
Are There Too Many Minibuses in Cape Town?

Privatized Provision of Public Transit

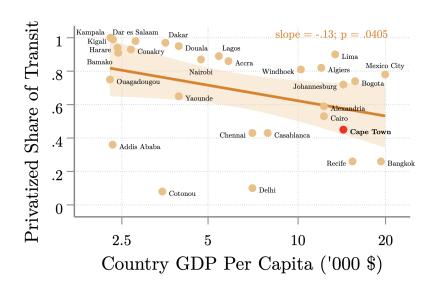
Lucas Conwell April 2023

Long Commutes in Lower-Income Countries

Typical Recommendation: Formal "Bus Rapid Transit"

Sources: ODA Ltd.; Creamer Media's Engineering News

Typical Recommendation: Formal "Bus Rapid Transit"


Sources: ODA Ltd.; Creamer Media's Engineering News

The Limits of Bus Rapid Transit: A Cape Town Case Study

Why BRT isn't right for every city.

- Bloomberg

Alternative: Privatized Shared Transit

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers ⇒ wait times
 - 2 Commuter home + work + mode choice [time + quality]

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers ⇒ wait times
 - 2 Commuter home + work + mode choice [time + quality]
- Data, newly-collected
 - 1 $\frac{\text{buses}}{\text{passenger}} \Rightarrow \text{wait times}$ [ID: demand shocks w/i 44 routes]
 - 2 Stated preferences of commuters [ID: randomized time, quality]

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers ⇒ wait times
 - 2 Commuter home + work + mode choice [time + quality]
- Data, newly-collected
 - 1 $\frac{\text{buses}}{\text{passenger}} \Rightarrow \text{wait times}$ [ID: demand shocks w/i 44 routes]
 - 2 Stated preferences of commuters [ID: randomized time, quality]
- · Policies to optimize, vs. "typical" formal transit investments
 - 1 Social Planner: optimally increase fares on longer routes
 - 2 Station Security: greatest net gains

- Model of privatized shared transit
 - **1** Minibuses enter + match with passengers ⇒ wait times
 - 2 Commuter home + work + mode choice [time + quality]
- · Data, newly-collected
 - 1 $\frac{\text{buses}}{\text{passenger}} \Rightarrow \text{wait times}$ [ID: demand shocks w/i 44 routes]
 - 2 Stated preferences of commuters [ID: randomized time, quality]
- · Policies to optimize, vs. "typical" formal transit investments
 - 1 Social Planner: optimally increase fares on longer routes
 - 2 Station Security: greatest net gains
 - commute time/quality + relocation + environmental

▶ Under Discussion

Literature

- Public transit and (developing-country) city structure
 Glaeser, Kahn, Rappaport '08; Ahlfeldt, Redding, Sturm, Wolf '15
 Heblich, Redding, Sturm '20; Balboni, Bryan, Morten, Siddiqi '20
 Tsivanidis '22; Warnes '21, Zarate '21
 - \Rightarrow Privatized transit.

Literature

- Public transit and (developing-country) city structure
 Glaeser, Kahn, Rappaport '08; Ahlfeldt, Redding, Sturm, Wolf '15
 Heblich, Redding, Sturm '20; Balboni, Bryan, Morten, Siddiqi '20
 Tsivanidis '22; Warnes '21, Zarate '21
 - ⇒ Privatized transit.
- · Road congestion

Allen and Arkolakis '21; Almagro, Barbieri, Castillo, Hickok, Salz '22 Barwick, Li, Waxman, Wu, Xia '22; Fajgelbaum and Schaal '20 Akbar, Couture, Duranton, Storeygard '23

 \Rightarrow Wait times and fares \Rightarrow privatized transit policies.

Literature

- Public transit and (developing-country) city structure
 Glaeser, Kahn, Rappaport '08; Ahlfeldt, Redding, Sturm, Wolf '15
 Heblich, Redding, Sturm '20; Balboni, Bryan, Morten, Siddiqi '20
 Tsivanidis '22; Warnes '21, Zarate '21
 - ⇒ Privatized transit.
- Road congestion

Allen and Arkolakis '21; Almagro, Barbieri, Castillo, Hickok, Salz '22 Barwick, Li, Waxman, Wu, Xia '22; Fajgelbaum and Schaal '20 Akbar, Couture, Duranton, Storeygard '23

- \Rightarrow Wait times and fares \Rightarrow privatized transit policies.
- Decentralized transport markets
 Brancaccio, Kalouptsidi, Papageorgiou '20
 Brancaccio, Kalouptsidi, Papageorgiou, Rosaia '22
 - \Rightarrow Urban transport.

