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With rising life expectancies around the world and an older scientific workforce than ever
before1, what does aging mean for individual scientists and what do aging scientists mean
for scientific progress? Prior research focuses on star scientists2,3, their changing dates and
rates of breakthrough success across history4,5. We examine how all scientists and scholars
age in terms of how their stream of ideas and contributions relate to the evolving frontier of
knowledge, and how demographically aging fields relate to field-level progress. Analyzing
more than 244 million scholars across 241 million articles over the last two centuries, here
we show that for all fields, periods, and impact levels, scientists’ research ideas and
references age over time, their research is less likely to disrupt the state of science and more
likely to criticize emerging work. Early success accelerates scientist aging; while changing
institutions and fields and collaborating with young scientists slows it. These patterns
aggregate within fields such that those with a higher proportion of older scientists
experience a lower churn of ideas and more rapid individual aging, suggesting a universal
link between aging, activity, and advance.
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What is the relationship between aging and the character of scientific advance? Consider the
academic life-course of Albert Einstein. As a 26-year old examiner at the Patent Office in Bern,
Switzerland, Einstein wrote four papers that revolutionized science’s understanding of space,
time, mass, and energy. In the decade that followed, he entered the academy and generalized
Special Relativity. From mid-career, he sought unsuccessfully to assemble core physics into a
unified field theory6, and spent his later years criticizing quantum mechanics’ probabilistic
interpretation of the universe, posing quantum paradoxes until the end—some of which were
observed—ironically entrenching the quantum age7. Was the young Einstein unique in promoting
new areas with minimal reference to competitors? Was the old Einstein unique in defending past
work against emerging ideas inconsistent with or irrelevant to it? Max Planck quipped that
science advanced by funerals8, a theory generalized in Thomas Kuhn’s work on scientific
revolutions wrought by young scientists9. A recent analysis of the premature demise of nearly
500 star life scientists and a collection of comparable scientists who continued their work
showed that a career cut short was associated with a systematic boost of innovation in star
scientists’ subfields2. We generalize this to posit that all scientists tend to embrace new ideas
while young but resist them when older. We propose and demonstrate how this aggregates such
that the demography of a field’s scientists anticipates its churn of ideas and rate of advance.

In this study, we characterize how scientists in all fields and at all levels of productivity age
relative to the collective frontier of scientific knowledge. We contribute to prior literature on
aging in science by linking scientific advance and obsolescence10,11 with individual aging12 and
demonstrate that with age comes not only a preference for aging ideas, but active defense against
new ones. We further show how this individual proclivity toward defense accumulates within
fields and forecasts a reduction in the churn of new ideas conceived and published. By linking
the demography of the scientific workforce1 to the use and production of new ideas, we offer
novel insight to concerns about diminishing returns to past scientific investment and
efforts4,5,13,14.

This article makes three contributions to research on the relationship between age and scientific
progress. Prior work has emphasized distinct creativity peaks across fields1,11,12, and over the life
course3,4. In contrast, our work focuses on how scientific attention shifts over the life-course,
demonstrating a universal pattern across fields and time that aging scientists linearly shift from a
focus on present to a focus on past work. From the moment their careers begin, scientists’ newly
minted ideas move further from the frontier of collective attention. These patterns accelerate with
early success but are forestalled by career transitions to new institutions, new topics, and younger
collaborators. Second, this article shows for the first time that the process of aging attention is
not passive, but active. As scientists age, they not only promote older work, but increasingly
police the boundaries of their fields by criticizing the work of younger scholars and contrasting it
with their own. Third, we demonstrate that fields aging faster are associated with a lower
aggregate churn of ideas. We cannot identify causal mechanisms, but we show that it is much
more common for aging to precede slowdown in the churn of ideas within a field than for
decreased churn to precede exodus or avoidance by young scientists (Table S5).

We explore these questions by analyzing the Microsoft Academic Graph (MAG) containing
244,359,707 name-disambiguated authors across 240,874,887 articles from 1800 to 2020 and
corroborate them with Clarivate’s Web of Science (WOS) database. We apply a
neural-network-based NLP model to classify the use of citations—for strength and support or

https://paperpile.com/c/9GiW9I/dI3GC
https://paperpile.com/c/9GiW9I/JIsN6
https://paperpile.com/c/9GiW9I/ZoFrh
https://paperpile.com/c/9GiW9I/37jm8
https://paperpile.com/c/9GiW9I/ahOn1
https://paperpile.com/c/9GiW9I/Lfqzx+Arddu
https://paperpile.com/c/9GiW9I/PfoIN
https://paperpile.com/c/9GiW9I/poQZE
https://paperpile.com/c/9GiW9I/okai5+xuUNI+5shmR+5elDI
https://paperpile.com/c/9GiW9I/poQZE+Arddu+PfoIN
https://paperpile.com/c/9GiW9I/NDYUt+okai5


