre-disclosure” time period, from

January 2017 to October 2018, when ratings were not observed by patients.

The results of Figure 4 are striking. Before online information disclosure of quality scores for

providers, a provider whose score was rounded up was expected to see no additional patients

per month. This zero-magnitude effect is seen when looking at the red regression line,

which shows no meaningful jump in the outcome variable as the threshold is crossed for the

pre-disclosure data. However, after disclosure, I observe a large and statistically significant

increase in the number of new patients per month for providers with ratings rounded up.

This can also be seen by noticing that to the left of the vertical dashed line in Figure 4,

the blue dots and red triangles are commingled; in contrast, to the right of the rounding

threshold, virtually all of the blue dots are above the red triangles.

I estimate the causal effects that are suggested by Figure 4 by using a difference-in-discontinuities

regression and report the results in Table 4. This regression corresponds to Equation 6. The

coefficient Rounded Up corresponds to the causal effect of an increased quality score in the

pre-disclosure period, while the coefficient Post X Rounded Up corresponds to the causal

effect of an increased quality score during the post-disclosure period. As expected, this

effect is estimated as not significantly different than zero when ratings are not disclosed.

However, when the ratings are disclosed online, I find an effect size of 4.496 new patients per

month (an 88% increase off a baseline of 5.100 new patients per month). This difference-in-

discontinuities model serves as a test to validate if other factors outside of online disclosure

that also occur precisely as a provider’s rating crosses the rounding threshold might causally

affect new patient demand. For example, if the internally held but not released ratings were
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causing patients to see highly rated doctors more, this might be a threat to identification.

Regression results from Table 4 serve to bolster and confirm the findings of a large demand

response to the disclosure of quality ratings for providers.

6.2 Heterogeneity & Potential Mechanisms

I next explore the heterogeneity that underlies the large demand response to quality disclo-

sure. These heterogeneity analyses will clarify which sub-populations benefit from and which

are drivers of the demand response to quality. However, I caution the reader not to make

causal conclusions based on these heterogeneity analyses, as unobserved differences across

sub-populations inhibit one from making causal connections. Nonetheless, this series of het-

erogeneity analyses sheds light on some of the potential mechanisms behind the demand-side

response to quality disclosure.

6.2.1 Provider Specialization & the Role of Choice versus Referrals

In Table 5, I consider the impact of quality disclosure differentially across provider specialties.

The search process by which patients choose providers may differ considerably across the

specialty of the physicians. Up to this point, my central focus was on family medicine because

patients are frequently required to actively choose their primary care provider. In fact, HMO

plans require the active choice of a primary care doctor. Family medicine is also the most

common provider specialty in the data, comprising approximately 20% of all of the health

system’s providers. I now consider the effect of quality disclosure on the quantity of new

patient visits at the top five specialties as listed for providers on the health system website

(family medicine, pediatrics, internal medicine, cancer, and OB/GYN).

Column 1 of Table 5 shows a 54% increase in the number of new patient visits per month

for family medicine doctors (also reported in Table 3). This effect is large and statistically

significant. In contrast, however, in columns 2-5 of Table 5, I do not find statistically

significant causal effects on the amount of new patient visits for providers with different

specialties. None of the coefficients are statistically significantly different from zero at the

5% level, regardless of specialty (pediatrics, internal medicine, cancer, and OB/GYN). This

confirms the prior hypothesis that family medicine providers may be those whose demand is

most impacted by rating disclosure.

What might explain this heterogeneity across the specialties of providers? One possibility

is that at the health system, family medicine providers serve as care coordinators who may

25



create spillovers in terms of future health. If they can shape the trajectory of future patient

health, then it might be reasonable for demand to be most sensitive to quality disclosure

early on in the chain of care. Buttressing this theory is the fact that insurance design often

forces active choices of primary care providers. In contrast, specialists are often found via a

referral, in which the primary care doctor (rather than the patient) makes the decision about

which doctor to see. This logic is consistent with large rating effects for family medicine but

not for other specialties.

Another consideration that might drive the differences across specialties is the variation in

the breadth of a patient’s choice set. For example, within the specialty of family medicine,

it is quite possible that all doctors listed within a geographic region could be chosen by a

patient. However, in the case of specialty care for cancer, for example, if a patient needs care

for a brain tumor, a doctor specializing in hematology/blood cancers might not be a valid

substitute. Thus, it does not surprise me that I recover a large effect for family medicine

but not for other specialties, which are more differentiated within the broad specialty class.

Working against these interpretations is the possibility that there simply is not a large

enough sample to identify a causal effect for the other specialties. The provider-month panel

for family medicine, the most common specialty, has approximately three times as many

observations as the next highest specialty, so the null effects might not be driven by the

referral versus active choice hypothesis, but instead driven by sample size limitations.

6.2.2 Older or Younger Patients? Healthy Patients or Sick Patients?

In Table 6, I show estimates of the causal effect of a higher rating on new patient visits

separately by the five age groups of adults used by the health system (ages 18-34, 35-49,

50-64, 65-79, and 80+). I find the largest response to quality disclosure is driven by the 18-34

age group (75% more new patients in that age group per month in response to an increase

in provider rating). In older patients, the demand responsiveness to quality disclosure is

lower (although even the 65 to 79-year-old subsample shows a statistically significant demand

response to ratings). Note as well that the base rate for new patient visits at a given provider

declines with patient age (older patients visit new family medicine doctors at a much lower

rate than younger patients).

The overall pattern that the young adults are most sensitive to quality disclosure is consistent

with primary care having characteristics of a credence good, where young individuals (with

many years ahead of them) are sensitive to quality scores because there may face difficult-

to-observe (in the short run) returns to provider quality. The result in Table 6 is evidence
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that younger patients are sensitive to quality disclosure for providers, potentially more than

older patients. Chen (2018) studies the impact of physician Yelp ratings on revenues and

patient volume using Medicare claims, but he finds considerably smaller effects than I do.

My age heterogeneity analysis can partly explain that difference. Chen’s paper uses data

on Medicare patients (the preponderance of beneficiaries are age 65+) and combines that

data with ratings from Yelp (a website which might be easier for younger rather than older

individuals to navigate). One reason that the aggregate effect size I find (Table 3) is larger

than what Chen finds in his paper is that I see evidence that a large portion of the effect

of disclosure on quantity demanded is driven by the younger population, which he does not

systematically study. Additionally, there are differences between the types of information

about physicians found on Yelp and found on the health system website (based on AHRQ

surveys). In prior studies of demand response to quality disclosure, the ratings are from

surveys in which everyone is eligible to participate. In contrast, my setting relies on quality

disclosure comprising of scores from a survey sent to a random subset of patients who received

care. The differences between my larger results and the smaller magnitude results seen in

Chen (2018), Brown, et al (working paper), and Luca and Vats (2013) might be due to the

standardized and random nature of the surveys; if this is viewed by patients as more credible,

it might induce a larger demand response. This is consistent with a conversation I had with a

health system CEO who said that he chose to publicly disclose quality scores based on AHRQ

surveys (such as those studied in my paper) in order to control the information environment

in direct comparison to what patients might find if they were to go to Yelp themselves.

In Table 7, I explore the relationship between patient health status and responsiveness to

quality score disclosure. First, I separate patients into healthy and unhealthy patients. I

do this three different ways: (A) if they ever have a comorbidity diagnosis code that would

trigger a flag in a Charlson Comorbidity Index score, then they are categorized as unhealthy,

e.g., a diagnosis of COPD, dementia, or cancer, for example, (B) I use obesity/BMI ≥30 to

separate patients into healthy vs. sick, and (C) if the patient is ever recorded as a smoker.12

Columns 1-3 of Table 7 show the responsiveness to quality scores for the healthy patients.

Providers whose ratings were rounded up saw 54%, 48%, and 55% more new healthy patients

per month (where health is defined as no comorbidities, non-obese, and non-smoker, respec-

tively). In contrast, columns 4-6 of Table 7 show the responsiveness to quality scores for the

sicker patients. The sicker patients are more responsive to new patient ratings. Providers

with ratings that are rounded up see 64%, 71%, and 54% (comorbidity, obese, and smoker,

respectively) more unhealthy patients per month relative to providers with ratings that are

12Because my EHR data has only a primary diagnosis on a patient visit level (and not secondary diag-
noses), I compute a Charlson score across all episodes for that patient in the EHR.
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rounded down.