Today's Talk

Context and Facts

Model

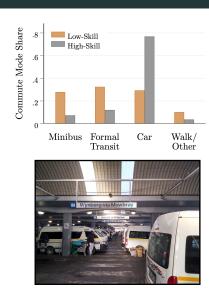
Data and Estimation

Model Fit

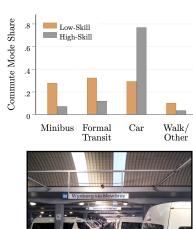
Transport Policies

Today's Talk

Context and Facts

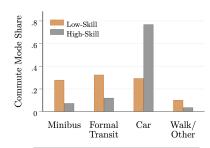

Model

Data and Estimation

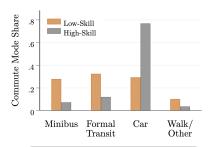

Model Fit

Transport Policies

Large market share
 ¹/₃ of low-skill commuters


- Large market share ¹/₃ of low-skill commuters
- Small firms avg. < 2 buses $\frac{1}{2}$ informal

- Large market share
 ¹/₃ of low-skill commuters
- Small firms avg. < 2 buses


 ¹/₂ informal
- Enter specific route
 = origin × destination

- Large market share
 ¹/₃ of low-skill commuters
- Small firms avg. < 2 buses

 ¹/₂ informal
- Enter specific route= origin × destination
- Fares: distance-based set by gov't + route "association."

1 Off-bus wait avg. \approx 9 min.

1 Off-bus wait avg. \approx 9 min.

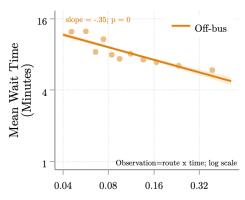
Queues, especially during certain times of the day are impossibl[y long]. -"Pros Cons of Minibus Taxis" on Medium

1 Off-bus wait avg. \approx 9 min.

2 On-bus wait avg. \approx 3 min.

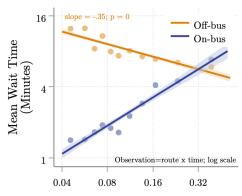
1 Off-bus wait avg. \approx 9 min.

2 On-bus wait avg. \approx 3 min.


One...inefficient practice...is that minibus taxis generally only leave when they are full. -World Bank (2018)

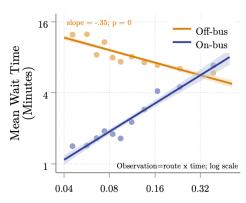
1 Off-bus wait avg. \approx 9 min.

2 On-bus wait avg. \approx 3 min.


Ratio of Loading Buses to Waiting Passengers (Route by Time Level)

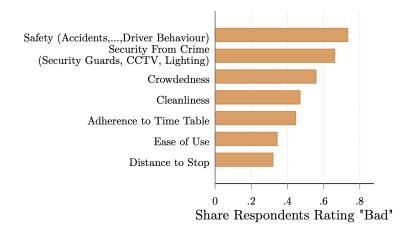
1 Off-bus wait avg. \approx 9 min.

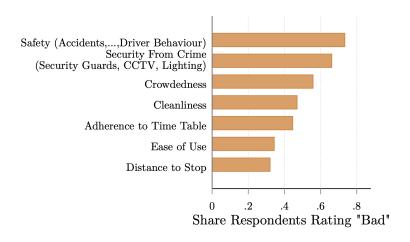
2 On-bus wait avg. \approx 3 min.


Ratio of Loading Buses to Waiting Passengers (Route by Time Level)

1 Off-bus wait avg. \approx 9 min.

2 On-bus wait avg. \approx 3 min.




Ratio of Loading Buses to Waiting Passengers (Route by Time Level)

 \Rightarrow Counterfactual: optimal fares.

2 Security = #2 Rider Complaint

2 Security = #2 Rider Complaint

⇒ <u>Counterfactual</u>: station security guards.

Today's Talk

Context and Facts

Model

Data and Estimation

Model Fi

Transport Policies

Model Overview

Environment

Time: continuous

Geography: I locations

Emissions costs external, mode-specific

Model Overview

Environment

Time: continuous

Geography: I locations

Emissions costs external, mode-specific

Minibuses

Entry: free [firm = bus] ∀ origin-destination

Fares: exogenous

Matching: frictional with passengers

Trips: multiple

Model Overview

Environment

Time: continuous

Geography: I locations

Emissions costs external, mode-specific

Minibuses

Entry: free [firm = bus] ∀ origin-destination

Fares: exogenous

Matching: frictional with passengers

Trips: multiple

Commuters

Skill: heterogeneous $g \in \{low, high\}$

Choice:

- **1** Home *i* [amenity θ_i^g]
- **2** Work *j* [wage ω_j^g]
- 3 Mode $m \in$
 - minibus
 - formal transit

10/22

• car

1 Load passengers s.t. frictional matching process • Why matching?

1 Load passengers s.t. frictional matching process • Why matching?

2 Depart when reach capacity $\overline{\eta}$ [exogenous] • Evidence

1 Load passengers s.t. frictional matching process • Why matching?

2 Depart when reach capacity $\overline{\eta}$ [exogenous] • Evidence

3 Collect fares τ_{ijM} [calibrated to data] ightharpoonup

- 1 Load passengers s.t. frictional matching process Why matching?
- 2 Depart when reach capacity $\overline{\eta}$ [exogenous] Evidence
- 3 Collect fares τ_{ijM} [calibrated to data] lacktriangled
- **4** Travel to j, operating cost χ per distance Δ_{ij}