contrast and criticism15,16—for 31 million papers and 236 million citations from 1840 to 2020.
We focus on a subset of approximately one million scientists and scholars with career lengths of
twenty years or longer in which we track shifts in institutional affiliation, changes in topic and
field, and citation attention over time. As scientists age, we track (A) the age of articles they cite
(Fig. 1), (B) the prevalence of keywords that characterize their research17,18 (Fig. 2), (C) the
frequency of indicators inferred from citation context that referenced work is being used
constructively or critically15,16 (Fig. 3), and (D) the disruption of a work—the degree to which it
creates new directions by eclipsing citations to the prior work on which it builds19,20 (Fig. S7).
We then investigate the link between a field’s proportion of aging scientists and field-level
patterns of reference aging and keyword turnover, extending analysis from the individual to the
field (Fig. S11-12, Table S3-4), which recursively influences individual scientists (Table S6-7)21.
Results presented in the main figures show the behavior of a subset of 1.1 million scholars, with
career ages of twenty years or longer who published at least ten papers. In the supplement, we
show that these findings are consistent with all scientific and scholarly authors for all papers in
MAG, and that these patterns are supported by the WOS database (Fig. S9).

Fig. 1: Aging scientists tend to cite older literature. a, Conceptual illustration of how scientists age faster than
science as a whole, but slower than their first ideas, which we plot empirically with a small sample of scientists and
ideas (e.g., electron, scattering, ion, superconductivity) in b. c, Demonstrates this pattern for our entire sample of
4,403,830 scientists who began publishing between 1960 and 2015, with the most cited reference papers for all
scientists published right before a scientist’s first article. Scientists who continue to publish age more slowly. We
analyzed 1.1 million scientists who actively published over two decades or longer from 1960 to 2020 and plotted the
annual average reference age against career age (see Methods for details). d, Average reference age monotonically
increases by 50% (from eight to twelve years) over a career of forty years (light blue curve), deviating from the null
model that displays the average reference age of all analyzed papers (dotted gray line). The same pattern holds if we
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calculate the ratio of old references (ten years and older), which increases by 60% from 0.25 to 0.4 over a career of
forty years. We compared “early-bloomers” versus “late-bloomers” by analyzing whether the most cited paper
(yellow star) of a scientist appears within the first five years or after twenty years, respectively. Both cite older
literature over time, but “early-bloomers” experience a faster increase in reference age. Increasing reference ages for
aging scientists is robust across career length e, historical times (e, inset), and academic disciplines (f). The mean
(intercept) and rate (slope) of increase in reference age slightly vary across disciplines: Mathematics has the highest
mean value of 12.7 years while Computer Science has the lowest value of 7.12 years (see Table S1 for OLS
regression estimates on a sample of scholars who have published for 10 or more years). In all panels, bootstrapped
95% confidence intervals are displayed as the envelope around each line but are barely invisible.

Across the past half-century of research, scientists collectively favor new findings, tending to
cite articles within a decade of publication (Fig. S2). Individual scientists, however, commit to
older ideas and references as they age and this intensifies as their careers unfold (Fig. 1a-f), a
pattern invariant to length of career or time period (Fig. 1e). Early career success accelerates this
aging process as scientists manage their reputations and follow opportunities to remain focused
on topics from acclaimed early work and its influences (Fig. 1d). This pattern is universal across
all scientific and scholarly fields we investigate (Fig. 1f), presenting a comparable aging rate of
approximately one month in reference age for each year in publishing career (p-value < 0.001,
see Table S1). The average age of references differs by field. Mathematicians reference the
oldest literature, published an average of thirteen years prior, and they age at the fastest
rate—methods of proof change least of any field’s methods over time, preserving the value of
older work for older scientists. Computer scientists, by contrast, whose methods change and
papers obsolesce quickly, build on work published an average of only seven years before (Table
S1). Hierarchical regression models allow us to simultaneously estimate the effect of scientist
aging and average field age on aging citations, revealing positive, additive influences (Table S2).

