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Abstract

We develop a normative theory for constructing mean-variance portfolios robust to

model misspecification. We identify two inefficient portfolios—an “alpha” portfolio,

representing latent asset demand, that depends only on pricing errors and a “beta”

portfolio that depends on observed factor risk premia—which, when combined, give

mean-variance efficient portfolios. We show that the alpha and beta portfolios have

different economic properties and therefore misspecification in these portfolios should

be treated using different methods. Our theoretical insights lead to an economically

substantial and statistically significant improvement in out-of-sample portfolio perfor-

mance, with latent asset demand playing a dominant role.
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(discussant), Amit Goyal, Christian Julliard, Andrew Karolyi, Ralph Koijen, Hugues Langlois, Michelle Lee, Xioaji
Lin (discussant), Lionel Martellini, Alberto Mart́ın-Utrera, Stefan Nagel (discussant), Vasant Naik, Javier Nogales,
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1 Introduction

The mean-variance portfolio choice model is the cornerstone of financial economics because it

captures the fundamental trade-off between expected return and risk. To implement this model, an

investor needs to know the means, variances, and covariances of asset returns. This is particularly

challenging when the number of assets is large, which is increasingly the case given the availability

of data on individual stocks. This challenge motivates the use of a beta-pricing model, such as

the Sharpe (1964) Capital Asset Pricing Model or the Fama and French (2015) five-factor model.

However, as highlighted by Hansen and Sargent (1999), “with tractability comes misspecification,”

because when specifying a particular factor model for asset returns, factors could be mismeasured

(Roll, 1977) or missing (e.g., MacKinlay and Pástor (2000)).

In this paper, we develop a theory to resolve model misspecification when using a candidate

beta-pricing model for constructing mean-variance portfolios and demonstrate its effectiveness em-

pirically. The candidate beta-pricing model may be misspecified because it omits pervasive risk

factors, asset-specific components, or both. These omissions can also arise when considering mis-

specified conditional asset-pricing models. We show how to use the Arbitrage Pricing Theory

(APT) of Ross (1976) to address these sources of misspecification by extending the conventional

view of the APT. We demonstrate that the APT allows for not just “small” asset-specific pricing

errors but also “large” pricing errors related to omitted pervasive risk factors while still satisfying

the no-arbitrage condition that bounds the Sharpe ratio of the overall portfolio.

Typically, correcting a candidate beta-pricing model for misspecification has been done by aug-

menting the model with additional (pervasive) risk factors. However, purely asset-specific pricing

errors have been ignored because, being idiosyncratic, they are deemed diversifiable and hence not

priced. But, this view is correct only if the beta-pricing model, after it is augmented with the

missing risk factors, becomes correctly specified so that there are zero pricing errors and exact pric-

ing holds. In the absence of exact pricing, purely asset-specific pricing errors cannot be diversified

by augmenting the candidate beta-pricing model with omitted pervasive factors. We explain that

asset-specific pricing errors represent compensation for bearing asset-specific risk. Our perspective,

which allows for asset-specific pricing errors, is a crucial departure from the standard framework

with exact pricing and leads to novel insights.

These insights have important implications for portfolio selection, which we present in four

propositions. In Proposition 4.1, we show that under the APT the entire set of mean-variance

efficient portfolios is generated by two inefficient portfolios—the “beta” portfolio, which depends
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on observed factor risk premia, and the “alpha” portfolio, which has exposure only to omitted risk

factors and asset-specific risk. The alpha portfolio, because it depends on pricing errors that are

spanned by latent pervasive risk factors and latent asset-specific risk, represents the latent asset

demand studied by Koijen and Yogo (2019) but, in our case, founded on the APT. We show that

if one were to ignore latent asset demand generated by the purely asset-specific pricing errors,

the resulting portfolio would not be on the efficient frontier regardless of how many risk factors

were included in the model. Moreover, we establish in Proposition 4.2 that, as the number of

assets N increases, the elements of the alpha portfolio can dominate, in terms of magnitude, the

corresponding elements of the beta portfolio.1 This result motivates us to use different approaches

for dealing with misspecification in the alpha and beta portfolios.

In Proposition 4.3, we establish a set of conditions under which, as the number of assets in-

creases, the beta portfolio can be replaced, without loss of performance, by a benchmark portfolio

(such as the equal- or value-weighted portfolio) that by construction is functionally independent of

the mean vector (risk premia) and covariance matrix of the observed factors, and hence, is immune

to misspecification of these quantities. Finally, we show in Proposition 4.4 that, under the APT,

the alpha portfolio, which represents latent asset demand, is precisely the “robust” portfolio one

would obtain when using the max-min approach of Gilboa and Schmeidler (1989) and Hansen and

Sargent (2007) to treat misspecification in the alpha component of returns.

To illustrate the substantial improvement in the out-of-sample performance of the robust mean-

variance (RMV) portfolios resulting from our theoretical insights, we study the same two data sets

considered in Ao, Li, and Zheng (2019).2 The first data set consists of N = 30 stock constituents

of the Dow Jones Industrial Average (DJIA), and the second of N = 100 randomly selected stock

constituents of the S&P 500 index, in each case augmented with the Fama-French three factors. We

show that our RMV strategy achieves an increase in Sharpe ratio of 125% to 150% relative to the

equally weighted portfolio and an increase of 50% to 100% relative to that of the “maximum-Sharpe-

ratio estimated and sparse regression strategy” (MAXSER) developed in Ao et al. (2019).3 We

demonstrate the importance of the latent purely asset-specific risk relative to that of observed and

pervasive risk factors: for both data sets, the squared correlation between the optimal demand for

an asset and its latent asset-specific component is over 95% and the latent component contributes

to more than 85% of the total squared Sharpe ratio of the optimal portfolio. Furthermore, we

1The analysis for a large number of assets is not just an abstract mathematical exercise but also corresponds to
practice. Hedge funds and sovereign-wealth funds hold a large number of assets; for instance, the portfolio of Norges
Bank has over 9,000 assets. Moreover, our results have a bite even when the number of assets is as small as 30.

2In Section IA.4 of the Internet Appendix, we also use simulated data to evaluate performance.
3This improvement is noteworthy given that DeMiguel, Garlappi, and Uppal (2009b, Table 1) and Ao et al. (2019,

Table 1) show, respectively, that the 1/N and MAXSER portfolios outperform a large number of other strategies.
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show that the performance of our strategy improves with the number of risky assets, in contrast to

traditional portfolio-selection models.

To summarize, traditional portfolio choice models ignore asset-specific risk and, when correct-

ing for misspecification, focus on addressing misspecification by including additional risk factors;

moreover, traditional models find it challenging to handle the case of large N . In contrast, our

analysis is founded on the APT, leading to three significant benefits. One, it allows us to distin-

guish between the alpha and beta components of returns. Two, within the alpha component of

returns, it enables us to account for the presence of pricing errors associated with omitted risk

factors and omitted asset-specific risk. Three, it rules out arbitrage opportunities; so, unbounded

Sharpe ratios are ruled out even when N is large. Theoretically, this leads to the critical insight

that, asymptotically, the optimal portfolio weight is dominated by the purely asset-specific pricing

errors in the alpha portfolio and that the specification of the beta portfolio can be made immune

to missing risk factors. Empirically, we demonstrate that allowing for asset-specific pricing errors

leads to a substantial improvement in portfolio performance.

We now explain how our work is related to the existing literature. Just like in Koijen and Yogo

(2019), a key quantity that we study is latent asset demand. Their work is positive and shows

the importance of latent asset demand in explaining empirically observed asset holdings. Thus, in

their work, latent asset demand is the wedge between the asset demand implied by a candidate

factor model and the observed asset demand. In contrast, our work is normative: in our APT-

based model, latent asset demand is the wedge between the asset demand implied by the candidate

factor model and the optimal asset demand. The theory we develop explains why, in the presence

of model misspecification, an optimal portfolio must include a latent component and why, as the

number of assets increases, this component will dominate the one that depends on observed factors.

Our empirical results confirm the dominant role of latent asset demand, in particular, the demand

arising from the latent purely-asset-specific component.

There is an extensive literature that studies the portfolio-choice problem in the presence of

model misspecification using the max-min approach; see, for instance, Trojani and Vanini (2002),

Uppal and Wang (2003), Garlappi, Uppal, and Wang (2007), Guidolin and Rinaldi (2009), and

Christensen (2017). In contrast to these papers, our work adopts as the “approximating model”

the APT, decomposes the mean-variance portfolio into alpha and beta components, and shows

that treating misspecification in only the alpha-portfolio component with the max-min approach,

which we show is equivalent to imposing the APT no-arbitrage restriction, leads to substantial

improvement in empirical out-of-sample performance.
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Our work is also related to the extensive empirical literature that aims to improve the perfor-

mance of mean-variance portfolios by imposing portfolio constraints. Jagannathan and Ma (2003)

demonstrate that imposing short-sale constraints is equivalent to shrinking the covariance matrix.

DeMiguel, Garlappi, Nogales, and Uppal (2009a) show that using a more general form of the

short-sale constraint improves performance further. Economically motivated constraints improve

the estimation of time-series forecasts of the equity risk premium (Pettenuzzo, Timmermann, and

Valkanov, 2014) and recovery of the minimum variance stochastic discount factor (SDF) under

a conservative max-min Sharpe-ratio criterion (Schneider and Trojani, 2019).4 In our work, the

constraint imposed when estimating asset returns follows from the APT’s no-arbitrage restriction.

Ao et al. (2019) also study estimation of the mean-variance portfolios directly, using a regression

approach with a lasso constraint to handle a large number of assets; moreover, they exploit a de-

composition of the portfolio weights based on statistical assumptions, whereas our theory is founded

on the APT, and thus, on the no-arbitrage restriction.

The notion that mean-variance portfolios can be decomposed into two inefficient portfolios

was pioneered by Treynor and Black (1973), who labeled them “active” and “passive” portfolios.

Roll (1980) formalizes this idea by introducing “orthogonal portfolios” (i.e. the active portfolios).

He shows that for a given inefficient portfolio (i.e. the passive portfolio), there is a continuum of

corresponding zero-beta portfolios, in contrast to the case of an efficient portfolio, for which there is

only a single orthogonal portfolio.5 While in Roll (1980) the orthogonal portfolios are a consequence

of optimization, we show that they also result from the APT’s no-arbitrage restriction.

MacKinlay (1995, page 6) exploits the notion of orthogonal portfolios of Roll (1980) to quantify

the behavior of the Gibbons et al. (1989) test when the candidate beta-pricing model is misspecified,

stating that “. . . for the nonrisk-based alternatives the maximum squared Sharpe measure . . . can,

in principle, be unbounded.” Consequently, in subsequent work, the nonrisk-based alternative (i.e.

the asset-specific component) was ignored when constructing optimal portfolios. We show that

the APT provides the exact condition that must be satisfied in order to include the nonrisk-based

alternative in the construction of the optimal portfolio while still satisfying no arbitrage.

Pástor and Stambaugh (1999, 2000) and Pástor (2000), building on MacKinlay (1995), use a

Bayesian approach to study the effect of model misspecification on the cost of equity and asset

4Brandt (1999) and Aı̈t-Sahalia and Brandt (2001) propose a nonparametric approach for estimating portfolio
weights. Ghosh, Julliard, and Taylor (2019) propose an alternative nonparametric approach that builds on an
entropy-based estimator of the SDF.

5Gibbons, Ross, and Shanken (1989) use the notion of orthogonal portfolios developed by Roll (1980) to show
that the GRS test statistic can be represented as the squared t-ratio for testing that the orthogonal portfolio has zero
intercept when regressed against the set of candidate factors.
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allocation. They show that the posterior mean of the pricing error coincides with a shrinkage

version of the OLS estimator of the intercept. Our analysis of misspecification, founded on the

APT, also has a shrinkage element, but only for the component associated with asset-specific risk.

MacKinlay and Pástor (2000), again building on MacKinlay (1995), study the portfolio-choice

problem when one of the risk factors from the candidate asset-pricing model is omitted. In contrast,

we allow not just for omitted risk factors but also for purely asset-specific pricing errors unrelated to

common risk while still satisfying the APT no-arbitrage restriction. Moreover, we show analytically

and empirically that, as the number of assets increases, the portfolio weights are dominated by

asset-specific pricing errors rather than observed and omitted risk factors.

2 A Preview of the Results in a Simplified Setting

In this section, we provide an informal introduction in a simple setting to our main theoretical

results to prepare the ground for the formal analysis of the general model that follows.

Suppose that a single-period mean-variance investor with unit risk aversion can invest in N

risky assets, with return ri, for i = 1, . . . , N, and the risk-free asset with return rf . Then, her

optimal portfolio is given by the well-known Markowitz portfolio:

wmvi =
N∑
j=1

σ
(−1)
ij µj , (1)

where σ
(−1)
ij is the (i, j)th element of the inverse of the covariance matrix for the N risky-asset

returns and µj = E(rj) − rf for j = 1, . . . , N are the mean excess returns. The expression in (1)

highlights the problem we face: because the portfolio weights depend on the N expected excess

returns and N(N + 1)/2 variances and covariances of returns, a portfolio formed using sample

moments performs poorly out of sample, especially when N is large.6

To deal with this problem, suppose that the investor postulates a candidate beta-pricing model

ri − rf = αi + βif + εi, for i = 1, . . . , N, (2)

where f is an observed, for simplicity, tradable factor (for instance, the market excess return),

with risk premium λ = E(f) and finite variance var(f) > 0, βi is the corresponding beta, εi is the

asset-specific innovation with zero mean and finite variance var(εi) that is independent of ft, and

αi are the asset-specific pricing errors corresponding to the candidate beta-pricing model in (2),

6Note that it is difficult to estimate precisely the expected return even for a single risky asset (Merton, 1980).
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which, to rule out arbitrage opportunities, need to satisfy the APT no-arbitrage restriction

N∑
i,j=1

αiαj cov(−1)(εi, εj) < δapt, (3)

for some finite positive quantity δapt, where cov(−1)(εi, εj) denotes the (i, j)th element of the inverse

of the covariance matrix of the εi.
7 Without loss of generality, we assume that αi and βi in (2)

are orthogonal. Our portfolio-decomposition results below hold even if the αi and βi are correlated

across assets, as we demonstrate in Section IA.1 of the Internet Appendix.

Suppose first that there is no misspecification so that the excess returns on the risky assets

obey exactly the one-factor model in (2). In this case, αi is zero for all assets, and one can assume

for simplicity that εi are independent and identically distributed (IID) across assets. Then, the ith

weight in the mean-variance portfolio is equal to the weight in the so-called beta portfolio

wβi =
1

N

(
λ

var(f)

)(
βi

β̄2

)
, when N is large, (4)

assuming pervasiveness of the observed risk factor f , namely 0 < β̄2 = N−1
∑N

i=1 β
2
i < ∞. In

this case, the beta portfolio is efficient and attains the maximum Sharpe ratio
√
λ2/var(f), while

diversifying away asset-specific risk: var
(∑N

i=1w
β
i εi
)

=
(
λ/β̄2var(f)

)2
/N2

∑N
i=1 β

2
i var(εi)→ 0.

Now consider the case where the candidate model (2) is misspecified. Model misspecification

can arise for several reasons. Here we consider misspecification because of the potential omission

of a pervasive factor, the presence of asset-specific errors (unrelated to the pervasive factor), or

both. With misspecification, the beta portfolio continues to satisfy (4) and still diversifies what the

investor perceives to be asset-specific risk: var
(∑N

i=1w
β
i εi
)
→ 0. However, the portfolio wβi in (4)

is no longer on the efficient frontier and
√
λ2/var(f) is not the maximum attainable Sharpe ratio.

To see the effect of model misspecification, we can use the APT no-arbitrage restriction to show

that in (2) the pricing error αi, i.e. the asset-specific nonrandom component, and the innovation

εi, i.e. the asset-specific random component, can be decomposed as

αi = Aiλmiss + ai and εi = Aiz + ηi, (5)

where Ai is the loading on the omitted pervasive risk factor z, which has a risk premium λmiss,

and ai is the asset-specific pricing error unrelated to pervasive risk.8 The ηi represent purely asset-

7One has to allow for the asset-specific innovation εi to be correlated across assets because the investor’s candidate
beta-pricing model (2) could be misspecified leading to cov(εi, εj) 6= 0 for different assets i and j.

8To simplify the exposition, we have assumed that the investor omits only one pervasive risk factor z, for which
the assumption that E(z) = 0 and var(z) = 1 is without loss of generality because z is latent. Pervasiveness of the
omitted factor z follows when 0 < N−1∑N

i=1A
2
i <∞.
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specific risks, for simplicity assumed IID with zero mean and finite variance, var(ηi) = var(η) > 0.

The αi component generates the latent asset demand, as shown below.

Consider first the special case of (5), in which the investor omits the pervasive risk factor z,

but there is no asset-specific error (i.e. ai = 0 for all assets). This is the case typically considered in

the literature. In this case, the mean-variance portfolio weights wmvi can be expressed as the sum

of two portfolios, wmvi = wAi + wβi , with

wAi =
1

N
λmiss

(
Ai

Ā2

)
, when N is large, (6)

where Ā2 = N−1
∑N

i=1A
2
i and wβi given in (4). The weight wAi in (6) is analogous to wβi in (4).

Observe that, in contrast to the common belief, in this case the pricing errors do not need to be small

to satisfy the APT restriction; the APT restriction (3) is always satisfied, i.e.
∑N

i=1A
2
i /
(∑N

i=1A
2
i +

var(η)
)

remains bounded even when the Ai are very large. Given latency of the omitted factor z,

when N is large the Sharpe ratio of the wAi portfolio equals
√
λ2
miss =

√
λ2
miss/ var(z).

We now consider the general case of misspecification (5) with non-zero asset-specific pricing

errors ai, in addition to an omitted risk factor. This case has received much less attention in

the literature, and we show that it leads to portfolios with strikingly different properties. The

mean-variance portfolio in this case is

wmvi = wαi + wβi = (wai + wAi ) + wβi , (7)

with wβi given in (4) and where the alpha portfolio is wαi = wai + wAi , with wAi given in (6), and

wai =
ai

var(η)
, when N is large. (8)

Equation (7) shows that latent asset demand, represented by the alpha portfolio, is spanned by

omitted pervasive risk factors and asset-specific risk. Thus, the APT provides a formal foundation

for the composition of latent asset demand.9 Observe also that the Sharpe ratio of the portfolio

with weights wai equals
√∑N

i=1 a
2
i /var(η), and thus, is bounded (because of no arbitrage) and

strictly positive as long as the asset-specific pricing error ai is non-zero for at least one asset. This

holds regardless of whether the ai terms are negative or positive. By no-arbitrage and ruling out

the pathological case of perfect correlation between the Ai and βi, the squared Sharpe ratio of the

tangency portfolio is

(SRmv)2 = (SRα)2 + (SRβ)2

9The expression in (8) follows from the APT no-arbitrage restriction (3), in particular, from the fact that
∑N
i=1 a

2
i

must be bounded even for large N . For a formal proof, see Proposition 4.1.
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= (SRa)2 + (SRA)2 + (SRβ)2

=
N∑
i=1

a2
i /var(εi) + λ2

miss + λ2/var(f).

The above decomposition of the portfolio squared Sharpe ratio holds even if αi and βi are not

orthogonal.

To implement the wmvi portfolio, when we estimate (7) subject to the APT no-arbitrage re-

striction in (3), we obtain

ŵmvi =
√
δapt ŵ

α
i + ŵβi , (9)

where ŵαi and ŵβi are functions of the estimated parameters.10 The above expression shows that

as we decrease δapt we effectively “shrink” the alpha portfolio; in the case where δapt = 0, the

mean-variance portfolio is given by just the beta portfolio, and exact pricing holds.

Based on the above, we collect our key insights regarding the alpha and beta portfolios for

the case of general misspecification. These results represent a major departure from both the case

of a correctly specified model with weights (4) and the case in which one allows for only omitted

pervasive factors with weights (6).

1. Two-fund separation holds for the mean-variance portfolio weight, wmvi = wαi + wβi , where

wαi = wai + wAi , because the alpha and beta portfolio each span orthogonal sources of risk.

Consequently, the squared Sharpe ratio of the mean-variance portfolio equals the sum of the

squared Sharpe ratios of the alpha and beta portfolios, implying that the alpha and beta

portfolios are inefficient. The general case of this result is given in Proposition 4.1.

2. The component of latent asset demand given by the portfolio wai dominates the beta portfolio

weights; i.e. wβi /w
a
i → 0 when N diverges (wai also dominates wAi ). The general case of this

result is given in Proposition 4.2.

3. The beta portfolio weights in (4), depend on the parameters λ and var(f). However, the

parameter-free equally weighted portfolio weights, wewi = 1/N , also achieve the same Sharpe

ratio as that of wβi , λ/
√

var(f), under some conditions that we identify; thus, the beta

portfolio can be replaced by the equally weighted portfolio without any loss of performance,

implying that the beta portfolio is immune to errors in estimating λ and var(f). The general

case of this result is given in Proposition 4.3.

10Note that ŵαi = ŵαi (δapt) =
√
δaptŵ

α
i (1).
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4. If a mean-variance investor is averse to model misspecification (in the sense of Hansen and

Sargent (2007)), the investor’s optimal estimated “robust” portfolio weights, labeled ŵrmvi ,

obtained by solving a max-min optimization problem and estimated by imposing the APT

restriction (3) for a given δ∗apt, is

ŵrmvi =
(√δ∗apt

φ

)
ŵαi + ŵβi , (10)

for some φ ≥ 1 representing the investor’s aversion to misspecification, with φ = 1 the case

of neutrality to misspecification. It follows that there exists a δapt =
√
δ∗apt/φ so that the

(estimated) portfolio weights in (9) are identical to the robust portfolio weights in (10) for

some φ > 1. That is, the APT leads to the same portfolio as the robust portfolio of an investor

averse to model misspecification. The general case of this result is given in Proposition 4.4.

In summary, whenever some of the wai weights in (8) are non-zero, then purely asset-specific

risk is not diversified away. In fact, it is optimal for to bear purely asset-specific risk to earn the

associated asset-specific premium and thereby achieve mean-variance efficiency.

3 Candidate Beta Models and the APT

In this section, we describe the formal framework used for our analysis. We assume that the

investor starts with a candidate model, namely an asset-pricing model linear in K observed factors

ft (either tradable or nontradable), referred to as the beta-pricing model and aims to use this

model to quantify the means, variances, and covariances of asset returns for asset allocation with

a large number N of risky assets.11 However, the investor’s candidate beta-pricing model may be

misspecified. The key idea of this paper is to use the APT to identify and mitigate the effect of

pricing errors caused by the use of the candidate beta-pricing model.

The classical APT of Chamberlain (1983) has no observed factors. Instead, all factors are

assumed to be latent, about which the investor can obtain full knowledge using population principal-

component analysis.12 Consequently, only small pricing errors could potentially be present. In

contrast, in our framework, because the investor is assumed to start with a possibly incomplete set

11We study a market with a countably infinite number of assets, just like in the classical APT (see Chamberlain
and Rothschild (1983)). Gagliardini, Ossola, and Scaillet (2016), building on the work of Al-Najjar (1998), extend
the APT to allow for an uncountable number of assets and also relax the boundedness assumption of the maximum
eigenvalue of the residual covariance matrix.