The fact that sicker patients have a larger response to disclosed quality scores is consistent

with the Grossman model of demand for health (Grossman, 1972). As an individual’s health

capital stock depreciates with illness, demand may be more sensitive to the quality of service

provided. I note that the demand responsiveness for one category of health (smoking status)

is not as stark as the other two (major comorbidities as well as obesity). Perhaps this is

because there exists young and healthy smokers, and major comborbidities are often present

later in an individual’s life.

6.2.3 Do Provider Credentials Matter?

In the United States, family medicine is delivered by providers with numerous types of ed-

ucational backgrounds and professional credentials. For example, a primary care provider

might be an MD, DO, an advanced registered nurse practitioner, or a physician’s assistant.

Each type of provider credential requires different post-secondary education in order to prac-

tice, and consumers may view providers with different professional credentials in a different

light.

In Table 8, I explore the impact of professional credentials on the response of patients to

increased quality scores. Half of provider-months in the sample are MDs, and the other

half are non-MDs. I find that the response to quality scores exclusively takes place among

MDs. MDs see a 102% increase in the number of new patients per month that is causally

attributed to an increase in a displayed provider score, whereas providers with other pro-

fessional credentials see only a 6.5% increase (not significantly different from zero). The

mechanism behind this difference is unclear. Perhaps patients select MDs when they need

a different type of care than when they select non-MDs. Given that the MD credential is

typically the longest license to attain (in terms of years of formal schooling and residency),

it is possible that consumer demand is sensitive to this aspect of provider training.

Another possibility that I suspect is that MDs specialize at more complicated care within

family medicine whereas NPs might specialize in more routine care. If patients value high

quality ratings more for more complicated care, that could generate the patterns observed

in Table 8, with the majority of the causal effect driven by MDs.
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6.2.4 Geographic Density of Physicians

I investigate the effect of provider density per capita on the demand responsiveness to ratings.

In a model of search for physicians, more information may lower search costs, and provider

density per capita may affect search costs, as well. I split the providers in the panel into

groups which vary according to number of providers per capita in a given geographic area.

Although the actual market for primary care is hard to calculate, I form geographic counts of

providers at the county level. This does not, of course, proxy perfectly for actual physician

geographic markets. However, I use counties because I can acquire the number of providers

not just from the health system but from all physicians using the Area Health Resource

File. Both per capita levels of all providers and per capita levels of the health system’s

providers are computed using 2017 county-level census data (from the Area Health Resource

File [AHRF]). I assign a provider to a particular county by taking the modal county from

which he or she draws patients, and then compute the number of primary care physicians per

capita in each county (according to the AHRF as well as using the health system’s physicians

only). The distribution of primary care provider density is more or less split into two groups,

which I call “low” and “high”.

I find that providers working in above-median density counties see a much larger increase in

number of new patients per month attributable to ratings (72%, 84%, for the all-physicians

[AHRF] and the health system only cuts, respectively). See Table 9. In contrast to the

large demand response for providers who draw patients from areas with a large number of

family medicine doctors per capita, I do not find a statistically significant causal impact

of ratings for providers in the below-median per capita density markets. An important

factor to consider is that substitute information about provider quality is not randomly

distributed across markets; for example, Yelp or HealthGrades may have substantial presence

in large urban environments, but not in smaller rural settings. The presence of endogenous

substitute information about quality is a difficult challenge to overcome. I am also hesitant

to generalize the results from this heterogeneity analysis because within the health system’s

geographic area of operation, there may be insufficient variation in provider density across

geography. Perhaps the results might differ if I included the nation’s largest cities such as

New York, Chicago, and Los Angeles. As such, I believe that more research on this question

is warranted.

I also test the model of increasing monopoly (Satterthwaite, 1979), which hypothesizes that

as physician supply in an area increases, the price of a reputation good may increase as

the number of sellers in a market rises (in contrast to the canonical model where prices

fall as number of sellers rise). The Satterthwaite increasing monopoly model hinges on
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the hypothesis that consumer search is less efficient in markets with many sellers. The

conclusion of that model follows from two propositions. First, as the number of physicians

in a market increases, the amount of consumer information about each physician decreases.

For example, in a small town, it is easy to ask around for information about the town

doctors, but in large cities, asking around about quality information for all doctors may be

prohibitively costly. The second proposition of the increasing monopoly model is that as

search becomes increasingly difficult, consumers become less price sensitive. It follows from

these two propositions that as physician supply increases, fees for primary care rise.

The distribution of primary care providers in the area resource file four the counties served

by the health system falls in three bins, which I call “low”, “medium”, and “high” density

of primary care providers. The distribution of health system physicians (by county) is more

or less split into two groups, which I call “low” and “high”. I find that the physicians from

the “high” number of physician counties do not have as large in magnitude an effect of

quality disclosure on quantity demanded as the physicians from lower-count communities

(Appendix Table A1). Although Pauly and Satterthwaite (1981) find evidence supporting

Satterthwaite (1979), one possible reason that I find a larger response to disclosure in less

physician-rich markets its because dense markets already have other unobserved (by the

econometrician) sources of information about quality. For example, in larger cities, there

may be better complements to the disclosed health system quality ratings (e.g., ratings from

Yelp or HealthGrades) compared to smaller counties. The complementarities between the

health system’s quality disclosure and other sources of physician quality information make it

more difficult to evaluate the effect of number of physicians within a geography on the effect

of quality disclosure. Without exogenous variation to exploit on the number of physicians in

an area, it is hard to tell the causal effects of the number of physicians on consumer search.

6.3 Sorting

In the previous sections, I showed that patient demand is responsive to quality score disclo-

sure. In this section, I discuss the equilibrium consequences of this disclosure by studying

the impact of provider rating disclosure on patient sorting. I study three dimensions of

sorting: (1) Does the information disclosure shift patients to doctors who supply greater

inputs to health? (2) Does the quality disclosure have an effect on brand new patients to

the health system, on existing patients, or both? (3) Does the disclosure cause congestion at

high-quality sellers? I use this analysis of the effect of ratings on wait times to understand

who are the winners and losers of quality disclosure.
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6.3.1 Inputs to Health

Many critics of disclosing doctor scores online claim that star ratings are uncorrelated with

true provider quality, or worse, that ratings or report cards cause doctors to shift effort

towards activity with low medical value but high rating value (such as putting fish tanks in

a waiting room in order to receive favorable reviews). Doctors at the health system often

complain to their administration about having scores posted online. (The most frequent

critics are the low-rated providers.) The concern about providers reallocating effort towards

tasks based on alternative performance measures is detailed extensively by Feng Lu (2012)

in the framework of a multitasking agency problem. I assess whether this is occurring in my

setting by measuring whether highly rated doctors supply greater levels of inputs to health.

The health system uses nine metrics to assess primary care quality; I study whether the

highly scoring doctors in the online ratings also score highly on these nine internal quality

metrics. The metrics are known as process measures, which is one of three types of per-

formance metrics in the taxonomy created by Avedis Donabedian, the other types being

outcome metrics and input metricss (Dranove, 2011). Outcome metrics (e.g., mortality) are

challenging to use for evaluating primary care because the effects of primary care may be

difficult to observe in the short run, and inputs (staffing ratios, hours of training) may be

uncorrelated with actual desired results. Process measures, such as whether the providers

use accepted practices and follow guidelines, are certainly not perfect measures of quality,

but are nonetheless helpful tools to evaluate whether the providers are supplying commonly-

accepted inputs to health. I rely on such process measures.

The nine metrics the health system evaluates are: frequency of BMI counseling, cervical can-

cer screenings, colorectal cancer screenings, diabetes management care, hypertension man-

agement care, mammography, pneumococcal vaccination, and 6- and 12-month depression

followups. Doctor performance on these metrics is measured only for clinically eligible pa-

tients (e.g., the mammography denominator is based only on women withing the age range

of government mammography guidelines). I compare the propensity of a doctor to under-

take recommended medical care to their average star rating. The relationships are plotted

in Figure 5; the best fit line is plotted over a binned scatterplot of the data.

