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Abstract

This paper proposes a mechanism through which institutional investors’ correlated de-

mand shocks provide a source of risk in asset pricing. Institutional investors have a

mandate to beat a similar market index (e.g., S&P 500). When the market index per-

forms well, they have a stronger incentive to perform better to catch up with the market

performance. I show that this incentive induces procyclical risk-taking behavior among

institutional investors, generating correlated demand that causes stocks to excessively

comove with the market. I develop and estimate a model and show that stocks with

higher exposure to these correlated demand shocks have higher market betas and risk

premia due to their amplified market risk. This endogenous risk commands an 8.52%

annual return premium in decile portfolios, which is fully explained by the differences

in market betas across the portfolios. Quasi-experiments using exogenous changes in

index membership provide causal evidence of the mechanism.
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1 Introduction

Demand shocks unrelated to fundamentals play no role in textbook asset pricing theory.

Underlying the traditional framework is the assumption that demand shocks for an asset are

uncorrelated across investors. Specifically, when demand shocks to some investors influence

price, many other price-elastic investors immediately and aggressively make opposite trades

until the price moves back to the fundamental value. Recent research has challenged this

notion and examined the importance of correlated demand shocks in shaping equilibrium

asset prices.1 Importantly, Koijen and Yogo (2019) document that correlated shocks to

latent demand, the sources of which econometricians do not observe, explain up to 81%

of the cross-sectional variance of stock returns. Despite the economic significance, there

is relatively little systematic knowledge of the channels driving correlated demand shocks

across different groups of investors. Therefore, more research is needed to broaden the

understanding of what determines correlated demand shocks and their effects.

In this paper, I propose a mechanism through which institutional investors’ correlated

demand shocks, caused by their incentive to beat a similar market index (e.g., the S&P

500), provide a source of risk exposure in the cross-section of stock returns.2 I show theo-

retically that when this common incentive affects institutional investors’ portfolio choices,

their optimal rebalancing generates demand shocks that covary with the direction of market

movements, amplifying the market risk of affected stocks. I then develop and estimate a

model that incorporates these economic forces. The estimated model shows that stocks with

high exposure to these correlated demand shocks have higher market betas and risk premia

than stocks with low exposure because of their amplified market risk. This endogenous risk

commands an 8.52% annual return premium in decile portfolios, which is quantitatively ex-

plained by the differences in market betas across the portfolios. Using exogenous changes in

index membership, I present causal evidence on the mechanism.

1E.g., Brunnermeier and Pedersen (2009); He and Krishnamurthy (2013); Dou, Kogan, and Wu (2022)
2Institutional investors are herein defined as professional asset managers who manage equity portfolios

on behalf of households, such as mutual funds.
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To start, I empirically show that a large majority of funds (typically more than 60%)

underperform the market and increase their equity exposure (by becoming net stock buyers

and decreasing their cash holdings) when the market performs well, with the opposite pat-

terns present when the market performs poorly. To understand the underlying mechanism,

consider a portfolio manager for an equity fund with flows that chase its performance relative

to a given market index (e.g., the Russell 1000).3 If the manager underperforms the mar-

ket when the market performs well, then she has an incentive to increase her risk premium

through higher market exposure during market upswings. In this case, the manager is a net

buyer of stocks during periods of positive market performance. This risk-taking strategy

will typically pay off since the market performance is, on average, positive. However, if the

market unexpectedly falls, the fund will perform poorly due to its higher equity allocation,

and its counterpart, lower cash balance, will force the manager to liquidate her positions to

meet outflows. As such, the manager is a net seller of stocks during market downturns.

Overall, these effects suggest that institutional investors’ demand for stocks covary with

market movements, potentially increasing the market betas of affected stocks. I develop

and estimate a stylized model that embodies this endogenous market comovement channel

through institutional investors’ trading behavior. The purpose of the model is to study the

cross-sectional variation in stocks’ exposure to institutional investors’ correlated demand

shocks. In other words, the model asks which stocks are most affected when institutional

investors tend to buy (sell) stocks when the market rises (falls).

The model takes the ownership structure and documented equity allocation decisions of

institutional investors as given. Specifically, the model assumes that institutional investors

tend to increase (decrease) their equity exposure when the market performs well (poorly)

for an exogenous reason. This setup is highly stylized but useful because it guides my

empirical work in a simple manner. However, I later show that the same economic forces

arise endogenously due to institutional investors’ incentives to outperform a similar market

3In a recent sample, the fraction of funds benchmarked against the broad-market index has decreased
(Evans, Gómez, Ma, and Tang, 2022; Mullally and Rossi, 2022).
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index, building on the general equilibrium framework of Basak and Pavlova (2013).

In the stylized model, institutional investors choose which stocks to buy or sell within

their portfolios, given their equity allocation decisions. They take two factors into account

when trading. First, when they increase (decrease) their equity exposure, they tend to

increase (decrease) their stock holdings in proportion to the current portfolio weights (Ed-

mans, Goldstein, and Jiang, 2012). Consequently, stocks with high institutional ownership

are highly exposed to institutional investors’ correlated trading since their portfolio weights

tend to be large for institutional investors. Second, institutional investors are potentially

concerned about the price impact of their trades since they are large investors. Without

this latter concern, total institutional ownership would perfectly capture stocks’ exposure to

institutional investors’ correlated demand shocks. However, the estimated model shows that

institutional investors try to minimize their price impact when they make trades, materially

altering their trading behavior. Specifically, they tend to reduce the size of their trades when

their ownership is large compared to the stock’s market value or trading volume. Incorpo-

rating this trading behavior, the estimated model generates a measure for a stock’s exposure

to correlated demand shocks (model-implied exposure), which is the sum of the predicted

amount of correlated trades across institutional investors scaled by firm size. Intuitively,

the price of a stock is potentially affected by correlated demand shocks when the expected

correlated trading pressure is large relative to its market value.

The model-implied exposure further motivates a simple empirical proxy for a stock’s

exposure to correlated demand shocks: the number of institutional owners, controlling for

firm size. The number of institutional owners (NIO) predicts the sum of correlated trades

across institutional investors (the numerator in the model-implied exposure) in a simple

manner. Intuitively, a large number of owners implies a large and dispersed ownership

structure. Because the ownership structure is dispersed, each owner is small compared to

the total market value or trading volume. Therefore, each owner is not particularly concerned

about the price impact of their trades. However, when demand shocks are correlated across
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them, the price impact can be large in aggregate because they trade in the same direction

without worrying about their price impact from each owner’s perspective.4

In the main tests, I present two sets of results using the model-implied exposure and NIO.