12It is important to note that the APT is a model of the random component of returns, and is silent about expected
returns. Black (1995, p. 168) recognizes this and states that the “Arbitrage Pricing Theory (APT) is a model of
variance. It says that the number of independent factors influencing return is limited, but it is silent on the pricing
of these factors, so it is silent on expected return.”
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of candidate observed factors ft driving the beta model, the pricing errors can also include omitted

pervasive risk factors. There is a misperception that the APT framework allows only for small

pricing errors but we explain below that the APT applies even when the pricing errors include

omitted pervasive risk factors.

Let rft denote the return on the risk-free asset, and let rt = (r1t, r2t, . . . , rNt)
′ denote the N -

dimensional vector of one-period returns on the risky assets. To make clear the dependence on

the number of assets, we index quantities that are N -dimensional by the subscript N , except for

random variables, such as the returns on risky assets rt, which have the subscript t. Given an

arbitrary portfolio strategy s with weights ws
N = (ws1, w

s
2, . . . , w

s
N )′, and using 1N to denote an

N -dimensional vector of ones, we define the associated portfolio return as

rst = r′tw
s
N + rft(1− 1′Nws

N ),

with finite mean, standard deviation, and Sharpe ratio defined, respectively, as

µs = E(rt)
′ws

N + rft(1− 1′Nws
N ), σs =

√
var(rst ), and SRs =

µs − rft
σs

.

We now state our main assumptions, adapting the APT assumptions to our setup where the

investor starts with an initial, possibly misspecified, candidate beta-pricing model.

Assumption 3.1 (Candidate beta-pricing model). We assume that the N -dimensional vector rt

of asset returns can be characterized by

rt = µN + BN (ft − E(ft)) + εt,

where µN is the N × 1 vector of expected returns and BN is the N ×K full-rank matrix of factor

loadings, with K < N . At any time t, the K×1 vector of common observed factors, ft, is distributed

with mean E(ft) and K × K covariance matrix Ω, and the N × 1 vector of innovations εt is

distributed with zero mean and the N × N covariance matrix ΣN , with Ω and ΣN being positive

definite. Moreover, εt and ft are uncorrelated.

Assumption 3.1 implies that the variance-covariance matrix for asset returns is

E
[
(rt − µN )(rt − µN )′

]
= VN = BN Ω B′N + ΣN . (11)

In the assumption stated below and throughout the paper, we use δ to denote an arbitrary

positive scalar, not necessarily having the same value.
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Assumption 3.2 (No asymptotic arbitrage). As N → ∞, there is no sequence of portfolios for

which, along some subsequence Ñ ,

var(r′tw
p

Ñ
)→ 0 and (µÑ − rft1Ñ )′wp

Ñ
≥ δ > 0 for all Ñ .

When Assumptions 3.1 and 3.2 hold, with the largest eigenvalue13 of (B′NΣ−1
N BN )−1 satisfying

g1K((B′NΣ−1
N BN )−1) → 0 as N → ∞, then there exists some positive number δapt and a unique

vector of risk premia λ such that the vector of pricing errors

αN = (µN − rft1N )−BNλ, (12)

satisfies the APT restriction

sup
N
α′NΣ−1

N αN ≤ δapt <∞. (13)

In equation (12), the vector of true risk premia λ is the limit of
(
B′NΣ−1

N BN

)−1
B′NΣ−1

N (µN −

rft1N ), which exists and is well defined under Assumptions 3.1 and 3.2. When the observed risk

factors are tradable, then λ = E(ft) − rft1K . The APT theory is silent about the magnitude of

δapt in (13). Ross (1977) suggests choosing δapt as a multiple of the Sharpe ratio of the market.

In practice, one can estimate it using cross-validation methods commonly used in statistics, as

explained in Internet Appendix IA.3.

As is typical in the APT literature (Chamberlain, 1983, 1987; Huberman, 1982; Ingersoll, 1984)

and the portfolio-choice literature (Daniel, Mota, Rottke, and Santos, 2020; Kelly, Pruitt, and

Su, 2020; Kim, Korajczyk, and Neuhierl, 2021), one could assume that αN and βN in (12) are

orthogonal. As we demonstrate in Section IA.1 of the Internet Appendix, this would be without

loss of generality for our results on portfolio choice.

The restriction in (13), a consequence of asymptotic no-arbitrage, links the pricing error αN to

the residual covariance matrix, ΣN . Two complementary cases are possible. In the first case, the

pricing errors are unrelated to pervasive factors and, therefore, must be small on average, i.e. all the

eigenvalues of ΣN are bounded: supN α
′
NαN ≤ supN g1N (ΣN )α′NΣ−1

N αN ≤ g1N (ΣN )δapt < ∞.

The classical APT literature (Huberman, 1982; Ingersoll, 1984) has focused on studying this case.

In the second case, which is the focus of our framework, the pricing errors also contain omitted

pervasive risk factors and, therefore, can be large on average (i.e. at least one of the eigenvalues

of ΣN diverges with N). However, as we now explain, even in this case, the APT no-arbitrage

restriction (13) is satisfied.

13Consider a symmetric M ×M matrix A. Let giM (A) denote the ith eigenvalue of A in decreasing order for
1 ≤ i ≤M . Then, the maximum eigenvalue is g1M (A), and the minimum eigenvalue is gMM (A).
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To understand this, observe that once one obtains λ, given Assumptions 3.1–3.2 and applying

Chamberlain (1983) to the returns net of the observed risk factors, i.e. to rt −BN (ft +λ−E(ft)),

which equals αN + εt, its covariance matrix equals

ΣN = ANA′N + CN , (14)

where AN is an N ×p matrix of loadings corresponding to the p omitted pervasive factors, and CN

is an N ×N positive semi-definite matrix with uniformly bounded eigenvalues. The expression in

(14) shows that the residual covariance matrix ΣN has two terms: the first term, ANA′N , represents

the risk from the missing factors and the second term, CN , represents purely asset-specific risk.

The pricing error αN in (12), corresponding to the candidate beta-pricing model, satisfies

αN = ANλmiss + aN such that sup
N

a′NΣ−1
N aN ≤ δ <∞. (15)

The first term, ANλmiss, of the pricing error αN in (15) is associated with the p omitted pervasive

risk factors, where λmiss is the vector of risk premia for the missing factors.14 The second term,

aN , is a non-zero N × 1 vector associated with the purely asset-specific pricing errors and is

the compensation for purely asset-specific risk. The recognition that purely asset-specific risk is

compensated is a crucial departure from the standard asset-pricing framework with exact pricing,

where there is no compensation for pure idiosyncratic risk, and will play a vital role in the optimal

portfolio.

To show that the APT restriction continues to hold, despite the possibly large pricing errors

because of the omitted pervasive risk factors, we use (14) and (15) to obtain

α′NΣ−1
N αN = (ANλmiss + aN )′(ANA′N + CN )−1(ANλmiss + aN ). (16)

To show thatα′NΣ−1
N αN is bounded, we need to demonstrate that both (ANλmiss)

′Σ−1
N (ANλmiss) =

(ANλmiss)
′(ANA′N +CN )−1(ANλmiss) and a′NΣ−1

N aN are bounded. The former is always bounded

because it contains AN both in the denominator and numerator; therefore, an arbitrarily large AN

would still leave this term bounded. Boundedness of the latter follows from (15).

4 The Portfolio Choice Problem under the APT

This section contains our main theoretical results, presented in four propositions.

14Pervasiveness of the omitted latent risk factors, with loadings AN , follows from the assumption that gjN (ΣN )
for 1 ≤ j ≤ p are increasing for large N . Notice that, because of the latency of the omitted risk factors, AN and
λmiss are identified up to an unknown nonsingular rotation.
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4.1 The Alpha and Beta Portfolios

The mean-variance efficient portfolio in the presence of a risk-free asset is defined by the solution

to the following optimization problem:

wmv
N = argmax

wN

(
(w′NµN + (1−w′N1N )rft)−

γ

2
w′NVNwN

)
, (17)

where 0 < γ <∞ is the coefficient of risk aversion, wmv
N = (wmv

1 , . . . , wmv
N )′ is the vector of portfolio

weights in the N risky assets, and the investment in the risk-free asset is given by 1−1′Nwmv
N . The

well-known solution to the optimization problem in (17) is

wmv
N =

1

γ
V−1
N (µN − rft1N ). (18)

The return on portfolio wmv
N has Sharpe ratio SRmv =

(
(µN − rft1N )′V−1

N (µN − rft1N )
)1/2

with

mean and standard deviation given by, respectively, µmv − rft = γ−1(SRmv)2 and σmv = γ−1SRmv.

The following proposition establishes the relations that exist between the mean-variance port-

folio, wmv
N , and the two inefficient portfolios, wα

N and wβ
N , that depend on the alpha and beta

components of returns, respectively. Throughout the analysis, when we write wx
N = wy

N + O(1),

we mean that, as N increases, the returns of portfolios x and y have the same mean, variance, and

Sharpe ratio. A more detailed explanation of this notation is given at the start of Appendix A.

Proposition 4.1 (Two-fund separation under the APT). Suppose that the vector of asset returns,

rt, satisfies Assumptions 3.1 and 3.2, αN 6= 0N and λ 6= 0K ,15 and that AN , BN , and 1N are

CN -regular at rate N ,16 AN and BN are not asymptotically collinear,17 and that the row sums of

AN ,BN and C−1
N are uniformly bounded.18 Then:

15We denote by 0n the n-dimensional vector of zeros. Proposition 4.1 is trivial when either αN = 0N or λ = 0K ,
so we rule this out without loss of generality.

16Building on Ingersoll (1984, eq. (21)), a matrix DN is CN -regular at rate f(N) if there exists an increasing
function of N , f(N), such that for any 1 ≤ j ≤ K, the eigenvalues gjK( 1

f(N)
D′NC−1

N DN ) → δj > 0, where δj is
some finite positive constant. Note that this condition imposes that all the eigenvalues diverge at precisely the same
rate. Suppose CN has eigenvalues that are both bounded above and away from zero for every N . In that case, this
property depends only on DN, but adopting our definition of CN -regularity simplifies the proof.

17By asymptotic collinearity we mean that either A′NMBNAN → 0 or B′NMANBN → 0 or both, as N diverges,
depending on whether the number of unobserved factors p ≤ K, p ≥ K or p = K, where MC = IN −C(C′C)−1C′ is
the matrix that spans the space orthogonal to any full-column-rank matrix C. When p ≤ K, a sufficient condition for
this is AN = BNH + GN , for some constant K × p matrix H and some residual matrix GN satisfying G′NGN → 0.
The pathological case where the loadings to the latent factors are perfectly collinear to the loadings on the observed
factors needs to be ruled out for identification. For example, if AN = BN , the model is linear in the aggregate factors
Ft = ft + ft,miss with risk premia Λ = λ+λmiss so one would not be able to disentangle observed and latent factors.

18Given an N ×M matrix DN , we say its row sums are uniformly bounded when supN
∑M
i=1 |dji| ≤ δ < ∞, for

some arbitrary positive scalar δ.
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(i) For any N > K the mean-variance portfolio weights satisfy the following decomposition:

wmv
N = φα wα

N + φβ wβ
N ,

with wα
N =

1

γα
Σ+
NαN + O(1) and wβ

N =
1

γβ
V−1
N BNλ, (19)

where γα and γβ are some positive constants, φα = γα

γ , φβ = γβ

γ = 1− φα,19 and 20

Σ+
N =

[
Σ−1
N −Σ−1

N BN (B′NΣ−1
N BN )−1B′NΣ−1

N

]
. (20)

(ii) As N →∞, wβ
N (wα

N ) is the minimum-variance portfolio that is conditionally and uncondition-

ally (with respect to the factors) orthogonal to wα
N (wβ

N ): (wα
N )′ΣNwβ

N → 0 and (wα
N )′VNwβ

N → 0.

(iii) As N →∞, we have two-fund separation: the inefficient portfolios wα
N and wβ

N can generate

all the portfolios on the efficient mean-variance frontier of risky assets, namely,

(SRmv)2 −
(

(SRα)2 + (SRβ)2
)
→ 0, (21)

where the Sharpe ratios of the wα
N and wβ

N portfolios satisfy 0 ≤ SRα <∞, 0 ≤ SRβ <∞, with

SRα = (α′NΣ+
NαN )

1
2 + O(1), and SRβ = (λ′Ω−1λ)

1
2 + O(1). (22)

Note from (19) that, for large N , portfolio wα
N is given by Σ+

NαN/γ
α, implying that (asymp-

totically) it depends only on the pricing errors but not on the risk premia, λ, nor on the factor-

covariance matrix, Ω, which is why we label this the “alpha” portfolio. This portfolio represents

latent asset demand because it depends on the pricing errors, which are spanned by latent pervasive

risk factors and latent asset-specific risk. On the other hand, the portfolio wβ
N depends on factor

exposures and their risk premia, but not on the pricing errors, αN . Moreover, because Σ+
NBN = 0,

the wα
N portfolio diversifies away the observed risk factors, and thus, is beta-factor neutral.

The (asymptotic) orthogonality property, (wα
N )′ΣNwβ

N → 0, says that the two portfolios wα
N

and wβ
N are uncorrelated, conditional on the factors, as N gets large. This property is true re-

gardless of whether one assumes that αN and βN in (12) are orthogonal for any finite N , as

19The choice of γα and γβ depends on which type of mean-variance strategy is considered. For example, for
mean-variance portfolios with target mean µ∗, one selects γα as the ratio of the share of the contribution of wα

N to
the expected return on the mean-variance portfolio with unit risk aversion, (µN − rft1N )V−1

N (µN − rft1N ), over the
target excess mean return, µ∗ − rft. Then the role of the φα and φβ coefficients is to ensure that the wα

N and wβ
N

portfolios achieve the same target mean return µ∗ as wmv
N .

20Note the Sherman-Morrison-Woodbury formula implies V−1
N =

[
Σ−1
N −Σ−1

N BN (Ω−1 + B′NΣ−1
N BN )−1B′NΣ−1

N

]
.

Setting Ω−1 = 0 (a K × K matrix of zeros) in the expression for V−1
N leads to the result for Σ+

N in (20) because
when N increases B′NΣ−1

N BN increases without bound, dominating Ω−1, implying that V−1
N behaves like Σ+

N .
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Figure 1: Decomposition of the mean-variance portfolio
In this figure, we plot the mean-variance portfolio, wmv

N , and its decomposition into two inefficient portfolios:
one that depends only on the pricing errors, wα

N , and another that depends only on the factor exposure and
their premia, wβ

N .
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shown in Section IA.1 of the Internet Appendix. This explains why we have not needed to assume

orthogonality between αN and βN when describing the data generating process for returns.

In addition to this, if one constructed the minimum-variance portfolio that is orthogonal to wα
N ,

the resulting portfolio would be wβ
N , and vice versa. That is, even though the wα

N and wβ
N portfolios

are obtained simply by relying on the APT decomposition of the total mean return, these portfolios

can also be characterized as the result of an optimization that is described in Proposition IA.2 of

the Internet Appendix, which extends Roll (1980) to the case where, in addition to investing in

risky assets, one can also invest in a risk-free asset.21 This mutual optimality property of the wα
N

and wβ
N portfolios drives the two-fund separation result: the alpha and beta portfolios, despite

being inefficient (because they have a smaller slope than the capital market line), span the entire

efficient frontier of risky assets, as illustrated in the left-hand-side plot of Figure 1.

The result in equation (22) leads to some new interpretations, especially given the representa-

tion SRα = (α′NΣ−1
N αN )

1
2 + O(1), which holds by slightly strengthening our assumptions.22 First,

21The (asymptotic) optimality of wα
N and wβ

N also emerges from recognizing that the mean and variance of
the corresponding portfolio returns are proportional to one another, just like for efficient mean-variance portfolios,
implying that the associated Sharpe ratios can be expressed as a quadratic form. In fact, µα − rft = 1

γα
α′NΣ+

NαN +

O(1), (σα)2 = 1
(γα)2

α′NΣ+
NαN + O(1), µβ − rft = 1

γβ
λ′Ω−1λ + O(1), and (σβ)2 = 1

(γβ)2
λ′Ω−1λ + O(1).

22When α′NΣ−1
N BN = O(N

1
2 ), then α′NΣ+

NαN = α′NΣ−1
N αN − αNB′NΣ−1

N (B′NΣ−1
N BN )−1Σ−1

N BNαN =

α′NΣ−1
N αN + O(N

1
2 )O(N−1)O(N

1
2 ) = α′NΣ−1

N αN + O(1).
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the quantity on the left-hand side of the APT restriction in (13), α′NΣ−1
N αN , is the same (asymp-

totically) as the square of the Sharpe ratio of the alpha portfolio, (SRα)2. Thus, the APT restriction

in (13), which is typically interpreted as a bound on the pricing errors, can instead be interpreted

as a bound on the Sharpe ratio of the alpha portfolio.23 Second, the bound on the square of the

Sharpe ratio of the alpha portfolio can also be seen as providing a theoretical rationalization for

the use of Sharpe ratios in the “no-good-deal bound” of Cochrane and Saá-Requejo (2001).24

Proposition 4.2 (Weights of alpha and beta portfolios for large N). Under the assumptions

of Proposition 4.1, the alpha and beta portfolios weights are of the order |wαN,i| = O
(

1√
N

)
and

|wβN,i| = O
(

1
N

)
, where x = O(y) means that |x|/y is bounded, implying that, element by element,

for some constant δ, as N →∞,

wβN,i
wαN,i

→ 0 if aN 6= 0N , and
wβN,i
wαN,i

→ δ if aN = 0N . (23)

To understand the intuition for the dominance of the weights of the alpha portfolio if aN 6= 0N ,

recall that mean-variance portfolio optimization aims to maximize the portfolio Sharpe ratio. There

are two sources of risk in the APT: factor exposure and asset-specific exposure. The factor exposure

wα
N is zero—irrespective of the rate at which the weights decrease—because of the orthogonality of

wα
N to BN for any N . Regarding exposure to asset-specific risk, the elements of wα

N cannot decrease

faster than 1/
√
N because then the asset-specific risk of the portfolio goes to zero; however, the

asset-specific risk of the alpha portfolio coincides with its Sharpe ratio, implying that the Sharpe

ratio would also go to zero. On the other hand, the APT restriction in (13) does not allow the

rate at which the weights decrease to be slower than 1/
√
N . Thus, the rate of 1/

√
N strikes the

correct balance between optimizing the risk and return of the wα
N portfolio. On the other hand, if

aN = 0N , we face exposure only to latent factors (if AN is not the null matrix), which affects both

the mean and variance of asset returns so that the APT restriction is redundant and, therefore, the

weights of the alpha portfolio behave like those for the beta portfolio.25

23The decomposition of the square of the Sharpe ratio of the mean-variance portfolio in (21) is also obtained in
Treynor and Black (1973) for the case of the single-index model with a diagonal covariance matrix for the residuals.
Our insight that a′NΣ−1

N aN represents the squared Sharpe ratio of the aN -portfolio leads to a sharper bound on
a′NaN than the one established in Chamberlain and Rothschild (1983, Theorem 4 and Corollary 2), which instead
uses the squared Sharpe ratio of the overall efficient portfolio: a′NaN ≤ g1N (CN )a′NΣ−1

N aN ≤ g1N (CN )µ′NV−1
N µN .

24Korsaye, Quaini, and Trojani (2020) show how the “no-good-deal-bounds” can be formalized through the notion
of “smart” stochastic discount factors.

25The wα
N portfolio dominates the wβ

N portfolio across other norms besides the sup norm criterion, which is the
norm used in Green and Hollifield (1992). In particular, the sum of the squared portfolio weights wα

N
′wα

N , which

is the same notion adopted in Chamberlain (1983), is always bounded, whereas wβ
N

′
wβ
N always converges to zero.

Moreover, the sum of the portfolio weights |1′Nwα
N | can diverge to infinity, whereas |1′Nwβ

N | is always bounded.

17



Let us now look at the weights of the beta portfolio, wβ
N . If the weights decrease at any rate

slower than 1/N , then the systematic exposure explodes because the factors are pervasive. On the

other hand, if the weights decrease faster than 1/N , then the portfolio risk declines to zero, leading

to a Sharpe ratio of zero because the expression for the Sharpe ratio is the same as that for the

risk of the portfolio. So the rate of 1/N strikes the correct balance between optimizing the risk

and return of the wβ
N portfolio. Observe that the rate 1/N makes the wβ

N portfolio well diversified,

even with respect to idiosyncratic exposure, enhancing its Sharpe ratio even further.

The dominance of the elements of wα
N relative to those of wβ

N characterized in (23) highlights

the importance of studying latent asset demand in optimal portfolios. Moreover, their disparate

asymptotic behavior suggests that it may be advantageous to use different approaches for addressing

model misspecification in the alpha and beta portfolios. We describe these approaches below.

4.2 Mitigating Misspecification in the Beta Component of Returns

In the proposition below, we establish the conditions under which the beta portfolio can be replaced,

without any loss of performance, by a benchmark portfolio independent of λ and Ω, and hence,

immune to misspecification. This demonstrates that, under suitable assumptions, one can construct

the correctly specified beta portfolio that is independent of risk premia.

Proposition 4.3 (Weight and Sharpe ratio of benchmark portfolio for large N). Suppose that

the vector of asset returns, rt, satisfies Assumptions 3.1 and 3.2 and αN 6= 0N . Suppose further

that there exists a benchmark portfolio wbench
N , with associated Sharpe ratio SRbench, satisfying the

following properties:

(wbench
N )′αN → 0, B′Nwbench

N → cbench, (wbench
N )′ΣNwbench

N → 0, (24)

where cbench is a K × 1 vector of constants satisfying λ′cbench 6= 0. Then,

(i) If K = 1,

(SRmv)2 −
(

(SRα)2 + (SRbench)2
)
→ 0.

(ii) If K > 1 and cbench is perfectly proportional to the vector Ω−1λ,

(SRmv)2 −
(

(SRα)2 + (SRbench)2
)
→ 0.

(iii) If K > 1 and cbench is not proportional to the vector Ω−1λ, then for some positive δ,

(SRmv)2 −
(

(SRα)2 + (SRbench)2
)
→ δ > 0.

18



The first assumption in (24) requires that the benchmark portfolio be asymptotically orthogonal

to αN . The second assumption rules out that the benchmark portfolio return is equal to the

risk-free return in the limit. The third assumption requires the benchmark portfolio to be well

diversified. Note that for the case of large pricing errors, the first assumption is satisfied whenever

(wbench
N )′aN → 0 and A′Nwbench

N → 0p, where the latter condition ensures that wbench
N diversifies

away the contribution of the latent factors AN in ΣN .

The assumptions in (24) imply that the return on the benchmark portfolio is asymptotically

equivalent to the return on the portfolio of factors with weight cbench; that is, (wbench
N )′(rt−rft1N ) =

(cbench)′(ft − rft1K) + op(1), implying that cbench equals the mean-variance portfolio constructed

using just the K factors. This choice guarantees that the benchmark portfolio achieves the largest

possible Sharpe ratio, as stated in parts (i) and (ii) of the proposition.

In the proposition above, we established the condition under which a benchmark portfolio,

combined with the alpha portfolio, will coincide with the optimal mean-variance portfolio asymp-

totically. Interestingly, this condition is always satisfied when one postulates a single factor (i.e.

K = 1) for the beta portfolio. When K > 1, it requires an additional condition, which can be

verified empirically, using the estimated loadings, the sample mean, and the sample covariance

matrix of the K factors, and comparing the sample equivalent of Ω−1λ to B′Nwbench
N .