- 1 Load passengers s.t. frictional matching process Why matching?
- **Depart** when reach capacity $\overline{\eta}$ [exogenous] Evidence
- 3 Collect fares au_{ijM} [calibrated to data] lacktriangle Data
- **4** Travel to j, operating cost χ per distance Δ_{ij}
- **5** Arrive at rate d_{ij} and end work "shift" with Pr = g (trip time)

▶ Profits

Minibus-Passenger Matching

Matching function for each route ij:

$$\mathcal{M}_{ij} \equiv \mu_{ij} p^{lpha}_{ij} b^{eta}_{ij}$$
 } $\left. egin{array}{l} \mu_{ij} = \mathrm{matching\ efficiency} \\ p_{ij}, b_{ij} = \mathrm{passengers,\ buses} \end{array}
ight.$

 \Rightarrow Passenger **boarding** (λ_{ij}) and bus **loading** (ι_{ij}) rates

Minibus-Passenger Matching

Matching function for each route ij:

$$\mathcal{M}_{ij} \equiv \mu_{ij} p^{lpha}_{ij} b^{eta}_{ij}$$
 $\Big\} \begin{array}{c} \mu_{ij} = \mathrm{matching\ efficiency} \\ p_{ij}, b_{ij} = \mathrm{passengers,\ buses} \end{array}$

 \Rightarrow Passenger **boarding** (λ_{ij}) and bus **loading** (ι_{ij}) rates

• Expected total passenger wait time [$\mu_{ij} = 1$ and CRS]:

$$\underbrace{\frac{1}{\lambda_{ij}} + \frac{1}{2} \frac{\overline{\eta}}{\iota_{ij}}}_{\text{off-bus}} = \underbrace{\left(\frac{p_{ij}}{b_{ij}}\right)^{\beta} + \underbrace{\frac{\overline{\eta}}{2} \left(\frac{b_{ij}}{p_{ij}}\right)^{1-\beta}}_{\text{boarding}}}_{\text{externality}}$$

Commuters: Choose Home + Work + Mode

• Example: minibus choice utility for home i, work j • Other Modes

Gumbel shock, shape
$$\nu \Rightarrow$$
 choice Pr. $\pi^g_{ijM} \equiv \exp\left(\frac{\overline{U}^g_{ijM}}{\nu}\right) / \sum_{i,j,m} \exp\left(\frac{\overline{U}^g_{ijm}}{\nu}\right)$.

Commuters: Choose Home + Work + Mode

• Example: minibus choice utility for home i, work j • Other Modes

Gumbel shock, shape
$$\nu \Rightarrow$$
 choice Pr. $\pi^g_{ijM} \equiv \exp\left(\frac{\overline{U}^g_{ijM}}{\nu}\right) / \sum_{i,j,m} \exp\left(\frac{\overline{U}^g_{ijm}}{\nu}\right)$.

• Policies: $\kappa_M^g = f(\text{quality improvements}) \text{ e.g. security } \bullet \text{ Equilibrium}$

Social Planner Optimum Through Minibus Fares + Transfers

Social Planner Problem

$$\max_{b_{ij}, \boldsymbol{\pi}_{ijm}^g, \boldsymbol{\tau}_{ijM}, \mathbf{t}_{ijm}} \left\{ \sum_{g} N^g \Omega^g - C - \varsigma E \atop \uparrow \qquad \uparrow \qquad \uparrow \\ \text{operating} \atop \text{expected} \atop \text{costs} \qquad \text{emissions} \atop \text{costs} \end{cases} \text{ s.t. } \begin{array}{c} \text{commuter choice} \\ \text{probabilities.} \end{array}$$

Social Planner Optimum Through Minibus Fares + Transfers

Social Planner Problem

$$\max_{\pmb{b}_{ij}, \pmb{\pi}_{ijm}^g, \pmb{\tau}_{ijM}, \pmb{t}_{ijm}} \left\{ \sum_{g} N^g \Omega^g - C - \varsigma E \atop \uparrow \qquad \uparrow \qquad \uparrow \\ \text{expected operating costs} \right\} \text{ s.t. commuter choice probabilities.}$$

Optimal Minibus Fare

Assume $\alpha + \beta = 1$, $\mu_{ij} = 1$, $\varsigma = 0$, and $\phi = 0$.

$$\tau_{ijM}^* \propto \underbrace{\chi \Delta_{ij}}_{\text{operating costs}} + \underbrace{\overline{\psi} g}_{\text{net boarding - filling externality}}^*$$

Today's Talk

Context and Facts

Model

Data and Estimation

Model Fit

Transport Policies

Data Collection

Minibus Station Counts

- Loading process [M-F 6-10:00]
 - bus arrival/departure
 - waiting passengers
- Sample: N = 44 routes 2-stage, stratified by bus entry

Data Collection

Minibus Station Counts

- Loading process [M-F 6-10:00]
 - bus arrival/departure
 - waiting passengers
- Sample: N = 44 routes 2-stage, stratified by bus entry

Stated Preference Surveys over commute modes

Q1.1	Option 1.1.1	Option 1.1.2
Cost	R18.00	R6.00
Travel Time	50 Minutes	50 Minutes
Security	Security at taxi rank	No security at taxi rank
Driver Behaviour	Adheres to speed limit	Exceeds speed limit
Bus Loading	Enough seats for all passengers	Overloaded: more passengers than seats