While scientists adapt to the evolving frontier of science22 to increase their chance of priority in
discovery23,24 and respond to urgent demands from society25, the tendency to do so decreases with
career age. As scientists age, they tend to work on familiar topics (Fig. 2a), lag further from the
research front (Fig. 2b), and produce work that preferentially develops rather than disrupts prior
work in their fields (Fig. S7). Unsurprisingly, fields with a larger proportion of aging scientists
experience a slower churn of new topics (Fig. 2c). Granger causality tests demonstrate that field
aging predicts churn much more powerfully than churn predicts aging, suggesting a possible
causal influence (Table S6).
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Fig. 2: Aging scientists tend to work on familiar topics. We track changes in research topics for over 566,369
scientists and the popularity of topics in their fields (see Methods for details). a, We quantify paper topic similarity
between two successive years for a scientist by calculating the fraction of repeated topics represented in MAG
field-of-study keywords29. Topic similarity increases and stabilizes with career age, manifesting inertia of focus on
familiar research topics. The inset shows the distribution of the most cited reference over scientists’ careers, which
peaks immediately before publication of the first paper, implying the fixation of key references. b, We quantify each
scientists’ field relevance by calculating the coverage of popular topics in the field within their annual publications.
Popular keywords are defined as top 1% MAG field-of-study keywords in the field for a given year revealing that
field relevance decays over the career (see Figure S5 for detailed analysis). c, Churn rate, defined as the fraction of
new topics within a field in one year compared against those of the prior, decreases with the proportion of aging
scientists twenty publication-years old or older. This panel displays statistics for ten fields from 1980 to 2020. Data
points from recent years are darker (see Figure S12 for data on 271 subfields).

Aging scientists do not simply ignore new ideas through their choice of references and research
topics, but they actively defend against them. With maturity, scientists become more likely to
contrast their work with that of younger scientists (Fig. 3a-b). Their overall rate of criticism
increases over the entire career (Fig. 3c). Interestingly, from hierarchical regression models, we
learn that the increasing tendency to criticize is mitigated when scientists and scholars work in
fields with more aging scientists as there remain fewer young scientists and less disruptive new
work to criticize (Table S3). The influence of senior scientist defensiveness is likely amplified by
the Matthew Effect26,27 whereby those established attract disproportionate scientific attention.

Fig. 3: Aging scientists are more likely to criticize young scientist’s articles. We apply a neural-network model16

to classify citation functions15 for 31,080,893 papers and 235,598,495 citations from 1840 to 2020 (see Methods for
details). We label “contrast or compare” citations as critical and others as constructive. a, For exemplary papers by
Higgs30 on the mass-conferring boson, negative citations (blue) are disproportionately from scientists older than the
authors, while positive citations (red) are from those younger. b, Scholars are more likely to challenge articles
published by younger scholars. The x-axis shows the career age difference underlying critical citations, calculated by
subtracting the highest career age in the team receiving the critical citation from the team who cited it. The
distribution of age difference skews right, deviating from the symmetric null model obtained by randomly shuffling
negative citations between papers, manifesting a strong bias against younger scientists. c, Fraction of papers with
one or more negative references increases by approximately 15% with career age over thirty years across all
disciplines. Panel a applies the mixed-Gaussian model to fit the empirical distribution. Panels b-c use polynomial
regressions to fit the data.

While intellectual aging seems to be universal for individuals, it can be mitigated or even
reversed by certain scientific actions. Scientists and scholars who collaborate with younger
coauthors, move to new institutions and explore new topics are more likely to cite new
references in comparison with peers who do not (Fig. 3a-c). Indeed, scientists working in fields
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of large teams such as Medicine are more likely to cite new references than those who work
alone as in Mathematics (Fig. S14).

Fig. 4: Collaborating with younger scholars, moving to new institutions, and exploring new topics correlates
with decreased reference age. We analyzed 1,047,637 scholars who contributed to ten or more research articles
over two decades or more and investigated how the reference age of their papers changes with different factors. a,
We separated scholars according to the average career age of their collaborators as lower (green) or higher (red) than
group median. b, We divided scholars by whether their affiliations changed (green) or remained unchanged (red). c,
We differentiated scholars by whether their paper keywords changed (green) or remained unchanged (red). To focus
on the anti-aging effect of scholars presumably having finished their Ph.D. training, we only display data after their
fifth year in career. See Table S2 for OLS regression estimates of reference age against multiple variables.

We provide the first quantitative evidence regarding the universal relationship between
individual scientist aging, field-level age structure, and scientific advance. Scientists embrace
new ideas in rough correspondence with Douglas Adams’ cheeky rules of technology
acceptance28—anything present at intellectual birth is normal; anything invented in one’s
epistemological adolescence is revolutionary and “you can probably get a career in it”; anything
invented after academic maturity is against the natural order of things.