To construct a valid benchmark portfolio, one can use the insights of Treynor and Black (1973)

and DeMiguel et al. (2009b). Treynor and Black (1973) suggest that wβ
N can be approximated by

a portfolio that is similar to the market portfolio, wmkt
N . Alternatively, the findings of DeMiguel

et al. (2009b) suggest that one could use an equally weighted portfolio. Therefore, our result

provides theoretical underpinnings for these empirical approaches in the literature, demonstrating

their optimality (in the sense of Proposition 4.3) when a single-factor beta portfolio is considered.

The benchmark could also be based on multiple factors, such as the Fama and French factors.

4.3 Mitigating Misspecification in the Alpha Component of Returns

In this section, we show that for the alpha portfolio, the presence of pricing errors αN in the APT

naturally allows one to mitigate model misspecification in the sense of Hansen and Sargent (2007).

In particular, we establish that the alpha portfolio wα
N identified in equation (19) is equivalent to the

portfolio constructed by an investor who mitigates model misspecification in the alpha component

of returns using robust-control theory by finding the solution to:

max
wN

min
αN

{
w′N (µN − rft1N )− γ

2
w′NVNwN

}
, (25)
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subject to the relative-entropy constraint∫ ∞
−∞
· · ·
∫ ∞
−∞

(
ln
fαN (ret )

fα̂N (ret )

)
fαN (ret ) dr

e
t ≤ δentropy, (26)

where the constant δentropy measures aversion to alpha misspecification, ret = rt − rft1N is the

vector of risky-asset returns in excess of the risk-free rate, and, given λ, BN , and VN , fαN (·) is the

probability density function of a random vector distributed as N (αN + BNλ,VN ), with α̂N being

an estimator of αN . Our distributional assumptions allow one to relate the entropy constraint to

a constraint on the Sharpe ratio of the alpha portfolio.26

Observe that the objective function in (25) entails both a maximization over the vector of

portfolio weights, wN , standard in portfolio-choice, and a minimization over the pricing errors,

αN , which are constrained to lie in a neighborhood of the estimate α̂N . Standard optimal-control

theory assumes that the decision-maker knows the true model. In contrast, robust-control theory

treats the decision-maker’s model as an approximation and seeks a single rule that works over a set

of nearby models that might govern the data. The minimization over αN is a consequence of the

investor’s preference for robustness; the role of the constraint in (26) is to ensure that the chosen

αN are statistically indistinguishable (for a given significance level) from the estimate α̂N , which

represents the so-called approximating model.27 Using a set of perturbed models, which, given the

available data, are difficult to distinguish statistically from the approximating model, protects the

max-min investor from choosing weights that are too extreme.

We show (in the proof for Proposition 4.4) that the solution to this robust mean-variance

problem, wrmv
N , is:

wrmv
N = φαwrα

N + φβwβ
N + O(1), (27)

where φα, φβ, and wβ
N are defined in Proposition 4.1, the robust alpha portfolio, wrα

N , is

wrα
N =

1

φ

1

γα
Σ+
N α̂N , (28)

26Note that under our distributional assumption for ret , the relative entropy constraint in (26) simplifies to 1
2
(αN −

α̂N )′Σ−1
N (αN − α̂N ) ≤ δentropy, where a larger δentropy represents an increase in the investor’s degree of aversion

to model misspecification. Note also that when δentropy = 1
2

(1+λ′Ω−1λ)
T

χ2
N,x%, where χ2

N,x% corresponds to the

xth (0 ≤ x ≤ 1) quantile of a χ2
N distribution, then the constraint above defines the set of αN that are statistically

indistinguishable from α̂N at (1−x)% for the case of
√
T (α̂N−αN ) normally distributed with mean 0 and covariance

matrix equal to (1 + λ′Ω−1λ)ΣN .
27Following Hansen and Sargent (2007), we postulate that the agent has estimated the approximating model, in

particular, through the APT. However, the result of Proposition 4.4 is unchanged if an approximating model, dictated
by a perceived pricing error α∗N , is used to solve the max-min optimization problem and only subsequently estimated
using the APT. In principle, but at the cost of greater complexity, one could also consider the case where the investor
solves the max-min problem taking into account the uncertainty about the number of missing factors.
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α̂N = α̂N (δapt) is the constrained ML (Maximum Likelihood) estimator ofαN , which is described in

Section 5.2, and φ = φ(δentropy) ≥ 1 is the shrinkage parameter (given in equation (A6)), implying

that wrα
N = wrα

N (δapt, δentropy). Observe from (28) that in the absence of a concern for model

misspecification, the expression for wrα
N would have φ = 1, which is the solution to the classical

mean-variance portfolio problem in (17). In contrast, the investor’s concern for misspecification

implies that the alpha portfolio weights are scaled by 1/φ, with φ > 1. Moreover, we show that

the magnitude of φ increases as we increase the size of the set of models over which the investor is

uncertain, that is, as we increase δentropy.

Importantly, in the proposition below, we demonstrate that, under the appropriate conditions,

the mean-variance optimal portfolio estimated under the APT is precisely the same that one would

obtain from the max-min optimization (25)–(26). This is because both δapt in the APT constraint

and φ (which depends positively on δentropy) in the max-min optimization enter multiplicatively

into the expressions for wα
N and wrα

N , respectively; hence, a smaller δapt and a larger δentropy induce

an equivalent reduction in the demand for risky assets in that portfolio. Therefore, there exist a

δapt and a δentropy that lead to two identical vectors of alpha-portfolio weights.28

Proposition 4.4 (Equivalence between alpha portfolio weights). Under the assumptions of Propo-

sition 4.1, as N → ∞, the estimated alpha portfolio wα
N (δapt) in equation (19) corresponding to a

given δapt, is asymptotically equivalent to the robust mean-variance alpha portfolio wrα
N (δ∗apt, δentropy)

in equation (28), corresponding to some given δ∗apt and δentropy:

wrα
N (δ∗apt, δentropy) = wα

N (δapt) + O(1),

whenever δ∗apt

(
1− (2δentropy)

1
2

(α̂′NΣ+
N α̂N )

1
2

)2

= δapt.

Thus, the proposition highlights how the APT is precisely the appropriate framework for ac-

counting for model misspecification in the alpha portfolio.

4.4 Extension to Conditional Asset-Pricing Setting

We now discuss how our methodology can be extended to address misspecification in a conditional

asset-pricing setting. Considering conditional asset pricing models has the advantage of allowing

us to study misspecification associated with time-variation in the model’s parameters. This is

28In practice, δapt and δentropy are unknown. In Internet Appendix IA.3, we explain our cross-validation procedure
to select these constants; our empirical results confirms that if one fixes either δapt or δentropy and determines the
other one optimally by cross-validation, it leads to the same robust mean-variance portfolio.
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important because of the increasing focus on individual securities and the evidence of time variation

in their betas and risk premia (see, for instance, Gagliardini et al. (2016)).

4.4.1 Generalizing the APT theory to a conditional setting

To formulate the APT in a conditional setting, one needs to replace Assumptions 3.1 and 3.2 with

the following.29

Assumption 4.1 (Candidate beta-pricing model—conditional). We assume that the N -dimensional

vector rt of asset returns is given by

rt = µN,t−1 + BN,t−1 (ft − Et−1(ft)) + εt,

where µN,t−1 is the N ×1 vector of conditional expected returns and BN,t−1 is the N ×K full-rank

matrix of conditional factor loadings, with K < N . At any time t, the K × 1 vector of common

observed factors, ft, is distributed with conditional mean Et−1(ft) and K×K conditional covariance

matrix Ωt−1, and the N × 1 vector of innovations εt is distributed with zero conditional mean and

the N × N conditional covariance matrix ΣN,t−1, with Ωt−1 and ΣN,t−1 being positive definite

almost surely. Moreover, εt and ft are conditionally uncorrelated.

Assumption 4.2 (No asymptotic arbitrage—conditional). As N → ∞, there is no sequence of

portfolios for which, along some subsequence Ñ ,

vart−1(r′tw
a
Ñ,t−1

)→ 0 and (µÑt−1
− rft1Ñ )′wa

Ñ,t−1
≥ δ > 0 a.s. for all Ñ .

Under Assumptions 4.1 and 4.2, together with a limited degree of cross-sectional dependence

and a sufficient degree of smoothness of the loadings (see Stambaugh (1983, thms. 1 and 2) and

Zaffaroni (2020, prop. 4)), a conditional version of the APT holds. That is, there exists a unique

vector of risk premia λt−1 such that the pricing errors αN,t−1 = (µN,t−1 − rft1N ) − BN,t−1λt−1

satisfy the conditional-APT restriction:30

sup
N
α′N,t−1Σ

−1
N,t−1αN,t−1 ≤ δt−1 <∞ a.s. for some finite non-random δt−1. (29)

Importantly, under the assumptions of Proposition 4.1, extended to the case of time-varying

parameters, the pricing errors satisfy the decomposition into the conditional latent common com-

ponent, with loadings AN,t−1 and risk premia λmisst−1, and the conditional purely asset-specific

29Et−1(.) and vart−1(.) denote the operators conditional with respect to the information available at time t− 1.
30Establishing the conditional APT requires one to ensure invariance to asset repackaging, which is relevant when

agents construct portfolios based on different information sets (see Hansen and Richard (1987, sec. 5)). For proofs of
the conditional APT in various settings, see Stambaugh (1983), Reisman (1992), Al-Najjar (1999), Gagliardini et al.
(2016), and Zaffaroni (2020).
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component with conditional mean aN,t−1:

αN,t−1 = AN,t−1λmisst−1 + aN,t−1 such that sup
N

a′N,t−1Σ
−1
N,t−1aN,t−1 ≤ δt−1 <∞.

4.4.2 Modeling time variation and estimation of the conditional model

When estimating the model with the conditional APT, we need to specify the form of time-variation

of the model’s parameters and then the appropriate estimation procedure. Two approaches for

modeling time variation in the existing literature on empirical asset pricing are: (i) a model-

free “nonparametric” approach, under which the form of time-variation is unspecified (Lewellen

and Nagel, 2006; Ang and Kristensen, 2012; Zaffaroni, 2020); and (ii) a “parametric” approach,

where one specifies a particular functional form, typically linear, along with a set of observed state

variables that drive the time-variation, assuming that the state variables are either common across

assets (for instance, as in Ferson and Harvey, 1991) or asset specific (for instance, as in Gagliardini

et al., 2016). Below, we explain how to extend our model to handle both the nonparametric and

parametric approaches.

Nonparametric approach

A simple and successful estimation approach for the model-free formulation of the conditional APT

consists of using short rolling windows of data to capture the time variation nonparametrically, as

popularized in empirical finance with the two-pass methodology of Fama and MacBeth (1973).31

The nonparametric approach has the advantage of avoiding misspecification arising from a poten-

tially incorrect specification of the mappings between the time-varying parameters and the state

variables driving their dynamics. The rolling-window estimation we undertake in the empirical ap-

plication in Section 5 is in line with this approach to conditioning. However, one of the drawbacks

of the nonparametric approach is that the estimates obtained exhibit larger standard errors than

those from the parametric approach, which we describe next.

Parametric approach

We consider the parametric approach for two settings: first, in which the state variables are common

across assets, and second, in which the state variables are asset specific.

For the parametric approach where time variation is driven by common state variables, such

as risk factors or macroeconomic variables, the methodology and estimation procedure developed

31A rolling window estimate can be formally interpreted as a nonparametric kernel estimator, corresponding to a
particular bandwidth, determining the size of the window, and a rectangular kernel function.
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above are still valid. In this setting, omitting relevant state variables is observationally equivalent to

omitting common risk factors, which, as we explain below, is fully accounted for by our methodology.

For simplicity, let us consider the case where the loadings on the observed candidate factors

are time varying, i.e. BN,t−1, keeping all other parameters constant. However, one can extend our

approach to allow also for time-varying risk premia, pricing errors, and covariance matrices. For

illustrative purposes, assume that there exists a single Kg = 1 (lagged) state variable gt−1 driving

the time variation in BN,t−1 such that:

BN,t−1 = BN + gt−1BN,h, (30)

for some constant N ×K matrices BN and BN,h, and where, without loss of generality, one can

assume that gt has zero mean.32 Assuming, for simplicity, that there are no latent factors, i.e.

AN,t−1 = 0N×Kmis , then excess returns satisfy

rN,t − rft1Ñ = αN + BN,t−1 ft + εt = αN + BN ft + BN,hht + εt,

where ht = gt−1ft. That is, one obtains a model with 2K risk factors, where ht can be interpreted

as the scaled factors in Gagliardini, Ossola, and Scaillet (2016, 2019a).

Expected excess returns can now be represented as µN = αN + BN λ + BN,hλh, implying an

asset-pricing model with an asset-specific component and the K + K risk factors ft and ht with

premia λ and λh, respectively. If gt is observed, one obtains an APT model with only observed

risk factors, together with the asset-specific component aN . On the other hand, if gt is unknown,

then one obtains an APT model with K observed risk factors ft and K latent risk factors ht.
33

Therefore, by setting AN = BN,h and λmiss = λh, one is back to the APT model we considered

earlier with constant parameters that are a combination of latent and observed risk factors. The

estimation strategy, and the associated empirical portfolio construction, follow the same steps as

for the unconditional setting.34

For the second parametric setting, where time variation is driven by asset-specific state variables

such as firm characteristics, our methodology for the unconditional setting needs to be extended,

as we explain below.

32In fact, when Egt−1 = µg 6= 0, one obtains BN +gt−1BN,h = BN +(gt−1−µg+µg)BN,h = B̃N +BN,h(gt−1−µg),
setting B̃N = BN + µgBN,h.

33Note that ht and ft are mutually orthogonal whenever gt−1 and ft are assumed independent with Egt−1 = 0,
despite ht being a function of f . In fact, straightforward calculations show that cov(ht, f

′
t) = E(gt−1) var(ft) = 0K×K .

34When Kg > 1, equation (30) is replaced by BN,t−1 = BN + (IN ⊗ g′t−1)BN,h where now BN,h is an NKg ×K
constant matrix. Solving the model, one obtains the APT with constant parameters corresponding to K +KKg risk
factors, with KKg of them being latent for unspecified gt−1. One can then readily apply the methodology outlined
in the previous sections for empirical portfolio construction.
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Studying again the simple case of a Kg = 1 asset-specific state variable gi,t so that there is one

for each of the assets, the time-varying loadings of the observed risk factors ft can be expressed as

BN,t−1 = BN + diag(gt−1)BN,h, where diag(gt−1) is the diagonal matrix consisting of the elements

of the vector gt−1 = (g1,t−1, · · · , gN,t−1)′.

To ensure identification, some restrictions must be imposed because, for instance, the gi,t−1

and ft cannot both be treated as latent if the model is to be identified (for a discussion of this, see

Gagliardini et al. (2019a)). Following the empirical asset-pricing literature, we focus on the case

of observed asset-specific state variables, in which case the model can be written as a function of

K observed risk factors ft and NK observed asset-specific variables ht = (gt−1 ⊗ ft). Therefore,

in contrast to the previous case, asset-specific state variables do not induce latent risk factors.35

However, latent risk factors are still permitted, for example because of an incomplete specification

of the priced risk factors ft, now coupled with their time-varying loadings driven by the observed

gi,t−1, as, for instance, AN,t−1 = AN + diag(gt−1)AN,h, for constant N × p matrices AN and

AN,h. Thus, the case of asset-specific state variables does not pose any additional problems for our

methodology, except for a slight modification of the maximum-likelihood estimator.36

4.4.3 Portfolio choice in a conditional setting

Under Assumptions 4.1 and 4.2 given above, the conditional versions of Propositions 4.1–4.4 hold.

For instance, the conditional mean-variance portfolio weights satisfy

wmv
N,t−1 = φαt−1 wα

N,t−1 + φβt−1 wβ
N,t−1,

in which wα
N,t−1 =

1

γαt−1

Σ+
N,t−1αN,t−1 + O(1) and wβ

N =
1

γβt−1

V−1
N,t−1BN,t−1λt−1,

where φαt−1 =
γαt−1

γt−1
, φβt−1 =

γβt−1

γt−1
= 1− φαt−1 for some positive constants, γt−1, γ

α
t−1, γ

β
t−1, and where

VN,t−1 and Σ+
N,t−1 follow from (11) and (20) after replacing BN , Ω, and ΣN with the corresponding

quantities BN,t−1, Ωt−1, and ΣN,t−1.

35In particular, when the N−1∑N
i=1 gi,t−1 →p 0, then hi,t = gi,t−1ft cannot be disentangled from the asset-specific

error term εi,t, hence the identification problem highlighted in Gagliardini et al. (2019a).
36Gagliardini et al. (2016) provide the econometric analysis for the case of time-varying parameters driven by

observable asset-specific state variables when the risk factors are assumed to be observed in the context of a continuum
of assets and imposing exact pricing. Connor and Linton (2007); Connor, Hagmann, and Linton (2012), Fan, Liao,
and Wang (2016), Kelly et al. (2020), Pelger and Xiong (2019), and Kim et al. (2021) provide methodologies that
allow for the estimation of the latent risk factors, retaining observability of the asset-specific state variables that drive
the dynamics of the parameters, although some further conditions are necessary. For example, Kelly et al. (2020)
restrict AN,h = (1N ⊗ Ah) for a Kg × K constant matrix Ah whereas Connor and Linton (2007), Connor et al.
(2012), Fan et al. (2016), and Kim et al. (2021) require that the asset-specific state variables be constant over time,
i.e. gi,t−1 = gi, although time variation can still be allowed through the coefficients on gi when estimated with short
rolling time windows of data.
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4.5 Comparison with Recent Papers on Portfolio Choice

We conclude this section by explaining how our work is related to recent work on portfolio choice.

4.5.1 Comparison with Koijen and Yogo (2019)

Koijen and Yogo (2019) highlight the importance of studying the asset allocation of institutional and

household investors using observed portfolio holdings as opposed to asset-returns data. Although

the aim of their positive analysis, understanding the role of institutions in asset-market movements,

volatility, and predictability, differs from our normative objective, namely, how to construct mean-

variance efficient portfolios robust to model misspecification, strong analogies exist between the

two approaches.

To better understand the similarities and differences between our normative approach and the

positive approach of Koijen and Yogo (2019), consider the simple candidate beta-pricing model in

equation (2) of Section 2 for a generic institutional investor leading to the beta portfolio wβi given

in (4). Our methodology then allows us to construct the orthogonal alpha portfolio,

wαi = wmv
i − w

β
i . (31)

Suppose now that for a particular investor one observes the portfolio holdings wobsi for each

asset i, as in Koijen and Yogo (2019). Given the beta portfolio weights in (4), one then obtains

wα-aky
i = wobs

i − θwβi , (32)

with wα-aky
i being the alpha asset demand orthogonal to the beta portfolio, with the projection

coefficient θ = (wβ′wobs)/(wobs′wobs). The superscript “aky” on wα-aky
i indicates that this corre-

sponds to the Koijen and Yogo (2019) portfolio under an additive portfolio decomposition, instead

of the multiplicative decomposition they adopt, which is convenient for their empirical analysis.

Following the ideas in Koijen and Yogo (2019), wα-aky
i in (32) can be interpreted as the investor’s

latent asset-demand, representing the wedge between observed holdings wobs
i and the mean-variance

portfolio weights associated with a candidate mean-variance beta-model wβi . On the other hand,

wαi in (31) is the normative latent asset demand in the sense that it represents the wedge between

the mean-variance efficient portfolio that an investor should hold and the beta portfolio weights

associated with a candidate beta-model. It is in this sense that the role played by wαi in our model

is similar to that of wα-aky
i in Koijen and Yogo (2019).
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Of course, one can also use our result in (32) in a positive way. Essentially, one can project

the beta portfolio based on an investor’s candidate factor model on the observed holdings of the

investor to obtain the alpha portfolio corresponding to the observed portfolio weights. Then, one

can study the properties of this alpha portfolio, for instance, to see which part is related to latent

factors omitted in the beta portfolio and which to purely asset-specific returns.

4.5.2 Comparison with Daniel, Mota, Rottke, and Santos (2020)

Some recent papers on portfolio choice have been motivated by the observation that factor models

(i.e. what we refer to as “candidate beta models,” such as the one based on the Fama and French

risk factors), are not mean-variance efficient.

Daniel et al. (2020) argue that beta models with characteristic-based risk factors, such as the

Fama and French factors, do not span the mean-variance frontier because they contain exposure to

unpriced factors, i.e. factors with zero risk premia. In other words, misspecification arises from the

beta model containing too many factors. Their goal is to mitigate this problem when constructing

characteristics-sorted portfolios. To address this problem, one needs to quantify these unpriced

risk factors through the so-called hedging portfolios and net them out from the initial factor beta

model. Specifically, an orthogonal representation is assumed whereby

wβ,cp
N = whedge

N ∆ + wmv
N , (33)

in which wβ,cp
N refers to the portfolio weights of the characteristic-based beta model, with the mean-

variance portfolio weights wmv
N and the hedging portfolio weights whedge

N being orthogonal to one

another, and where ∆ is the corresponding matrix of hedge ratios, i.e. the regression coefficients

of the wβ,cp
N returns onto whedge

N returns. Notice that the hedge portfolio weights whedge
N are

constructed as being maximally correlated with wβ,cp
N but with a null contribution to their mean

return (Daniel et al., 2020, def. 2.3 and prop. 2.4). The mean-variance portfolio weights wmv
N ,

which are spanned by the so-called efficient characteristics portfolios (Daniel et al., 2020, prop.

2.2), represent the (orthogonal) residuals in the projection given in equation (33).

Just like Daniel et al. (2020), our work is also based on an orthogonal decomposition involving

the mean-variance portfolio weights. However, in contrast to Daniel et al. (2020), our beta portfolio

contains too few risk factors, in addition to missing the asset-specific component. By augmenting

the beta portfolio with the (orthogonal) alpha portfolio, we achieve two-fund separation and mean-

variance efficiency, i.e. wmv
N = φαwα

N + φβwβ
N . Instead, in Daniel et al. (2020) the beta portfolio
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contains too many factors; therefore, to obtain the mean-variance portfolios, one needs to net out

the unpriced sources of risks (by algebraic difference).

A second difference between our approach and that in Daniel et al. (2020) is that our methodol-

ogy takes advantage of the benefits of portfolio optimization, whereas Daniel et al. (2020) propose

an empirical approach based on sorting arguments. Dominant factors with a small or even zero

risk premium can arise in practice, but mean-variance optimization automatically accounts for this.

Note that the analysis in Daniel et al. (2020) crucially assumes that the risk exposures to the

characteristics-based factors are proportional to a set of observed characteristics and that no priced

factors have been erroneously omitted from the beta model.

A final noteworthy difference is that, in contrast to our modeling framework, Daniel et al.

(2020) do not allow for asset-specific sources of risk.37

4.5.3 Comparison with Kim, Korajczyk, and Neuhierl (2021)

In a conditional asset-pricing setting, Kim et al. (2021) argue that arbitrage portfolios, namely port-

folios spanned by a set of asset-specific characteristics orthogonal to the risk factors driving the beta

part of the asset-pricing model, lead to superior portfolio performance, suggesting the inadequacy

of factor-only models. Strong analogies arise between Kim et al. (2021) and our methodology,

although with some important differences, which we describe below.

Simplifying arguments and abstracting from estimation issues, Kim et al. (2021) assume that

expected asset excess returns satisfy, just like our equation (12),

(µN − rft1N ) = αN + BNλ,

where αN = αN (X) = Xθ for a matrix of observed asset-specific characteristic X = (X1, · · · ,XN )′

and a constant vector of parameters θ.38 The crucial assumption in Kim et al. (2021) is that, for

some positive constant δkkn,

α′NαN
N

→p δkkn > 0. (34)

This means that their “arbitrage portfolios” wkkn
N = αN/N lead to (under their assumptions,

including orthogonality between αN and BN ) a portfolio return satisfying wkkn′(rt − rft1N ) =

37In this respect, our work is more akin to Daniel and Titman (1997), whose main goal is to show empirically the
importance of firm-specific characteristics to explain the cross-section of expected returns. However, because Daniel
and Titman (1997) is not founded on the APT, it allows for the possibility of arbitrage.