- 1 New: minibus options
 - 5 randomized choice sets
 - 2 minibus options/set
 - Sample (N = 526) vs. pop. at mall, minibus stations
- 2 Existing: other modes

• Estimate bus loading rate equation in logs • Histograms across 44 routes (ij) × 48 5-min. periods (t)

$$\log \iota_{ijt} = \hat{\alpha} \log p_{ijt} + \left(\hat{\beta} - 1\right) \log b_{ijt} \underbrace{+ \overline{\mu}_{ij} + \overline{\mu}_{it} + \epsilon_{ijt}}_{\text{matching efficiency}}$$

• Estimate bus loading rate equation in logs • Histograms across 44 routes (ij) × 48 5-min. periods (t)

$$\log \iota_{ijt} = \hat{\alpha} \log p_{ijt} + (\hat{\beta} - 1) \log b_{ijt} \underbrace{+ \overline{\mu}_{ij} + \overline{\mu}_{it} + \epsilon_{ijt}}_{\text{matching efficiency}}$$

Parameter	OLS route+origin-time FE	
α	0.645 (0.0264)	
β	0.435 (0.043)	

Note: Robust standard errors in parentheses, clustered at origin level.

• Estimate bus loading rate equation in logs • Histograms across 44 routes (ij) × 48 5-min. periods (t)

$$\log \iota_{ijt} = \hat{\alpha} \log p_{ijt} + (\hat{\beta} - 1) \log b_{ijt} \underbrace{+ \overline{\mu}_{ij} + \overline{\mu}_{it} + \epsilon_{ijt}}_{\text{matching efficiency}}$$

Parameter	OLS route+origin-time FE	
α	0.645 (0.0264)	
β	0.435 (0.043)	

Note: Robust standard errors in parentheses, clustered at origin level.

• Threat to ID: matching efficiency shocks over t w/i same origin i

• Estimate bus loading rate equation in logs • Histograms across 44 routes (ij) × 48 5-min. periods (t)

$$\log \iota_{ijt} = \hat{\alpha} \log \left(p_{ijt}/b_{ijt}\right) \underbrace{+ \overline{\mu}_{ij} + \epsilon_{ijt}}_{\text{matching efficiency}}$$

Parameter	OLS route+origin-time FE	IV route FE
α	0.645 (0.0264)	0.841 (0.106)
β	0.435 (0.043)	0.159 (0.106)

Note: Robust standard errors in parentheses, clustered at origin level.

• Threat to ID: matching efficiency shocks over t w/i same origin i ID Strategy: assume CRS \Rightarrow IV for $\log\left(\frac{p_{ijt}}{b_{ijt}}\right)$ = commuters in i leaving at t

• Estimate bus loading rate equation in logs • Histograms across 44 routes (ii) × 48 5-min. periods (t)

$$\log \iota_{ijt} = \hat{\alpha} \log \left(p_{ijt}/b_{ijt} \right) \underbrace{\qquad + \overline{\mu}_{ij} + \epsilon_{ijt}}_{\text{matching efficiency}}$$

Parameter	OLS route+origin-time FE	IV route FE
α	0.645	0.841
_	(0.0264)	(0.106)
β	0.435	0.159
	(0.043)	(0.106)

Note: Robust standard errors in parentheses, clustered at origin level.

• Threat to ID: matching efficiency shocks over t w/i same origin i ID Strategy: assume CRS \Rightarrow IV for $\log\left(\frac{p_{ijt}}{b_{ijt}}\right) = \underbrace{\text{commuters}}_{2013}$ in i leaving at t

Stated Preference Survey $\Rightarrow \kappa_m^g$, r, ν

• Estimate multinomial logit [model-implied] • Details

ID Strategy: exogenously-varied attributes

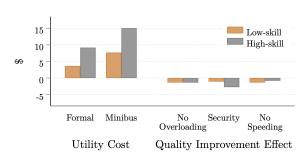
Stated Preference Survey $\Rightarrow \kappa_m^g$, r, ν

• Estimate multinomial logit [model-implied] • Details

ID Strategy: exogenously-varied attributes

Estimate
0.001
(0.0004)
4.76
(1.26)

Note: Robust standard errors in parentheses


Stated Preference Survey $\Rightarrow \kappa_m^g$, r, ν

• Estimate multinomial logit [model-implied] • Details

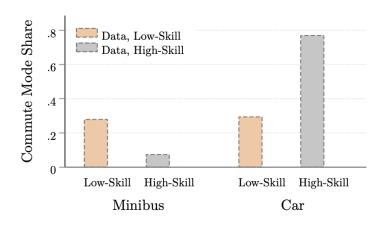
ID Strategy: exogenously-varied attributes

Parameter	Estimate
r commuter rate of time pref. ν Gumbel pref. shock shape	0.001 (0.0004) 4.76 (1.26)