For all nine of the process metrics, higher-rated providers are also supplying greater inputs

to health. Note that the binned scatterplots are tighter and steeper for the cancer screenings

and vaccination relative to the BMI, hypertension, and diabetes counseling scatterplots. This

suggests a stronger relationship between process metrics and quality score in settings where

doctors alone have greater control over inputs to health relative to settings that are more
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jointly determined by provider inputs as well as patient lifestyle and behavior such as weight

and blood pressure. The overall slopes are consistent with Perez and Freedman (2018), who

find that best-ranked hospitals had better clinical quality scores than worst ranked hospitals.

In sum, I conclude based on these relationships that in addition to disclosure shifting patients

to higher-rated providers, disclosure is shifting patients to providers who supply greater

inputs to health, on average.

6.3.2 Is Disclosure Causing Market Expansion or Switching?

Is the demand response to quality disclosure primarily having an effect on patients who

are brand-new to the health system, or is the effect concentrated among switchers, those

who choose new doctors but have already sought care from other providers within the health

system? I investigate this question to better understand whether quality disclosure primarily

causes a market expansion or a reallocation of established patients. It is possible that both

occur. To differentiate across this dimension, I use the EHR data to identify brand-new

patients to the health system (which I label de novo patients) versus established patients

(new patients to a particular doctor, but not to the health system). The EHR data extract

that I have does not have an indicator for de novo patients, but does have an indicator for

patients who are new to a particular provider. I use a three-pronged data-driven method

to identify de novo visits. The visits must be (1) the patients’ first recorded visit in the

entire extract of the EHR I have access to (2017-2019); (2) flagged as a “new visit” for the

particular doctor, meaning even if it is the patient’s earliest occurrence in the EHR file, but

it is not a “new visit” with that particular provider, it does not count as de novo; and (3)

after November 2018, which creates a nearly 2-year window in which the patient did not

appear in the EHR at all before their first appearance. These rules are meant to prevent

as many patients who had already visited other health system doctors from inadvertently

getting classified as de novo. A patient could have seen a health system doctor in 2015

(before my data window) and had a subsequent first visit with any provider after November

2018, but I think this gap would be unlikely.

The results of this market expansion versus market stealing breakdown are displayed in

Figure 6. This figure shows that patients who already had previous contact with the health

system, but with different providers, are driving the response to quality disclosure rather

than de novo patients. In Appendix Table A2, I estimate that the additional new patients a

provider sees per month who are switching from other health system providers increases by

2.059 new patients per month (e.g., 60% increase on a baseline of 3.454 found in column 4).
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However, for de novo new patients (those who have never been to any doctor at the health

system, I do not observe a statistically significant increase in the number of new patients a

provider sees if they have a higher rating due to rounding (Appendix Table A3).

I view Figure 6 and Tables A2 and A3 as suggestive evidence that the response to demand

occurs mainly along the margin of switching, causing a reallocation of previously existing

patients towards physicians and other providers who are rated more highly in terms of quality

scores.

6.3.3 Congestion, Wait Times, and the “Price of a Star”

In this section, I explore the causal effects of quality disclosure on congestion. In doing so,

I link my empirical results to the theoretical model by examining wait times. Wait times

may play a role in rationing scarce quality because health care is different from conventional

product markets in part due to the presence of third-party payors (insurers). Because pa-

tients can often face the same price for care from any provider in their insurance network,

there is no direct out-of-pocket price that can easily vary in physician quality. This directly

contrasts with conventional products, where sellers can immediately raise (or lower) prices

in response to a high (or low) quality score when scores are disclosed.13

To motivate the possible role that wait times have in equilibrating supply and demand after

ratings disclosure, I first focus on conventional product markets as a benchmark. In the case

of conventional products, Wolinsky (1983) models an equilibrium where individual sellers

set prices in response to buyers’ expectations of quality. In that model, Wolinsky establishes

a separating equilibrium where each price signals a unique level of quality. In contrast,

health care providers do not have any way to adjust prices paid by consumers in the short

run after disclosure. Conditional on service line (e.g., family medicine) and insurance plan

membership, patients at the integrated health system pay the same amount out-of-pocket

and have the same access to the same set of doctors. In sum, at the point-of-sale to a patient,

the patient effectively pays the same out-of-pocket price for any primary care provider they

see, regardless of the quality rating of a provider. High-quality providers cannot charge

patients more based on their high rating (or any other factor). Of course, physicians could

always leave the system, but in the short run, the patient does not face a higher price for

quality and capacity and entry are fixed.

Does the market have any way to find equilibrium in the absence of a monetary price for

13For example, sellers can immediately raise or lower prices in response to changes in ratings on the online
tutoring platform www.wyzant.com, where sellers name their own prices and star ratings are a salient part
of product search.
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differential quality? Richards-Shubik et al. (2021) suggests that congestion (or wait times)

play a similar role to prices in such markets. I evaluate this hypothesis by studying wait

times, measured in the number of days between when an appointment is booked and when

that appointment takes place.

For each outpatient visit with family medicine providers, I compute the total number of days

that the patient waited for care (using the EHR data to gather the number of days between

when an appointment is entered into the system and when it occurs). I make a few sample

restrictions. First, I exclude from the data all visits that occur more than 180 days after

they are scheduled, as these represent visits for which patients do not likely care about wait

time to see a doctor (there is a small mass of visits that are scheduled exactly one year out).

Second, I drop visits that occurred at a walk-in clinic (as the patient might not have a choice

of a particular provider); individuals less than 18 years old; visits where the flag for the visit

being new to a provider was not present (primarily post August 2019); and visits when the

wait time was coded in error as being less than 0 days.

To identify the causal effect of ratings on wait time, I exploit both the variation induced

by rounding ratings to the nearest tenth as well as the variation in timing of pre- vs. post-

disclosure of quality scores to estimate both a regression discontinuity model as well as a

difference-in-discontinuity model in the spirit of the identification strategy laid out in Section

5. These models assess whether patients wait longer to see a provider with a higher rating.

The regression is similar to the model estimated in Tables 3 and 4, but run at the individual

level rather than provider-month level, and I also include a diagnosis code fixed effect (using

the primary ICD9 code for the visit) because the patient’s type of medical condition when

arriving at the doctor might dictate how quickly the provider moves them to the front of the

line. For the specifications presented in Table 10, I restrict the bandwidth to 0.025 on both

sides of the cutoff of the normalized running variable, and report robust standard errors.

The results in Table 10 show that a higher star rating causes new patients to wait longer

to receive care. Column 1 of Table 10 presents the pre-disclosure (placebo) regression dis-

continuity specification which finds no increase in wait times (statistically indistinguishable

from zero). Column 2, the regression discontinuity specification that relies only on post-

disclosure data, shows an effect of 2.105 additional days on a baseline of 8.765 (24.0%).

Finally, the difference-in-discontinuities (Column 3) shows that a higher star rating causes

new patients to wait 2.695 days longer to receive care relative to a baseline of 8.848 days

(a 30.5% increase). In Appendix Table A4, I perform a barrage of robustness tests regard-

ing these specifications. First, in the spirit of Imbens and Lemieux (2008) and Eggers and

Hainmueller (2009), I test for jumps at non-discontinuity points. I construct two “false
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placebo” thresholds in the running variable, at -0.025 and 0.025 instead of 0, and find no

statistically significant increase in wait time at these placebo points (this is true both during

the disclosure period as well as prior to the disclosure period). For the “true” discontinuity

(0.00 from the rounding threshold) during the period that the ratings were public online, I

find a statistically significant increase in the wait time for new adult patients of 2.450 days;

however, there is no statistically significant difference at the true discontinuity during the

pre-disclosure period (as expected). To further ensure that I am picking up a causal effect,

these robustness test regressions are estimated by first residualizing wait time on cutoff fixed

effects and ICD-9 fixed effects and then estimating optimal bandwidth local linear regression

(Calonico et al., 2017).14 The optimal-bandwidth residualized binned scatterplots with local

linear regression best fit lines for the pre-disclosure period and post-disclosure period are

found in Appendix Figures A4 and A5, respectively, and illustrate an increase in wait times

at higher rated physicians occurring when quality ratings are disclosed but not before.