38The loadings on the risk factors are also assumed to be function of the X, i.e. BN = BN (X) and the pricing
errors are assumed to satisfy αN (X) = Xθ+Γα for a vector of constants Γα. Our simplifications do not compromise
the comparison of their methodology with ours.
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α′NαN/N +α′Nεt/N such that

E(wkkn ′(rt − rft1N ))→ δkkn, var(wkkn ′(rt − rft1N ))→ 0, SRkkn →∞. (35)

That is, the arbitrage portfolio return earns a positive mean and a zero variance, leading its Sharpe

ratio to diverge to infinity, implying a violation of no-arbitrage. Therefore, while the methodology

in Kim et al. (2021) satisfies the first APT assumption, i.e. a factor structure, it violates the second

APT assumption, i.e. the absence of arbitrage.

The arbitrage portfolio of Kim et al. (2021) is closely related to our alpha portfolio, in particular,

when we consider the conditional version of our methodology in Section 4.4, because both portfolios

are linear in the vector of pricing errors, αN , and both are factor neutral. However, there is a

crucial difference stemming from the APT no-arbitrage assumption. In our case, because of the

APT restriction (29), and in stark contrast to (34),

α′NαN
N

→ 0.

Indeed, assuming the simplified setting considered in Section 2, the alpha portfolio weights in

our APT setting equals wα
N = αN/σ

2
ε , with the normalization by 1/N being redundant. Given

wα′
N (rt − rft1N ) = α′NαN/σ

2
ε +α′Nεt/σ

2
ε , by Proposition 4.1,

E(wα′(rt − rft1N ))→
∑∞

i=1 α
2
i

σ2
ε

,

var(wα′(rt − rft1N ))→
∑∞

i=1 α
2
i

σ2
ε

,

SRα →
(∑∞

i=1 α
2
i

σ2
ε

) 1
2

< δ
1
2
apt <∞,

i.e. a bounded Sharpe ratio, in stark contrast to (35), where the Sharpe ratio goes to infinity.

Therefore, just like Kim et al. (2021), our alpha portfolio is factor neutral, exposed only to

asset-specific risk, with weights linear in αN . However, in contrast to Kim et al. (2021), our alpha

portfolio has a positive but bounded Sharpe ratio because arbitrage opportunities are ruled out.

Moreover, while we establish a two-fund separation result that shows how to recover mean-variance

efficient portfolios by combining the inefficient alpha and beta portfolios, Kim et al. (2021) focus

only on the alpha portfolio, without investigating the beta portfolio and two-fund separation.

Summarizing, recent advances in portfolio choice and empirical asset pricing point out the

deficiency of factor asset-pricing models both in terms of fitting the cross-section of returns and

achieving mean-variance efficiency, regardless of whether the factors are assumed to be latent or
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observed.39 The asset-specific component of returns resolves this conundrum, as has been known

since the empirical evidence provided in Daniel and Titman (1997). However, as described in

MacKinlay (1995) and Daniel and Titman (1997), the asset-specific component opens the possibility

of violation of no-arbitrage, as one can see in Kim et al. (2021). Our paper resolves this dilemma

by showing how the APT provides the foundations that allow for the presence of an asset-specific

component along with omitted pervasive risk factors within a no-arbitrage framework.

5 Evaluating Out-of-Sample Performance

In this section, we illustrate the improvement in the out-of-sample portfolio performance that results

from our theoretical insights.

5.1 Data and Experiment Design

The design of our analysis follows the approach adopted in Ao et al. (2019). Just as in their paper,

we study portfolios based on monthly returns for the two empirical data sets they study. The first

data set consists of monthly returns on a small number N = 30 stock constituents of the Dow

Jones Industrial Average (DJ30). The second data set consists of monthly returns for a larger

number N = 100 randomly selected stocks from the S&P 500, in each case, as in Ao et al. (2019),

augmented with the Fama-French K = 3 factors.40 Thus, when reporting our empirical results, all

tables and figures have two panels, with Panel A for DJ30 constituents and Panel B for S&P 500

constituents.41 Both data sets span the period 1977 to 2016. In all cases, we estimate the model

using a rolling window of T = 120 months.42

39This inadequacy of factor models to tackle misspecification can be traced back to MacKinlay (1995). Various
efforts have been made to tackle this problem, such as the suggestion in Kozak, Nagel, and Santosh (2018) to consider
higher-order principal components and, in the same spirit, the suggestion of Lettau and Pelger (2020) to account for
weak factors. However, the difficulty is that if latent, then the weak factors cannot be estimated consistently (Lettau
and Pelger, 2020) and if observed, the weak factors give rise to biased risk-premia estimates. Our methodology allows
for weak factors in that our alpha portfolio allows weak factors to earn compensation while bypassing the need to
identify and estimate them and their corresponding risk premia.

40Our decision to work with individual stock returns as opposed to portfolio returns is motivated by the results in
Ang, Liu, and Schwarz (2010) and because the APT theory is designed to handle a large number of assets.

41Note that the stocks comprising the DJ30 and S&P 500 change over the sample period.
42In principle, one could consider data that includes information about stock characteristics because the APT

allows for this in a conditional setting. However, to make our results comparable to those of Ao et al. (2019), we do
not use stock-specific characteristics, though we benchmark our model against the Fama-French three-factor model.
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5.2 Estimating the APT

To estimate the APT, the key quantity to be estimated is αN . We will describe the (pseudo)

Gaussian maximum-likelihood constrained (MLC) estimator, although other estimation procedures

could be used. For θ = (a′N , λ′miss, vec(AN )′, vech(CN )′, λ′, vec(BN )′, vech(Ω)′)′, we consider

θ̂MLC = argmax
θ̃

L(θ̃) subject to the APT constraint ã′NΣ̃−1
N ãN ≤ δapt, (36)

where L(θ̃) defines the log-likelihood function, θ̃ is the set of feasible parameters, and the ·̂ denotes

an estimated quantity. Propositions IA.1 and IA.2 in the appendix give the formulas for θ̂MLC for

the cases of small pricing errors (p = 0 implying that AN = 0) and large pricing errors (p > 0

implying that AN 6= 0), respectively. These results also show that, thanks to the APT constraint

in (13), the estimator âN,MLC turns out to be precisely the ridge estimator for aN . Moreover, the

MLC estimator for the latent factors risk premia λmiss coincides with the GLS two-pass estimator,

which one would have obtained if the latent factors were nontradable but observed.

A multistep procedure is used to estimate the model. In the first step, one estimates the

parameters of the factor model conditional on the factor realizations without imposing the APT

restriction. The second step is to analyze the possibility of pervasive missing factors. In particular,

this part uses conventional principal-component analysis of Σ̂N to estimate the number of latent

pervasive factors, p; see, for example, Anderson (1984) and, more recently, Gagliardini et al. (2019a).

In the third step, one estimates the model when either p̂ = 0 (i.e. small pricing-error case) or p̂ > 0

(i.e. large pricing-error case) while imposing the APT restriction. For the case where p̂ = 0, we

have α̂N = âN and Σ̂N = ĈN , whereas for the case where p̂ > 0, we have α̂N = ÂN λ̂miss + âN and

Σ̂N = ÂNÂ′N + ĈN . Further details of the estimation are provided in Internet Appendix IA.3.

Observe that to overcome the curse of dimensionality, we must impose sparsity assumptions

for estimating CN . Motivated by the findings in MacKinlay and Pástor (2000), we assume that

CN = σ2IN . This sparsity assumption on CN is less stringent than what one may think because

the APT allows for a factor structure that captures most of the cross-sectional return dependence

through both observed and unobserved factors. However, one could make other, more general,

sparsity assumptions, as explained in Gagliardini, Ossola, and Scaillet (2016, 2019b).
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5.3 Portfolios From the Existing Literature

We compare the performance of our strategies to five strategies from the literature.43 The first strat-

egy is the mean-variance (MV) efficient portfolio, which, is given by (18) and where we plug in the

sample estimates of the mean and covariance matrix of returns. To match Ao et al. (2019),44 we re-

quire the portfolio to achieve a target volatility of σ∗ and hence set γ =

√
(µN−rft1N )′V−1

N (µN−rft1N )

σ∗ .

There is an extensive literature (see, for example, DeMiguel et al., 2009b) that shows the out-of-

sample performance of the MV portfolio with plug-in sample moments is poor, mainly because the

sample mean stock returns are estimated with substantial error (Kan and Zhou, 2007). Motivated

by this observation, an alternative to the MV portfolio proposed is the global minimum-variance

(GMV) portfolio, which has the advantage that it requires estimation of only the variance-covariance

matrix and not mean returns. Furthermore, we can improve the GMV strategy’s performance by

estimating the covariance matrix using the Ledoit and Wolf (2003) shrinkage method. Thus, the

GMV-LW portfolio serves as our second benchmark.

We consider the equally weighted (EW) portfolio as a third reference strategy. DeMiguel et al.

(2009b) show that the MV and GMV portfolios often do not outperform the EW portfolio, which

does not require the estimation of either mean returns or the variance-covariance matrix of returns.

Moreover, we have shown in Proposition 4.3 that, under certain conditions, the EW portfolio mimics

the beta portfolio.

Our fourth reference strategy is based on Principal Component Analysis (PCA) of returns. In

particular, using the N × T matrix of returns we extract from one up to ten principal components

for each rolling-window, and treat the principal components as observed factors in the factor-model

specification.

Finally, the fifth benchmark we consider is the MAXSER strategy in Ao et al. (2019).45

43See footnote 3.
44The results we obtain are similar if one chooses to match a particular level of mean return in excess of the risk-free

rate, µ∗ − rft, in which case one needs to set γ =
(µN−rft1N )′V−1

N
(µN−rft1N )

µ∗−rft
.

45We estimate the parameters needed for computing the MAXSER portfolio using our approach, instead of that
in Ao et al. (2019), which explains the small differences with the numbers reported in their tables. Because we use
the same data as in Ao et al. (2019), one could, of course, study the results reported in their paper if one wanted
to see what one would get if one used their estimation approach. Moreover, because we are using the same universe
of stocks as Ao et al. (2019), one could compare the performance of our proposed strategies to that for the 14 other
portfolio strategies they report.
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5.4 Robust-Mean-Variance Portfolios

We now describe the set of strategies based on the theoretical results developed in our paper and

whose performance we compare to the benchmark strategies described above.

We report the performance of four robust mean-variance (RMV) strategies that rely on the

results in Propositions 4.1–4.4. In our first strategy, labeled “RMV using V,” γ is specified to match

the target volatility of 5% per month or 5%×
√

12 = 17.32% per year. The second strategy, “RMV

using V: OptComb,” combines optimally the alpha portfolio and the beta portfolio, recognizing

that for any sample with finite N the alpha and beta portfolios are not necessarily orthogonal;

hence, when combining them optimally we exploit their cross-correlation.46 The third strategy,

“RMV using Ω,” is obtained by recognizing that for large N , B′NV−1
N BN → Ω−1, implying that

the beta portfolio return obtained from investing in the N assets is equivalent to the return from

investing in only the K = 3 observed risk factors (i.e. the three Fama-French factors). Finally,

the fourth strategy, “RMV using Ω: OptComb,” combines optimally the alpha portfolio for the N

assets and the beta-equivalent portfolio using only the K = 3 Fama-French factors.

Given that returns may not be distributed normally, we compute the t-statistic for the difference

between two Sharpe ratios using the heteroskedasticity and autocorrelation robust (HAC) kernel

estimation approach in Ledoit and Wolf (2008, sec. 3.1).

5.5 Evaluating Out-of-Sample Performance

Table 1 reports the out-of-sample performance for the portfolio strategies described above. Panel A

of Table 1, which is for the case with N = 30 stock constituents of the Dow Jones Industrial Average

(DJ30), shows that the annualized Sharpe ratio of the MV portfolio is 0.287, while that of the GMV-

LW portfolio is 0.181.47 Even though the number of risky assets for this data set is relatively small,

N = 30, the EW portfolio with a Sharpe ratio of 0.334 outperforms these optimizing strategies.

For the first data set, the best performing strategy based on the principal components of returns

is the one with two principal components. However, none of the strategies based on one to ten

principal components of returns outperform EW, so to save space, we display the results only for

46Let rαt = r′tŵN
α and rβt = r′tŵN

β be the time series of the realized portfolio returns associated with the
(estimated) alpha and beta portfolios, respectively. Then the return to the strategy that optimally combines these
two portfolios is rstrategyt = γ̂−1(r̄α, r̄β)ĉov(rα, rβ)−1(rαt , r

β
t )′, where ĉov(rα, rβ) and r̄α, r̄β are the sample covariance

matrix and the sample means of the rαt and rβt , respectively, and γ̂ = (σ∗)−1
(
(r̄α, r̄β)ĉov(rα, rβ)−1(r̄α, r̄β)′

) 1
2 .

47There are two reasons for the poor performance of the GMV-LW portfolio relative to the MV portfolio: the
number of assets is small, which helps the performance of the MV portfolio, and because we are using monthly data,
estimates of the variances and covariances are not as precise as they would be with higher-frequency data.
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the strategies based on two, three, four, and ten principal components. The MAXSER strategy

of Ao et al. (2019) outperforms all these strategies: it has a Sharpe ratio of 0.426, which is 27.6%

higher than the Sharpe ratio of the EW portfolio.48

We now evaluate the performance of our strategies, reported in the last four rows of Panel A

of Table 1. The strategy “RMV using V” achieves a Sharpe ratio of 0.556, which is 65.7% greater

than that of the EW portfolio, consistent with the theoretical result in Propositions 4.1, and 29.8%

higher than that of MAXSER. The Sharpe ratio of the “RMV using V: OptComb” strategy, which

combines the alpha and beta portfolios optimally, is even higher, 0.872, which is 160.9% larger

than that of the EW portfolio and 104.5% higher than that of MAXSER, an increase that is both

economically and statistically significant. The results for the other two strategies, “RMV using

Ω” and “RMV using Ω: OptComb,” are similar: the Sharpe ratios are greater than those of the

EW by 72.6% and 100.3%, respectively, and greater than those of MAXSER by 35.2% and 57%,

respectively, though in this case, the differences in Sharpe ratios are not significant statistically.

To evaluate our methodology when one has a larger number of assets, we report in Panel B

of Table 1 the results for N = 100 stocks randomly selected from the S&P 500. We observe that

the Sharpe ratio of the MV portfolio is now negative because estimation error increases with N

(DeMiguel et al., 2009b). For this data set, the best performing strategy based on the principal

components of returns is the one with four principal components. As for the previous data set, none

of the strategies based on principal components outperform EW. The EW portfolio outperforms

also MV and GMV-LW, while MAXSER does even better: it achieves a Sharpe ratio of 0.672,

which is 36% higher than that of EW. However, our strategies perform even better: all four RMV

strategies achieve Sharpe ratios substantially higher than those of EW and MAXSER. In particular,

consistent with the result in Proposition 4.3 that, when N is large, one can replace the beta portfolio

with a portfolio based only on the K = 3 Fama-French factors, using Ω instead of V, the Sharpe

ratio is 1.222, which is 147.2% higher than that of EW and 81.8% higher than that of MAXSER,

with significant t-statistics for both differences.

48Note that Ao et al. (2019) report in their Table 3 that their strategy, MAXSER, achieves an annual Sharpe
ratio of 0.556; our estimate of the Sharpe ratio for their strategy is 0.471, with the difference being a consequence of
differences in estimation methods. Also, for this data set, they use an estimation window of T = 60 months, while we
use 120 months for both data sets. For the second data set, the Sharpe ratio we estimate for the MAXSER strategy
of Ao et al. (2019) exceeds that in their paper.
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Table 1: Out-of-sample portfolio performance
Panel A of this table reports, using monthly returns on the N = 30 stock constituents of the Dow Jones Industrial
Average (DJ30), the performance of five strategies from the literature and four strategies developed in this paper
when the investor targets a volatility of 0.05 ×

√
12 = 0.1732 per year. Panel B reports the same quantities for

N = 100 randomly selected stocks from the S&P 500 index. The parameters for all strategies are estimated using a
rolling window of T = 120 monthly observations. For each strategy, the table reports its per annum return’s mean
and Sharpe ratio. The table also reports the improvement in the Sharpe ratio of each strategy with respect to the
EW and MAXSER strategies; for instance, when comparing strategy k to EW, SR wrt EW is (SRk−SREW)/SREW.
Finally, the table reports the t-statistics for the difference between each strategy’s Sharpe ratio and the EW and
MAXSER strategies, computed as in Ledoit and Wolf (2008).

Mean SR SR wrt t-stat wrt

p.a. p.a. EW MAXSER EW MAXSER

Panel A: For DJIA 30 constituents
MV 0.045 0.287 −0.140 −0.326 −0.136 −0.714
GMV-LW 0.030 0.181 −0.458 −0.575 −0.611 −0.855
EW 0.058 0.334 0.000 −0.216 — −0.303
PCA2 0.026 0.161 −0.517 −0.621 −0.770 −1.179
PCA3 0.013 0.087 −0.739 −0.795 −1.101 −1.510
PCA4 −0.019 −0.121 −1.362 −1.284 −2.030 −2.437
PCA10 −0.032 −0.194 −1.583 −1.457 −2.360 −2.767
MAXSER 0.061 0.426 0.276 0.000 0.303 —

RMV using V 0.080 0.556 0.657 0.298 0.656 0.860
RMV using V: OptComb 0.173 0.872 1.609 1.045 1.949 1.682
RMV using Ω 0.079 0.576 0.726 0.352 0.729 1.194
RMV using Ω: OptComb 0.129 0.669 1.003 0.570 0.600 0.519

Panel B: For S&P 500 constituents
MV −0.024 −0.190 −1.385 −1.283 −2.052 −3.112
GMV-LW 0.019 0.146 −0.704 −0.782 −1.176 −1.816
EW 0.070 0.494 0.000 −0.265 — −0.495
PCA2 −0.001 −0.001 −1.003 −1.002 −2.206 −2.985
PCA3 0.056 0.334 −0.324 −0.502 −0.712 −1.497
PCA4 0.075 0.460 −0.068 −0.314 −0.150 −0.937
PCA10 0.033 0.203 −0.587 −0.696 −1.292 −2.075
MAXSER 0.094 0.672 0.360 0.000 0.495 —

RMV using V 0.116 0.763 0.546 0.137 0.703 0.406
RMV using V: OptComb 0.114 0.642 0.298 −0.046 0.952 0.875
RMV using Ω 0.137 1.016 1.055 0.511 1.959 1.623
RMV using Ω: OptComb 0.206 1.222 1.472 0.818 2.169 2.203

5.6 Importance of Latent Asset Demand

To understand the importance of latent asset demand, represented by the alpha portfolio, we

examine the alpha- and beta-portfolio components, wα
N and wβ

N , of the robust-mean-variance

portfolio, wrmv
N (i.e. RMV using V). We also examine the components wa

N and wA
N that comprise
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Figure 2: Weights for wα
N and wβ

N portfolios
The plots on the left Panels A and B report the time-series average of the wαi (red circles) and wβi (blue squares)
components of the robust mean-variance portfolio for each of the N assets. The plots on the right report the time-
series average of the absolute value of the wαi and wβi . Panel A reports these quantities for the N = 30 stock
constituents of the Dow Jones Industrial Average (DJ30), while Panel B reports the same quantities for N = 100
randomly selected stocks from the S&P 500 index.
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the alpha portfolio wα
N . Recall that we have 240 out-of-sample months, so for each month and

each of the portfolio components, we have a vector of, depending on the dataset we are considering,

either N = 30 or N = 100 weights. We characterize these weights in a variety of ways.

In the plots on the left side of Panels A and B of Figure 2, we report for each of the N assets

the time-series average of the wαi (in red circles) and wβi (in blue squares) components of the robust

mean-variance portfolio. These plots show that the wβi are mostly positive. In contrast, the wαi

are both positive and negative, implying long and short positions. The plots on the right side of

Panels A and B of Figure 2 display the time-series average for each of the N assets of the absolute

value of the elements of the alpha and beta portfolios. These plots show that the wαi weights, which
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Figure 3: Weights for wa
N and wA

N portfolios
The plots on the left of Panels A and B report the time-series average of the wai (in gray circles) and wAi (in magenta
squares) components of the wαi portfolio for each of the N assets. The plots on the right report the time-series average
of the absolute value of the wai and wAi components for each of the N assets. Panel A reports these quantities for the
case of the N = 30 stock constituents of the Dow Jones Industrial Average (DJ30), while Panel B reports the same
quantities for N = 100 randomly selected stocks from the S&P 500 index.
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represent latent asset demand dominate the corresponding wβi weights, confirming the theoretical

result in Proposition 4.2.

In Figure 3, we decompose the wα
N portfolio further into its wa

N and wA
N components, where

the first weight is associated with the asset-specific component of returns and the second with the

returns of omitted pervasive risk factors. Just as in the previous figure, the plots on the left side of

Panels A and B show the time-series average of the wai (in gray circles) and wAi (in magenta squares)

weights. These plots show that the wAi are mostly positive. In contrast, the wai are both positive

and negative. The plots on the right side of Panels A and B of Figure 3 display the time-series

average of the absolute values of wai and wAi . These plots show that the wai components dominate
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Table 2: Squared-correlations of weights of portfolio components
This table reports the time-series average over the out-of-sample period of the squared correlations between the
portfolio components of the robust mean-variance portfolio. Panel A reports the squared correlations between the
portfolio components for the case of the N = 30 stocks that are part of the Dow Jones Industrial Average (DJ30),
while Panel B reports the same quantities for the case of N = 100 randomly selected stocks from the S&P 500.

wrmv
N wα

N wβ
N wa

N wA
N

Panel A: For DJIA 30 constituents
wrmv
N 1.0000 0.9630 0.0391 0.9570 0.0224

wα
N 0.9630 1.0000 0.0063 0.9930 0.0217

wβ
N 0.0391 0.0063 1.0000 0.0058 0.0459

wa
N 0.9570 0.9930 0.0058 1.0000 0.0138

wA
N 0.0224 0.0217 0.0459 0.0138 1.0000

Panel B: For S&P 500 constituents
wrmv
N 1.0000 0.9760 0.0311 0.9680 0.0067

wα
N 0.9760 1.0000 0.0124 0.9920 0.0049

wβ
N 0.0311 0.0124 1.0000 0.0124 0.0543

wa
N 0.9680 0.9920 0.0124 1.0000 0.0011

wA
N 0.0067 0.0049 0.0543 0.0011 1.0000

the corresponding wAi components, thus highlighting the importance of the purely asset-specific

component of returns in driving latent asset demand.

In Table 2, we report the time-series average of the squared correlations between the different

portfolio components. Panels A and B show that for both data sets, the squared correlations of

the robust mean-variance portfolio wrmv
N with the alpha-portfolio component wα

N is over 95%, with

most of this coming from the weight on the purely asset-specific component, wa
N . In contrast, the

squared correlations of wrmv
N with the weight on the portfolio of observed and latent factors, wβ

N

and wA
N , respectively, are substantially lower—only about 6%. These results, again, highlight the

crucial role played by the latent-asset-demand component of the robust mean-variance portfolio.