Note: Robust standard errors in parentheses

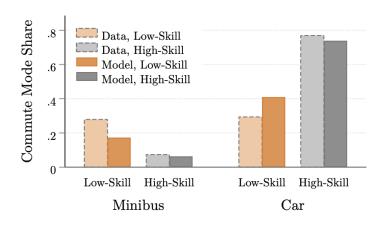
Today's Talk

Context and Facts


Model

Data and Estimation

Model Fit

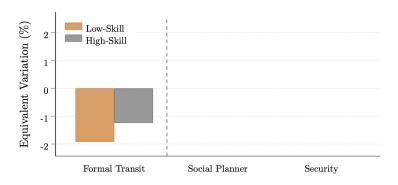

Transport Policies

Only Low-Skill Use Minibuses ← Due to Utility Costs

Only Low-Skill Use Minibuses ← Due to Utility Costs

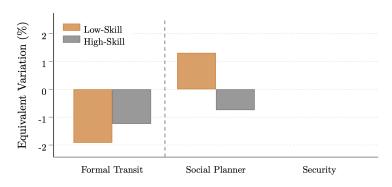
Today's Talk

Context and Facts

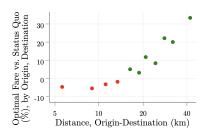

Model

Data and Estimation

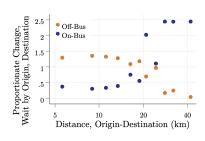
Model Fit


Transport Policies

MyCiti Formal Bus Rapid Transit [existing]
Monetary costs: construction + operations, via lump-sum tax.

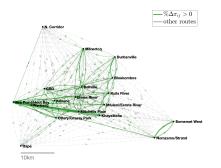

2 Social Planner

Optimal Minibus Fares + Mode-Specific Commuter Transfers

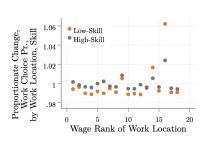


Higher fares on longer routes

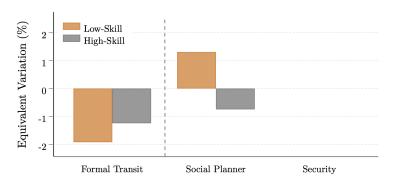
[vs. status quo]



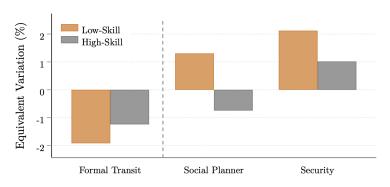
Long route off-bus waits ↓↓

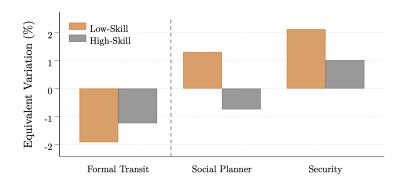

Suburb to Suburb Commutes

 $[\Delta \text{ Home-Work Flow} > 0]$


Higher Wages

 $[\Delta$ Work Location Shares]




2 Social Planner

Optimal Minibus Fares + Mode-Specific Commuter Transfers

3 Minibus station security: \downarrow util. cost κ_M^g by stated pref. effect *Monetary costs*: guard wages covered with lump-sum tax.

Optimized minibuses = low-cost solution to long commutes?

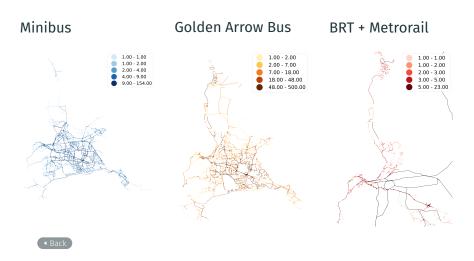
Policies: Already Under Discussion

Government plans to subsidise taxis in South Africa – but there's a catch

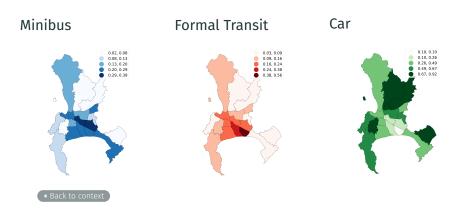
Staff Writer 15 September 2021

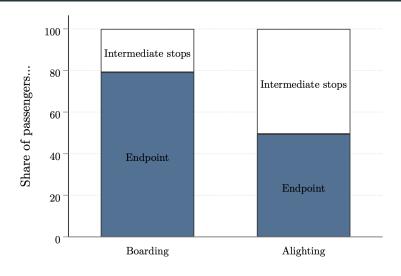
02-14-18

This Uber-Like App Wants To Make African Minibus Taxis Better


What it's like using taxis in SA: 'Violent, aggressive and unsafe'

Priority infrastructure for minibus-taxis: An analytical model of potential benefits and impacts


L R De Beer, C Venter


Cape Town Transit Networks: # Routes

Mode Shares by Home Location

Most Boardings/Alightings at Endpoints

Associations Entry Restrictions: No Consensus

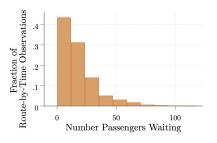
Free entry at cost?

Most associations are still taking on new members and going out on recruitment drives to **encourage new members to join**. These new members pay an exorbitant amount of money to join the association - City of Cape Town Operating Licence Strategy (2014)

Cartel-like quantity controls?