I interpret this finding to represent a “shadow price of a star.” That is, new patients are

willing to wait 30.5% longer to get care from a physician who has a one-increment increase

in their quality score (e.g., the effect of moving from a 4.7 to a 4.8). Furthermore, I can

extrapolate this estimate to calculate how much patients are willing to wait for a one standard

deviation increase in quality. If I make the assumption that the effect size scales linearly as

ratings increase, my estimate of a willingness-to-wait of 2.695 wait days for a 0.1 star increase

represents a 3.05-day willingness-to-wait for a standard deviation increase in star rating (st.

dev = 0.13). I argue that the wait time “shadow price of a star” operates similarly to a

traditional price by helping supply and demand clear in this market. This market-clearing

role of wait times, in which a higher-rated physician “costs more” in terms of number of

days a patient must wait, helps facilitate equilibrium because if patients are heterogenous

in their willingness-to-wait (just like patients may be heterogeneous in willingness-to-pay

for conventional products), an equilibrium queue may emerge in the spirit of Lindsay and

Feigenbaum (1984). Here, sorting occurs on the basis of underlying valuation of quality,

and disclosure creates a market for physician quality which did not exist in the absence of

ratings.15

One important feature of congestion is that it builds over time. In the first weeks of a

disclosure policy, if new demand is reallocated towards higher-rated sellers, it is unlikely

14I use the rdrobust and rdplot packages in Stata.
15People willing to wait longer may have less acute needs and one possible implication is that quality

disclosure with wait times as shadow prices could lead to suboptimal allocation of resources. However,
disclosure without price adjustment may lead to more equitable allocation compared to disclosure where
prices can respond depending on the relative distributions of willingness-to-pay versus willingness-to-wait in
the population.
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that capacity constraints will be binding and also unlikely that congestion will be observed

in the data. However, with time, as more patients move towards higher-rated physicians,

eventually a mass of patients may build up. Accordingly, I would expect to see a congestion

effect grow over time. To test this hypothesis, I split the post-disclosure period into two

halves, early and late disclosure. The ten-month disclosure period for which I have data

is split into an early and late period, each of five months long. I run the same regression

discontinuity design with wait times on the left hand side for early and late periods and

find suggestive evidence of a congestion effect that builds with time. Appendix Table A5

and Appendix Figure A6 show this pattern; in the early disclosure period, I observe no

statistically significant increase in days patients wait due to a higher star rating (column 1

of Table A5). However, in the later half of the disclosure period, patients do wait longer,

about 3.6 days (column 2). This increase is marginally statistically significant (at the 10%

level but not the 5% level). And Figure A6, although not as stark as the demand response

figure, is consistent with patterns expected by this hypothesis.

In addition to examining the effect of a quality score on new patients’ willingness to wait for

care, I also investigate what happens to wait times for established patients when a provider’s

quality score increases. I previously showed that an increase in a providers’ rating causes

more new patients to see that provider. This creates congestion for established patients. In

Table 11, I show that established patients wait longer to receive care from a doctor with a

higher quality score. Columns 1 and 2 show pre- and post-disclosure regression discontinuity

estimates, and column 3 shows an effect of a 1.736 day increase in wait times on a baseline

of 12.8 days (12% increase). Because these patients are not shopping for a new provider, I

interpret this to be evidence of congestion spillovers: If capacity of family medicine providers

is restricted in the short run, since additional patients visit providers due to higher ratings,

the established patients face congestion. Clearly, these patients suffer as a result of the

quality disclosure. They were already seeing the higher-rated doctor, but disclosure causes

them to wait longer for care because newer patients are now sorting to that doctor, as well.

I also explore whether the congestion effects of star ratings differs by the urgency of the

patient’s medical condition. From a high-level perspective, if patients wait longer to see

family doctors with higher star ratings, all else equal, and lower star rating doctors have

excess capacity (or “slack”) because of this additional volume at higher-rated doctors, it

could be inefficient for patients to wait longer for conditions that might end them up in

the emergency department. Using the decomposition between productive and allocative

efficiency (for example, see Baicker et al. (2011)), I note that it may be efficient from the

perspective of the health system for patients to wait longer for a physician with a higher
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star rating for non-urgent conditions like a checkup but not for urgent conditions. Perhaps

the preferences of the patient for a checkup from a higher-rated physician are such that

they are willing to wait longer, and there is little efficiency cost to this additional waiting

which reflects a revealed preference argument about patient choices. However, if patients

are waiting longer for care that is urgent in search of a higher star (such as care that would

wind them up in the emergency room if not treated quickly), then it might be productively

inefficient for these patients to be reallocated or sorted to doctors with excess availability.

I test this by restricting to a subset of cases where patients are seeking care from family

medicine doctors where ED care might be needed but is preventable or avoidable. I use

a taxonomy of diagnosis codes developed from an algorithm developed by John Billings at

NYU Wagner.16 In Table 12, I show that patients are willing to wait longer for avoidable ED

care when star ratings are disclosed (but not before) using the same regression-discontinuity

design as before. When stars are disclosed (column 2), patients are willing to wait 2.37

additional days for a higher-rated physician when they are seeking care that the Billings, et.

al. algorithm would consider to be urgent where ED care may be needed but is preventable

or avoidable. If these patients were simply reallocated to doctors with lower stars who had

excess capacity, it may lead to an efficiency improvement from the perspective of the health

system.

In conclusion, this congestion effect (and willingness-to-wait for quality) is informative in

explaining how quality disclosure operates in markets with limited ability to adjust prices.

How is equilibrium reached? Sorting patients based on willingness-to-wait for quality is one

way in which this market can reach equilibrium in the absence of a price. The ability of

this market to reach equilibrium may be dependent on sorting based on willingness to wait

for quality. Importantly, the potential impact of congestion that may occur concurrently

with the introduction of a quality rating system may result in biased measurements of the

true effect of a quality disclosure on demand. The direction of this bias can be signed

downward (assuming consumers have a disutility from waiting); had there been no concurrent

congestion, I would have expected the effects on demand to be even larger. The numerous

papers that use a discontinuity design to estimate the demand response to star ratings may be

systematically underestimating the effect of rating introduction in the absence of accounting

for congestion. This econometric justification for potentially downward biased estimates of

the impact of quality ratings extends beyond the health care setting to any market where

congestion may occur.

16Available here: https://web.archive.org/web/20160313195339/https://wagner.nyu.edu/faculty/billings/nyued-
background
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6.4 Robustness

In this section, I present a number of robustness checks. I address potential pitfalls relating

to the bandwidth used for the regression discontinuity estimates, to the functional form

of the running variable, and to the use of local linear regression. I also test for covariate

balance. I find that the results are robust to these tests; although my point estimates very

minimally across some specifications, the direction and magnitude of my estimates holds up

under the barrage of traditional regression discontinuity robustness tests.17

6.4.1 Bandwidth

To check that the regression results above are not sensitive to proximity to the cutoff and

choices of the econometrician, I vary the bandwidth under which data is included in the

regression discontinuity. Because regression discontinuity models are identified locally at the

jump in the conditional function of the running variable, data far from the discontinuity

can lead to biased estimates (Lee and Lemieux, 2010). However, the more I restrict to a

very narrow bandwidth around the discontinuity, the less data is available for estimation.

Accordingly, adjusting the bandwidth induces a bias-variance tradeoff.

The results hold as I increasingly restrict the bandwidth (see Table 13). I plot the coefficients

and standard errors for the baseline specification causal effect as I vary the bandwidth used

in estimation from (-.05,.05) to (-.01,.01) in Figure 7. I find that the results are insensitive

to adjustment in bandwidth size. (As bandwidths decrease, there is less data on which to

estimate, so confidence intervals widen slightly.) However, the overall results are invariant to

bandwidth variation. I also plot the optimal bandwidth selected by the routine of Calonico

et al. (2014), denoted by the dashed line labeled “CCT.”

6.4.2 Manipulation, Density Tests and Alternative Sample Definitions

A concern in regression discontinuity design studies is that there is precise manipulation

of the running variable by agents who want to be on a certain side of a cutoff. From a

high-level perspective, I do not think this is likely a problem in this setting, since a provider

would have considerable difficulty in manipulating their rating to be rounded up or down.