Next we investigate the returns of the portfolio components. Panels A and B of Table 3 show

that for both data sets, the squared correlations between the returns of the robust mean-variance

portfolio rrmv and alpha portfolio rα are over 90%, with most of this coming from the purely asset-

specific component, ra. In sharp contrast, the squared correlations between rrmv and the returns

of the portfolios associated with observed and latent factors, rβ and rA, are substantially smaller.

Finally, to examine the importance of latent asset demand in driving the performance of the

robust mean-variance portfolio, in Table 4 we report the annualized means, standard deviations,
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Table 3: Squared-correlations of returns of portfolio components
This table reports the squared correlations between the returns of the portfolio components of the robust mean-
variance portfolio. Panel A reports the squared correlations between the returns of the portfolio components for the
case of the N = 30 stocks that are part of the Dow Jones Industrial Average (DJ30), while Panel B reports the same
quantities for the case of N = 100 randomly selected stocks from the S&P 500.

rrmv rα rβ ra rA

Panel A: For DJIA 30 constituents
rrmv 1.0000 0.9060 0.0528 0.8900 0.1240
rα 0.9060 1.0000 0.0065 0.9850 0.1320
rβ 0.0528 0.0065 1.0000 0.0068 0.0001
ra 0.8900 0.9850 0.0068 1.0000 0.0612
rA 0.1240 0.1320 0.0001 0.0612 1.0000

Panel B: For S&P 500 constituents
rrmv 1.0000 0.9610 0.0106 0.9490 0.0010
rα 0.9610 1.0000 0.0091 0.9920 0.0001
rβ 0.0106 0.0091 1.0000 0.0110 0.0121
ra 0.9490 0.9920 0.0110 1.0000 0.0063
rA 0.0010 0.0001 0.0121 0.0063 1.0000

and Sharpe ratios of returns of the wrmv
N portfolio (i.e. RMV using V) and those of its components,

wα
N and wβ

N , along with the components of wα
N , which are denoted by wa

N and wA
N .

The first rows of Panels A and B of Table 4 show that more than 90% of the mean return of the

robust mean-variance portfolio comes from the mean return of the alpha portfolio, which represents

latent-asset demand, with the beta portfolio contributing only a small fraction. And most of the

alpha portfolio’s mean return comes from the purely asset-specific component, with the pervasive

risk factors contributing a negligible amount. The second rows of Panels A and B show that the

alpha portfolio also contributes to most of the risk of the robust mean-variance portfolio, with a

large proportion of this coming from the asset-specific component. The Sharpe ratios, reported

in the last rows of Panels A and B, show that the return-to-risk tradeoff for the asset-specific

component is attractive: the Sharpe ratios of the alpha-portfolio component and, in particular, the

part associated with the purely asset-specific return, is much larger than that of the observed and

latent risk factors. Thus, consistent with the result in Proposition 4.1, if one were to ignore the

latent demand from purely asset-specific pricing errors, the resulting portfolio would not be on the

efficient frontier regardless of how many risk factors were included in the model.
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Table 4: Moments of returns of portfolio components
This table reports the moments of returns of the portfolio components of the robust mean-variance portfolio (RMV
using V). The components of the wrmv

N portfolio are wα
N and wβ

N , with wα
N comprising of wa

N and wA
N . The

moments reported are the annualized mean return, standard deviation of return, and Sharpe ratio. Panel A reports
the moments for the case of the N = 30 stocks that are part of the Dow Jones Industrial Average (DJ30), while
Panel B reports the moments for the case of N = 100 randomly selected stocks from the S&P 500 index.

rrmv rα rβ ra rA

Panel A: For DJIA 30 constituents
Mean 0.0792 0.0760 0.0032 0.0710 0.0050
Standard deviation 0.1430 0.1390 0.0440 0.1340 0.0176
Sharpe ratio 0.5560 0.5460 0.0731 0.5300 0.2880

Panel B: For S&P 500 constituents
Mean 0.1160 0.1070 0.0088 0.1070 0.0001
Standard deviation 0.1520 0.1520 0.0302 0.1520 0.0136
Sharpe ratio 0.7630 0.7050 0.2920 0.7020 0.0090

5.7 Source of Performance Gains Relative to EW and MAXSER Portfolios

The reason our strategies outperform the EW portfolio is explained by Propositions 4.1 and 4.3.

Proposition 4.1 shows that the squared Sharpe ratio of the optimal mean-variance portfolio is the

sum of the squared Sharpe ratios of the alpha and beta portfolios, while Proposition 4.3 shows that

the beta portfolio can be replaced by a benchmark portfolio, such as the EW portfolio or a portfolio

based on the three Fama-French factors, without any performance loss. That is, our beta portfolio,

based on the three Fama-French factors, performs similar to the EW portfolio, so the performance

gain of our strategies is the additional Sharpe ratio generated by the alpha portfolio. The alpha

portfolio exploits the cross-sectional dispersion of the components of aN , a signal orthogonal to

the observed factors, which is what the beta portfolio relies on. In other words, our methodology

exploits what is missing from factor-based asset-pricing models, namely, asset-specific risk and

return. Finally, the superior performance even with a large number of assets is a consequence of

our strategy being founded on the APT, which is a theory that bites when N is large.

The differences between our portfolio strategy and MAXSER are more subtle. Both strategies

rely on decomposing the mean-variance portfolio into alpha and beta components. In both strate-

gies, the beta portfolio is the same—investing in the three Fama-French factors. The difference,

therefore, arises from the alpha portfolio. The MAXSER strategy imposes sparsity of the alpha

portfolio weights—see Ao et al. (2019, p. 2905, assumption C2)—which is achieved by imposing an

`1 constraint that limits the number of assets included in the portfolio, as explained in Ao et al.
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(2019, sec. 1.5.3). In contrast, because our methodology is founded on the APT, it works for large

N regardless of T ; therefore, our alpha portfolio does not restrict the number of assets in which it

invests and so can take full advantage of all N assets available.

6 Conclusion

In this paper, our objective is to address model misspecification in mean-variance portfolios. We

list below our novel results, each representing a significant departure from the existing literature.

First, in contrast to the classical interpretation of the APT, we show that the APT allows not

just for small pricing errors but also large pricing errors related to missing pervasive risk factors.

Second, we show that one can generate the entire set of mean-variance efficient portfolios from

two inefficient portfolios: the “beta” portfolio, which depends on factor risk premia but not on

pricing errors, and the “alpha” portfolio, representing latent asset demand, which depends only

on latent pervasive and asset-specific risk, with zero exposure to observed risk factors. Third, in

contrast to the traditional approaches for treating misspecification in mean-variance portfolios, we

apply different methods to treat misspecification in the beta and alpha portfolios. For the beta

portfolio, we identify a set of conditions under which it can be replaced, without any performance

loss, by a benchmark portfolio (such as the equal- or value-weighted portfolio) that by construction

is immune to misspecification. For the alpha portfolio, we treat misspecification using the robust-

control approach of Hansen and Sargent (2007), which we show is equivalent to imposing the APT

no-arbitrage restriction.

Finally, we demonstrate using two data sets (for monthly returns on stocks from DJ30 and

S&P 500) that our theoretical results lead to a substantial improvement in out-of-sample portfolio

performance relative to strategies in the existing literature. We also show the dominant role of the

latent-asset-demand component of the optimal portfolio: for both data sets, the squared correlation

between the optimal demand for an asset and its latent-demand component is over 95%, with the

latent-demand component contributing more than 85% of the total (squared) Sharpe ratio of the

optimal portfolio. These results support the findings in Koijen and Yogo (2019), who show the

substantial role of latent asset demand in explaining empirically observed asset holdings.

The key takeaway from our work is that, what is usually regarded as mispricing, i.e. pricing

errors, should instead be viewed as an integral part of the asset-pricing model. And, rather than

searching for missing pervasive risk factors, our theoretical and empirical results highlight the

importance of accounting for the purely asset-specific component of the pricing errors.
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A Proofs for Propositions

In this appendix, we provide the proofs for the propositions in the main text of the manuscript.

Throughout the analysis, we need to study the limiting behavior of quantities of interest, such

as portfolio weights and Sharpe ratios, as N diverges. This is conveniently achieved by the O(·) and

O(·) notation. Specifically, we write aN = O(bN ) for two generic sequences aN and bN > 0 if, as N

increases, the ratio |aN |/bN <∞; that is, the ratio is bounded. Similarly, we write aN = O(bN ) if,

as N increases, the ratio |aN |/bN → 0; that is, the ratio goes to zero or, equivalently, aN increases

(decreases) at a rate slower (faster) than bN . As special cases, when bN = 1, then aN = O(1) and

aN = O(1) simply mean that |aN | <∞ and |aN | → 0, respectively.49 This notation is unambiguous

for scalar quantities and easily extended to finite-dimensional vectors. However, we will also adopt

it for vectors of portfolio weights, whose dimension grows with N , with the following meaning:

when two generic portfolios satisfy wa
N = wb

N + O(1), we mean that, as N increases, the returns of

portfolios a and b have an identical mean, variance, and Sharpe ratio.

A.1 Proof of Proposition 4.1

(i) Given that µN − rft1N = αN + BNλ,

wmv
N =

1

γ
V−1
N (µN − rft1N )

=
1

γ
V−1
N αN +

1

γ
V−1
N BNλ

=
γα

γ

1

γα
V−1
N αN +

γβ

γ

1

γβ
V−1
N BNλ

= φαwα
N + φβwβ

N .

However, in view of (20) and the Sherman-Morrison-Woodbury theorem applied to VN , which

implies V−1
N =

[
Σ−1
N −Σ−1

N BN (Ω−1 + B′NΣ−1
N BN )−1B′NΣ−1

N

]
, we get

V−1
N αN = (Σ+

N + V−1
N −Σ+

N )αN

= Σ+
NαN + Σ−1

N BN (B′NΣ−1
N BN )−1Ω−1(Ω−1 + B′NΣ−1

N BN )−1B′NΣ−1
N αN

= Σ+
NαN + Σ−1

N BNδ ×O(N−
3
2 ) = Σ+

NαN + O(1),

given

V−1
N −Σ+

N = −Σ−1
N BN (Ω−1 + B′NΣ−1

N BN )−1B′NΣ−1
N + Σ−1

N BN (B′NΣ−1
N BN )−1B′NΣ−1

N

49For example, if aN = O(N−
1
2 ), it means that aN goes to zero at most at (no faster than) the rate N−

1
2 , whereas

aN = O(N−
1
2 ) means that aN goes to zero faster than N−

1
2 . Alternatively, if aN = O(N

1
2 ), it means that aN diverges

at most at (no faster than) the rate N
1
2 , whereas aN = O(N

1
2 ) means that aN diverges slower than N

1
2 .

42



= Σ−1
N BN

[
−(Ω−1 + B′NΣ−1

N BN )−1 + (B′NΣ−1
N BN )−1

]
B′NΣ−1

N

= Σ−1
N BN (B′NΣ−1

N BN )−1
[
−(B′NΣ−1

N BN ) + (Ω−1 + B′NΣ−1
N BN )

]
(Ω−1 + B′NΣ−1

N BN )−1B′NΣ−1
N

= Σ−1
N BN (B′NΣ−1

N BN )−1Ω−1(Ω−1 + B′NΣ−1
N BN )−1B′NΣ−1

N ,

together with (B′NΣ−1
N BN )−1 = O(N−1), (Ω−1 + B′NΣ−1

N BN )−1 = O(N−1), and B′NΣ−1
N αN =

O(N
1
2 ), where N

3
2 (B′NΣ−1

N BN )−1Ω−1(Ω−1 + B′NΣ−1
N BN )−1B′NΣ−1

N αN = O(δ), for some finite

vector δ 6= 0K .

(ii) The portfolios wα
N and wβ

N are, conditionally and unconditionally, orthogonal as N diverges.

wα
N
′VNwβ

N =
1

γβ
wα
N
′VNV−1

N BNλ =
1

γβ
wα
N
′BNλ

=
1

γαγβ
α′NΣ+

NBλ+O(N−
3
2 )

1

γαγβ
δ′B′NΣ−1

N BNλ

= O(N−
1
2 ),

because Σ+
NBN = 0K and B′NΣ−1

N BN = O(N). Similarly, given ΣNV−1
N = (IK − BN (Ω−1 +

B′NΣ−1
N BN )−1B′NΣ−1

N ), we have

wα
N
′ΣNwβ

N =
1

γβ
wα
N
′ΣNV−1

N BNλ

=
1

γβ
wα
N
′BN (IK − (Ω−1 + B′NΣ−1

N BN )−1B′NΣ−1
N BN )λ

= O(N−
3
2 )δ′(B′NΣ−1

N BN )(Ω−1 + B′NΣ−1
N BN )−1Ω−1λ

= O(N−
3
2 ).

We now show that, when N becomes large, wα
N and wβ

N are the minimum-variance portfolios

orthogonal to one another. This is accomplished by showing that these portfolio weights satisfy,

asymptotically, Proposition IA.2. In particular, we first need to verify that wβ
N is (asymptotically)

the minimum variance, orthogonal, portfolio to wα
N , by verifying(

wα
N ,V

−1
N (µN − rft1N )

)( (σα)2 µα − rft
µα − rft (SRmv)2

)−1(
0

µβ − rft

)
= wβ

N + O(1).

Analogously, one needs to verify that wα
N is (asymptotically) the minimum variance, orthogonal,

portfolio to wβ
N but this part is omitted as it follows the same steps.

In view of Σ+
NVNΣ+

N = Σ+
NΣNΣ+

N = Σ+
N , simple calculations lead to

µα = wα
N
′µN + (1−wα

N
′1N )rft = wα

N
′(µN − rft1N ) + rft

=
1

γα
(Σ+

NαN + Σ−1
N BNδ ×O(N−

3
2 ))′(αN + BNλ) + rft
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=
1

γα
α′NΣ+

NαN + rft +O(N−
1
2 ), (A1)

(σα)2 = wα
N
′VNwα

N =
1

(γα)2
α′NV−1

N VNV−1
N αN =

1

(γα)2
α′NV−1

N αN

=
1

(γα)2
α′N (Σ+

N + V−1
N −Σ+

N )αN =
1

(γα)2
α′NΣ+

NαN +O(N−1), (A2)

and

µβ = wβ
N

′
µN + (1−wβ

N

′
1N )rft = wβ

N

′
(µN − rft1N ) + rft

=
1

γβ
λ′B′NV−1

N (αN + BNλ) + rft =
1

γβ
λ′B′NV−1

N BNλ+ rft +O(N−
1
2 ), (A3)

(σβ)2 = wβ
N

′
VNwβ

N =
1

(γβ)2
λ′B′NV−1

N VNV−1
N BNλ =

1

(γβ)2
λ′B′NV−1

N BNλ, (A4)

yielding (
(σα)2 µα − rft
µα − rft (SRmv)2

)−1(
0

µβ − rft

)
=

1(
(SRmv)2[

α′NΣ+
NαN

(γα)2
+O(N−1)]− [

α′NΣ+
NαN

(γα) +O(N−
1
2 )]2

)
×

 −α′NΣ+
NαN

(γα) +O(N−
1
2 )

α′NΣ+
NαN

(γα)2
+O(N−1)

 λ′B′NV−1
N BNλ+O(N−

1
2 )

γβ
.

Premultiplying the numerator of the latter expression by
(
wα
N ,V

−1
N (αN + BNλ)

)
gives

(V−1
N αN
γα

,V−1
N (αN + BNλ)

)
×

 −α′NΣ+
NαN

(γα) +O(N−
1
2 )

α′NΣ+
NαN

(γα)2
+O(N−1)

 λ′B′NV−1
N BNλ+O(N−

1
2 )

γβ

=
(Σ+

NαN
γα

+O(N−
3
2 ),Σ+

NαN + V−1
N BNλ+O(N−

3
2 )
)

×

 −α′NΣ+
NαN

(γα) +O(N−
1
2 )

α′NΣ+
NαN

(γα)2
+O(N−1)

 λ′B′NV−1
N BNλ+O(N−

1
2 )

γβ

=
α′NΣ+

NαN
(γα)2

(λ′B′NV−1
N BNλ)

γβ
V−1
N BNλ+

(λ′B′NV−1
N BNλ)

γβ(γα)2
(α′NΣ+

NαN )Σ+
NαN

−
(λ′B′NV−1

N BNλ)

γβ(γα)2
(α′NΣ+

NαN )Σ+
NαN + O(1)

=
α′NΣ+

NαN
(γα)2

(λ′B′NV−1
N BNλ)

γβ
V−1
N BNλ+ O(1).
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Given that, using (21), the denominator satisfies(
(SRmv)2[

α′NΣ+
NαN

(γα)2
+O(N−1)]− [

α′NΣ+
NαN

(γα)
+O(N−

1
2 )]2

)
=

1

(γα)2
(α′NΣ+

NαN )(λ′B′NV−1
N BNλ) +O(N−

1
2 ),

by combining terms, one finally obtains(
wα
N ,V

−1
N (µN − rft1N )

)( (σα)2 µα − rft
µα − rft (SRmv)2

)−1(
0

µβ − rft

)

=
1

1
(γα)2

(α′NΣ+
NαN )(λ′B′NV−1

N BNλ)

(α′NΣ+
NαN )

(γα)2
V−1
N BNλ

(λ′B′NV−1
N BNλ)

γβ
+ O(1)

=
V−1
N BNλ

γβ
+ O(1) = wβ

N
+ O(1).

Along the same lines, it follows that wα
N satisfies

(
wβ
N ,V

−1
N (µN − rft1N )

)( (σβ)2 µβ − rft
µβ − rft (SRmv)2

)−1(
0

µα − rft

)
= wα

N + O(1),

implying that wα
N is (asymptotically) the minimum variance, orthogonal, portfolio to wβ

N .

(iii) Given the result in (i) and (ii), two-fund separation holds by recognizing that wα
N (and thus

Σ+
NαN/γ

α) and wβ
N

are inefficient. This follows as long as both αN 6= 0N and λ 6= 0K . In

fact, given that one is the minimum-variance orthogonal portfolio to the other, if one was efficient,

then by Proposition IA.2, its minimum-variance orthogonal portfolio exposure to the risky assets

must be the zero vector, which is ruled out by our assumptions. However, by part (i), their linear

combination always spans the efficient frontier.

With respect to Sharpe ratios, given (A1)–(A2), SRα = (α′NΣ+
NαN )

1
2 + O(N−

1
2 ). Similarly,

given (A3)–(A4), SRβ = (λ′B′NV−1
N BNλ)

1
2 + O(N−

1
2 ). The term α′NΣ+

NαN ≤ α′NΣ−1
N αN is

bounded as explained in (16), whereas

B′NV−1
N BN = B′N (Σ−1

N −Σ−1
N BN (Ω−1 + B′NΣ−1

N BN )−1B′NΣ−1
N )BN

= B′NΣ−1
N BN (Ω−1 + B′NΣ−1

N BN )−1Ω−1

= (B′NΣ−1
N BN + Ω−1 −Ω−1)(Ω−1 + B′NΣ−1

N BN )−1Ω−1

= Ω−1 −Ω−1(Ω−1 + B′NΣ−1
N BN )−1Ω−1 ≤ Ω−1.

Moreover, B′NV−1
N BN → Ω−1, implying SRβ = (λ′Ω−1λ)

1
2 +O(N−

1
2 ). Finally,

(SRmv)2 = (µN − rft1N )′V−1
N (µN − rft1N )
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= (αN + BNλ)′V−1
N (αN + BNλ)

= α′NV−1
N αN + λ′NB′NV−1

N BNλ+ 2α′NV−1
N BNλ

= α′NΣ+
NαN + λ′B′NV−1

N BNλ+O(N−
1
2 )

= (SRα)2 + (SRβ)2 +O(N−
1
2 ),

implying, when N →∞, (SRmv)2−(SRα)2−(SRβ)2 → 0 because the conditions of Proposition IA.1

are satisfied. �

A.2 Proof of Proposition 4.2

Assumption αN 6= 0N rules out that wα
N = 0N for any N . Recall that now ΣN = ANA′N + CN

and αN = ANλmiss + aN . Consider first wα
N , where its ith component satisfies

wαN,i = 1′Niw
α
N = 1′NiΣ

+
NαN + O(1)

=
1

γα
1′NiΣ

−1
N αN −

1

γα
1′NiΣ

−1
N BN (B′NΣ−1

N BN )−1B′NΣ−1
N αN + O(1),

where 1Ni is an N -dimensional vector in which the ith element is one and the rest of the elements

are zero. We deal with the two terms on the right-hand side of wαN,i separately. By the Sherman-

Morrison-Woodbury theorem Σ−1
N = C−1

N −C−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N , obtaining

1′NiΣ
−1
N αN = 1′NiC

−1
N αN − 1′NiC

−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N αN

= 1′NiC
−1
N ANλmiss − 1′NiC

−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N ANλmiss

+ 1′NiC
−1
N aN − 1′NiC

−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N aN

= 1′NiC
−1
N AN (Ip + A′NC−1

N AN )−1λmiss

+ 1′NiC
−1
N aN − 1′NiC

−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N aN .

By Holder’s inequality, taking the norm and using the relation between norm and maximum eigen-

value, one obtains

|1′NiΣ
−1
N αN | = O

(
‖λmiss‖

‖1′NiC
−1
N AN‖
N

+ |1′NiC
−1
N aN |+ ‖aN‖

‖1′NiC
−1
N AN‖

N
1
2

)
= O

(‖λmiss‖
N

+ |1′NiC
−1
N aN |+

‖aN‖
N

1
2

)
.

Along the same lines,

1′NiΣ
−1
N BN = 1′NiC

−1
N BN − 1′NiC

−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N BN ,

B′NΣ−1
N BN = B′NC−1

N BN −B′NC−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N BN , and
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B′NΣ−1
N αN = B′NC−1

N αN −B′NC−1
N AN (Ip + A′NC−1

N AN )−1A′NC−1
N αN

= B′NC−1
N ANλmiss −B′NC−1

N AN (Ip + A′NC−1
N AN )−1A′NC−1

N ANλmiss

+ B′NC−1
N aN −B′NC−1

N AN (Ip + A′NC−1
N AN )−1A′NC−1

N aN

= B′NC−1
N AN (Ip + A′NC−1

N AN )−1λmiss

+ B′NC−1
N aN −B′NC−1

N AN (Ip + A′NC−1
N AN )−1A′NC−1

N aN .

Therefore, using the same arguments as above, one obtains

|1′NiΣ
−1
N BN (B′NΣ−1

N BN )−1B′NΣ−1
N αN | = O

(‖λmiss‖
N

+
‖aN‖
N

1
2

)
,

because, under our assumptions, the eigenvalues of A′NC−1
N AN and B′NC−1

N BN have the same

behavior. In particular, the first term 1′NiΣ
−1
N BN is O(‖1′NiC

−1
N AN‖+ ‖1′NiC

−1
N BN‖) = O(1), the

second term (B′NΣ−1
N BN )−1 is O(N−1), and the third term B′NΣ−1

N αN is O(‖λmiss‖+N
1
2 ‖aN‖).

For the wβ
N portfolio, its ith component satisfies

wβN,i =
1

γβ
1′NiΣ

−1
N BNλ−

1

γβ
1′NiΣ

−1
N BN (Ω−1 + B′NΣ−1

N BN )−1B′NΣ−1
N BNλ

=
1

γβ
1′NiΣ

−1
N BN (Ω−1 + B′NΣ−1

N BN )−1Ω−1λ,

and using the above formulae for 1′NiΣ
−1
N BN and B′NΣ−1

N BN concludes, where we use λ 6= 0K . �

A.3 Proof of Proposition 4.3

The mean and variance of the excess return for the benchmark portfolio satisfy wbench
N

′
(αN +

BNλ)→ cbench ′λ and wbench
N

′
VNwbench

N → cbench ′Ωcbench , respectively.