Our study has necessary limitations: we present the effects of scientist aging as an individual
process, but science increasingly occurs within teams. We also examine average age within
fields, but this only proxies for the rate of interaction between young and old scientists in the
production of scientific advance. Moreover, the age of references and keywords, and the
prevalence of contrasting citations and disruptively received new work each only measure
singular facets of how past ideas are woven into future work. Nevertheless, together they paint a
consistent portrait of scientists aging faster than science as a whole. This work demonstrates how
tracking the demography of scientists can forecast areas of growth and maturity, but also
suggests how managing it through policy could help modulate science between crystallization
and chaos.
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Extended Data Fig. 1. The innovation clocks of science and distributions of reference
age. a, Dots in the background show 10,237 Web of Science journals, colored by scientific
field. Journals frequently cited together are placed near each other. This is achieved by
learning the vector representation of journals from their co-citation in paper references
(Lin et al. 2021). Here we selected 1,962,583 papers published in 2015 to construct this
embedding space of journals. The clock within each field shows the average reference age
of papers using the “hour hand”, ranging from 12.7 years for Mathematics (the most
rapidly aging with lowest pressure for innovation) to 7.12 years for computer science (the
most slowly aging, or highest pressure for innovation). Reference ages across fields are
calculated from 79 million papers published over a century. Clock color reflects the aging
pattern with size proportional to field productivity. b, Distribution of reference age across
the 79 million analyzed MAG papers, for which the average value is 9.78 years. c,



Distribution of reference age across six decades from the 1960s to 2010s. d, Distribution
of reference age across eleven scientific fields.



Extended Data Fig. 2. Decreasing fraction of new references across fields. Derek de Solla
Price proposed studying the fraction of new references published within five years to quantify
the rate at which new ideas are drawn upon to advance science 10. Previous studies observed a
decrease in Price index for the entire universe of science 11. Here we verify and display the
universality of decrease in new references across fields. We experiment with five and ten years
as the criteria for new references and found both results display consistent decrease. We show the
result for ten years, which necessarily manifests a somewhat more stable trend due to the longer
time window for new references.
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Extended Data Fig. 3. Distribution of ‘Critical’ citation (left bars) and ‘Uses’ citation
(right bars) for different age groups among the top-level 11 fields. For each field, we
collect the set of scholars who published papers in 2015. We group them into 9 age groups
and graph the percentage of the two citation behaviors (criticism and use).



Extended Data Fig. 4. Increasing fraction of old scientists across fields. We calculate the
annual fraction of old scientists with career age twenty years or longer and plot it over historical
time. This fraction increases over time across fields. Social Sciences have seen the fastest
increase in old scientist fraction from below 10% to over 20%. In comparison, Engineering has
the slowest increase from 2% to 15%. This finding verifies previous observations regarding the
aging scientific workforce 1 but at a much larger scale of the scientific population and over a
longer time span. In the bottom right we calculate the annual fraction of old scientists who
publish in three prestigious journals (Nature, Science, and PNAS), and plot it against historical
time. This fraction increases dramatically over time across all three journals more rapidly than
for science as a whole.
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Extended Data Fig. 5. Association between reference and career age across fields; and
comparison of agre structure across fields. Heatmaps of reference age (a) and population
density (b) tracking their distribution across fields. This provides a more systematic comparison
between fields to validate conclusions from Figure 1, in which only the average reference age
was analyzed and displayed. The transition of blue into red from left to right in (a) shows that
aging scientists tend to cite old papers and the increase in red cells from low to high reveals that
fields of aging scientists, as confirmed in (b), use more canonical literature. (c), We plot the
distribution of scientists by five career-age groups in 2015, including 0-10 years, 10-20 years,
20-30 years, 30-40 years, and 40 years or more. We calculate and display the fraction of old
scientists with a career age of twenty years or older. Social Sciences have the highest fraction of
old scientists, nearly twice as much as that in Medicine or Computer Science  (23% vs 13%).



Extended Data Fig. 6. Decrease in disruption score over individual academic careers. The
annual average of disruption across published papers decreases with career age for scientists in
all years (A) and across historical times including the 1960s, 1970s, 1980s, and 1990s (B).
Probability of publishing a top 5% disruptive paper decreases with career age for scientists in all
years (C) and across historical times (D). Scientists who start publishing after 2000 are not
shown as their career length is less than twenty years and thus do not meet our selection criteria
designed to analyze long-term career performance.



Extended Data Fig. 7. Increase of reference age over individual careers across scientists of
distinct career length in different historical times. Increase of reference age with career age is
consistent for scientists who started publishing at different historical times, including the 1960s
(a), 1970s (b), 1980s (c), and 1990s (d). For each panel, we divide scientists into four groups by
career length, including less than ten years, ten to twenty years, twenty to thirty years, and thirty
years or longer.