Why? Because provider surveys are sent randomly and submitted by only a small number of

17In fact, the first robustness check is seen in the presentation of Table 3, where I show that the results of
the baseline regression discontinuity model are invariant to linear, quadratic, or cubic polynomial functional
form.
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patients, and a provider would have no way of knowing ex ante which patient would receive

and ultimately submit a survey. Accordingly, they would have to exert effort on every single

patient in order to be on a given side of the threshold (rounded up). Also, providers do not

know their own distance from the threshold during the time period I study. (After my study

window ended, providers were made known about their current raw underlying rating, but

during my data availability, providers had no way of knowing if they were close to being

rounded up or far from the threshold.) Nonetheless, to test for manipulation of the running

variable, I plot the density of the running variable in discrete bins on both sides of the

threshold in the spirit of McCrary (2008).

Appendix Figures A7 and A8 show that there is no discontinuity in the density of the running

variable (quality rating on the 15th day of the month) that would suggest bunching on one

distinct side of the threshold. Figure A7 plots this histogram for all the providers in the

data, where Figure A8 plots the density for the subsample of providers who have only a single

disclosed score in a given month and do not have multiple scores in a given month. Although

the density is symmetric around the threshold in both settings, there is a symmetric dip in

the number of providers very close to the threshold in Figure A8. This dip is explained by

fact that providers with more than one rating a month (say, who show both a 4.7 and 4.8)

are likely to have a closer score to the rounding threshold given that they crossed it.

As an additional robustness check to make sure that the baseline regression results are robust

to not dropping the provider-months which cross the rounding threshold in a given month, I

plot the regression discontinuity results and report regression tables for the sample where I

do not drop these observations (Appendix Figure A9 and Appendix Table A6). The results

are quantitatively and qualitatively similar to the baseline specification.

As mentioned in footnote 10, as an additional robustness check, I estimate the main baseline

regression discontinuity model (number of new visits per month) without including cutoff

specific fixed effects, which results in a coefficient which can be interpreted as a “double

average”, the weighted average across cutoffs of the local average treatment effect for all units

facing each particular cutoff value, giving higher weights to the particular cutoffs that are

most observed in the data set. Table A7 shows the estimates from the Rounded Up coefficient

of interest for the same six baseline specifications as the cutoff-specific fixed effects model

found in Table 3. The estimates are comparable in both magnitude and direction across all

specifications.

39



6.4.3 Covariate Balance

In Appendix Figure A10, I show that based on observable predetermined characteristics,

physicians with ratings that are rounded up display no different qualities than those just

rounded down. I include these covariate balance tests for four predetermined attributes in

the provider–month panel (the probability a physician is male, the probability the provider

is an MD, the probability they are employed in a high density of provider market [using

the definitions from section 6.2.4] and the elapsed years since that provider started working

at the health system). Figure A10 shows covariate balance across each of these available

predetermined attributes. Appendix Table A8 shows the regression estimates from these

covariate balance tests. Physicians with ratings rounded up seem to be no different than

physicians with ratings rounded down based on available predetermined observables.

6.4.4 Weighting & the Significance of Number of Reviews

I also show my results are robust to whether or not I weight the observations by rating

count in addition to varying the bandwidths and global polynomials in Table 14. Following

the practice of Magnusson (2019), I estimate the baseline specification unweighted, weighted

by count of ratings, and weighted by inverse rating count. Weighting by count allows the

providers with more precise information signals due to more scores reported on the website to

reflect that precision, whereas weighting by inverse count allows providers with fewer ratings

(and less precision of signal) to count for more. I find that the results are as expected: count

ratings show a stronger causal effect, and inverse count ratings shrink the effect towards the

null. Unless otherwise indicated, throughout this paper, weighted estimates are shown, as a

higher count of reviews may reflect a higher level of information available to consumers (in

the spirit of Bayesian updating).

7 Discussion

7.1 Limitations

In this paper, I use a physician-level star rating disclosure policy at a large midwestern health

care system to study the effects of quality disclosure on economically meaningful outcomes

such as demand, sorting, and congestion. Using a regression discontinuity design, I find that

quality disclosure caused a response in the quantity demanded of highly rated physicians,
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leading to a 2.96 new patient per month increase caused by an additional tenth of a star.

I also find that the demand response was heterogenous across provider specialty and age,

among other dimensions, as well as finding that disclosure caused longer wait times at higher

rated physicians.

This study is not without limitations, however. First and foremost, I do not have data on

many dimensions of physician behavioral response to ratings disclosure that would allow

me to identify a supply response on the part of physicians. For example, I am not able

to ascertain if physicians substituted to providing different services that patients might

demand. A common concern is that patients could reward physicians by leaving high ratings

for providing medically unnecessary services, such as prescribing antibiotics for ear infections

when antibiotics are not helpful or even harmful (Martinez et al., 2018). Because my data set

does not have granular procedure code data about what treatments physicians performed, I

am not able to test whether physicians responded to quality disclosure by altering the type

or quality of care they provide or by adjusting across different dimensions of quality.

Another limitation to this paper is that I do not have longitudinal data on physician rates of

screenings, vaccinations, and counseling services. The analysis displayed in Figure 5 could be

more informative about the causal effect of rating disclosure on these services had I been able

to construct a panel over time of physician propensity to supply inputs to health. Because

I only have a single snapshot of physician screening and vaccination rates to provide these

services but ratings fluctuate over time, I cannot estimate regression discontinuity models

using these outcomes in the same sense as in other sections of the paper. Furthermore,

as is common in papers studying the impacts of family medicine, it is difficult to observe

direct health outcomes as compared to specialties such as cardiac surgery, where mortality

and adverse events are far more common. Nonetheless, despite these limitations, I show

that ratings, which cause changes in demand, also shift patients to doctors who, on average,

perform more of these medically recommended services.

Lastly, these results may not generalize to other populations that may differ demographically

or in their propensity to use quality information to search for physicians. Although gener-

alizability is a possible concern (the large Midwestern health system cares for a population

that is more White and more rural than the United States as a whole), I nevertheless note

that this is an ideal population to study the questions posed in this paper. First, the system

covers a broad geographic and demographic area (four states with both rural and urban

areas). Second, the advantages to studying the impacts of quality disclosure in my setting,

where quality disclosure is mandatory, where patients face the same price for any provider,

and where there is unique pre- and post-disclosure data, suggests that my setting is an ideal
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laboratory for this study.

7.2 Conclusion

In this paper, I provide new evidence on the causal effects of star rating disclosure on demand,

sorting, and congestion in markets where prices cannot readily adjust to new information

about quality. I leverage a unique institutional environment and a causal framework to show

that demand is responsive to medical provider star ratings and that ratings sort patients to

higher-quality providers.

I find a 54% increase in new patient visits caused by a provider having their rating rounded

up relative to rounded down. I explore the drivers of this demand response by addressing

heterogeneity, such as age, health status, and provider type. Younger patients are more

responsive than older patients (75% increase in new visit volume by 18- to 34-year-olds

relative to 58% by 60- to 64-year-olds), perhaps because the younger patients are more

accustomed to seeking quality information on the internet, and sicker patients are more

responsive than healthy patients, perhaps due to sicker patients placing a greater value

on physician quality. I show that disclosure shifted volume to providers who on average

produce greater levels of medically recommended inputs to health (screenings, counseling,

and vaccinations), and I show that a higher online rating also causes increased wait times at

a provider. New patients wait 30.5% longer for a doctor with a higher rating and established

patients wait longer, too (12.6% longer). These results are consistent with my model of

congestion effects in which wait times serve as a shadow price for quality and equilibrate the

market.

Taking all the evidence together, quality disclosure appears to facilitate an equilibrium out-

come in which patients actively look for information about product quality, in which they

act on that information by substituting to higher-rated and higher-quality sellers, and select

an experience good based on their willingness to pay (wait) for quality. Using the reduced

form estimates and extrapolating to a one-standard deviation increase in quality, I estimate

the shadow price of a star is that consumers are willing to wait 3 additional days for a one

standard deviation increase in quality. I argue that this shadow price facilitates equilibrium

market clearing in a setting where price differences are unable to do so.