Proof for (i) and (ii). Consider first the case K > 1 in which cbench = δΩ−1λ, for some scalar

δ 6= 0. Then

(SRbench )2 → δ2(λ′Ω−1λ)2

δ2(λ′Ω−1λ)
= λ′Ω−1λ,

where the last equality follows by combining (A3) and (A4). By Proposition IA.1, recalling SRβ =

(λ′Ω−1λ)
1
2 + O(1), the result follows. When K = 1, then cbench = δΩ−1λ for every scalar δ 6= 0,

as all the previous quantities are scalar, and thus (SRbench )2 → λ′Ω−1λ under (24).

Proof for (iii). Now consider the case in which cbench is not proportional to Ω−1λ. Then

(SRbench )2 → ((cbench)′λ)2

(cbench)′Ωcbench
< (λ′Ω−1λ) = (SRβ)2 + O(1),
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because
((cbench)′λ)2

(cbench)′Ωcbench
=

((cbench)′Ω
1
2 Ω−

1
2λ)2

(cbench)′Ωcbench
<

((cbench)′Ωcbench)(λ′Ω−1λ)

(cbench)′Ωcbench
= (λ′Ω−1λ).

The strict inequality is implied whenever Ω
1
2 cbench and Ω−

1
2λ are not proportional, which in turn

is equivalent to cbench not being proportional to Ω−1λ, as stated above. �

A.4 Proof of Proposition 4.4

We first establish the solution (27), and then prove the asymptotic equivalence between the alpha

portfolio from the APT and that from robust-control theory. Start by rewriting the max-min

optimization as

max
wN

min
αN

{
w′N (αN + BNλ)− γ

2
w′NVNwN

}
.

We first show that the relative entropy constraint satisfies∫ ∞
−∞
· · ·
∫ ∞
−∞

(
ln
fαN (ret )

fα̂N (ret )

)
fαN (ret ) dr

e
t

=
1

2

(
α̂′NV−1

N α̂N −α′NV−1
N αN − 2α̂′NV−1

N E(ret −BNλ) + 2α′NV−1
N E(ret −BNλ)

)
=

1

2

(
α̂′NV−1

N α̂N −α′NV−1
N αN − 2α̂′NV−1

N αN + 2α′NV−1
N αN

)
=

1

2
(α̂N −αN )′V−1

N (α̂N −αN ) ≤ 1

2
(α̂N −αN )′Σ−1

N (α̂N −αN ) ≤ δentropy,

where the first inequality follows from using V−1
N = Σ−1

N −Σ−1
N BN (Ω−1 + B′NΣ−1

N BN )−1B′NΣ−1
N .

Considering first the minimization step, one gets the Lagrangian

L(αN , ε) = w′NαN +
ε

2

[
(αN − α̂N )′Σ−1

N (αN − α̂N )− 2δentropy

]
,

where we need to find the saddle-point satisfying L(αN
rmv, εrmv) = minαN maxε≥0 L(αN , ε). First

consider the case in which ε > 0. Then the first-order condition with respect to αrmv
N is

0 = wN + εΣ−1
N (αrmv

N − α̂N ),

and rearranging gives αrmv
N = α̂N −

ΣN

ε
wN . (A5)

Substituting the latter into the constraint (αrmv
N − α̂N )′Σ−1

N (αrmv
N − α̂N ) = 2δentropy, which holds

with equality as ε > 0, solving for εrmv, and substuting back into (A5) yields the final solution,

αrmv
N = α̂N −

(2δentropy)
1
2

(w′NΣNwN )
1
2

ΣNwN , εrmv =

√
w′NΣNwN

2δentropy
.
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We now show that the Lagrangian is globally minimized at this point, ruling out the case ε = 0.

L(αN , 0) = w′NαN = w′N α̂N + w′N (αN − α̂N )

≥ w′N α̂N − |w′N (αN − α̂N )| ≥ w′N α̂N − (w′NΣNwN )
1
2 ((αN − α̂N )Σ−1

N (αN − α̂N ))
1
2

> w′N α̂N − (w′NΣNwN )
1
2 (2δentropy)

1
2 = L(αrmv

N , εrmv),

where the second inequality follows from the Cauchy-Schwarz inequality, and the last, strict, in-

equality follows from the slackness condition for ε = 0. The last term on the right-hand side is the

Lagrangian evaluated when the relative entropy constraint is binding; i.e. for ε = εrmv > 0.

Consider now the maximization step,

max
wN

{
w′N (αrmv

N + BNλ)− γ

2
w′NVNwN

}
= max

wN

{
w′N

(
α̂N −

(2δentropy)
1
2

(w′NΣNwN )
1
2

ΣNwN + BNλ

)
− γ

2
w′NVNwN

}

= max
wN

{
w′N (α̂N + BNλ)− (2δentropy)

1
2 (w′NΣNwN )1/2 − γ

2
w′NVNwN

}
.

By rearranging the first-order condition,

0 = α̂N + BNλ− (2δentropy)
1
2 (wrmv

N
′ΣNwrmv

N )−1/2ΣNwrmv
N − γVNwrmv

N ,

one obtains α̂N + BNλ =

((
2δentropy

(wrmv
N
′ΣNwrmv

N )

) 1
2

ΣN + γVN

)
wrmv
N . Recalling that VN = ΣN +

BNΩB′N , one obtains

wrmv
N =

([
γ +

(
2δentropy

(wrmv
N
′ΣNwrmv

N )

) 1
2

]
ΣN + γBNΩB′N

)−1

(α̂N + BNλ)

=
1

γ

([
1 +

(
2δentropy

γ2(wrmv
N
′ΣNwrmv

N )

) 1
2

]
︸ ︷︷ ︸

=φ

ΣN + BNΩB′N

)−1

(α̂N + BNλ)

=
1

γ

(
φΣN + BNΩB′N

)−1
(α̂N + BNλ) , where we define

φ =

[
1 +

(
2δentropy

γ2(wrmv
N
′ΣNwrmv

N )

) 1
2

]
.

Notice that the solution for wrmv
N is an implicit solution because φ itself is a function of wrmv

N .

To establish the asymptotic behavior of the robust mean-variance portfolios, using the Sherman-

Morrison-Woodbury theorem one obtains

wrmv
N =

1

γφ

(
ΣN +

1

φ
BNΩB′N

)−1

(α̂N + BNλ)

49



=
1

γφ

(
Σ−1
N −Σ−1

N BN

(
φΩ−1 + B′NΣ−1

N BN

)−1
B′NΣ−1

N

)
(α̂N + BNλ)

=
1

γφ

(
Σ−1
N α̂N −Σ−1

N BN

(
φΩ−1 + B′NΣ−1

N BN

)−1
B′NΣ−1

N α̂N

)
+

1

γφ

(
Σ−1
N BN −Σ−1

N BN

(
φΩ−1 + B′NΣ−1

N BN

)−1
B′NΣ−1

N BN

)
λ

=
1

γφ

(
Σ−1
N α̂N −Σ−1

N BN

(
φΩ−1 + B′NΣ−1

N BN

)−1
B′NΣ−1

N α̂N

)
+

1

γ

(
Σ−1
N BN

(
φΩ−1 + B′NΣ−1

N BN

)−1
)

Ω−1λ.

For large N , one obtains

wrmv
N =

1

γφ

(
Σ−1
N −Σ−1

N BN

(
B′NΣ−1

N BN

)−1
B′NΣ−1

N

)
α̂N

+
1

γ

(
Σ−1
N BN

(
Ω−1 + B′NΣ−1

N BN

)−1
)

Ω−1λ+ O(1)

=
1

γφ
Σ+
N α̂N +

1

γ
V−1
N BNλ+ O(1)

= φαwrα
N + φβwβ

N + O(1).

We now establish an asymptotic equivalence of the shrinkage parameter φ. This follows

from the fact that wβ
N diversifies asset-specific risk, namely, that wβ

NΣNwβ
N → 0 (unlike wα

N ,

which diversifies away only common risk). Therefore, wrmv
N
′ΣNwrmv

N = wrα
N
′ΣNwrα

N + O(1) =

(γφ)−2α̂′NΣ+
N α̂N + O(1), yielding

φ =

[
1 +

(
2δentropy

γ2(wrmv′ΣNwrmv)

) 1
2

]
(A6)

=

[
1 +

(
2δentropy

γ2(γφ)−2α̂′NΣ+
N α̂N

) 1
2

]
+ O(1)

=

[
1 +

(
(2δentropy)

1
2 |φ|

(α̂′NΣ+
N α̂N )

1
2

)]
+ O(1).

This provides a nonlinear equation in φ (due to the modulus) but, by seeking only the positive

solution φ > 0, one obtains the (approximate) linear equation

φ =

[
1 +

(
(2δentropy)

1
2φ

(α̂′NΣ+
N α̂N )

1
2

)]
+ O(1),

with solution: φ =
[
1− (2δentropy)

1
2 (α̂′NΣ+

N α̂N )−
1
2
]−1

+ O(1), (A7)

assuming 2δentropy < (α̂′NΣ+
N α̂N ).
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We now establish the (asymptotic) equivalence between the two alpha portfolios, assuming that

the robust alpha portolio wrα
N is constructed with respect to some given δ∗apt, δentropy. Given that

αN = aN + ANλmiss, as N →∞ the ith element of wrα
N is dominated by the component in aN by

Proposition 4.2, namely

wrαi (δ∗apt, δentropy) =
1

γαφ
1′NiΣ

+
N âN + O(1)

=
1

γαφ
1′NiΣ

+
N

1

(κ̂+ 1)

(
r̄eN − B̂N,MLC f̄ e − ÂN,MLC λ̂miss,MLC

)
+ O(1)

= δ
∗ 1
2

apt

(
1− (2δentropy)

1
2

(α̂′NΣ+
N α̂N )

1
2

)
ci + O(1)

= δ
1
2
aptci + O(1) = wαi (δapt) + O(1),

setting δ
1
2
apt = δ

∗ 1
2

apt

(
1− (2δentropy)

1
2

(α̂′NΣ+
N α̂N )

1
2

)
, for some constant ci, function of the data, of γα, and of Σ+

N ,

where the second equality follows from the formula for the estimator âN in Proposition IA.2 for a

given δ∗apt, based on

(1 + κ̂)2 =

[
r̄− rft1N − B̂N (f̄ − rft1K)− ÂN λ̂miss

]′
Σ̂−1
N

[
r̄− rft1N − B̂N (f̄ − rft1K)− ÂN λ̂miss

]
δ∗apt

,

and the third equality follows from (A7). Finally, note that δ
1
2
aptci is (asymptotically) equivalent to

the (estimated) alpha portfolio weight wαi , based on α̂N (δapt). �

Corollary A.1. Under the assumptions of Proposition 4.4 and δentropy = 1
2

(1+λ′Ω−1λ)
T χ2

N,x%, with

χ2
N,x% the xth (0 ≤ x ≤ 1) quantile of a χ2

N distribution, the shrinkage parameter φ satisfies

φ =

1 +

(
χ2
N,x%

γ2T

(1 + λ′Ω−1λ)

(wrmv
N
′ΣNwrmv

N )

) 1
2

=
1(

1− (
χ2
N,x%

T )
1
2

(1+λ′Ω−1λ)
1
2

(α̌′NΣ+
N α̌N )

1
2

) + O(1) asN →∞. (A8)

To interpret expression (A8), note that φ is increasing with χ2
N,x%, which increases (approxi-

mately) linearly with the number of assets N (because E[χ2
N ] = N), and (λ′Ω−1λ)

1
2 , which is the

Sharpe ratio of the beta portfolio as N → ∞, and decreases with the sample size T (because the

investor gathers more precise informations about the parameters, and (α′NΣ+
NαN )

1
2 , which is the

Sharpe ratio of the alpha portfolio as N →∞. �
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Section IA.1 of this internet appendix shows that for mean-variance portfolios and their decom-

position into alpha and beta portfolios, when the APT assumptions hold and N is large, then one

obtains the same results regardless of whether one starts from the orthogonal or non-orthogonal

representation of returns. Section IA.2 contains auxiliary results about the decomposition of the

Sharpe ratio and extends the results in Roll (1980) to the case in which investors can invest also in

a risk-free asset. Section IA.3 explains how we estimate the APT model using maximum likelihood.

Section IA.4 compares the performance of the strategies we develop in this paper to that of the

benchmark strategies for simulated data, i.e. in a controlled environment.

IA.1 Orthogonal vs. Nonorthogonal Representation of Returns

As we explain in the main text, our model is designed to exploit exactly the kind of anomaly

identified in Black, Jensen, and Scholes (1972) by constructing what Treynor and Black (1973)

call “active” and “passive” portfolios, which we label “alpha” and “beta” portfolios. Below, we

provide a specific model designed to capture exactly this feature of the data: “high-beta assets

earn negative and low-beta assets earn positive alphas.” We then solve this model analytically,

and prove four results, some of which are well-known whereas others are novel. These four results

allow us to conclude that working with the orthogonal representation of returns is without loss of

generality. That is, from the perspective of mean-variance portfolios, one obtains the same results

regardless of whether one starts from the orthogonal or non-orthogonal representation of returns,

when the APT assumptions hold and N is large.

IA.1.1 Details of the Model

Set the total number of assets to be equal to N = 2n+ 1 for some integer n ≥ 0. Let the return of

asset i be given by the market model,

ri − rf = αi + βif + εi,

where f denotes the excess return on the market.

Let the betas of the N assets range from βi = 1 + b(i− (n + 1))/n for i = 1, ..., 2n + 1, where

0 ≤ b < 1, with the vector of betas denoted by B. Similarly, let the alphas of the N assets range

from αi = −a(i− (n+ 1))/n
3
2 for i = 1, ..., 2n+ 1, with the vector of alphas denoted by α. Thus,

the βi are uniformly spread between 1−b and 1+b, and the αi are uniformly spread between a/
√
n

and −a/
√
n, and the alphas and betas have perfect negative correlation.i

iFor instance, in the setting where n = 1 so that there are only N = 2n + 1 = 3 risky assets, the betas of the
assets would be β1 = 1− b, β2 = 1, and β3 = 1 + b, and the alphas would be α1 = a, α2 = 0, and α3 = −a.
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Let λ = E(f) denote the expected market risk premium and var(f) the variance of the market

factor. Let εi ∼ iid(0, var(εi)) so that the residuals are iid across assets and across time. Using ·̌
to denote orthogonalized quantities and MB to denote the projection matrix I−B(B′B)−1B′ that

spans the space orthogonal to the columns of B, we obtain:

α̌ = MBα = α−B(B′B)−1B′α,

λ̌ = λ+ (B′B)−1B′α,

f̌ = f − E(f) + λ̌.

IA.1.2 Main Results

Result 1. Well-known: Any factor asset-pricing model can be expressed in terms of orthogonal

or non-orthogonal components; that is, in terms of the observable returns, the orthogonal and

non-orthogonal representations are equivalent, although the components clearly differ in the two

representations.

One can express excess returns as

r− rf1N = α+ Bf + ε

= α+ Bλ+ Bf + ε (IA1)

= α̌+ Bλ̌+ Bf + ε. (IA2)

Thus, the same vector of excess returns, r − rf1N , has two equivalent representations: in terms

of non-orthogonal alphas and betas, as given in equation (IA1), and in terms of orthogonalized

quantities, as given in equation (IA2).

Result 2. Well-known: For any given N , the overall mean-variance portfolio (that is, the linear

combination of the alpha and beta portfolios) is identical for the orthogonal and non-orthogonal

representations of returns.

To see this, denote the vector of excess mean returns by µ, the variance-covariance matrix for

asset returns by V, the variance-covariance matrix for the innovations by Σ, and define

Σ̌−1 =
[
Σ−1 −Σ−1B(B′Σ−1B)−1B′Σ−1

]
.

Then, the overall mean-variance weights in the risky assets can be expressed as:

wmv = V−1µ

= V−1α+ V−1Bλ (IA3)

= V−1α̌+ V−1Bλ̌ (IA4)
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= Σ−1α̌+ V−1Bλ̌ (IA5)

≈ Σ̌−1α+ V−1Bλ, for large N. (IA6)

This shows that the vector of optimal mean-variance portfolio weights, wmv, can be decomposed

into an alpha component and a beta component either in terms of the non-orthogonal expressions

for α and λ, as given in equations (IA3) and (IA6), or in terms of the orthogonal expressions, α̌

and λ̌, as given in equations (IA4) and (IA5).

Result 3. New result: When N is large and the APT no-arbitrage assumption is satisfied, for

both the orthogonal and non-orthogonal representations of returns: (i) the alpha and beta portfolio

weights are the same (even though the alpha and beta returns differ across the two representations)

and (ii) the returns of the alpha and beta portfolios are uncorrelated.

To see this, note that, in terms of the orthogonal decomposition of returns (IA2), when N is

large the weights of the alpha and beta portfolios are, respectively:

w̌αi =
α̌i

var(εi)
; w̌βi =

βi

(var(εi)
var(f) + B′B)

λ̌

var(f)
∼ βi

2n(1 + b2/3)

λ

var(f)
. (IA7)

In terms of the non-orthogonal decomposition of returns (IA1), when N is large the weights of the

alpha and beta portfolios are, respectively:

wαi =
1

var(εi)
(αi − βiρ) ∼ w̌αi ; wβi =

βi

(var(εi)
var(f) + B′B)

λ

var(f)
∼ βi

2n(1 + b2/3)

λ

var(f)
, (IA8)

where ρ = B′α
var(εi)/ var(f)+B′B ∼ −(ab/

√
n)/(3 + b2).

From the above expressions, we see that when N is large the alpha and beta portfolios are the

same under the orthogonalized representation of returns (equation (IA7)) and the non-orthogonalized

representation of returns (equation (IA8)). It follows that when N is large and the no-arbitrage

restriction is satisfied, the returns on the alpha and beta portfolios are orthogonal to one another

under both representations.

Result 4. New result: When N is large and the APT no-arbitrage assumption is satisfied, for

both the orthogonal and non-orthogonal representations of returns, the Sharpe ratios of the alpha

and beta portfolio returns are the same.

When N is large and the no-arbitrage restriction is satisfied, then in terms of the orthogonal

decomposition of returns (IA2), the squared Sharpe ratios of the alpha (i.e. rα−rf = wα′(r−rf1N ))

and beta portfolios (i.e. rβ − rf = wβ′(r− rf1N )) are, respectively:

(SR(řα−rf ))
2 ∼ 2a2

var(εi)(3 + b2)
; SR2

(řβ−rf ) ∼
λ2

var(f)
,
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and in terms of the non-orthogonal decomposition of returns (IA1), the squared Sharpe ratios of
the alpha and beta portfolios are, respectively:

(SR(rα−rf ))
2 ∼ 2a2

var(εi)(3 + b2)
; (SR(rβ−rf ))

2 ∼ λ2

var(f)
.

Therefore, regardless of whether one starts from the orthogonal or non-orthogonal representation

of asset returns, when N is large and one imposes the APT no-arbitrage restriction to ensure

boundedness, one obtains the same Sharpe ratios for the alpha, beta, and mean-variance portfolios.

IA.1.3 Proofs for the above results

We start by deriving the following quantities, given the specification of the model in terms of

uniformly distributed alphas and betas that are perfectly negatively correlated.

B′B =
2n+1∑
i=1

β2
i

= (2n+ 1) +
b2

n2
[(2n+ 1)(n+ 1)(4n+ 3)/3 + (n+ 1)2(2n+ 1)− 2(n+ 1)2(2n+ 1)]

= (2n+ 1) +
b2(n+ 1)(2n+ 1)

3n

= (2n+ 1)(1 + b2(n+ 1)/3n) ∼ 2n(1 + b2/3)

α′α =
a2(n+ 1)(2n+ 1)

3n2
∼ 2a2

3

B′α = −ab(n+ 1)(2n+ 1)

3n
3
2

∼ −2ab

3

√
n

δ =
B′α

B′B
=
−ab(n+ 1)(2n+ 1)/3n

3
2

(2n+ 1)(1 + b2(n+ 1)/3n)
=
−ab(n+ 1)/3n

3
2

(1 + b2(n+ 1)/3n)
∼ −(ab/

√
n)/(3 + b2)

ρ =
B′α

var(εi)
var(f) + B′B

=
−ab(n+ 1)(2n+ 1)/3n

var(εi)
var(f) + (2n+ 1)(1 + b2(n+ 1)/3n)

∼ δ ∼ −(ab/
√
n)/(3 + b2).

Based on the above quantities, we define the orthogonalized alpha:

α̌i = αi − βiδ = −a(i− (n+ 1))/n
3
2 − [1 + b(i− (n+ 1))/n]δ

= −δ − (a/n
1
2 + δb)(i− (n+ 1))/n.

So α̌i goes from the positive α̌1 = a/
√
n−δ(1−b) ∼ (a/

√
n)(3+b)/(3+b2) > a/

√
n to the negative

α̌N = −a/
√
n− δ(1 + b) ∼ −(a/

√
n)(3− b)/(3 + b2) > −a/

√
n, centred around 0 < −δ = α̌n+1.

Then, for the orthogonalized representation, the alpha and beta portfolio weights are:

w̌αi =
α̌i

var(εi)
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w̌βi =
βi(

var(εi)
var(f) + B′B

) λ̌

var(f)
∼ βi

2n(1 + b2/3)

λ

var(f)
.

For the non-orthogonalized representation, the alpha and beta portfolio weights are:

wαi =
1

var(εi)
(αi − βiρ) ∼ w̌αi

wβi =
βi(

var(εi)
var(f) + B′B

) λ

var(f)
∼ βi

2n(1 + b2/3)

λ

var(f)
.

Finally, for the orthogonalized representation of returns, one can obtain the squared Sharpe

ratio of the beta portfolio as follows:

řβ − rf = w̌β′(r− rf1N )

=
λ̌

var(f)

B′B

(var(εi)/ var(f) + B′B)
(λ̌+ f − λ) +

λ̌

var(f)

B′ε

(var(εi)/ var(f) + B′B)

E(řβ − rf ) =
λ̌2

var(f)

B′B

(var(εi)/ var(f) + B′B)

var(řβ − rf ) =
∑
i

(w̌βi )2 + var(f)(
∑
i

w̌βi βi)
2 =

λ̌2

var(f)

B′B

(var(εi)/ var(f) + B′B)

SR2
(řβ−rf ) =

λ̌2

var(f)

B′B

(var(εi)/ var(f) + B′B)
∼ λ̌2

var(f)
∼ λ2

var(f)
,

and of the alpha portfolio as follows:

řα − rf = w̌α′(r− rf1N ) =
1

var(εi)

∑
i

α̌2
i +

1

var(εi)

∑
i

α̌iεi

E(řα − rf ) =
1

var(εi)

∑
i

α̌2
i ∼

2a2

var(εi)(3 + b2)

var(řα − rf ) =
1

var(εi)

∑
i

α̌2
i ∼

2a2

var(εi)(3 + b2)

SR2
(řα−rf ) ∼

2a2

var(εi)(3 + b2)
.

Observe that cov(řβ − rf , řα − rf ) = 0 implying SR2
mv = µ′V−1µ = SR2

(řα−rf ) + SR2
(řβ−rf ).