Extended Data Fig. 8. Increase of self-similarity in research topic and decrease in
distance to field front over career. We quantify self-similarity for scholars in successive
years with the Wasserstein distance between paper keywords. Self-similarity increases
with career age for both the scientific taxonomy provided by MAG (a) and the keywords
we extract from abstracts using term frequency ( ) (c) (see Methods for details). We
quantify the “scientific front” for each field in a given year by selecting the top 1%
keywords across all published articles. The overlap between individual keywords and the
most popular keywords in the field decreases with career age for both the scientific
taxonomy provided by MAG (b) and the keywords we extract from abstracts using term
frequency ( ) (d).

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cgeq2#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cgeq2#0




Extended Data Fig. 9. Relationship between average age of field with critical rate; and
churn rate for fields decreases with increasing old proportion. a, Critical Rate is the critical
rate of citation in each year for a subfield (271 subfields in total). Average age is the average
scholar age from first publication. The first panel is the relation between Average Age across all
fields with Critical Rate for the entire dataset. b, Churn Rate is the changing rate of keywords
among the top 10% in focal year t and the immediately prior year t-1. Old proportion is the
percentage of scholars whose career age is 20 years or more. Here, we weight scholars by their
frequency of publication in a year. We divide the data into 11 groups according to the field of
papers and draw the relation between churn rate and old proportion in different fields. The first
panel is the relation between churn rate and old proportion across the entire dataset.



Extended Data Fig. 10. Subfields with larger teams more likely cite more recent literature.
Across the analyzed 271 subfields, further organized into eleven fields, subfields of larger teams
are more likely to cite more recent literature. We calculate reference aging rate as the annual
increase in reference age with career age. The upper left panel details the relationship for all
fields in the dataset.



Supplementary Information for

Aging Scientists and Slowed Advance

Haochuan Cui, Lingfei Wu, James A. Evans

Correspondence to: jevans@uchicago.edu (J.A.E.)

mailto:jevans@uchicago.edu


Methods

Data sets
We analyze two types of datasets: (i) Publication record for 2,310,301 scholars selected from the
Microsoft Academic Graph (MAG). MAG has disambiguated the names of scholars and their
institutions17. These scholars published 46,003,252 papers in 48,953 journals across 19 different
scientific fields from 1800 to 2020. As data are sparse before the 1950s and after 2015, we
focused on papers published 1960-2015. Results presented in the main figures show the behavior
of a subset of 1,025,084 scholars, who had a career age of twenty or more years and wrote at
least ten papers. This data set is verified using the Web of Science20. (ii) Citation graph
containing 70,558,203 papers published during 1960-2015, which contains 611,483,153
references from or citations to these papers.

Identifying early-successes and late-bloomers
Recognition arrives at different stages of the career, differentiating “early successes” from “late
bloomers”26 in academia. Here we define a hit paper as those among the top 1% most cited
within the same field and year. We then divide scholars who own these field-definitive papers
into three groups according to the publication timing of their first hit paper, including “earlier
successes” (within the first five years), “late-bloomers” (after twenty years), and the rest
(between early and late). Our pattern of results is not sensitive to these thresholds.

Mapping the scientific fields of papers and topics studied by scholars
We used the scientific taxonomy created by the Microsoft Academic Graph team17 to identify the
scientific fields of papers and the topics studied by scholars. The MAG taxonomy has six levels.
Level zero comprises 19 coarse-grained fields, level one lists 292 subfields, and level 2-5
contains 543,454 unique keywords (called MAG keywords hereafter). Each MAG paper is
labeled by one or more keywords, which permits grouping papers into fields to map change in
topics (keywords) for these fields. Using this taxonomy, we also identified the home field for
1,151,907 scholars based on where their productivity is concentrated (if over a half of their
papers are published within a field) to explore how scholars change topics at different rates
across fields.

Quantifying keyword coverage and repetition for scholars and the churn rate of fields
To calculate the annual popular keyword coverage of a scholar, we identify the top 1% popular
MAG keywords from his/her home field in the given year, and calculate the fraction of field
keywords covered by the scholar’s publications. We also compare paper keywords between
successive years for each scholar’s publication history to calculate the rate of keyword repetition.
We calculate field “churn rate” by applying the same keyword repetition analysis to fields.