My results shed light on the complex role that quality disclosure plays in market outcomes,

particularly in the market for health care and other insured products where prices cannot

immediately vary after disclosure. Many health systems have adopted quality ratings in

the past decade, and business leaders (e.g., hospital management) along with policymakers
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continue to focus on expanding the scope of physician ratings. Understanding the effects

of star rating disclosure on such markets is key to designing, implementing, and evaluating

policies meant to fix market imperfections by improving patient access to information about

quality. This paper contributes to the growing body of empirical literature on information

disclosure by providing novel evidence about information’s effect on non-price markets and

these results inform scholars as well as policymakers about the equilibrium effects of quality

disclosure.
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8 Figures and Tables

Figure 1: Distribution of Provider Average Ratings

Figure 2: Intuition of Identification Strategy

Although physicians A & B have similar raw ratings, the discrete rounding rule causes
physician A to be displayed with 4.7 stars and physician B to be displayed with 4.8 stars.
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Figure 3: Demand Response to Quality Disclosure

Note: Figure presents a binned scatterplot of the new visits per month at a family medicine
provider, given the distance of that provider to the nearest star rating rounding threshold.
Distances to nearest thresholds are pooled across the cutoffs and normalized to the nearest
threshold and observations are weighted by count of reviews. Superimposed on the binned
scatterplot are best-fit linear regression lines on both sides of the cutoff.
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Figure 4: Demand Response to Quality Disclosure, Difference in Discontinuities

Note: Figure presents a binned scatterplot of the new visits per month at a family medicine
provider both before the online ratings were disclosed (red triangles) and after online ratings
were disclosed (blue dots), given the distance of that provider to the nearest star rating
rounding threshold. Distances to nearest rounding thresholds are pooled across the cutoffs
and normalized to the nearest threshold and observations are weighted by count of reviews.
Superimposed on the binned scatterplot are best-fit linear regression lines on both sides
of the cutoff for both pre-disclosure (January 2017 to October 2018) and post-disclosure
(December 2018 to August 2019) time windows.
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Figure 5: Relationship Between Star Ratings and Health Quality Metrics

(Vaccinations, Screenings, and Counseling)

Note: Six mon depr and Twelve mon depr correspond to 6- and 12-month depression screen-
ings. Fraction (x-axis) corresponds to fraction of the time the provider performs these vac-
cinations, screenings, and counseling on patients who are indicated for them. For example,
the denominator for mammography is only women in the age range recommended by the
government for mammography. These quality metrics are used internally by the health sys-
tem to measure quality of family medicine. I only have one time period of these provider
quality metrics available, so I cannot exploit time variation in quality metrics to estimate
regression discontinuity models.
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Figure 6: Market Expansion vs. Switching

Binned scatterplot of new visits per month at family medicine providers, separately by
whether the patient is de novo at the health system or already had exisiting exposure to
other providers in the health system. Observations weighted by count. Data plots post-
disclosure period only.
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Figure 7: Effects by Bandwidth

Note: Figure plots effect sizes from the baseline regression specification. Standard errors are
clustered on the provider. The red dashed line denotes the mean-squared-error minimizing
bandwidth of Calonico, Cattaneo, and Titiunik (CCT).
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Table 1: Summary Statistics

Patient Level
Mean Median SD

Age 38.76 36.86 24.49
BMI 27.51 26.98 8.26
B.P. (systolic) 118.87 119.45 13.83
B.P. (diastolic) 72.06 72.00 9.27

Race = White 0.89
N (Visits) 12,575,190
N (Patients) 998,244

Provider-Month Level
Mean Median SD

Monthly New Visits 7.34 4.00 10.08
Monthly Visits 178.48 172.00 94.34
Rating Score (continuous) 4.78 4.82 0.13
Rating Count (Dec ’18) 228.55 206.50 127.30
Rating Count (Aug ’19) 298.28 264.00 171.59

Physicians share (MD/DO) 0.55
Mid-level practitioner share 0.45
Distinct providers 340
N (Provider-Months) 2,730
height

Note: Patient level data comes from EHR and provider-month data

comes from the EHR merged with the ratings data. Provider–month

level data is restricted to family medicine providers only.
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Table 2: Outcome: Monthly New Visits (OLS)

(1) (2) (3) (4)

Displayed Rating Score
(...,4.5,4.6,4.7,...) -16.48∗∗∗ -16.52∗∗∗ -16.67∗∗∗ -16.71∗∗∗

(3.365) (3.369) (3.614) (3.619)
Controls:
Month-Year FE X X
Professional Credential FE X X

Observations 2,730 2,730 2,730 2,730

Note: Standard Errors clustered at the provider level and observations weighted by

review count. Restricted to Family Medicine providers. Professional Credential FEs

include MD, PA, CNP, APR, DO, and other professional credentials.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Monthly New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Rounded Up 2.978∗∗ 2.958∗∗ 3.850∗∗ 2.956∗∗ 4.287∗∗ 5.550∗∗

(1.347) (1.336) (1.542) (1.332) (1.738) (2.352)
Functional Form: Linear Quad. Cubic Linear Quad. Cubic
Treatment Interaction No No No Yes Yes Yes
Cutoff FEs Yes Yes Yes Yes Yes Yes

Mean Below Threshold 5.475 5.475 5.475 5.475 5.475 5.475
% Change 54.4 54.0 70.3 54.0 78.3 101.4
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting different slopes on each side

of the discontinuty.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Difference-in-Discontinuities

New Visits per Month
Post x Rounded Up 4.496∗∗∗

(1.244)

Rounded Up -1.414
(0.899)

Distance to threshold 19.38
(20.37)

Dist x Rounded Up -36.53
(28.10)

Post -0.940
(0.713)

Post x Distance -46.15∗

(26.96)

Post x Dist x Rounded 0.689
(45.41)

Mean below threshold 5.100
% Change 88.2
Observations 7762

Standard errors clustered at the provider level.

and observations weighted by count. Restricted to

family medicine providers and specification is

linear with interaction. See text for pre/post dates.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Monthly New Visits - By Leading 5 Specialties

(1) (2) (3) (4) (5)
Family Med Pediatrics Internal Med Cancer OB/GYN

Rounded Up 2.956∗∗ 0.0532 -3.983∗ 2.055 -2.086
(1.332) (1.394) (2.271) (3.219) (2.231)

Distance to threshold -26.92 17.80 -22.07 -16.42 -50.78
(24.86) (28.06) (61.38) (94.48) (102.6)

Dist × Rounded -35.84 -94.96∗ 54.79 -113.9 134.4
(45.82) (51.64) (94.15) (141.2) (156.8)

Cutoff FEs Yes Yes Yes Yes Yes

Mean below threshold 5.475 4.805 5.914 14.664 14.060
% Change 54.0 1.1 -67.3 14.0 -14.8
Observations 2730 983 529 657 499

Standard errors clustered at the provider level & observations weighted by count.

Preferred specification is linear trend plus interaction. Bandwidth (-.05,.05)
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Monthly New Visits - By Patient Age Groups

(1) (2) (3) (4) (5)
Age 18-34 Age 35-49 Age 50-64 Age 65-79 Age 80+

Rounded Up 1.194∗∗ 0.688∗∗ 0.593∗∗ 0.291∗∗ 0.0881
(0.535) (0.321) (0.268) (0.134) (0.0616)

Distance to threshold -11.72 -4.922 -7.703 -4.601 -2.570∗∗

(7.630) (5.488) (5.002) (3.129) (1.293)

Dist × Rounded -16.02 -10.95 -5.895 1.034 1.549
(15.63) (11.11) (9.022) (4.837) (2.205)

Cutoff FEs Yes Yes Yes Yes Yes

Mean below threshold 1.576 1.105 1.020 0.479 0.165
% change 75.8 62.2 58.2 60.8 53.4
Observations 2529 2529 2529 2529 2529

Standard errors clustered at the provider level & observations weighted by count.