Taxi associations prevent entry by other operators through a number of different means, not all of which are used by every association. Firstly, some associations do not take on new members...Entry deterrence and cartel price setting make owning a taxi extremely lucrative on many routes. - World Bank (2018)

◆ Back to context


Legal Restrictions on Minibus Size

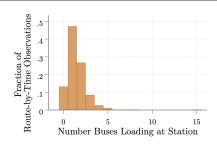
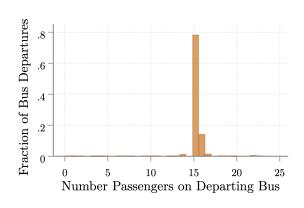
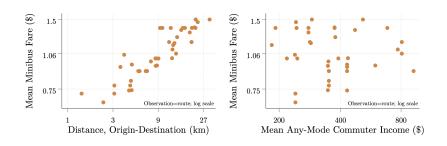

The [National Land Transport Act] specifies the vehicles...to be used for non-contracted PT purposes. - City of Cape Town Comprehensive Integrated Transport Plan (2018)

Table 6 2: Approved vehicle types, capacities and number of legal OLs issued

Type of Vehicle	Seating Capacities including the Driver	Current OLs per vehicle group
Sedan	5	205
Avanza (8 +1)	9	400
Minibuses (15+1)	16	9 500 to 10 100
Midi-buses (16<35)	35	negligible
Buses	35 +	n/a

Long Passenger Lines + Multiple Buses Loading



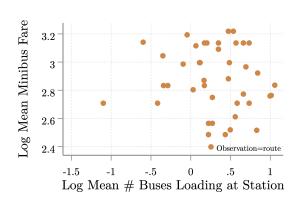


Minibuses: 15-Passenger + Depart When Full

3 Fares ↑ with Distance, not Ability to Pay

Why? City considers "cost to the user" in route approvals

City of Cape Town: New Route Approvals


Considerations and recommended procedure for new minibus-taxi routes

- · The potential for conflict with existing associations and members
- Existing travel patterns
- Existing public transport network coverage

· Cost to the user (portion of monthly income spent on public transport)

- City of Cape Town Operating Licence Strategy (2014)

Route-Level Fares Versus Bus Entry

◀ Back to fact

Minibus Market Structure on each route ij

• Entry cost, increasing in mass of loading buses b_{ij}

$$\overline{\psi}b_{ij}^{\phi}$$

- Multiple trips during effectively finite "work shift"
- Fares exogenously calibrated Evidence

$$au_{ijM} \equiv higg(\overline{\Delta}_{ij}igg)$$

Minibus Profits on route ii

$$\Pi_{ij} \equiv \underbrace{\left[\overline{\eta}\tau_{ijM} - \chi\Delta_{ij}\right]}_{\text{per-trip net revenue}} \underbrace{\frac{1 - g\left(\frac{\overline{\eta}}{\iota_{ij}} + \frac{1}{d_{ij}}\right)}{g\left(\frac{\overline{\eta}}{\iota_{ij}} + \frac{1}{d_{ij}}\right)}}_{E\ [\#\ trips]} - \overline{\psi}b_{ij}^{\phi}$$

- Per-trip net revenue $\bar{\eta} au_{ijM} \chi \Delta_{ij}$
- Expected total trip time $\frac{\overline{\eta}}{\iota_{ii}} + \frac{1}{d_{ii}}$

$$\frac{\overline{\eta}}{\iota_{ij}} + \frac{1}{d_{ij}}$$

Entry cost

$$\overline{\psi}b_{ij}^{\phi}$$

Commute Utility: Other Modes

• Formal transit: travel \rightarrow arrive at rate d_{ijF}

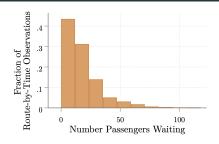
$$\overline{U}_{ijF}^g = \theta_i^g + \omega_j^g - r\omega_j^g \left(\frac{1}{d_{ijF}}\right) - \kappa_F^g - \tau_{ijF}$$

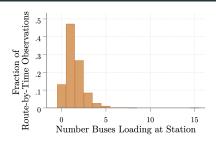
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \text{utility} \text{fare}$$

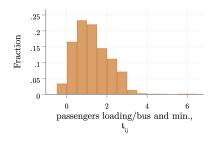
$$travel \qquad tost$$

• Car: travel \rightarrow arrive at rate d_{ij}

Equilibrium


Equilibrium


A vector $\{b, \pi, \lambda, \iota\}$ satisfying (i) free entry, (ii) 3 sets of choice probability equations, (iii) boarding as well as (iv) loading rate equations.