Detecting citation functions and calculating claim contrasting probability
We use a deep learning method16 developed based on the pioneering work by Jurgens et al.15 to
infer the function or role of citations based on surrounding words. This NLP model classifies
citations into six groups, including “Background,” “Extends,” “Uses,” “Motivation,”
“Compare/Contrast,” and “Future work.” We identified the functions of 235,598,500 citations of
12,177,040 papers published during 1895 to 2020 based on their discourse context provided in

https://paperpile.com/c/9GiW9I/FQYYb
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the MAG data. 8.16% of total citations are labeled as “Compare/Contrast” by our model. 43% of
the analyzed papers had at least one outbound “Compare/Contrast” citation and were identified
as “claim contrasting” papers. We calculate the annual fraction of claim-contrasting papers for
each scholar and analyze how it changes over the career.

Analyzing anti-aging depending on collaborators, institutions, and topics
We select 2,310,301 scholars who contributed to ten or more research articles over two decades
or longer as the focal group and analyze their configuration of collaborators, institutions, and
topics throughout their career. To identify collaborator preference, we calculate the median
career age of collaborators for all scholars from the focal group at a given career year, and
separate papers as either “collaborating with seniors” or “collaborating with juniors” based on
whether the mean career age of collaborators within that paper is higher or lower than the group
average. In identifying institution preference, we keep track of all institutions for a target scholar
from the focal group, and analyze whether a paper was written before (“old institutions”) or after
(“new institutions”) a new institution was reported. To identify preferences in topic, we track the
expanding vocabulary of MAG keywords for each scholar from the focal group and label a paper
as either “old topics” or “new topics” according to whether it introduces keywords new to the
researcher.

Estimating relationships between focal variables
We initially estimated OLS models to explore the relationship between reference and career age.
We selected 1,047,637 scholars who published over twenty years and contributed to ten or more
research articles then estimated the effect for each field. The average coefficient across all fields
is approximately 0.09, i.e., a one month increase of reference age for each year across the
publishing career.

We then estimated Hierarchical Linear Models (HLMs) to evaluate the same relationship, but
accounting for mean age in the field (Table S2). We analyze the annual statistics of reference age
and career age for all 4,677 scientists who belong to the 1 million focal scientists under analysis
with trackable records in the citation context datasets. We assign a scholar’s “home” if half or
more papers authored by that scholar over the entire career were published within one of the
eleven scientific fields under study. For each scholar in a year, we calculated the average career
age of their “home” field in the same year. The HLM comprises three levels including annual
statistics of a scientist (level-1), scientists (level-2), and fields (level-3). Annual reference age
(RefAge) is the dependent variable for level-1, career age (Age) and average team size are the
independent variables for level-1, and mean career age in field (MeanAge) and mean teamsize in
field (MeanTS) are the independent variables for level-3 as shown below. Number of subscripts
designate a variable at that level of the model (e.g., at level-3 of the models has 3 𝑟

100

subscripts).
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Our findings from this estimated model (see Table S2) confirm that holding constant mean age
within field and mean team size, increased scientist age continues to manifest a statistically
significant and substantial positive relationship with reference age, consistent with the OLS
model above. Mean age posts an additional positive relationship, suggesting that aging scientists
in older fields cite the oldest work.

We then estimated HLMs to explore the relationship between career age and critical rate,
accounting for the mean age of scholars in the field (Table S3). As above, we analyzed these data
for all 4,677 scientists who belong to the focal 1 million scientists under analysis with trackable
records in the citation context datasets, assigning home discipline in the same way. This HLM
involves three levels including annual statistics of a scientist (level-1), that scientist over the
career (level-2), and that scientist’s field (level-3). Annual reference age (RefAge) is the
dependent variable for level-1, career age (Age) and avg. team size are the independent variables
for level-1, and mean career age in field (MeanAge) and mean teamsize in field (MeanTS) are
the independent variable for level-3 as shown below.
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Our findings from this estimated model (see Table S3) confirm that holding constant mean age
within field and team size, increased scientist age continues to manifest a substantial and
statistically significant negative relationship with critical rate. As discussed in the main
manuscript, mean age for the field posts a negative relationship with critical rate because in
older, slow-moving fields there are less new discoveries to criticize. Moreover, as mean team
size grows, critical rate decreases with larger teams focus on constructive advances.

We then performed Granger Causality tests to explore whether average age in field more likely
anticipated churn rate, as we suspect, or churn rate better predicts average scholar age in field.
For all 11 fields in the Microsoft Academic Graph, we calculate churn rate in the field and old
proportion (percentage of scholars whose career year > 20 in each field) year by year, then
predict each other with one and two year lags in both directions. Finally, we apply granger



causality tests on subfield churn rate and subfield old proportion, as detailed Table S4.
Alternatively, when we weighted scholars according to their annual papers and the pattern of
findings remained constant.