Preferred specification is linear trend plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Monthly New Visits - By Patient Health Status

Healthy Sick
(1) (2) (3) (4) (5) (6)

Zero Comorb. Non-Obese Nonmoker Comorbid Obese Smoker
Rounded Up 2.867∗∗ 1.952∗∗ 2.337∗∗ 0.357∗∗ 1.271∗∗∗ 0.887∗∗

(1.227) (0.974) (0.997) (0.160) (0.453) (0.414)

Distance to threshold -38.28 -25.32 -34.37∗ -4.022 -16.99∗∗ -7.933
(24.23) (19.34) (20.23) (3.352) (8.497) (8.244)

Dist × Rounded -15.29 -10.86 -7.786 -4.661 -9.095 -12.16
(42.99) (33.43) (36.13) (5.978) (16.31) (13.50)

Cutoff FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 5.303 4.082 4.206 0.558 1.780 1.655
% Change 54.1 47.8 55.5 63.9 71.4 53.6
Observations 2529 2529 2529 2529 2529 2529

Standard errors clustered at the provider level & observations weighted by count.

Preferred specification is linear trend plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Monthly New Visits - By Provider Credentials

(1) (2)
MDs Not MDs

Rounded Up 4.203∗∗ 0.506
(1.981) (1.838)

Distance to threshold -11.39 -20.86
(31.76) (40.00)

Dist × Rounded -75.87 -10.09
(62.48) (68.77)

Cutoff FEs Yes Yes

Mean below threshold 4.120 7.847
% Change 102.0 6.5
Observations 1363 1367

SEs clustered at the provider level

Weighted by rating count. Bandwidth (-.05,.05).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Monlthy New Visits, by Geographic Density of Family Medicine Providers

(1) (2) (3) (4)
Low Density High Density Low Density High Density

Rounded Up 1.927 4.079∗ 2.166 4.769∗∗∗

(1.495) (2.393) (1.859) (1.692)

Distance to threshold -26.12 -35.75 -49.54 -52.51∗

(37.17) (36.38) (41.97) (30.23)

Dist × Rounded 0.241 -56.49 9.092 -21.20
(63.18) (70.21) (70.04) (58.62)

Cutoff FEs Yes Yes Yes Yes

Mean below threshold 5.864 5.705 5.864 5.705
% Change 32.9 71.5 36.9 83.6
Observations 1389 1186 1361 1214

Note: Standard Errors clustered at the provider level and observations weighted by review count.

Columns 1-2 compute physician density using all physicians included in the Area Health Resource

File, and columns 3-4 use only health system physicians. Density calculations explained in

section 6.2.4. Model includes cutoff FEs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Wait Days for Appointment, New Patients

(1) (2) (3)
Pre-info Post-info Diff-in-Disc

Post x Rounded Up 2.695∗∗∗

(0.886)

Rounded Up -0.850 2.105∗∗∗ -0.847
(0.612) (0.704) (0.593)

Distance to threshold 37.17 -3.134 42.11
(29.22) (35.38) (28.17)

Dist x Rounded Up -43.02 -71.44 -51.67
(40.93) (50.15) (39.47)

Post -1.224∗∗

(0.611)

Post x Distance -52.69
(42.68)

Post x Dist x Rounded 1.310
(60.77)

Cutoff FEs Yes Yes Yes
ICD Diagnosis Code FEs Yes Yes Yes

Mean below threshold 8.896 8.765 8.848
% Change -9.6 24.0 30.5
Observations 13300 8745 22045

Unit of observation is a patient visit. Restricted to Family Medicine

specialty, patients 18+, and dropping new visits scheduled greater

than 180 days out. Regression is unweighted and inference is done with

robust standard errors and bandwidth is [-.025,.025].
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Wait Days for Appointment, Established Patients

(1) (2) (3)
Pre-info Post-info Diff-in-Disc

Post x Rounded Up 1.736∗∗∗

(0.240)

Rounded Up -0.549∗∗∗ 1.163∗∗∗ -0.547∗∗∗

(0.132) (0.203) (0.131)

Distance to threshold 42.34∗∗∗ -36.35∗∗∗ 45.23∗∗∗

(6.425) (10.01) (6.401)

Dist x Rounded Up -50.01∗∗∗ 43.14∗∗∗ -50.76∗∗∗

(9.055) (14.26) (9.025)

Post -0.858∗∗∗

(0.171)

Post x Distance -94.30∗∗∗

(11.76)

Post x Dist x Rounded 101.4∗∗∗

(16.73)
Cutoff FEs Yes Yes Yes
ICD Diagnosis Code FEs Yes Yes Yes

Mean below threshold 13.462 14.513 13.793
% Change -4.1 8.0 12.6
Observations 448285 205788 654073

Unit of observation is a patient visit. Restricted to Family Medicine

specialty, patients 18+, and dropping new visits scheduled greater

than 180 days out. Regression is unweighted and inference is done with

robust standard errors and bandwidth is [-.025,.025].
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 12: Wait Days for Urgent Conditions

(1) (2)
Pre-Disclosure Post-Disclosure

Rounded Up -0.771 2.374∗∗

(1.090) (1.096)

Distance to threshold 35.36 -165.9∗∗

(65.34) (82.94)

Distance X Rounded -40.76 132.2
(71.19) (99.88)

Cutoff FEs Yes Yes
ICD FEs Yes Yes

Observations 1124 650

Wait Time (residualized) for conditions indicated by

Billings, et al. (2000) to be ED Care Needed

but Preventable/Avoidable

Preferred specification is linear trend plus interaction.

Bandwidth (-.05,.05) and robust SEs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 13: Monthly New Visits - Observations Restriction to Specified Distance from Cutoff

(1) (2) (3) (4) (5)
(-0.05,0.05) (-0.04,0.04) (-0.03,0.03) (-0.02,0.02) (-0.01,0.01)

Rounded Up 2.956∗∗ 2.810∗∗ 4.197∗∗∗ 4.603∗∗∗ 4.389∗∗

(1.332) (1.409) (1.450) (1.663) (1.699)

Distance to threshold -26.92 -30.79 -111.0 -83.52 -180.6
(24.86) (36.07) (75.10) (77.04) (126.0)

Dist × Rounded -35.84 -17.80 35.27 -50.41 210.0
(45.82) (62.75) (98.74) (137.0) (217.7)

Cutoff FEs Yes Yes Yes Yes Yes

Mean below threshold 5.475 5.457 5.901 5.427 5.052
% Change 54.0 51.5 71.1 84.8 86.9
Observations 2730 2204 1611 987 440

Standard errors clustered at the provider level & observations weighted

by rating count. Specification is linear trend plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 14: Monthly New Visits - Family Medicine: Effect of Weighting by Rating Count

(1) No (2) Weight (3) Weight (4) No (5) Weight (6) Weight
Weighting by Count by Inv Count Weighting by Count by Inv Count

Rounded Up 2.978∗∗ 2.978∗∗ 5.704∗ 2.943∗∗ 2.956∗∗ 5.602∗

(1.468) (1.347) (3.150) (1.442) (1.332) (3.022)

Distance to threshold -40.21∗ -45.83∗∗ -58.90 -21.62 -26.92 -18.49
(21.85) (21.35) (36.37) (29.06) (24.86) (42.65)

Dist × Rounded -35.71 -35.84 -78.12
(57.89) (45.82) (99.89)

Cutoff FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 10.856 6.652 8.826 10.856 6.652 8.826
% Change 27.4 44.8 64.6 27.1 44.4 63.5
Observations 2730 2730 2730 2730 2730 2730

SEs clustered at the provider level. Cols. 1-3 are linear trend, 4-6 linear plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix

For Online Publication.

A Example of Provider Quality Score Disclosure and Survey Ques-

tions

This figure shows an artistic rendition of what a new patient would see when he or she visited

the health system’s website to search for a new provider after November 2, 2018. Note the

4.6 out of 5 (ratings rounded to the nearest one-tenth) and N=418 ratings, along with the

gold stars. The regression discontinuity design captures the causal effect of increasing a

provider’s score by exploiting the rounding of raw averages to discrete binned intervals.

Prior to disclosure, the website looked the same, but without the star ratings.

Figure A1: Sample Physician Rating Webpage

Survey Questions:

1. Did this provider explain things in a way that was easy to understand?

2. Did this provider listen carefully to you?

3. Did this provider give you easy to understand instructions about taking care of these

health problems or concerns?
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4. Did this provider seem to know the important information about your medical history?

5. Did this provider show respect for what you had to say?

6. Did this provider spend enough time with you?

7. Using any number from 0 to 10, where 0 is the worst provider possible and 10 is the

best provider possible, what number would you use to rate this provider?