Similarly, for the non-orthogonalized representation of returns, one can obtain the squared

Sharpe ratio of the beta portfolio as follows:

rβ − rf = wβ′(r− rf1N )

=
λ

var(f)

α′B

(var(εi)/ var(f) + B′B)
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+
λ

var(f)

B′B

(var(εi)/ var(f) + B′B)
(λ+ f − λ) +

λ

var(f)

B′ε

(var(εi)/ var(f) + B′B)

E(rβ − rf ) =
λ2

var(f)

B′B

(var(εi)/ var(f) + B′B)
+

λ

var(f)

α′B

(var(εi)/ var(f) + B′B)

∼ λ2

var(f)
− λ

var(f)

ab

(3 + b2)

var(rβ − rf ) =
∑
i

(wβi )2 + var(f)(
∑
i

wβi βi)
2 =

λ2

var(f)

B′B

(var(εi)/var(f) + B′B)
∼ λ2

var(f)

SR2
(rβ−rf ) =

(
λ√

var(f)

√
B′B

(var(εi)/ var(f) + B′B)
+

α′B√
var(f)

√
B′B

√
(var(εi)/ var(f) + B′B)

)2

∼

(
λ√

var(f)
− 1√

var(f)

(ab/
√
n)

(3 + b2)

)2

∼ λ2

var(f)
,

and of the alpha portfolio as

rα − rf = wα′(r− rf1N ) =
∑
i

wαi αi + (
∑
i

wαi βi)(λ+ f − λ) +
∑
i

wαi εi

E(rα − rf ) =
∑
i

αiw
αi
i + λ

∑
i

wαi βi ∼
2a2

var(εi)(3 + b2)

var(rα − rf ) = var(εi)
∑
i

(wαi )2 + var(f)(
∑
i

wαi βi)
2 ∼ 2a2

var(εi)(3 + b2)

SR2
(rα−rf ) ∼

2a2

var(εi)(3 + b2)
.

IA.2 Auxiliary Results

In this section, we provide some auxiliary results and extend the result in Roll (1980) to the case

in which investors can invest also in a risk-free asset.

IA.2.1 Decomposition of the Sharpe Ratio

Proposition IA.1 (Portfolio Sharpe ratio). Consider the portfolio weights wN = wN,1 + wN,2

such that wN,1 is orthogonal to wN,2, as follows

w′N,1VN wN,2 = 0.
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Then, defining µi−rft = w′N,i(µN−rft1N ), σ2
i = w′N,iVNwN,i, and SRi = w′N,i(µN−rft1N )/(w′N,iVNwN,i)

1/2,

for i = 1, 2, and letting SR denote the Sharpe ratio of the portfolio wN , we always have

SR2 =
(w′N (µN − rft1N ))2

w′NVNwN

= (SR1)2 + (SR2)2 − 1

w′NVNwN
(σ2SR1 − σ1SR2)2

≤ (SR1)2 + (SR2)2.

Finally, strict equality holds if and only if σ2SR1 − σ1SR2 = 0; that is,

w′N,1(µN − rft1N )

w′N,1VNwN,1
=

w′N,2(µN − rft1N )

w′N,2VNwN,2
.

Proof. We have

SR2 =
(µ1 − rft)2

σ2
1

σ2
1

w′NVNwN
+

(µ2 − rft)2

σ2
2

σ2
2

w′NVNwN
+ 2

(µ1 − rft)(µ2 − rft)
w′NVNwN

=
(µ1 − rft)2

σ2
1

+
(µ2 − rft)2

σ2
2

+

[
(µ1 − rft)2

σ2
1

(
− 1 +

σ2
1

w′NVNwN

)
+

(µ2 − rft)2

σ2
2

(
− 1 +

σ2
2

w′NVNwN

)
+ 2

(µ1 − rft)(µ2 − rft)
w′NVNwN

]
.

Using the orthogonality of wN,1 and wN,2, we have w′NVNwN = w′N,1VNwN,1 + w′N,2VNwN,2 =

σ2
1 + σ2

2, so that the term in square brackets can we rewritten as

−
(µ1 − rft)2

σ2
1

σ2
2

w′NVNwN
−

(µ2 − rft)2

σ2
2

σ2
1

w′NVNwN
+ 2

(µ1 − rft)(µ2 − rft)
w′NVNwN

=
1

w′NVNwN

(
− (µ1 − rft)2σ

2
2

σ2
1

− (µ2 − rft)2σ
2
1

σ2
2

+ 2(µ1 − rft)
σ2

σ1
(µ2 − rft)

σ1

σ2

)
= − 1

w′NVNwN

(
(µ1 − rft)

σ2

σ1
− (µ2 − rft)

σ1

σ2

)2
.

Hence,

SR2 =
(µ1 − rft)2

σ2
1

+
(µ2 − rft)2

σ2
2

− 1

w′NVNwN

(
(µ1 − rft)

σ2

σ1
− (µ2 − rft)

σ1

σ2

)2

≤
(µ1 − rft)2

σ2
1

+
(µ2 − rft)2

σ2
2

= (SR1)2 + (SR2)2.

Equality holds if and only if (
(µ1 − rft)

σ2

σ1
− (µ2 − rft)

σ1

σ2

)2
= 0,
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which, in turn, can be rearranged as
(µ1−rft)

σ2
1

=
(µ2−rft)

σ2
2

. �

This result clarifies that when a portfolio can be decomposed into two orthogonal components,

that is

wN = wN,1 + wN,2 with w′N,1VN wN,2 = 0,

then SR2 ≤ (SR1)2 + (SR2)2. However, it does not always follows that SR2 = (SR1)2 + (SR2)2,

unless the additional condition σ2SR1 − σ1SR2 = 0 holds.

IA.2.2 Extension of Roll (1980)

Roll (1980) shows that, in the absence of a risk-free rate, for any inefficient portfolio, one can

identify the subspace of portfolios that are orthogonal to this portfolio with minimum variance.

That is, corresponding to any inefficient portfolio, the number of zero-beta portfolios is infinite—

one for each level of the target mean. If the portfolio is efficient, then the subspace shrinks to a

single point; that is, there is a unique zero-beta portfolio. In order to obtain our theoretical results,

we extend the result in Roll (1980) to the case in which investors can invest also in a risk-free asset.

Proposition IA.2 (Extension of Roll (1980) to the case with a risk-free asset). Let wx
N be any,

possibly inefficient, portfolio. Let wz
N be the portfolio that satisfies

min
1

2
(wz

N )′VNwz
N s.t. (wx

N )′VNwz
N = 0

and

µ′Nwz
N + (1− 1′Nwz

N )rft = µz,

for a given target mean µz. Then

wz
N =

(
wx
N ,V

−1
N (µN − rft1N )

)( (σx)2 µx − rft
µx − rft (SRmv)2

)−1(
0

µz − rft

)
,

where
(
wx
N ,V

−1
N (µN −rft1N )

)
is the N×2 matrix obtained by joining the N×1 vector of portfolio

weights wx
N with the N × 1 vector V−1

N (µN − rft1N ).

Proof. We adapt Roll’s (1980) proof of the main theorem. The Lagrangian is

L(wz
N , λ1, λ2) = (wz

N )′VNwz
N − λ1((wx

N )′VNwz
N )− λ2(µ′Nwz

N + (1− 1′Nwz
N )rft − µz),

with first-order conditions

2VNwz
N =

(
VNwx

N , (µN − rft1N )
)( λ1

λ2

)
.
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Premultiplying both sides by 2−1
(
VNwx

N , (µN − rft1N )
)′

V−1
N gives

( 0
µz − rft

)
=

1

2

( (σx)2 µx − rft
µx − rft (SRmv)2

)( λ1

λ2

)
.

Substituting out for
( λ1

λ2

)
concludes the proof. �

Observe that when wx
N is efficient, then wz

N = 0N , which implies that the zero-beta portfo-

lio to wx
N is the portfolio that invests 100% in the risk-free asset. In fact, substituting wx

N =

γ−1V−1
N (µN − rft1N ) into the first constraint gives 0 = (wx

N )′VNwz
N = γ−1(µN − rft1N )′wz

N =

γ−1(µz − rft), where the last equality is due to the second constraint. Therefore, one obtains

µz = rft which, by no-arbitrage, implies wz
N = 0N .

Recall the well-known result that the entire efficient frontier of risky assets can be generated

from holding any two efficient portfolios. However, one can show that the efficient frontier of risky

assets can also be generated by holding two inefficient portfolios, as long as one is the minimum-

variance orthogonal portfolio of the other, which leads to the following:

Proposition IA.3 (Extension of Corollary 3 of Roll (1980) to the case with a risk-free asset). There

is a weighted average of, possibly inefficient, portfolio wx
N with a corresponding minimum-variance

orthogonal portfolio wz
N , which produces an efficient portfolio.

The above proposition implies that the subspace of minimum-variance portfolios (possibly in-

efficient) orthogonal to wx
N is given by the two lines described by the expression below:

µz = rft ± σz
√

(SRmv)2 − (SRx)2.

Notice from the equation above and the dashed and dotted lines in Figure 1 that the slopes of the

two lines are smaller (in absolute value) than the slopes of the capital market lines.ii For portfolios

that are efficient, the subspace shrinks to a single point, which is the risk-free rate of return, as one

can see from setting the Sharpe ratio of portfolio wx
N equal to the Sharpe ratio of the mean-variance

portfolio wmv
N in the equation above.

IA.3 Estimating the Approximating Model

We describe briefly how to estimate the APT model, which represents the approximating model

considered by the misspecification-averse investor, by maximum likelihood. In the first part of this

iiHuang and Litzenberger (1988) show that, depending on the level of the risk-free rate relative to the mean of the
global-minimum-variance portfolio, the capital market line could be sloping up or down.
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section, we consider estimation of the APT model with only asset-specific pricing errors and with

only tradable candidate factors, providing the main intuition for our estimator. In the second part,

we consider estimation of the general model when pricing errors associated omitted risk factors are

also present, and with both tradable and nontradable observed risk factors.

IA.3.1 Estimation of APT: Case of Asset-Specific Pricing Errors

In this section, we consider the case of asset-specific only pricing errors, i.e. pricing errors unrelated

to omitted risk factors (p = 0), which we estimate using (pseudo) maximum likelihood (ML). The

(pseudo) ML is a natural estimator for our model when the first two moments of asset returns

are specified correctly, although distributional assumptions (such as normality) are not required

except for efficiency. The (pseudo) ML estimator maximizes the unconditional joint distribution of( ret
f et

)
=
( rt

ft

)
− rft1N+K which, assuming i.i.d. error term εt for simplicity, equalsiii

L(θ̃) =− 1

2
log(det(Σ̃N ))− 1

2T

T∑
t=1

(
ret − α̃N − B̃N f et

)′
Σ̃−1
N

(
ret − α̃N − B̃N f et

)

− 1

2
log(det(Ω̃))− 1

2T

T∑
t=1

(
f et − λ̃

)′
Ω̃−1

(
f et − λ̃

)
, (IA9)

where θ̃ = (α̃′N , vec(B̃N )′, vech(Σ̃N )′, λ̃′, vech(Ω̃)′)′.iv Therefore, the ML estimators for αN ,BN

and ΣN coincide with the OLS estimators denoted here by θ̂, conditional on the realization of the

factors. The ML estimators for λ and Ω are the sample mean and covariance of the factors f et .

However, because the APT restriction is not guaranteed to hold for an arbitrary δapt, one

should consider the maximum-likelihood estimator subject to this restriction. Moreover, with the

parameter αN constrained by the APT restriction, imposing such a constraint may lead to a more

precise estimator of the true parameter values compared to the unconstrained estimator θ̂. In the

general case presented in the next section, , where one allows for both omitted pervasive risk and

asset-specific risk, imposing the APT restriction leads to identification of the APT parameters, in

particular for aN and λmiss.

iiiNotice that we have expressed the joint distribution as the product of a conditional distribution and a marginal
distribution. Relaxing the i.i.d. assumption requires specification of time-varying conditional means, conditional
variances, and conditional covariances.

ivHere det(·) denotes the determinant, vec(·) denotes the operator that stacks the columns of a matrix into a single
column vector, and vech(·) denotes the operator that stacks the unique elements of the columns of a symmetric matrix
into a single column vector.
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Proposition IA.1 (Parameter estimation by imposing asset-pricing restriction: Case for asset-spe-

cific pricing error). Suppose that the vector of asset returns, rt, satisfies Assumption 3.1. Then

θ̂MLC = argmax
θ̃

L(θ̃) subject to α̃′NΣ̃−1
N α̃N ≤ δapt,

where L(θ̃) is defined in (IA9). If
(∑T

t=1 ḟtḟ
′
t

)
is nonsingular, then θ̂MLC = (α̂′N,MLC, vec(B̂N,MLC)′,

vech(Σ̂N,MLC)′, λ̂′MLC, vech(Ω̂MLC)′)′ exists, where

α̂N,MLC =
1

1 + κ̂MLC

[
r̄eN − B̂N,MLCf̄ e

]
, (IA10)

B̂N,MLC =
( T∑
t=1

ṙtḟ
′
t

)( T∑
t=1

ḟtḟ
′
t

)−1
, and

Σ̂N,MLC =
1

T

T∑
t=1

(ṙt − B̂N,MLC ḟt)(ṙt − B̂N,MLC ḟt)
′,

in which κ̂MLC ≥ 0 is the optimal value of the Karush-Kuhn-Tucker multiplier, f̄ e = T−1
∑T

t=1 f et , r̄
e
N =

T−1
∑T

t=1 ret , ḟt = f et − 1
(1+κ̂MLC) f̄

e, ṙt = ret − 1
(1+κ̂MLC) r̄

e
N , and the MLC estimators, λ̂MLC and

vech(Ω̂MLC), coincide with the sample mean and sample covariance matrix of the factors ft.

Proof. The formulae for α̂N,MLC, B̂N,MLC and Σ̂N,MLC follow from solving the first-order condi-

tions associated with the Lagrangian problem:

{θ̂MLC , κ̂} = argmax
θ̃

argmax
κ̃≥0

L(θ̃)− κ̃(α̃′NΣ̃−1
N α̃N − δapt).

Start with κ̂MLC = 0. Then the MLC estimator for θ coincides with the OLS estimator θ̂, readily

obtained by setting κ̂MLC = 0 in the above formulae for θ̂MLC, and one needs to evaluate whether

α̂′NΣ̂−1
N α̂N > δapt. If the latter inequality holds, κ̂MLC = 0 violates the complementary slackness

condition and can be ruled out. Alternatively, when α̂′NΣ̂−1
N α̂N ≤ δapt, then we evaluate L(θ̂) and

then consider the case in which κ̂MLC > 0. In particular, by solving the first-order equation for

α̂N,MLC and κ̂MLC sequentially, one gets:

(1 + κ̂MLC)2 =

[
r̄eN − B̂N,MLCf̄ e

]′
Σ̂−1
N,MLC

[
r̄eN − B̂N,MLCf̄ e

]
δapt

, (IA11)

and now the case where κ̂MLC > 0 is feasible only when the right hand side of the above equation is

bigger than one. When this occurs, then one evaluates L(θ̂MLC). Note that, by (IA10) and (IA11),

α̂N,MLC will satisfy the constraint exactly, that is α̂′N,MLCΣ̂−1
N,MLCα̂N,MLC = δapt, by construction.

Incidentally, note that the estimates of B̂N,MLC and Σ̂N,MLC are function of κ̂MLC so a (simple)
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iterative procedure is required. Alternatively, if the right hand of the above equation side is smaller

than one, then the case κ̂MLC > 0 is ruled out by the complementary slackness condition, and one

retains the OLS estimator θ̂. Finally, when both cases κ̂MLC = 0 and κ̂MLC > 0 are feasible, one

simply needs to compare L(θ̂) with L(θ̂MLC), and select the corresponding estimate (either θ̂ or

θ̂MLC) that maximizes the log-likelihood function. However, in most cases, either κ̂MLC = 0 or

κ̂MLC > 0 is feasible, but not both, simplifying the solution of the Karush-Kuhn-Tucker problem.

Finally, for λ̂MLC and Ω̂MLC, one obtains precisely the sample mean and sample covariance

matrix of f et . �

IA.3.2 Estimation of APT: The General Case

We now explain how to estimate the APT allowing for both tradable and nontradable factors, and

for both asset-specific pricing errors and pricing errors arising from omitting pervasive risk factors.

Assume that

ret+1 = αN + B1N (λ1 + f1t+1 − E(f1t+1)) + B2N f e2t+1 + εt+1, with

αN = aN + ANλmiss and var(εt+1) = ANA′N + CN ,

where we set BN = (B1N ,B2N ), Ω = var(ft+1), ft+1 = (f ′1t+1, f
e′
2t+1)′, with f1t+1 denoting the set

of K1 nontradable observed factors and f e2t+1 the set of K2 tradable observed factors, expressed as

excess returns, where K = K1 + K2. We assume that the missing factors are uncorrelated with

the observed factors.v Given that f e2t are excess returns on tradable assets, their risk premia satisfy

λ2 = E(f e2t) and, to avoid confusion with the risk premia of the nontradable assets λ1, we will use

the expectation formulation for λ2.

The joint log-likelihood function takes the following form:

L(θ̃) =− 1

2
log(det(ÃNÃ′N + C̃N )) (IA12)

− 1

2T

T∑
t=1

(
ret − ÃN λ̃miss − ãN − B̃1N (λ̃1 + f1t − Ẽ(f1t))− B̃2N f e2t

)′
× (ÃNÃ′N + C̃N )−1

(
ret − ÃN λ̃miss − ãN − B̃1N (λ̃1 + f1t − Ẽ(f1t))− B̃2N f e2t

)
− 1

2
log(det(Ω̃))− 1

2T

T∑
t=1

(ft − Ẽ(ft))
′Ω̃−1(ft − Ẽ(ft)).

Without loss of generality, one can assume that the missing factors have unit variance, achieving

identification of AN . However, it turns out that λmiss and αN cannot be identified separately

unless the APT restriction is imposed, as shown in Proposition IA.2 below.

vThe estimator can be extended to the case of correlated observed and omitted risk factors; details are available
upon request.
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Proposition IA.2 (Parameter estimation of APT: General Case). Suppose that the vector of

asset returns, rt, satisfies Assumption 3.1 and that Σfe2 f
e
2
− f̄2

e
f̄2
e′

is nonsingular, where Σfe2 f
e
2

=

T−1
∑T

t=1 f e2tf
e′
2t and f̄2

e
= T−1

∑T
t=1 f e2t. Then

θ̂MLC = argmax
θ̃

L(θ̃) subject to ã′NΣ̃−1
N ãN ≤ δapt,

where L(θ̃) is defined in (IA12), and θ̂MLC = (â′N,MLC, λ̂′miss,MLC, λ̂′1,MLC, Ê(f1t)
′
MLC , Ê(f e2t)

′
MLC ,

vec(ÂN,MLC)′, vec(B̂N,MLC)′, vech(ĈN,MLC)′, vech(Ω̂MLC)′)′.

(i) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂MLC > 0, setting

DN = (AN ,B1N ), λ = (λ′miss,λ
′
1)′,

then, using ⊗ to denote the Kronecker product,

vec(B̂2N,MLC) =
(

(Σfe2 f
e
2
⊗ IN )− (f̄ e2 f̄ e′2 ⊗ ĜN )

)−1
vec
(
Σhfe2

− ĜN h̄N f̄ e
′

2

)
, (IA13)

λ̂MLC = (D̂′N,MLC Σ̂−1
N,MLC D̂N,MLC)−1D̂′N,MLC Σ̂−1

N,MLC

(
h̄N − B̂2N,MLC f̄ e2

)
,

âN,MLC =
1

κ̂MLC + 1

(
h̄N − B̂2N,MLC f̄ e2 − D̂N,MLCλ̂MLC

)
,

where Σ̂N,MLC = ÂN,MLCÂ′N,MLC + ĈN,MLC, Σhfe2
= T−1

∑T
t=1 htf

e′
2t, h̄N = T−1

∑T
t=1 ht with

ht = ret − B̂1N,MLC(f1t − f̄1) and f̄1 = T−1
∑T

t=1 f1t, and

ĜN =
1

(κ̂MLC + 1)
IN +

κ̂MLC

(κ̂MLC + 1)
D̂N,MLC(D̂′N,MLC Σ̂−1

N,MLC D̂N,MLC)−1D̂′N,MLC Σ̂−1
N,MLC.

Note that D̂N,MLC = (ÂN,MLC, B̂1N,MLC) and ĈN,MLC do not admit a closed-form solution and, as

before, Ê(ft)MLC and Ω̂MLC coincide with the sample mean and sample covariance of the observed

factors ft.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂MLC = 0 one can estimate

only αN = aN + DNλ but not the two components separately, and one obtains

α̂N,MLC = r̄eN − B̂2N,MLC f̄ e2 ,

and the expression for vec(B̂2N,MLC) can be obtained by setting κ̂MLC = 0 in the terms that appear

in (IA13). The expressions for Ê(ft)MLC and Ω̂MLC are unchanged, and, as before, the expressions

for the estimators of D̂N,MLC and ĈN,MLC do not admit a closed-form solution.

Proof. Within this proof, for simplicity, we do not use the ·̃ notation to denote feasible parameter

values.
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Defining by θ̂ the MLC corresponding to κ̂ = 0, this is unfeasible whenever we have that

â′NΣ̂−1
N âN > δ. Similarly, case κ̂MLC > 0 is unfeasible whenever,(
r̄eN − B̂2N,MLC f̄ e2 − D̂N,MLC λ̂MLC

)′
Σ̂−1
N,MLC

(
r̄eN − B̂2N,MLC f̄ e2 − D̂N,MLC λ̂MLC

)
< δapt,

because (1 + κ̂MLC)2 =

[
r̄eN−B̂2N,MLC f̄e2−D̂N,MLC λ̂MLC

]′
Σ̂−1
N,MLC

[
r̄eN−B̂2N,MLC f̄e2−D̂N,MLC λ̂MLC

]
δapt

. When

both cases are feasible, the optimal value for the Karush-Kuhn-Tucker multiplier will be greater

than zero or equal to zero, depending on which case maximizes the log-likelihood, namely de-

pending on whether L(θ̂MLC) or L(θ̂) is largest, respectively. Note that when κMLC > 0 then

â′N,MLCΣ̂−1
N,MLCâN,MLC = δapt by construction.

We now derive the formulae for the estimators. Assume for now that case κ̂ > 0 holds. Dif-

ferentiating the penalized log-likelihood with respect to λ, aN , and the Lagrange multiplier κ, the

first K∗ +N equations, setting K∗ = p+K1, (after some algebra) are:

( DN
′Σ−1

N

IN

)(
r̄eN −B2N f̄ e2

)
=
( D′NΣ−1

N DN D′NΣ−1
N

DN (1 + κ̂MLC)IN

)(
λ̂MLC,MLC

âN,MLC

)
,

where recall that ΣN = ANA′N + CN , and noting that all the expressions above and below are

left as function of the feasible values for CN and DN (as opposed to their MLC values). It

is straightforward to see that, because of the APT restriction, λ and aN can now be identified

separately, as long as κ̂MLC > 0. In fact, the above system of linear equations can be solved

because the matrix pre-multiplying λ̂MLC and âN,MLC is non-singular for every κ̂MLC > 0, leading

to the closed-form solution:

λ̂MLC = (D′NΣ−1
N DN )−1D′NΣ−1

N

(
r̄eN −B2N,f̄

e
2

)
, (IA14)

âN,MLC =
1

κ̂MLC + 1

(
r̄eN −B2N f̄ e2 −DN λ̂

)
. (IA15)

Turning now to the first-order condition with respect to the generic (a, b)th element of B2N,MLC,

denoted by B2ab with 1 ≤ a ≤ N, 1 ≤ b ≤ K2, one obtains

− 1

T

T∑
t=1

(
ret −ANλmiss − aN −B1N (λ1 + f1t − f̄1)− B̂2N,MLCf e2t

)′
Σ−1
N (−

∂B2N,MLC

∂B2ab
f e2t) = 0,

which can be re-arranged as

Σrefe2
− (aN + ANλmiss + B1Nλ1)f̄ e2

′ −B1N (Σf1fe2
− f̄1f̄

e′
2 )− B̂2N,MLCΣfe2 f

e
2

= 0N×K2 .