For the latter, I include firm size as a control variable (among others) in regression analyses

as guided by the model. For a single sorting variable in portfolio analyses, I construct a

variable, Residual NIO, which is the estimated residuals from cross-sectional regressions of

NIO on firm size. This simple measure well captures a stock’s exposure to correlated demand

shocks as predicted by the model.

Armed with proxies of stocks’ exposure to correlated demand shocks, I present the main

empirical results. My sample period extends from 1980 to 2020. First, I find that stocks’

market beta is positively related to the proxies of stocks’ exposure to correlated demand

shocks, controlling for stock characteristics. For example, a percentile rank increase of 50

for the model-implied exposure or NIO is associated with an increase in a market beta of

0.4. Taking the annualized volatility of the stock market as 15%, this corresponds to a 6-

percentage-point increase in systematic volatility. Using disaggregated fund-level data, I find

that the relation primarily originates from active rather than passive funds. Other variables,

such as the total 13F institutional ownership and its Herfindahl-Hirschman index (HHI), also

appear to capture stocks’ exposure to correlated demand shocks. Specifically, these variables

also predict stocks’ market beta in the expected direction. Nevertheless, the model-implied

exposure and NIO capture the variation in market betas better than the other variables, as

indicated by the estimated model.

One potential concern with my setup is the endogeneity of the proxies for stocks’ exposure

to correlated demand shocks. For instance, because my measures reflect investors’ trading

decisions, they may be simply picking up fundamentals. To address this issue, I use the

Russell 1000 and 2000 reconstitution events as quasi-natural experiments. These events

cause a sharp change in the number of active institutional owners, especially among stocks

4Greenwood and Thesmar (2011)’s “fragility” measure is partly related to this argument. They study
the implications of both concentrated and dispersed ownership structures.
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around the Russell 1000 and 2000 cutoffs.5 I confirm that the relation between market betas

and the number of active funds holds in a fuzzy regression discontinuity setting, supporting

a causal interpretation of the findings.

While the Russell 1000 and 2000 reconstitution events do not affect total active ownership

(Appel, Gormley, and Keim, 2020), these events do change the number of active owners for

exogenous reasons. In particular, many active funds’ investment mandates require managers

to pick stocks that comprise large-cap indexes such as the Russell 1000.6 These constraints,

unrelated to fundamentals, generate a discontinuity in the number of active funds around

the Russell 1000 and 2000 cutoff points following the reconstitution dates.

Finally, I explore the asset pricing implications of the main findings. First, Fama and

MacBeth (1973) regressions show that both the model-implied exposure and NIO predict

returns, controlling for stock characteristics. The return predictability suggests that stocks’

amplified market exposure is a priced source of risk. Portfolio formations based on these

measures produce a consistent picture. For example, when forming 10 value-weighted port-

folios based on Residual NIO, the monthly returns increase monotonically from the lowest

decile portfolio (89 basis points) to the top decile portfolio (160 basis points). Importantly,

differential market exposure fully explains the return spread with zero alphas. The mar-

ket betas increase monotonically from the bottom decile portfolio (0.93) to the top decile

portfolio (1.44).

The return predictability of NIO differs from the findings of Chen, Hong, and Stein

(2002), who argue that reductions in the number of mutual funds imply overvaluation and

thus predict abnormally low returns.7 Empirically, the return predictability of NIO holds

after controlling for Chen et al. (2002)’s measure. More importantly, NIO predicts returns

5For implementation, I follow a methodology suggested by Ben-David, Franzoni, and Moussawi (2019),
which significantly improves the predictive power of the treatment variable.

6For example, the prospectus of the Fidelity Stock Selector Large Cap Value Fund (ticker FSLVX) states,
“... normally investing at least 80% of assets in stocks of companies with large market capitalizations (which,
for purposes of this fund, are those companies with market capitalizations similar to companies in the Russell
1000 Index or the S&P 500 Index)...”

7In particular, reductions in the number of mutual funds mean that only optimists are holding stocks as
many pessimists have already exited their positions, finding it difficult to sell short.
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due to compensation for risk, while their measure predicts returns due to mispricing. More

simply put, my paper is about beta, while their work is about alpha.

I further demonstrate that the return predictability of NIO originates from a covariance

channel. Specifically, using the IPCA framework of Kelly, Pruitt, and Su (2019), I show that

stocks’ exposure to correlated demand shocks predicts returns only through beta, not alpha.

The undiversifiable risk materializes in bad times, such as during the global financial crisis

in 2008, as stocks with high exposure to correlated demand shocks experience large price

crashes due to massive correlated selling pressure from institutional investors.

One may find it difficult to reconcile this paper’s findings with the low-risk anomaly

literature. In particular, Frazzini and Pedersen (2014) show that high-beta stocks earn

abnormally low returns, whereas the top decile portfolios in my analyses have the highest

beta and earn the highest return. However, empirical tests can fail to uncover a positive

market risk premium even if investors require compensation for market exposure. One reason

is that market betas may be correlated with other risk exposures that are omitted from asset

pricing tests (Giglio and Xiu, 2021). My work identifies an important driving force for market

betas, capturing a component of market exposure that is strongly priced. This driver is less

likely to be correlated with other sources of risk exposure.

I explore several alternative explanations for my main findings. One may argue that

institutional investors buy (sell) stocks when the market performs well (poorly), not because

of their discretionary trading (i.e., risk-taking) but because of flows. In principle, the model I

estimate does not take a stand on which channel drives correlated demand, and both channels

can play a role. However, I conduct several tests to distinguish between the two and find

that flow-induced trading (Coval and Stafford, 2007; Lou, 2012) is not the leading cause of

the observed trading behavior for institutional investors. First, I classify active mutual funds

into those that receive flows in the same direction as the market and the rest. I find that

the results on market betas are stronger for the latter group of funds (i.e., either without

flows or with flows that are in the opposite direction of the market), particularly during
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market upturns. This result may be puzzling at face value because one would not expect

low-flow funds to exert strong buying pressure when the market performs well. However,

during market upswings, there are no systematic outflows, while funds share a systematic

incentive to increase equity exposure. Second, mutual funds decrease their cash holdings and

buy more stocks when the market performs well, which is consistent with their incentive to

increase equity exposure. Finally, I show that the results are stronger for funds that have

underperformed the market, further supporting the risk-taking channel.