Welfare

$$\overline{\Omega} \equiv \sum_{g} N^g \nu \log \left[\sum_{i,j,m} \exp \left(\overline{U}_{ijm}^g \right)^{1/\nu} \right] + \prod_{\substack{rebated \ rebated \ emissions \ minibus \ entry \ profits}} + \prod_{\substack{repair}} \Psi - \varsigma E$$

Matching Estimation: Distributions of Variables

Estimated Parameters

Parameter	Description	Value	Parameter	Description	Value
Externally Co	alibrated		Stated Prefe	rence	
1	Number Locations	18	r	Commuter Rate of Time Pref.	0.001
N^g	Number commuters		ν	Gumbel Shape	4.76
ω_i^g	Wages		κ_{M}^{l}	Low-Skill Minibus Util. Cost	7.7
θ_{\cdot}^{g}	Amenities		κ_M^h	High-Skill Minibus Util. Cost	15
d _{ij}	Road-Based Destination		κ_F^l	Low-Skill Formal Util. Cost	3.6
d _{iiF}	Arrival Rate Formal Destination		κ_F^h	High-Skill Formal Util. Cost	9.2
TiiF	Arrival Rate Formal Fare		Emissions		
$ au_A$	Car Commute Cost	5.2			
δ_0	Minibus Shift Length	240	χ_{M}^{e}	Minibus CO2-equiv. per passkm.	0.06
δ_1	Minibus Inverse # Trips	0.01	χ_F^e	Formal CO2-equiv. per passkm.	0.04
χ	Per-km. Operating Cost	0.06	χ_{A}^{e}	Car CO2-equiv. per passkm.	0.55
Δ_{ii}	Route Driving Distance		5	Social cost of carbon	0.0485
$\overline{\Delta}_{ij}$	Straight-Line Distance		Internally Ca	librated $igotimes \overline{\psi}, \overline{\eta}$	$,\mu$
Minibus Sup	ply $\phi \rightarrow \Gamma_1$		$\overline{\psi}$	Minibus Entry Cost Intercept	49.5
			$\frac{\varphi}{\overline{\eta}}$	Minibus Capacity	6.2
α	Passenger Match. Elasticity	0.84	μ	Minibus Matching Efficiency	0.2
β	Bus Match. Elasticity	0.16		minibus materning Emerency	
ϕ	Entry Cost Elasticity	0.0143			
Γ_0	Fare Intercept	2.23	► Back		
Γ ₁	Fare Distance Slope	0.29			

Entry Congestion Estimation

- Station counts: bus loading time $\overline{\eta}/\iota_{ijt}$ and loading buses b_{ijt} by route ij x time t
- Estimate ϕ using free entry: $\frac{\overline{\eta}}{\iota_{ijt}} = \zeta_0 \frac{\phi}{\delta_1} \log b_{ijt} + \zeta_{ij} + \zeta_t + \varepsilon_{ijt}$

Variable	(1) mean bus loading time	
log loading buses, b_{ijt}	-1.434*** (0.546) 7.287*** (0.332)	$\Rightarrow \hat{\phi} = .0143$
Route FE Origin-Time FE	√ √	
Observations R-Squared	1,075 0.654	

Robust standard errors in parentheses, clustered at origin level. *** p<0.01, ** p<0.05, * p<0.1

Fare Function Estimation: Γ_1

- Onboard tracking data: average fare $\overline{\tau}_{ijM}$ and straight-line distance $\overline{\Delta}_{ij}$ by route ij
- Estimate Γ_1 using $\log \overline{\tau}_{ijM} = \widetilde{\Gamma}_0 + \Gamma_1 \log \overline{\Delta}_{ij} + \epsilon_{ij}$

Parameter	(1) log mean fare			
Γ ₁ Constant	0.292*** (0.0232) 2.231*** (0.0591)			
Observations R-Squared	43 0.798			
Robust standard errors in parentheses				

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Internal Calibration

Moment				Parameter		
Description	Data	Model	Des	Description		
Median Loading Buses/ Waiting Passengers	0.09	0.09	$\overline{\psi}$	Entry Cost Intercept	49.5	
Median Bus Loading Time	4	4	$\overline{\eta}$	Minibus Capacity	6.2	
Median Off-Bus Passenger Wait Time	7.18	7.18	μ	Matching Efficiency	0.2	

Multinomial Logit: Choice Probability

Pr. individual *i* in group *g* chooses alternative *l* in choice set *c*:

$$\pi_{\mathit{icl}}^g = \frac{\exp\left[\zeta_{\mathit{m(c,l)}}^g + \sum_{\mathit{z}} \beta_{\mathit{z}}^g q_{\mathit{cl}}(\mathit{z}) + \beta_{\mathsf{time}} \omega_{\mathit{i}} \left(\mathsf{W}_{\mathit{cl}} + \mathsf{t}_{\mathit{cl}}\right) + \beta_{\mathsf{fare}} \tau_{\mathit{cl}} + \beta_{\mathsf{resid}} \mathsf{W}_{\mathit{cl}} \tau_{\mathit{cl}}\right]}{\sum_{\mathit{l'}} \exp\left(\overline{U}_{\mathit{icl'}}^g / \nu\right)}.$$

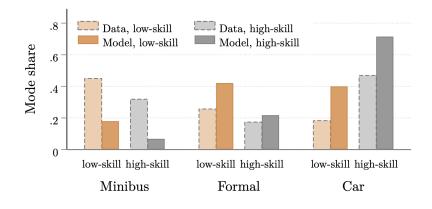
- $\zeta_{m(c,l)}^g$ = group-mode fixed effect $\Rightarrow \kappa_m^g$
- $q_{cl}(z)$ = indicator: quality improvement z in set c, alternative l
- ω_i = personal income
- w_{cl} and t_{cl} = wait and travel time
- τ_{cl} = fare