Figure A2: Relationship Between Benefits and Costs of Waiting

wait time

V

c

v1

v2

t̂1t̂2

v2 · e−d2t

v1 · e−d1t

v1 · e−d2t
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These figures show the RD separately for each distinct rounding threshold in the rating scale

(See Table 3 for pooled regression with cutoff fixed effects), restricting to the majority of

providers with displayed ratings of 4.6 and up. Separate best fit lines are fitted for each

Panel (A) shows the relationship between rating and new visit volume before information

was disclosed, and Panel (B) shows the relationship after disclosure. Vertical lines indicate

rounding thresholds.

Figure A3:
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Figure A4:

Figure A5:
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Figure A6:

Figure A7: Manipulation Testing Plot

Note: Density test of the running variable, keeping provider–month observations
with more than one displayed rating per month
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Figure A8: Manipulation Testing Plot

Note: Density test of the running variable, dropping provider–month observations
with more than one displayed rating per month
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Figure A9: Demand Response to Quality Disclosure

Binned scatterplot, data restricted to family medicine physicians, but not dropping observa-
tions with more than one displayed rating per month. Compare to Fig. 3 which drops panel
observations displaying more than one rating per month.

Figure A10: Covariate Balance on Baseline Regression (Provider–Month Panel)
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Table A1: Monlthy New Visits, by Count of Family Medicine Providers

(1) (2) (3) (4) (5)
Low Count Medium Count High Count Low Count High Count

Rounded Up 3.363∗∗ 4.788 0.877 2.651 2.330
(1.353) (4.742) (2.658) (1.981) (1.738)

Distance to threshold -57.36∗ -74.48 -3.390 -45.84 -10.62
(31.46) (72.15) (47.96) (39.25) (35.83)

Dist × Rounded 24.08 10.04 -119.7 48.59 -68.73
(56.52) (194.4) (77.13) (85.11) (60.16)

Cutoff FEs Yes Yes Yes Yes Yes

Mean below threshold 5.625 6.609 5.798 5.370 6.145
% Change 59.8 72.4 15.1 49.4 37.9
R-squared 0.140 0.375 0.204 0.137 0.143
Observations 1750 231 594 1365 1210

Note: Standard Errors clustered at the provider level and observations weighted by review count. Columns 1-3

compute physician counts using all physicians included in the Area Health Resource File, while columns 4-5

use only the health system’s physicians. Model includes cutoff FEs
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A2: DeNovo = No, New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Linear Quadratic Cubic Linear Quadratic Cubic

Rounded Up 2.070∗∗ 2.063∗∗ 3.418∗∗∗ 2.059∗∗ 3.954∗∗∗ 4.917∗∗∗

(0.880) (0.873) (1.112) (0.870) (1.269) (1.679)

Distance to threshold -35.72∗∗ -35.28∗∗ -92.27∗∗ -26.25 -108.6 -330.8∗∗

(14.99) (14.59) (40.46) (17.75) (96.48) (163.5)

Dist × Rounded -17.94 -64.90 186.0
(33.11) (136.2) (273.6)

Cutoff FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 3.454 3.454 3.454 3.454 3.454 3.454
% Change 59.9 59.7 99.0 59.6 114.5 142.4
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review count.

Columns 1-3 parameterize same slope on both sides of disconinuity, 4-6 do not.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A3: DeNovo = Yes, New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Linear Quadratic Cubic Linear Quadratic Cubic

Rounded Up 0.908 0.895 0.432 0.896 0.333 0.633
(0.647) (0.641) (0.581) (0.641) (0.625) (1.000)

Distance to threshold -10.11 -9.399 10.10 -0.665 -20.15 -69.12
(8.905) (8.585) (21.78) (9.496) (45.84) (82.79)

Dist × Rounded -17.91 85.54 122.1
(17.81) (79.51) (220.3)

Cutoff FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 2.021 2.021 2.021 2.021 2.021 2.021
% Change 44.9 44.3 21.4 44.4 16.5 31.3
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review count.

Columns 1-3 parameterize same slope on both sides of disconinuity, 4-6 do not.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A4:
Residualized new Patient Wait Days , Regression Discontinuity Estimates

Local Linear Regression with Optimal Bandwidths

False Discontinuity
0.025

Pre Post

False Discontinuity
-0.025

Pre Post

True Discontinuity
0.000

Pre Post
(1) (2) (3) (4) (5) (6)

RD Estimate 2.006 1.941 0.225 -1.452 -0.906 2.450∗∗∗

(1.375) (1.376) (0.968) (1.168) (0.786) (0.859)

MSE-Optimal Bandwidth 0.007 0.007 0.006 0.008 0.018 0.019
Mean Below Threshold 7.499 7.319 7.426 6.890 9.203 8.703
% Change 26.8 26.5 3.0 -21.1 -9.8 28.1
Observations 25643 16760 25643 16760 25643 16760

Note: Regressions denoted Pre corresponds to before quality disclosure and Post corresponds to after

disclosure. This table reports the regression discontinuity estimate from optimal bandwidth local linear

regression using the rdrobust package in Stata (Colonico, et. al. 2017). Left hand side variable

RD Estimate is a residualized wait time in days for a new patient visits for adults not going to walk-in

clinics. The outcome is residualized prior to estimation with an OLS regression with cuttoff-specific

and presenting diagnosis specific fixed effects (e.g., Lee, 2010) and standard errors are HC0 robust.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A5:
Residualized New Patient Wait Days , Regression Discontinuity Estimates

Local Linear Regression with Optimal Bandwidths

Early
Disclosure
Period

Late
Disclosure
Period

(1) (2)
RD Estimate -1.273 3.603∗

(2.588) (2.113)

MSE-Optimal Bandwidth 0.009 0.011
Mean Below Threshold 11.412 12.541
% Change -11.2 28.7
Observations 5224 5654

Note: Disclosure began Nov 2018. Early Disclosure corresponds to the five months beginning in Nov 2018.

Late disclosure corresponds to the subsequent five month. This table reports the regression discontinuity

estimates from optimal bandwidth local linear regression using the rdrobust package in Stata version 17

(Colonico, et. al. 2017). Left hand side variable RD Estimate is a residualized wait time in days for a

new patient visits for adults not going to walk-in clinics. The outcome is residualized prior to estimation

with an OLS regression with cuttoff-specific and presenting ICD specific fixed effects (e.g., Lee, 2010)

and standard errors are HC0 robust.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A6: Monthly New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Rounded Up 2.192∗∗ 2.163∗∗ 2.445∗∗ 2.157∗∗ 2.563∗ 2.861∗

(1.104) (1.093) (1.212) (1.089) (1.346) (1.647)
Functional Form: Linear Quad. Cubic Linear Quad. Cubic
Treatment Interaction No No No Yes Yes Yes
Cutoff FEs Yes Yes Yes Yes Yes Yes

Mean Below Threshold 5.725 5.725 5.725 5.725 5.725 5.725
% Change
Observations 2941 2941 2941 2941 2941 2941

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting different slopes on each side

of the discontinuty. Sample does not exclude providers who display more than 1 rating/month.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A7: Monthly New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Rounded Up 3.333∗∗ 3.306∗∗ 3.180∗∗ 3.306∗∗ 3.349∗ 4.982∗∗

(1.410) (1.406) (1.611) (1.404) (1.823) (2.514)
Functional Form: Linear Quad. Cubic Linear Quad. Cubic
Treatment Interaction No No No Yes Yes Yes
Cutoff FEs No No No No No No

Mean Below Threshold 5.475 5.475 5.475 5.475 5.475 5.475
% Change 60.9 60.4 58.1 60.4 61.2 91.0
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting different slopes on each side

of the discontinuty.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A8: Covariate Balancing:

(1) (2) (3) (4)
MD Credential Male Provider High Density Elapsed Tenure

Rounded Up -0.134 -0.0577 -0.0930 -3.319
(0.104) (0.121) (0.117) (2.078)

Functional Form: Linear Linear Linear Linear
Treatment Interaction Yes Yes Yes Yes
Cutoff FEs Yes Yes Yes Yes

Mean Below Threshold 0.636 0.456 0.558 13.377
% Change -21.1 -12.6 -16.7 -24.8
Observations 2730 2637 2575 2730

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting different slopes on each side

of the discontinuty.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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