One might argue that an “index effect” can explain high market exposure for stocks that

join the Russell 1000 (Barberis, Shleifer, and Wurgler, 2005; Greenwood, 2008; Boyer, 2011).8

This literature predicts that stocks joining the Russell 1000 will exhibit extra comovement

with the index (i.e., the stock market) because passive funds that track the index trade

Russell 1000 stocks altogether. However, Chang, Hong, and Liskovich (2015) show that

index demand is very small for stocks just above the cutoff (joining the Russell 1000) but

very large for those just below the cutoff (joining the Russell 2000). The reason for these

patterns is that the index weights of the former stocks are minuscule. Empirically, I find

no effects from passive funds. Therefore, indexing is unlikely to be the driver of amplified

market exposure for the stocks in the Russell 1000.

Contribution and related literature Overall, my work establishes the economic mech-

anism through which institutional investors’ correlated demand shocks arising from their

incentive to beat a similar market index give rise to endogenous risk in the cross-section of

expected stock returns. I provide robust evidence that the demand shocks channel has a

first-order impact on equilibrium asset prices. As such, this paper contributes to a growing

literature that studies prices and volatility in financial markets through the lens of demand-

based asset pricing theory with institutional investors (e.g., Vayanos, 2004; Brunnermeier

and Pedersen, 2009; Dasgupta, Prat, and Verardo, 2011; Vayanos and Woolley, 2013; Basak

8Barberis et al. (2005) find that stocks added to the S&P 500 exhibit extra comovement with the index,
although Chen, Singal, and Whitelaw (2016) argue that the results are sensitive to specifications.
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and Pavlova, 2013; He and Krishnamurthy, 2013; Koch, Ruenzi, and Starks, 2016; Koijen and

Yogo, 2019; Cho, 2020; Dou et al., 2022; Han, Roussanov, and Ruan, 2022; Buffa, Vayanos,

and Woolley, 2022).

My work also makes a theoretical contribution to the literature examining the asset

pricing implications of benchmarking (Brennan, 1993; Cuoco and Kaniel, 2011; Basak and

Pavlova, 2013; Kashyap, Kovrijnykh, Li, and Pavlova, 2020; Pavlova and Sikorskaya, 2022;

Buffa and Hodor, 2022). My model and empirical results offer new insights into asset price

formation in the cross-section of average returns.

This paper is also related to the herding literature (e.g., Lakonishok, Shleifer, and Vishny,

1992; Wermers, 1999; Nofsinger and Sias, 1999; Choe, Kho, and Stulz, 1999; Sias, 2004) and

contributes to the debate on whether correlated trading of institutional investors destabilizes

asset prices. My work is also related to the literature on fire sales (Shleifer and Vishny,

1992; Coval and Stafford, 2007; Shleifer and Vishny, 2011; Cella, Ellul, and Giannetti, 2013;

Merrill, Nadauld, Stulz, and Sherlun, 2021) and contagion in financial markets (Kyle and

Xiong, 2001; Gromb and Vayanos, 2002; Brunnermeier and Pedersen, 2009; Boyson, Stahel,

and Stulz, 2010; Aragon and Strahan, 2012).

Finally, this paper is related to the limits of arbitrage literature (Shleifer and Vishny,

1997; Vayanos and Gromb, 2010) and the slow-moving capital literature (Pedersen, Mitchell,

and Pulvino, 2007; Duffie, 2010) as it studies a source of inelastic asset demand among

institutional investors.

The paper proceeds as follows. Section 2 describes the data and presents suggestive

evidence of institutional trading behavior. Section 3 presents the model that guides my

empirical work. Section 4 presents evidence of the price impact of institutional investors’

correlated demand shocks. Section 5 explores the asset pricing implications of the findings.

Section 6 concludes.
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2 Data and Motivating Facts

2.1 Data

I obtain firm-level data from the Center for Research in Security Prices (CRSP) and

Compustat. I gather 13F institutional ownership and disaggregated fund-level ownership

data from Thomson Reuters. The fund-level returns and cash holdings data come from the

CRSP Survivor-Bias-Free Mutual Fund Database. The Russell 1000 and 2000 index weights

data are from Compustat. I include ordinary common shares (CRSP share codes 10 or 11)

traded on the NYSE, AMEX, or NASDAQ (CRSP exchange codes 1, 2, or 3). I exclude

stocks with zero 13F institutional ownership in the previous quarter. The sample period

is from 1980 Q2 to 2020 Q2. I provide detailed data sources in Appendix A and variable

descriptions in Appendix B.

2.2 Motivating Facts

Institutional investors’ performance is generally defined relative to a market-wide bench-

mark index such as the S&P 500. Therefore, when the market performs well, institutional

investors have a stronger incentive to perform better to catch up with the market’s per-

formance. This incentive can induce procyclical risk-taking behavior among institutional

investors, making the direction of their stock trading covary with the direction of market

movements.

For intuition, consider a portfolio manager of an equity-only fund worth $100 million

with a mandate to beat a broad-market benchmark index, such as the Russell 1000. She

has invested $95 million in stocks and saved $5 million as cash reserves to guard against

the possibility of a sudden redemption. Suppose that the market has been performing well

during the quarter, but her fund has underperformed the market. To preempt outflows from

disappointed clients, she must find a way to improve her performance. This situation creates

a strategic incentive for her to increase the riskiness of her fund. Consequently, she would
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allocate the cash reserves into equity (or even leverage her portfolio if allowed) since a higher

equity exposure means a higher expected return with additional risk.

Suppose that a few months later, the stock market unexpectedly crashes. Because the

manager took on additional risk by increasing her fund’s equity exposure, her fund would

be severely affected by the downturn. Disappointed investors would interpret her poor

performance as partly due to a lack of skill and thus withdraw their investment. The fund

manager does not have a high enough liquidity buffer (her fund is fully invested in equity) and

therefore has to liquidate her positions aggressively to meet redemptions. In this example,

the direction of her stock trading coincided with the direction of market movements in both

market upturns and downturns.

Importantly, institutional investors act similarly as a group because they are typically in a

similar situation. Panel (a) of Figure 1 shows that a higher fraction of institutional investors

underperform the market when the market performs better. Consequently, as the market

rises, more institutional investors are incentivized to increase the riskiness of their funds.

Consistent with intuition, I find that institutional investors decrease their cash holdings in

aggregate (Panel (b)) and tend to become net stock buyers (Panel (c)) when the market

performs well.9 The patterns are consistent with the intuition that asset managers increase

the equity exposure of their portfolios partly with their cash reserves to catch up with the

market’s performance. The results suggest that the direction of institutional investors’ stock

trading tends to covary with the market’s movements.