Stated Preference Sample

	Stated Pref. Samples		Data
Variable	Own	City-Run	Cape Town
Share Auto Owners	0.448	0.581	0.561
Share Female	0.458	0.494	0.458
Share College-Educated	0.295	0.228	0.190
Median Monthly Personal Income [bin]	\$182-\$364	\$182-\$364	\$182-\$364
Median Age	35	39	39
Commute Mode Shares of			
Minibus Formal Transit Auto	59.56 19.61 12.11	22.56 27.69 40	23.55 22.81 39.40
Share Using Minibuses > 1x/week	0.951	0.635	
N	413	407	

Stated Preference Robustness

Parameter	Skill	Baseline	Intermodal Sample Only	Commute Mode- Weighted
r commuter rate of time pref. ν Gumbel pref. shock shape		0.001 (0.0004) 4.76 (1.26)	0.0014 (0.0007) 6.83 (2.73)	0.0011 (.0005) 5.84 (1.99)
$\kappa_{ extsf{M}}$ minibus (baseline) utility cost	Low	7.68 (1.56)	10.61 (3.54)	9.25 (2.55)
	High	15.03 (3.55)	21.16 (7.82)	18.3 (5.67)
$\kappa_{ extsf{F}}$ formal utility cost	Low	3.63 (0.51)	4.53 (1.08)	4.14 (0.80)
	High	9.17 (1.89)	12.5 (4.20)	10.96 (3.05)
N Respondents		820	546	820

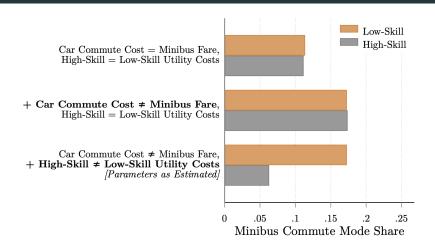

Note: Robust standard errors in parentheses

Stated Preference Robustness

Parameter	Skill	Baseline	Intermodal Sample Only	Commute Mode- Weighted
$ heta_{ ext{security}}$	Low	-1.09	-2.13	-1.55
effect of security on $\kappa_{ extsf{M}}$		(0.39)	(1.06)	(0.69)
	High	-2.75	-4.91	-5.1
		(0.84)	(2.29)	(1.86)
$ heta_{no}$ overloading	Low	-1.38	-2.02	-1.26
effect of no overloading on $\kappa_{ extsf{M}}$		(0.437)	(1.01)	(0.596)
	High	-1.39	-1.25	-1.43
		(0.543)	(1.28)	(0.83)
$ heta_{no}$ speeding	Low	-1.36	-3.03	-2.12
effect of no speeding on $\kappa_{ extsf{M}}$		(0.44)	(1.38)	(0.85)
	High	-0.825	-1.86	-0.582
		(0.465)	(1.39)	(0.73)
N Respondents		820	546	820

Note: Robust standard errors in parentheses

Stated Preference Respondents: Predicted Mode Shares


Stated Preference: Effect Heterogeneity

		Mode Utility Cost		Effects on Minibus Utility Cost		
Dimension	r rate of time pref.	κ_{M} minibus	κ _F formal	$ heta_{ ext{overload}} $ no overload.	$ heta_{ ext{security}} $ security	$ heta_{ extsf{speed}} $ no speed.
Female	+	-	-		-	
College	+	+	+		+	
Age>45	+		-		+	+

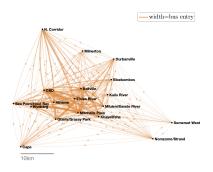
Note: (+) indicates larger effect magnitude, (-) smaller. Only effects significant at 5% level displayed.

Why Don't the Rich Use Minibuses?

Validation: Mode Choice by Origin-Destination-Skill

	Minibus	Car	
Variables	Mode Share, Data	Mode Share, Data	
Mode Share, Model origin×destination×skill	1.000*** (0.153)	1.110*** (0.0660)	
Constant	0.0281 (0.0196)	-0.0407 (0.0413)	
Observations R-squared	507 0.083	507 0.307	

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

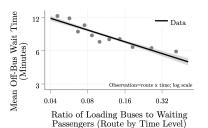

Minibus Network

Data

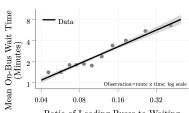
- width = # routes operating - no existing routes - no existing routes - Durbandle - Note River - Mallowing to Mallow - Model Cards River - Charle Class y Park - Special Cards y Park - Speci

Nomzamo/Strand

Model

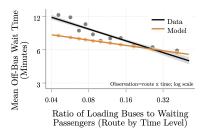


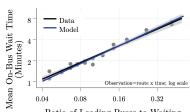
▶ Back


10km

Opposing Matching Externalities

Boarding


Filling


Ratio of Loading Buses to Waiting Passengers (Route by Time Level)

Opposing Matching Externalities

Boarding

Filling

Ratio of Loading Buses to Waiting Passengers (Route by Time Level)