Finally, we estimated OLS models tracing the relationship between churn rate on old proportion
across 271 subfields and eleven fields (see Table S5). Churn rate is negatively associated with
old scientist proportion, both for unweighted (model-1) and weighted data (model-2 in which
scientists are weighted according to their number of published papers.)



Table S1. OLS models regressing reference age on career age. Ordinary Least Square (OLS)
regression coefficients for the data underlying Figure 1 for the 1,047,637 scholars who published
over twenty years and contributed to ten or more research articles. The average coefficient across
all fields is approximately 0.09, i.e., a one month increase of reference age for each year across
the publishing career.

Field Intercept Coefficient R2

Mathematics 12.699*** 0.143*** 0.986

Agriculture 10.771*** 0.075*** 0.952

Social Sciences 9.938*** 0.102*** 0.971

Business & Management 9.974*** 0.107*** 0.983

Environmental Sciences 9.797*** 0.078*** 0.973

Chemistry 8.778*** 0.110*** 0.978

Physical Sciences 8.762*** 0.092*** 0.979

Engineering 8.310*** 0.089*** 0.976

Biology 8.443*** 0.072*** 0.957

Medicine 8.554*** 0.045*** 0.895

Computer Science 7.119*** 0.096*** 0.957

* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001



Table S2. HLM model regressing reference age on career age. HLM comprising three levels
for the annual statistics of a scientist (level-1), that scientist over the lifecourse (level-2), and the
scientist’s field (level-3). Annual reference age (RefAge) is the dependent variable, with career
age (Age) and team size (TS) independent variables in level-1. Mean career age in the field
(MEAN_AGE) and mean team size in the field (MEAN_TS) are the independent variables in
level-3 as shown below, revealing that as mean age goes up, references get older, but as mean
team size increases, references become more recent. Controlling for these higher-level factors,
scientist career age retains by the most significant and substantial relationship with reference age.

Final estimation of fixed effects (with robust standard errors)

Fixed Effect Coefficient Standard
error

T-ratio Approx.
d.f.

p-value

For INTRCPT1, 𝜋
0

For INTRCPT2, 𝛽
00

INTRCPT3, 𝛾
000

9.515 0.425 22.404 9 <0.001

MEAN_AGE, 𝛾
001

0.401 0.390 0.997 9 0.211

MEAN_TS, 𝛾
002

0.389 0.390 0.997 9 0.176

For AGE slope, 𝜋
1

For INTRCPT2, 𝛽
01

INTRCPT3, 𝛾
100

0.126 0.017 7.630 9 <0.001

MEAN_AGE,𝛾
101

0.016 0.010 1.488 9 0.171

MEAN_TS,𝛾
102

-0.002 0.009 -0.246 9 0.811

For TS slope, 𝜋
2

For INTRCPT2, 𝛽
02

       

INYRCPT3, 𝛾
200

-0.0389 0.011 -3.505 11 0.006

Final estimation of level-1 and level-2 variance components

Random Effect Standard
Deviation

Variance
Component

d.f. 𝝌2 p-value

INTRCPT1, 𝑟
0

2.022 4.088 4642 44192.832 <0.001

Age slope, 𝑟
1

0.191 0.036 4642 9625.648 <0.001

TS  slope, 𝑟
2

0.030 0.000 4642 5169.017 <0.001

level-1, e 2.427 5.891

Note: The chi-square statistics reported above are based on only 4654 of 4677 units that had sufficient data for
computation.  Fixed effects and variance components are based on all the data

Final estimation of level-3 variance components



Random Effect Standard
Deviation

Variance
Component

d.f. 𝝌2 p-value

INTRCPT1/INTRCPT2, 𝑢
00

1.427 2.066 9 1741.678 <0.001

AGE/INTRCPT2, 𝑢
10

0.049 0.049 9 111.190 <0.001

TS/INTRCPT2, 𝑢
20

0.033 0.033 11 26.128 <0.001



Table S3. HLM model regressing critical rate on career age. HLM modeling three levels
including annual statistics of a scientist (level-1), that scientist over the lifecourse (level-2), and
the scientist’s field (level-3). Annual critical rate (CriRate) is the dependent variable with career
age (Age) and team size (TS) independent variables in level-1. Mean career age in the field
(MEAN_AGE) and mean team size in the field (MEAN_TS) are the independent variables in
level-3 as shown below, revealing that as mean age and team size go up, the critical rate goes
down, with less new work to criticize and teams collaborating around constructive new work.
Controlling for these higher-level factors, scientist career age retains a significant and substantial
relationship with critical rate.