The magnitude of aggregate changes in cash holdings in Figure 1 is at most 0.5 percentage

points in absolute terms. This amount would not be large enough to have aggregate price

impacts. However, the figure misses the fact that some institutional investors can leverage

their portfolios. Institutional investors who are leverage-constrained (e.g., mutual funds)

would first use their cash holdings and then shift toward risky stocks to further increase the

riskiness of their funds (Black, 1972; Frazzini and Pedersen, 2014). Panel (d) illustrates this

9I study the cash management of mutual funds because cash positions for 13F institutional investors are
not observable.
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point. The figure shows that more institutional investors shift toward high-beta stocks when

the market performs well.

3 A Simple Model

I develop and estimate a simple model that embodies the facts documented in the previous

section. My aim is to study the cross-sectional variation in stocks’ exposure to institutional

investors’ correlating demand shocks. In other words, the model asks which stocks are most

affected by the tendency among institutional investors to buy (sell) stocks when the market

rises (falls). The setup is highly stylized but useful because it guides empirical work in a sim-

ple manner. In particular, the nature of demand shocks is exogenously specified, motivated

by the suggestive evidence in the previous section. However, Appendix C shows that the key

economic forces prevail in a more realistic model, building on the framework of Basak and

Pavlova (2013). In this general equilibrium model, demand shocks arise endogenously due

to institutional investors’ incentives to beat a similar market index. Appendix D provides

proofs.

3.1 Asset Returns

Consider an economy with n risky assets in fixed unit supply, indexed by k = 1, ..., n,

and m institutional investors, indexed by i = 1, ...,m. Similar to Barberis et al. (2005), I

model the return of asset k as

rk,t = rFk,t︸︷︷︸
Fundamental shock

+
∑
i

rDi,k,t︸ ︷︷ ︸
Demand shocks

,
(1)

where rFk,t is asset k’s fundamental shock, and rDi,k,t is the effect of investor i’s demand shock

on asset k. Intuitively, the return of asset k can be decomposed into the fundamental shock

and the sum of demand shocks across investors who trade asset k. Equation 1 implies that
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the return is affected by demand shocks only if a significant enough fraction of investors trade

in the same direction. In contrast, if the shocks cancel each other out, their sum (
∑

i r
D
i,k,t)

will be close to zero with a negligible price impact.

3.2 Fundamental Shocks

The fundamental shock, rFk,t, follows a factor structure, defined as

rFk,t = φk · ft + εFk,t, (2)

where φk is a fundamental factor loading, ft is the market factor, and εFk,t is the idiosyncratic

shock. I consider a single-factor model for simplicity, yet the structure can be easily extended

to a multifactor framework.

3.3 Demand Shocks

Each investor manages a fund and invests in risky assets. Letting ∆ represent the dif-

ference operator (i.e., ∆xt = xt − xt−1), I model the effect of investor i’s demand shock on

asset k as

rDi,k,t =
∆Ai,t · πi,k,t−1

vk,t−1

, (3)

where Ai,t is fund i’s total investment in risky assets at time t; πi,k,t−1 is a weight function

that determines how fund i distributes its demand shocks across different assets; and the

weights satisfy

∑
k∈Ki,t−1

πi,k,t−1 = 1, (4)

with Ki,t−1 denoting the collection of risky assets in investor i’s portfolio at time t − 1.

Finally, vk,t−1 is asset k’s market value at time t− 1.
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The change in investment in risky assets (∆Ai,t) in Equation 3 captures the dollar flow

into or out of risky assets and is non-zero only when the fund makes trades (i.e., purchases

additional risky assets or sells its current holdings). Intuitively, once investor i is hit with a

dollar demand shock ∆Ai,t, he buys or sells risky assets in a way that effectively splits his

demand shock among the assets he owned prior to the demand shock, leading to a dollar flow

of ∆Ai,t · πi,k,t−1 into (if positive) or out of (if negative) asset k. The division by asset value

vk,t−1 in Equation 3 simply translates from this dollar flow to the demand shock effect on

the asset return. Appendix E explores an alternative specification that translates from the

dollar flow to the return effect using asset k’s trading volume instead of its market equity.

The empirical results are similar to those reported in the main text.

I now specify the nature of investor demand shocks (∆Ai,t) and how investors distribute

the demand shocks across assets (πi,k,t−1). First, investor demand shocks follow the factor

structure

∆Ai,t
Ai,t−1

= θi · ft + εDi,t, (5)

where θi is a demand factor loading, ft is the market factor, and εDi,t is the idiosyncratic

demand shock. If the direction of investor i’s asset trading coincides with the direction of

market movements (which is the mechanism I propose for correlated demand shocks), then

θi > 0.

Second, the weight function that distributes investor i’s demand shocks across assets is a

function of two variables: the portfolio weight on asset k (wi,k,t−1) and the asset ownership

ratio in asset k (si,k,t−1). Specifically,

πi,k,t−1 = wi,k,t−1 ·
(
1− λi · si,k,t−1

)
+ ψi,t−1, (6)

where λi is a parameter to be estimated, and ψi,t−1 is a term that is solved to satisfy

Equation 4.
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To understand the intuition underlying Equation 6, note that in the special case in which

investor i does not change his portfolio weights after a demand shock (i.e., wi,k,t = wi,k,t−1

as in Edmans et al. (2012)), the dollar flow for asset k is wi,k,t · Ai,t − wi,k,t−1 · Ai,t−1 =

wi,k,t−1 ·∆Ai,t, which is equivalent to πi,k,t−1 = wi,k,t−1 and thus implies λi = 0. (Note that,

in this case, ψi,t−1 = 0 to satisfy Equation 4.)

The specification in Equation 6 allows for a more general weight function that incorpo-

rates the possibility that institutional investors are cautious in trading an asset in which

they have a large ownership stake (i.e., high si,k,t−1). A large asset ownership ratio implies

that the investor’s presence is large relative to the asset’s total market value. Therefore,

the size of his trades on this asset tends to be large compared to the asset’s market value,

potentially impacting prices (see Equation 3). With this possibility in mind, a large investor

may not simply maintain his portfolio weights but rather tends to reduce the size of his

trades, more so as his prior ownership is larger (i.e., λi > 0), trying to minimize his price

impacts. Appendix E explores an alternative specification in which the concern about price

impacts is a function of an asset’s ownership scaled by trading volume instead of total shares

outstanding. The empirical results are similar to those reported in the main text.

I now derive the implications of my demand shock specification for the return of asset k.

Combining Equation 1 and Equation 3 results in

rk,t = rFk,t +
1

vk,t−1

∑
i

∆Ai,t · πi,k,t−1. (7)

Equation 7 can be further combined with factor structures in Equation 2 and Equation 5 to

yield

rk,t =

[
φk +

1

vk,t−1

∑
i

θi · Ai,t−1 · πi,k,t−1

]
ft + ε∗k,t, (8)

where ε∗k,t is the sum of idiosyncratic shocks, given as
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ε∗k,t = εFk,t +
1

vk,t−1

∑
i

εDi,t · Ai,t−1 · πi,k,t−1.