Now, inserting (IA14) and (IA15) into the above expression, setting

GN =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
DN (D′NΣ−1

N DN )−1D′NΣ−1
N ,
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and re-arranging terms yields

B̂2N,MLCΣfe2 f
e
2
−GN B̂2N,MLCf̄

e
2 f̄

e′
2 = Σrefe2

−GN r̄
e
N f̄

e′
2 −B1N (Σf1fe2

− f̄1f̄
e′
2 ),

which can be rewritten more succinctly as 1
T

∑T
t=1 f e2tg

′
t = 0K2×N , with gt =

(
ht − GN h̄N −

B̂2N,MLCf e2t + GN B̂2N,MLCf̄ e2

)
. Taking the vec operator and solving for B̂2N,MLC gives the desired

expression in (IA13).

We need to show that a solution for B̂2N,MLC exists. This requires one to establish that the

matrix
(

(Σfe2 f
e
2
⊗ IN )− (f̄ e2 f̄ e′2 ⊗GN )

)
is invertible. This matrix can be written as

(
(Σfe2 f

e
2
⊗ IN )− (f̄ e2 f̄ e′2 ⊗GN )

)
=
(

((Σfe2 f
e
2
− f̄ e2 f̄ e′2 )⊗ IN ) + (f̄ e2 f̄ e′2 ⊗ (IN −GN ))

)
.

The first matrix on the right hand side is non-singular, given the assumptions made. One then

just needs to show that the second matrix is positive semi-definitive. In turn, this follows because

(IN −GN ) is positive semi-definite, given

IN −GN = IN −
1

(κ̂MLC + 1)
IN − (

κ̂MLC

1 + κ̂MLC
)DN (D′NΣ−1

N DN )−1D′NΣ−1
N

= (
κ̂MLC

1 + κ̂MLC
)(IN −DN (D′NΣ−1

N DN )−1D′NΣ−1
N )

= (
κ̂MLC

1 + κ̂MLC
)ΣN (Σ−1

N −Σ−1
N DN (D′NΣ−1

N DN )−1D′NΣ−1
N )

= (
κ̂MLC

1 + κ̂MLC
)ΣNΣ

−1/2
N (IN −Σ

−1/2
N DN (D′NΣ−1

N DN )−1D′NΣ
−1/2
N )Σ

−1/2
N .

The right-hand side is the product of positive-definite matrices, namely ΣN and Σ
−1/2
N , and of

the matrix IN −Σ
−1/2
N DN (D′NΣ−1

N DN )−1D′NΣ
−1/2
N , which is the projection matrix orthogonal to

Σ
−1/2
N DN , and therefore, positive semidefinite.

Therefore, plugging B̂2N,MLC = B̂2N (DN ,CN ) into λ̂MLC and âN,MLC, and then λ̂MLC into

âN,MLC, one obtains that

B̂2N,MLC = B̂2N (DN,,CN ), λ̂MLC = λ̂(DN,,CN ), âN,MLC = âN (DN ,CN ), and κ̂ = κ̂(DN ,CN ).

Substituting them into L(θ) − κ(a′NΣ−1
N aN − δ), gives the concentrated log-likelihood function,

which is a function of only DN and CN and it will be maximized numerically to obtain D̂N,MLC

and ĈN,MLC. Observe that the penalization term vanishes for the concentrated log likelihood

function for either κ̂ = 0 and κ̂MLC > 0.
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(ii) Suppose now that κ̂ = 0. One can clearly obtain a unique solution for (DN , IN )
(
λ̂

âN,

)
=

DN λ̂+ âN . However, to solve for λ̂ and âN separately, one needs to invert the matrix( D′NΣ−1
N

IN

)
(DN , IN ) =

( D′NΣ−1
N DN D′NΣ−1

N

DN IN

)
,

which is not possible because it is of dimension (N +K∗)× (N +K∗) but of rank N , because the

left-hand side shows that it is obtained from the product of two matrices of dimension (N+K∗)×N .

Thus, only the sum DN λ̂+ âN can be estimated. All the other parameters are identified separately

and their expressions follow from differentiating L(θ) and solving the resulting first-order conditions.

For instance, the formula for B̂2N follows from setting ĜN = IN into (IA13). �

IA.4 Evaluating Out-of-Sample Performance for Simulated Data

In Section 5 of the main text, we have compared the performance of the strategies developed in this

paper to that of the benchmark strategies for two empirical data sets. In this section, we compare

the performance for simulated data, which allows us to evaluate how the relative performance of

our strategies is influenced by changes in the data-generating process.

The data and experiment design are explained in Section 5.1 of the main text. Details of how

the model parameters are estimated are given in Section 5.2. The benchmark strategies we consider

are described in Section 5.3 and the robust-mean-variance portfolios whose performance we evaluate

are described in Section 5.4.

IA.4.1 Simulation Design

In our simulation analysis, to match the two empirical data sets we study (see Section 5.1 for

details), we consider the case in which the number of assets is N = 30 and N = 100, which allows

us to illustrate the effect of having a small and a large number of assets. Throughout all our

experiments, the investor assumes, and therefore estimates, a three-factor model:

rt = αN + BN ft + εt.

We assume that the risk-free interest rate is zero and that the observed factors are uncorrelated

with an IID Gaussian distribution. We calibrate the distribution of the three factors to match the

mean and standard deviations of the three Fama-French factors, with the vector of means equal to

{ 8
12×100 ,

3
12×100 ,

4
12×100} and the vector of standard deviations equal to { 16√

12×100
, 11√

12×100
, 10√

12×100
}.

We consider an environment where the mispricing allows for a missing pervasive factor (p = 1)

and also a component unrelated to the pervasive factor; that is, αN = AN λmiss +aN . Both aN and
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AN are generated from an IID multivariate Gaussian distribution with mean 0N and covariance

matrices equal to σ2
aIN and σ2

AIN , respectively. We calibrate the values of these parameters using

estimates based on the DJ30 dataset, so the value of σa is set equal to 1
3 ×

5√
12×100

and the value

of σA is equal to 6√
12×100

.vi The monthly covariance matrix is ΣN = ANA′N + σ2
ε IN , where εt is

IID with a multivariate Gaussian distribution with a monthly mean of 0 and a standard deviation

of σε = 20√
12×100

. Note that to ensure identification, just as in MacKinlay and Pástor (2000), we

set the variance of the missing factor equal to one, which implies that the magnitude of the risk

premium λmiss coincides with the Sharpe ratio for the missing factor. Based on the estimate from

the DJ30 data set, λmiss is set equal to 65√
12×100

. Based on these parameter values, we consider 100

simulations and report results averaged across these simulations.

An important element of the estimation procedure is the choice of δapt that appears in the APT

constraint in (36). Ross (1976, p. 354) suggests constraining δapt to be a multiple of the Sharpe ratio

of the market portfolio. Instead, we use the 5-fold cross-validation procedure in Hastie, Tibshirani,

and Wainwright (2015, Section 2.3) to identify δapt, by maximizing the Sharpe ratio of the holdout

portfolio returns in the cross-validation approach. To ensure that there is no look-ahead bias, when

choosing δapt we rely only on data in the observation window.

IA.4.2 Out-of-sample performance for simulated data sets

The performance metrics for the four benchmark strategies and the four strategies developed in

this paper for the data set consisting of monthly simulated returns for N = 30 and N = 100 stocks

are reported in Panels A and B of Table IA.1. Each panel reports, for each strategy, the mean and

Sharpe ratio of the per annum returns in excess of the risk-free rate. The table also reports the

improvement in Sharpe ratio of each strategy relative to the Sharpe ratio of the EW and MAXSER

strategies; for instance, when comparing strategy k to EW, we report (SRk−SREW)/SREW. Finally,

the table reports the t-statistic for the difference between each strategy’s Sharpe ratio and the

Sharpe ratios of the EW and MAXSER strategies. Given that the simulated data is generated

using normal distributions, we compute the t-statistic using the approach in Lo (2002).vii

We start by looking at the performance of the benchmark strategies reported in the first four

rows of Panel A.1 for the “base case” in Table IA.1. We see that the MV portfolio strategy achieves

viThe value for σa is one third of the value used in MacKinlay and Pástor (2000) and, as we show below, using a
larger value of σa would lead to stronger results.

viiSpecifically, we construct the test statistic for the null hypothesis that SRk = SR0 using the limiting distribution
of ŜR reported in Lo (2002, p. 38), where the standard error is given in his equation (9). Here SRk means the Sharpe
ratio associated with strategy k, while SR0 is the Sharpe ratio associated with our benchmark (EW or MAXSER).

Thus, the t-statistic is (SRk − SR0)/ŜE0, where ŜE0 is the standard error under the null hypothesis obtained using
Lo (2002, eq. 38).
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an annual Sharpe ratio of 0.329, while that of GMV-LW is slightly higher, 0.395. The GMV-LW

portfolio is only slightly better than the MV portfolio because the number of assets is small. Even

though the number of risky assets for this data set is relatively small, N = 30, the EW portfolio

with a Sharpe ratio of 0.419 outperforms both of these optimizing strategies—as has been shown

before in the literature (DeMiguel et al., 2009b). The MAXSER strategy, developed in Ao et al.

(2019), outperforms all these strategies—it has a substantially higher Sharpe ratio of 0.835, which

is 99.2% higher than the Sharpe ratio of the EW portfolio.

We now compare the performance of our strategies, reported in the last four rows of Panel A.1

of Table IA.1, to that of the benchmark strategies described above. The strategy “RMV using V”

achieves a Sharpe ratio of 0.918, which is 119% greater than that of the EW portfolio and 10%

higher than that of MAXSER. The Sharpe ratio of the “RMV using V: OptComb” strategy, which

combines the alpha and beta portfolios optimally, is even higher, 0.932, which is 122.3% larger than

that of the EW portfolio and 11.6% higher than that of MAXSER, an increase that is statistically

significant (the t-statistic is greater than 4). The results for the other two strategies, “RMV using

Ω” and “RMV using Ω: OptComb,” are similar. In both cases, the Sharpe ratios are greater than

those of the EW and MAXSER strategies, with the difference being statistically significant (the

t-statistic is around 3); the difference is a bit smaller because replacing VN with Ω works better

when N is large, as described below.

In addition to the “base case” in Panel A.1 described above, we look at five variations of the

data-generating process in Panels B to F of Table IA.1. Panel A.2 considers the case in which the

residual risk is 75% of its base-case value. In this case, the Sharpe ratios of the strategies that

rely on estimated mean returns improve.viii The Sharpe ratio of the MV strategy improves from

0.329 in Panel A to 0.336 in Panel B. Much more striking is the improvement in the Sharpe ratio of

MAXSER: from 0.835 to 1.157. However, even in this setting, the four strategies developed in this

paper outperform MAXSER, with the t-statistic for the difference in Sharpe ratios ranging from

2.055 to 4.469.

Panel A.3 considers the case in which the standard deviation of aN , which represents the

cross-section dispersion of the pure pricing errors across assets, is 1.25 times its base-case value

in Panel A. In this case, the four portfolios developed in this paper outperform the EW portfolio

substantially, but the improvement in their performance relative to MAXSER is not statistically

significant.

Panel A.4 considers the case in which the standard deviation of AN , is 1.25 times it base-case

value in Panel A. In this case, the performance of the MV portfolio deteriorates substantially, but

viiiThe Sharpe ratio of the unscaled EW portfolio does not change at all, but that of the EW strategy scaled to
achieve a particular level of volatility increases.
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that of MAXSER improves. However, the four strategies developed in this paper still outperform

EW, with a Sharpe ratio that is about 90% higher with the t-statistic for the difference in Sharpe

ratios being greater than 25. Our strategies also outperform MAXSER, with the t-statistic for the

difference in Sharpe ratios ranging from 2.314 to 5.380.

Panels A.5 and A.6 consider the cases in which the true risk premium on the observed factor,

λ and the missing factor, λmiss, respectively, is set to 1.25 times its base-case value in Panel A.1.

Even in this setting, “RMV using V: OptComb” has a Sharpe ratio whose difference relative to all

the other strategies is statistically significant.

To understand how the performance of our strategies changes with the number of risky assets, we

now study the results in Panel B of Table IA.1, which is for the case of N = 100 stocks. Comparing

the results for the base case in Panel B.1 to those in Panel A.1, we find the performance of the

MV and GMV-LW strategies drops. As is well known, this is because the estimation problem

becomes more severe as the number of assets increases. On the other hand, the performance of

the EW and MAXSER strategies improves with N . However, the performance of the robust mean-

variance portfolios developed in this paper improves even more, which is because our theory applies

particularly well to the case of large N given that it is based on the APT. The robust-mean-variance

portfolios achieve a Sharpe ratio more than 175% higher than that of the EW portfolio (with t-

statistic greater than 49) and more than 30% higher than that of MAXSER (with t-statistic greater

than 17).

In Panel B of Table IA.1, we can look at how the performance of the robust-mean-variance

portfolios varies as we change the parameters of the data-generating process when we have N = 100

stocks, just as we did in Panel A for the case of N = 30 stocks. Panels B.2 to B.6 of Table IA.1

show that in each case the results are much stronger than in the corresponding cases considered in

Panel A of Table IA.1. In all five panels, the Sharpe ratios of the robust-mean-variance portfolios

are about 150% higher than of the EW portfolio, with the t-statistic for the difference ranging from

40 to 95. When compared to MAXSER, the Sharpe ratios of the robust-mean-variance portfolios

are about 10% to 30% higher, with the t-statistic for the difference ranging from 6 to 33.

These results provide strong evidence that the robust-mean-variance portfolios deliver perfor-

mance gains out of sample that are economically substantial and statistically significant relative to

the strategies in the existing literature. These gains are particularly striking when the number of

assets is large, which is a case that traditional methodologies find especially challenging to handle.

In Section 5 of the main text, we show that the performance gains demonstrated in simulated data

are also present in empirical data.
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Table IA.1: Out-of-sample portfolio performance: Simulated returns
This table reports, for monthly returns of N = 30 assets (Panel A) and N = 100 assets (Panel B) generated via Monte Carlo
simulations, the performance of four benchmark strategies, and four strategies developed in this paper when the investor targets
volatility of 0.05 ×

√
12 = 0.1732 per year. The parameters for all strategies are estimated using a rolling window of T = 120

monthly observations. For each strategy, the table reports its per annum return’s mean and Sharpe ratio. The table also reports
the improvement in the Sharpe ratio of each strategy with respect to the EW and MAXSER strategies; for instance, when
comparing strategy k to EW, SR wrt EW is (SRk − SREW)/SREW. Finally, the table reports the t-statistics for the difference
between each strategy’s Sharpe ratio and the EW and MAXSER strategies.

Mean SR SR wrt t-stat wrt
p.a. p.a. EW MAXSER EW MAXSER

Panel A: For DJIA 30 constituents

Panel A.1: Base case
MV 0.168 0.329 −0.215 −0.606 −4.646 −25.538
GMV-LW 0.096 0.395 −0.058 −0.527 −1.251 −22.215
EW 0.156 0.419 0.000 −0.498 NA −20.990
MAXSER 0.204 0.835 0.992 0.000 21.443 NA
RMV using V 0.168 0.918 1.190 0.100 25.818 4.283
RMV using V: OptComb 0.156 0.932 1.223 0.116 26.446 4.898
RMV using Ω 0.168 0.894 1.132 0.071 24.488 2.980
RMV using Ω: OptComb 0.156 0.908 1.165 0.087 25.283 3.759

Panel A.2: Low σε (0.75 × base case)
MV 0.240 0.336 −0.260 −0.710 −6.068 −40.406
GMV-LW 0.144 0.385 −0.153 −0.668 −3.569 −38.019
EW 0.144 0.454 0.000 −0.608 NA −34.610
MAXSER 0.228 1.157 1.550 0.000 36.229 NA
RMV using V 0.228 1.247 1.748 0.078 40.954 4.513
RMV using V: OptComb 0.216 1.247 1.748 0.078 40.908 4.469
RMV using Ω 0.228 1.199 1.641 0.036 38.380 2.055
RMV using Ω: OptComb 0.216 1.233 1.718 0.066 40.242 3.834

Panel A.3: High σa (1.25 × base case)
MV 0.204 0.391 −0.252 −0.648 −6.763 −35.606
GMV-LW 0.144 0.464 −0.113 −0.583 −3.093 −32.076
EW 0.144 0.523 0.000 −0.530 NA −29.101
MAXSER 0.216 1.112 1.126 0.000 30.255 NA
RMV using V 0.216 1.136 1.172 0.022 31.559 1.254
RMV using V: OptComb 0.192 1.129 1.159 0.016 31.071 0.784
RMV using Ω 0.228 1.109 1.119 −0.003 30.116 −0.134
RMV using Ω: OptComb 0.192 1.129 1.159 0.016 31.198 0.907

Panel A.4: High σA (1.25 × base case)
MV 0.072 0.048 −0.919 −0.955 −28.025 −50.524
GMV-LW 0.096 0.513 −0.140 −0.519 −4.261 −27.499
EW 0.144 0.596 0.000 −0.442 NA −23.371
MAXSER 0.204 1.067 0.791 0.000 24.123 NA
RMV using V 0.204 1.133 0.901 0.062 27.421 3.195
RMV using V: OptComb 0.204 1.174 0.971 0.101 29.677 5.380
RMV using Ω 0.204 1.112 0.866 0.042 26.511 2.314
RMV using Ω: OptComb 0.204 1.160 0.948 0.088 28.897 4.625

Panel A.5: High λ (1.25 × base case)
MV 0.168 0.319 −0.471 −0.678 −14.190 −33.548
GMV-LW 0.120 0.565 −0.063 −0.430 −1.596 −21.270
EW 0.156 0.603 0.000 −0.392 NA −19.714
MAXSER 0.180 0.991 0.644 0.000 20.221 NA
RMV using V 0.180 1.015 0.684 0.024 21.397 1.147
RMV using V: OptComb 0.192 1.105 0.833 0.115 26.019 5.653
RMV using Ω 0.180 0.998 0.655 0.007 20.562 0.332
RMV using Ω: OptComb 0.180 1.057 0.753 0.066 23.654 3.347

Panel A.6: High λmiss (1.25 × base case)
MV 0.192 0.436 −0.300 −0.564 −9.565 −28.164
GMV-LW 0.096 0.513 −0.178 −0.488 −5.672 −24.366
EW 0.144 0.624 0.000 −0.377 NA −18.834
MAXSER 0.192 1.001 0.606 0.000 19.307 NA
RMV using V 0.192 1.025 0.644 0.024 20.474 1.138
RMV using V: OptComb 0.180 1.046 0.678 0.045 21.614 2.250
RMV using Ω 0.168 0.980 0.572 −0.021 18.287 −0.995
RMV using Ω: OptComb 0.180 1.039 0.667 0.038 21.251 1.896



Mean SR SR wrt t-stat wrt
p.a. p.a. EW MAXSER EW MAXSER

Panel B: For S&P 500 constituents

Panel B.1: Base case
MV 0.144 0.048 −0.910 −0.957 −25.253 −53.635
GMV-LW 0.144 0.121 −0.776 −0.893 −21.525 −50.054
EW 0.120 0.540 0.000 −0.524 NA −29.380
MAXSER 0.300 1.136 1.103 0.000 30.588 NA
RMV using V 0.300 1.510 1.795 0.329 49.794 18.448
RMV using V: OptComb 0.288 1.566 1.897 0.378 52.639 21.181
RMV using Ω 0.300 1.496 1.769 0.317 49.083 17.764
RMV using Ω: OptComb 0.288 1.562 1.891 0.375 52.462 21.010

Panel B.2: Low σε (0.75 × base case)
MV 0.192 0.042 −0.934 −0.976 −29.930 −78.455
GMV-LW 0.144 0.128 −0.796 −0.926 −25.502 −74.460
EW 0.180 0.627 0.000 −0.640 NA −51.451
MAXSER 0.444 1.742 1.779 0.000 57.026 NA
RMV using V 0.432 2.290 2.652 0.314 84.965 25.208
RMV using V: OptComb 0.420 2.477 2.950 0.421 94.612 33.912
RMV using Ω 0.432 2.279 2.635 0.308 84.545 24.829
RMV using Ω: OptComb 0.420 2.456 2.917 0.410 93.541 32.945

Panel B.3: High σa (1.25 × base case)
MV 0.108 0.028 −0.957 −0.985 −31.652 −82.029
GMV-LW 0.144 0.111 −0.829 −0.939 −27.406 −78.236
EW 0.120 0.648 0.000 −0.645 NA −53.751
MAXSER 0.408 1.826 1.818 0.000 60.164 NA
RMV using V 0.396 2.099 2.241 0.150 74.142 12.488
RMV using V: OptComb 0.384 2.252 2.476 0.233 81.986 19.496
RMV using Ω 0.384 2.072 2.198 0.135 72.644 11.150
RMV using Ω: OptComb 0.372 2.224 2.433 0.218 80.582 18.241

Panel B.4: High σA (1.25 × base case)
MV 0.168 0.031 −0.952 −0.979 −31.782 −70.052
GMV-LW 0.084 0.097 −0.852 −0.936 −28.374 −66.884
EW 0.120 0.655 0.000 −0.566 NA −40.501
MAXSER 0.300 1.507 1.302 0.000 43.557 NA
RMV using V 0.312 1.635 1.497 0.085 50.101 6.084
RMV using V: OptComb 0.300 1.708 1.608 0.133 53.808 9.532
RMV using Ω 0.312 1.649 1.519 0.094 50.808 6.742
RMV using Ω: OptComb 0.288 1.690 1.582 0.122 52.947 8.731

Panel B.5: High λ (1.25 × base case)
MV 0.016 0.038 −0.944 −0.975 −32.672 −69.312
GMV-LW 0.024 0.177 −0.740 −0.882 −25.580 −62.700
EW 0.144 0.679 0.000 −0.546 NA −38.854
MAXSER 0.300 1.496 1.204 0.000 41.679 NA
RMV using V 0.324 1.642 1.418 0.097 49.057 6.878
RMV using V: OptComb 0.300 1.746 1.571 0.167 54.364 11.825
RMV using Ω 0.300 1.642 1.418 0.097 49.082 6.901
RMV using Ω: OptComb 0.300 1.725 1.541 0.153 53.257 10.793

Panel B.6: High λmiss (1.25 × base case)
MV 0.168 0.111 −0.831 −0.927 −27.714 −66.408
GMV-LW 0.084 0.201 −0.693 −0.867 −23.116 −62.134
EW 0.120 0.655 0.000 −0.567 NA −40.649
MAXSER 0.324 1.510 1.307 0.000 43.734 NA
RMV using V 0.312 1.673 1.556 0.108 51.981 7.666
RMV using V: OptComb 0.312 1.808 1.762 0.197 58.969 14.161
RMV using Ω 0.312 1.663 1.540 0.101 51.556 7.270
RMV using Ω: OptComb 0.300 1.777 1.714 0.177 57.377 12.681
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