Final estimation of fixed effects (with robust standard errors)

Fixed Effect Coefficient Standard
error

T-ratio Approx.
d.f.

p-value

For INTRCPT1, 𝜋
0

For INTRCPT2, 𝛽
00

INTRCPT3, 𝛾
000

50.247 1.470 34.177 9 <0.001

MEAN_AGE, 𝛾
001

-3.259 1.251 -2.606 9 0.029

MEAN_TS, 𝛾
002

-1.810 0.763 -2.373 9 0.042

For AGE slope, 𝜋
1

For INTRCPT2, 𝛽
01

INTRCPT3, 𝛾
100

0.652 0.061 10.704 9 <0.001

MEAN_AGE,𝛾
101

-0.338 0.060 -5.610 9 <0.001

MEAN_TS,𝛾
102

-0.142 0.044 -3.215 9 0.011

For TS slope, 𝜋
2

For INTRCPT2, 𝛽
02

       

INYRCPT3, 𝛾
200

0.1617 0.088 1.836 11 0.093

Final estimation of level-1 and level-2 variance components

Random Effect Standard
Deviation

Variance
Component

d.f. 𝝌2 p-value

INTRCPT1, 𝑟
0

12.790 163.592 4642 12024.477 <0.001

Age slope, 𝑟
1

1.342 1.802 4642 6073.891 <0.001

TS  slope, 𝑟
2

1.323 1.752 4642 5118.783 <0.001

level-1, e 235.576 1265.681

Note: The chi-square statistics reported above are based on only 4654 of 4677 units that had sufficient data for
computation.  Fixed effects and variance components are based on all the data

Final estimation of level-3 variance components



Random Effect Standard
Deviation

Variance
Component

d.f. 𝝌2 p-value

INTRCPT1/INTRCPT2, 𝑢
00

4.779 22.842 9 427.209 <0.001

AGE/INTRCPT2, 𝑢
10

0.131 0.0171 9 23.638 0.005

TS/INTRCPT2, 𝑢
20

0.137 0.019 11 19.727 0.049



Table S4. Granger Causality Test on Churn Rate and Average Age in Field. Predictive
relationships between churn rate in the field and old proportion (percentage of scholars whose
career year > 20 in each field) year by year with one and two year lags in both directions (e.g.,
Churn Rate predicting Old Proportion; Old Proportion predicting Churn Rate). Granger causality
tests on subfield churn rate and subfield old proportion suggest that old proportion is much more
likely to predict churn rate than the converse.

　 Old Proportion Predicts Churn Rate Churn Rate Predicts Old Proportion

Independent Variables SSR Ftest SSR Ftest

Field lags=1 year lags=2 year lags=1 year lags=2 year

Mathematics 9.67*** 4.76** 8.17*** 5.55***

Geology 16.76*** 7.74*** 0.36 4.69**

Economics 11.45*** 9.16*** 0.61 1.59

Psychology 18.66*** 6.65*** 0.32 0.96

Materials science 14.29*** 4.34** 5.49** 3.65**

Physics 9.08*** 2.19 4.05** 2.27

Chemistry 11.09*** 2.45* 1.29 0.52

Biology 13.82*** 4.01** 17.07*** 8.31***

Medicine 17.27*** 5.07*** 0.1 0.57

Engineering 16.38*** 4.98** 2.84* 1.8

Computer science 30.53*** 13.33*** 4.19** 0.75

* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001



Table S5.  OLS Models regressing Churn Rate on Old Proportion. Churn Rate relationship
with old scientist proportion for unweighted (model-1) and weighed data (model-2; scientists are
weighted according to their number of published papers.)

Model 1: unweighted Model 2: weighted by paper
productivity

Independent Variables Dependent Variable: Subfield Churn Rate

Intercept Coefficient Intercept Coefficient

Mathematics 0.184*** -0.350*** 0.186*** -0.282***

Geology 0.197*** -0.359*** 0.194*** -0.266***

Economics 0.136*** -0.188*** 0.135*** -0.155***

Psychology 0.167*** -0.263*** 0.164*** -0.190***

Materials Science 0.165*** -0.390*** 0.164*** -0.282***

Physics 0.120*** -0.157*** 0.117*** -0.098***

Chemistry 0.128*** -0.247*** 0.133*** -0.187***

Biology 0.165*** -0.344*** 0.167*** -0.254***

Medicine 0.164*** -0.409*** 0.156*** -0.243***

Engineering 0.179*** -0.407*** 0.176*** -0.311***

Computer  Science 0.202*** -0.509*** 0.202*** -0.363***

* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001