Equation 8 demonstrates that the systematic risk of asset k is potentially a function of

its fundamental market exposure and the sum of demand shocks across investors.

Finally, substituting the weight specification from Equation 6 into Equation 8 delivers

the final specification for the asset k return:

rk,t =

[
φk +

1

vk,t−1

∑
i

θi · Ai,t−1 ·
(
wi,k,t−1 ·

(
1− λi · si,k,t−1

)
+ ψi,t−1

)]
ft + ε∗k,t, (9)

which can be written as below in terms of expected returns:

E
[
rk,t+1

]
=

[
φk +

1

vk,t

∑
i

θi · Ai,t ·
(
wi,k,t ·

(
1− λi · si,k,t

)
+ ψi,t

)]
· E
[
ft+1

]
. (10)

Equation 10 shows that assets’ expected returns are simply determined by the capital asset

pricing model (CAPM) (Sharpe, 1964; Lintner, 1965; Mossin, 1966) but with endogenous

betas. Further, an asset’s beta can be decomposed into its fundamental market exposure

(φk) and its endogenous market exposure arising from correlated demand shocks.

For the rest of the paper, I set φk = φ, θi = θ, and λi = λ since my objective is to

understand how much variation in risk premia the correlated demand shocks channel can

capture in the absence of other heterogeneity effects.

3.4 Benchmark Case: Institutional Investors Do Not Internalize

Price Impact of Their Trades

Edmans et al. (2012) make an implicit assumption about the weight function in Equa-

tion 6, which has an interesting implication for asset returns in my setting. In particular,
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they posit that a fund will trade assets in proportion to its current holdings, maintaining its

portfolio weights. In other words, they model πi,k,t−1 = wi,k,t−1, where wi,k,t−1 is investor i’s

portfolio weight on asset k. With this assumption, Equation 8 collapses to

rk,t =

[
φ+ θ ·

∑
i

si,k,t−1

]
ft + ε∗k,t, (11)

where
∑

i si,k,t−1 is the total institutional ownership ratio of asset k. In this special case, the

systematic risk of asset k is potentially a function of its fundamental market exposure and

the total institutional ownership ratio.

3.5 Estimation

Setting φk = φ, θi = θ, and λi = λ yields the final equation to be estimated (Model I):

E
[
rk,t+1

]
=

[
φ · E

[
ft+1

]︸ ︷︷ ︸
α

+ θ · E
[
ft+1

]︸ ︷︷ ︸
β

· 1

vk,t

∑
i

Ai,t ·
(
wi,k,t ·

(
1− λ · si,k,t

)
+ ψi,t

)]
.

(12)

The parameter of interest is λ. Therefore, my goal is not to estimate φ, θ, and E
[
ft+1

]
separately. Instead, I set φ ·E

[
ft+1

]
= α and θ ·E

[
ft+1

]
= β and then estimate α, β, and λ,

which can be done via nonlinear least squares.

For comparison, I also estimate the benchmark model (Edmans et al., 2012). Specifically,

in terms of expected returns, Equation 11 can be written as below (Model II):

E
[
rk,t+1

]
=

[
φ · E

[
ft+1

]︸ ︷︷ ︸
α

+ θ · E
[
ft+1

]︸ ︷︷ ︸
β

·
∑
i

si,k,t

]
.

(13)

By setting φ · E
[
ft+1

]
= α and θ · E

[
ft+1

]
= β as above, Equation 13 can be estimated with

ordinary least squares.

I estimate Equations 12 and 13 for my sample of institution investors from 1980 Q2 to

2020 Q2. Following the recommendation in Hou, Xue, and Zhang (2020), I use value weights
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(one-quarter-lagged market capitalization) in estimating the models. Appendix E shows

that the results are almost identical when using equal weights in estimating the models. The

estimation procedure is detailed in Appendix E.

Table 1 shows that the estimated α is positive in both models, suggesting positive loadings

on fundamental shocks. The estimated β is also positive in both models, implying that θ

is positive (see Equation 5). The results suggest that, on average, institutional investors’

demand shocks positively correlate with fundamental shocks. Importantly, the estimated

λ is positive, suggesting that institutional investors are cautious when trading assets with

high ownership (see Equation 6). The likelihood ratio shows that Model I provides a more

powerful description of variation in asset returns than Model II (benchmark). Overall, the

estimation results suggest that institutional investors’ concerns about the price impacts of

their trades affect their trading decisions.

Given the signs of the estimated parameters, Equation 12 provides a measure for a stock’s

endogenous market exposure due to correlated demand shocks (model-implied exposure):

1

vk,t
·
∑
i

·Ai,t ·
(
wi,k,t ·

(
1− λ · si,k,t

)
+ ψi,t

)
︸ ︷︷ ︸

≡
∑

k,t

.
(14)

The model-implied exposure provides a mapping of asset characteristics to endogenous

betas, which is the sum of the expected amount of correlated trades across institutional

investors (
∑

k,t) scaled by an asset’s market value (vk,t). Intuitively, the price of a stock

is potentially affected by correlated demand shocks when the expected correlated trading

pressure is large relative to its market value.

3.6 A Simple Proxy for Endogenous Risk Exposure

The model-implied exposure further motivates a simple empirical proxy for
∑

k,t, the

number of institutional owners (NIO). This simple measure does a good job of predicting

the sum of correlated trades across institutional investors. In particular, the rank correlation
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between
∑

k,t and NIO is very high (96%). Intuitively, a large number of owners implies a

large and dispersed ownership structure.10 Because the ownership structure is dispersed, each

owner is small compared to the asset’s total market value or trading volume. Therefore, each

owner is not particularly concerned about the price impact of their trades. However, when

demand shocks are correlated across institutional owners, the price impact can be large

in aggregate because they trade in the same direction without worrying about their price

impact from each owner’s perspective.

While economically appealing, what makes the proxy particularly useful is its empiri-

cal tractability. To construct NIO, one simply needs to count the number of institutional

stockholders, which makes it nearly free from measurement error. In contrast, ownership

data (e.g., the number of shares owned reported by institutional investors) typically have

a non-negligible number of erroneous or extreme observations. Such observations make the

model-implied exposure relatively noisier since it is the sum of ownership-related variables

from many investors. Nevertheless, the model-implied exposure is still useful in capturing

stocks’ exposure to correlated demand shocks. NIO is a simple yet empirically powerful

proxy that embodies the economic forces of the estimated model.

In the main tests, I present two sets of results using the model-implied exposure and NIO.

In regression analyses, the main independent variable is the natural log of
∑

k,t or NIO, and

I control for firm size (among other variables). Taking the log is a reasonable way to account

for the highly stylized nature of my model and minimize the effects of erroneous or extreme

observations. Taking the log of the model-implied exposure with the firm size control results

in the following regression specification:

yk,t+1 = α + β · ln(Σk,t/vk,t) + γ · ln(vk,t) + . . .+ εk,t+1

= α + β · ln(Σk,t) + (β − γ) · ln(vk,t) + . . .+ εk,t+1,

(15)

where yk,t+1 is either asset returns or market betas. The specification shows that one can

10NIO is positively correlated with total 13F ownership (80%) and is negatively correlated with institutional
ownership concentration (−81%) in the data.
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use the log of
∑

k,t and control for the log of market equity in regressions. Since
∑

k,t and

NIO are highly correlated, one can consider a linear mapping between the log of the two

variables. Indeed, the cross-sectional correlation between ln(
∑

k,t) and ln(NIOk,t) is 89%.

Consequently, I can replace ln(
∑

k,t) with ln(NIOk,t) in Equation 15 as an approximation

of the original specification.

For the empirical tests, I first present the results with log specifications and use the

percentile ranks of these variables for the rest of the analyses. I do so because in the lat-

ter analyses, I investigate heterogeneity across institutional investors (e.g., the number of

winning vs. losing funds) and compare the economic significance across the groups. The per-

centile rank is helpful since one can directly compare the magnitude of coefficients, especially

when multiple variables are included in a single regression.

In portfolio analyses, the model-implied exposure (estimated with an expanding window)

can be used as a single sorting variable. However, the case of NIO is not straightforward.

For example, dividing NIO by market equity is troublesome as the units of the two variables

are not comparable. To account for the different scales between NIO and market equity, I

follow the approach in Nagel (2005) and construct a variable, Residual NIO, which is the

estimated residuals from cross-sectional regressions of the log of NIO on the log of market

equity:

ln(NIOk,t) = a+ b · ln(vk,t) + εk,t. (16)

The estimated coefficients â and b̂ in each period adjust for different scales between

the two variables and provide a way to use NIO adjusted for firm size as a single sorting

variable. The rank correlation between the model-implied exposure and Residual NIO is 59%,

indicating that the cross-sectional regressions did a reasonably good job in approximating

the model-implied exposure with NIO adjusted for firm size. Residual NIO is a simple yet

empirically powerful proxy that incorporates the economics of the model-implied exposure.
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4 Price Impact of Correlated Demand Shocks

The previous section provides useful predictions that guide my empirical work. The

parameter estimates in the model show that institutional investors’ demand shocks covary

with market movements. The following subsection investigates whether these correlated

demand shocks lead to higher market betas in the cross-section. Guided by the model, I

then use the model-implied exposure or the number of 13F institutional owners (NIO) as a

proxy for a stock’s exposure to institutional investors’ correlated demand shocks.

4.1 Amplification of Systematic Risk

I run Fama and MacBeth (1973) regressions to study the relationship between stocks’

exposure to correlated demand shocks and market betas in the cross-section. The market

betas are computed by regressing daily stock returns in excess of the risk-free rates on

contemporaneous and lagged value-weighted market returns in excess of the risk-free rates.11

The dependent variable is the sum of the two estimated coefficients. Controls include stock

characteristics such as firm size, the book-to-market ratio, past returns, and lagged market

betas.

The first two columns of Table 2 follow the specifications in Equation 15. The results

show that the model-implied exposure and NIO both have strong explanatory power for the

cross-section of market betas. To easily compare the economic significance across variables,

I use the percentile rank of the model-implied exposure or NIO as the main independent

variable for the remaining analyses. The economic magnitude is sizable. Table 2 shows that

a percentile rank increase of 50 for the model-implied exposure or NIO is associated with an

increase in a market beta of 0.4. Taking annualized volatility of the stock market as 15%,

this corresponds to a 6-percentage-point increase in systematic volatility.12

11I include lagged market returns to adjust for nonsynchronous trading (Dimson, 1979). The inferences
remain unchanged when I do not make this adjustment or when I include other leads and lags of the market.

12Appendix Table A.III presents mixed findings for idiosyncratic volatility. NIO positively predicts id-
iosyncratic volatility, but the model-implied exposure does not.
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The documented relationship is consistent with the notion that when the market performs

well, institutional investors have a stronger incentive to perform better and thus buy more

stocks to increase the riskiness of their funds. Their correlated trading covaries with market

movements, inducing stocks to excessively comove with the market.

One could argue that the documented patterns arise because of flows from underlying

investors. If funds receive correlated flows when the market performs well, institutional

investors will generate the same trading patterns for a different reason, i.e., flows from their

clients. In principle, the model I estimate does not take a stand on which channel drives

correlated demand, and both channels can play a role. Empirically, I conduct several tests

to distinguish between the two and find that flow-induced trading is not the leading cause

of the observed trading behavior for institutional investors.

First, using disaggregated fund-level data, I show that the relation primarily originates

from active rather than passive funds (Table 2). If institutional investors’ discretionary

trading drives the results, one would expect to see stronger effects among the active funds

because the passive funds are buy-and-hold investors. The passive funds would exhibit the

correlated trading behavior only if they received correlated flows from their client-investors,

and the last column shows that correlated flows do play a role, though the magnitude is

relatively small.

Second, I split active mutual funds into two groups: those that receive flows in the same

direction as the market (high-flow funds) and the rest (low-flow funds). I then rerun the

quarterly Fama and MacBeth (1973) regressions. The results, presented in Table 3, show

that market betas are stronger for the latter group of funds (i.e., either without flows or

with flows that move in the opposite direction of the market).13 The stronger results for

low-flow funds are shown in Columns (1), (2), and (3). These results may be puzzling at face

value because one would not expect low-flow funds to exert strong buying pressure when the

market performs well. However, during market upturns, there are no systematic outflows,

13The results are stronger for market upturns. Conversely, when the market performs poorly, the magni-
tudes are similar between the two groups (not reported).
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while funds share a systematic incentive to increase equity exposure.

Third, earlier evidence in Section 2 shows that mutual funds decrease their cash holdings

and buy more stocks when the market rises, which is consistent with their incentive to

increase equity exposure. Finally, further supporting the risk-taking channel, I show that

the results are stronger for funds that have underperformed the market (Columns (4), (5),

and (6) in Table 3).14 Based on this evidence, in Appendix C, I develop a general equilibrium

model populated by institutional investors and show that correlated demand shocks can arise

from the procyclical risk-taking channel.

The estimated model in Section 3 shows that the model-implied exposure and NIO should

better capture a stock’s exposure to correlated demand shocks than total institutional owner-

ship. To test this prediction, I compare the explanatory power of other potential proxies for

demand shocks, including total 13F institutional ownership and the Herfindahl-Hirschman

index (HHI) of 13F institutional ownership. I find that the model-implied exposure and NIO

are the strongest variables, as indicated by the estimated model.

Table 4 presents the results. Columns (3) and (4) show that 13F ownership and the HHI

also predict the cross-section of market betas in the expected direction, yet the economic

magnitudes are much smaller. In Column (5), I include all three variables and find that

the model-implied exposure has strong explanatory power when controlling for the other

measures. Column (6) shows that NIO dominates the other measures.

4.2 Identification Using a Fuzzy Regression Discontinuity Design

Another potential concern is the endogeneity of the proxies for stocks’ exposure to cor-

related demand shocks. For instance, since the measures reflect investors’ trading decisions,

they may be simply picking up fundamentals. To address this issue, I use the Russell 1000

and 2000 annual reconstitution events as quasi-natural experiments. These events cause a

sharp change in the number of active institutional owners, especially among stocks close to

14Appendix Table A.IV shows that the effects are stronger among high-beta stocks, which is consistent
with the risk-taking motive for institutional investors.
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the Russell 1000 and 2000 cutoffs. I confirm that the relation between market betas and the

number of active funds holds in a fuzzy regression discontinuity setting, supporting a causal

interpretation of the findings.

The annual reconstitution events between the Russell 1000 and 2000 occur in June. Un-

til 2006, the first 1,000 largest stocks comprise the Russell 1000, and the following 2,000

largest stocks comprise the Russell 2000 based on end-of-May market capitalization rank-

ings.15 However, Russell does not publicly disclose how it constructs the ranking variable for

the annual reconstitution. Therefore, one needs to construct a proxy that closely resembles

Russell’s methodology, a task that turns out to be quite difficult. Moreover, prior studies

suggest that the implementation of this regression discontinuity setting should be conducted

carefully (Appel et al., 2020). For the implementation, I closely follow a methodology pro-

posed by Ben-David et al. (2019). The authors find a substantial improvement for the

approximation of the market capitalization rankings that Russell uses for index assignment,

combining information from CRSP and Compustat.16

I argue that there is likely to be a discontinuity in the number of active funds around

the Russell 1000 and 2000 cutoffs. Specifically, I expect to observe that stocks whose market

capitalization rankings are just above the cutoff (joining the Russell 1000) are likely to have

more active owners than stocks just below the cutoff (joining the Russell 2000). The reasons

are as follows. First, active funds’ investment mandates typically constrain managers from

picking stocks that do not comprise large-cap indexes such as the S&P 500 and the Russell

1000. Second, active funds’ performance also tends to be benchmarked to the large-cap

benchmark indexes, and sometimes funds are required to hold a large proportion of stocks

that comprise their benchmark indexes. Therefore, the stocks that comprise the Russell

1000 index are likely to have more active owners following the reconstitution events, and the

difference is likely greater around the cutoff points.

15After 2006, Russell introduced a banding rule, which significantly reduces variation around the cutoffs
between the two indexes.

16See Ben-David et al. (2019) and Appel et al. (2020) for a comprehensive discussion.
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To test the conjecture, I begin by running first-stage regressions. Specifically, the inde-

pendent variable of interest is a treatment variable, an indicator that equals one if a stock is

expected to be included in the Russell 1000 index based on its market capitalization ranking

in May. I investigate four different narrow bandwidths — ±50, ±75, ±100, and ±125 —

and control for polynomials of the market capitalization ranking variable to the third-order

as well as their interaction terms with the treatment variable.

The results in Panel A of Table 5 indicate the existence of a discontinuity in the number

of active funds around the Russell 1000 and 2000 cutoff points. The magnitude of the

discontinuity is around 60, and it is statistically significant at a 1% level regardless of the

bandwidth selection. Panel (a) of Figure 2 visually confirms the discontinuity, and Panel (a)

of Appendix Figure A.II shows that there is no discontinuity before the reconstitution dates.17

After confirming the existence of a discontinuity, I then use the treatment variable, which

predicts whether a stock is expected to be included in the Russell 1000 index, as an instru-

ment for the number of active funds following the reconstitution dates. The dependent

variable of interest is the market beta estimated using daily stock returns within each quar-

ter as in Table 2. Again, I investigate four different narrow bandwidths — ±50, ±75, ±100,

and ±125 — and control for polynomials of the market capitalization ranking variable to the

third-order as well as their interaction terms with the treatment variable. I control for stock

characteristics and the total active and passive fund ownership. To ensure that I capture

any changes in ownership structures around the reconstitution events, I further control for

changes in active and passive fund ownership.18

Panel B of Table 5 reports the second-stage regression results. I find that the relationship

between the market betas and the number of active funds holds in the fuzzy regression

discontinuity setting. A one-standard-deviation increase in the number of active funds leads

17Panel (b) of Figure 2 shows that there is a discontinuity in the number of passive funds. Unlike the
number of active funds, stocks whose market capitalization rankings are just above the cutoff (joining the
Russell 1000) have fewer passive owners than stocks just below the cutoff (joining the Russell 2000). Panel (b)
of Appendix Figure A.II shows that there is no discontinuity before the reconstitution dates.

18The use of different control variables does not change the main results.
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to a higher market beta of approximately 0.7, which is greater than the estimate from Table 2.

The findings suggest that the relationship between the market betas and the number of active

funds is likely to be causal.19

One might conjecture that I find an increase in stocks’ market exposure due to an “index

effect.” In particular, stocks that comprise the Russell 1000 may exhibit excessive comove-

ment with the Russell 1000 (i.e., the market portfolio) because flows in and out of the Russell

1000 funds affect all stocks in the index. In a similar context, Barberis et al. (2005) find that

stocks added to the S&P 500 index exhibit extra comovement with the S&P 500.20 However,

the results of previous studies that use the Russell 1000 and 2000 to examine demand from

indexing suggest that my findings are not likely to originate from the index effect. Chang

et al. (2015) show that index demand is very small for stocks just above the cutoff (joining

the Russell 1000) but is large for those just below the cutoff (joining the Russell 2000).

The reason for this disparity is that the index weights of the former stocks are minuscule.

Empirically, I find no effects from passive funds. Therefore, I conclude that the active funds

are likely driving the increased market exposure.

5 Asset Pricing Implications

The results in the previous section suggest that institutional investors’ correlated demand

shocks endogenously increase stocks’ market risk. In this section, I examine whether the

amplified market risk is priced in the cross-section.

19In principle, it is possible that a stock’s discount rate shocks comove more with index shocks after the
stock is included in the index. If this were the case, one would not be able to tell whether the relationship
exists due to correlated demand shocks or the institutional preference for high-beta stocks (Black, 1972).

20Chen et al. (2016) document that the evidence of comovement disappears when using a more refined
analysis.
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5.1 Return Predictability

I run Fama and MacBeth (1973) regressions to test whether the model-implied exposure

and NIO predict stock returns in the cross-section. The dependent variable is quarterly

stock returns. Controls include stock characteristics that are known to predict stock returns

in the asset pricing literature. For the return predictability test, I estimate Equation 12 in

Section 3 on an expanding window of four quarters and form portfolios based on the resulting

model-implied exposure.

The results are presented in Table 6. The first two columns follow the specifications in

Equation 15. The results show that the model-implied exposure and NIO both have strong

explanatory power for the cross-section of stock returns. The economic magnitude is sizable.

A percentile rank increase of 50 for the model-implied exposure (NIO) is associated with an

approximately 3-percentage-point (4-percentage-point) increase in quarterly stock returns.

Consistent with the results in Table 2 that active funds are primarily responsible for stocks’

increased market risk, I find that the return predictability is driven by active, not passive,

funds.

The return predictability of NIO differs from the results in Chen et al. (2002), who show

that changes in the number of mutual funds (i.e., change in breadth) predict returns. They

argue that a reduction in breadth predicts abnormally low returns because this measure

captures disagreement and binding short-sale constraints. In particular, a reduction in the

number of mutual funds means that only optimists are holding stocks as many pessimists

have already exited their positions, finding it difficult to sell short. Unlike Chen et al., I show

that, controlling for firm size, the level of NIO (not the change) predicts returns because

it captures the exposure of stocks to institutional investors’ correlated trading pressures,

which increase stocks’ market risk. Importantly, the results in Table 6 show that the return

predictability of NIO holds after controlling for the Chen et al. measure (change in breadth).

Their measure also predicts returns, but its predictive power decays in the post-2000 period.
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5.2 Portfolio Analysis

In this subsection, I conduct portfolio-based return predictability tests. I use the model-

implied measure based on the rolling estimation of Equation 12 in Section 3 to form portfolios.

For NIO to be used as a single sorting variable, I construct a variable, Residual NIO, which

is the estimated residuals from cross-sectional regressions of NIO on firm size following Nagel

(2005). Specifically, I regress the natural logarithm of 1 + NIO on the natural logarithm

of market capitalization each month and form 10 portfolios based on the estimated resid-

uals (Residual NIO) in the next month. The residuals are orthogonal to the size effect by

construction. The 10 portfolios based on the model-implied exposure or Residual NIO are

rebalanced monthly, and the portfolio returns are value-weighted.

Panel A of Table 7 reports the average returns and the market betas of the portfolios

sorted by the model-implied exposure. The portfolio returns increase monotonically from

the bottom decile portfolio (52 basis points per month) to the top decile portfolio (109

basis points per month), generating a return differential of 6.84% per year. Importantly,

the return spread is fully explained by the portfolios’ market betas. Specifically, the market

betas increase from the bottom decile portfolio (0.73) to the top decile portfolio (1.12). The

CAPM alpha of the long-short portfolio is neither economically nor statistically significant.

Panel B of Table 7 reports the average returns and the market betas of the Residual NIO-

sorted portfolios. The results are stronger, and the main conclusion remains the same. The

portfolio returns increase monotonically from the bottom decile portfolio (89 basis points

per month) to the top decile portfolio (160 basis points per month), generating a return

differential of 8.52% per year. The market betas increase monotonically from the bottom

decile portfolio (0.93) to the top decile portfolio (1.44). The CAPM alphas of all portfolios

are economically not different from zero, and none of them are statistically significant.21

In Appendix Table A.V, I replicate the results in Table 7 using total 13F institutional

ownership and the Herfindahl-Hirschman index (HHI) of 13F institutional ownership. The

21The 4th decile portfolio is the exception, yet the economic magnitude of the CAPM alpha is not sizable.
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results show similar but weaker patterns.

The documented patterns support the notion that institutional investors’ correlated de-

mand shocks endogenously increase stocks’ market risk. The patterns in portfolio returns

suggest that the amplified market risk is priced in the cross-section.

5.3 The Covariance Channel

The previous subsection shows that stocks’ endogenous market exposure commands an

8.52% annual return premium in decile portfolios. Importantly, the differences in market

betas across the portfolios quantitatively explain the return spreads. In this subsection,

I further demonstrate that the return predictability of NIO originates from a covariance

channel.

Kelly et al. (2019) provide a framework to test whether return predictability arises from

covariance or implies anomalies. Specifically, they model the return of assets as

rk,t+1 = z
′

k,t · Γα︸ ︷︷ ︸
αk,t

+ z
′

k,t · Γβ︸ ︷︷ ︸
βk,t

·ft+1 + εk,t+1,
(17)

where zk,t is a L × 1 vector of asset characteristics (L characteristics including constant);

Γα and Γβ are L × 1 vectors of coefficients; and ft+1 is the risk factor. The model can be

easily extended to a multifactor framework with unobservable factors. In Equation 17, both

alphas and betas are potentially a function of asset characteristics (Rosenberg, 1974). In this

framework, if an asset characteristic predicts returns because it proxies for a factor loading,

then its effect on returns will show up through Γβ (not Γα). With observable factors (i.e.,

the market factor), Equation 17 can be estimated using cross-sectional regressions. In my

setting, I include the market factor as a single risk factor. The testing assets are the decile

portfolios formed by the model-implied exposure or Residual NIO, and zk,t is a 2× 1 vector

with a constant and the model-implied exposure or Residual NIO (at the portfolio level, e.g.,

value-weighted Residual NIO).
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Panel A of Table 8 presents the estimated coefficients of the model-implied exposure

for alpha (the second element of Γα) and beta (the second element of Γβ). The estimated

coefficient for alpha is economically and statistically insignificant. In contrast, the estimated

coefficient for beta does a good job of explaining the return spreads across the portfolios.

The bootstrap test result shows that one cannot reject the null hypothesis H0 : Γα = 0.

Specifically, the bootstrapped p-value is over 60%. In contrast, the p-value for the null

hypothesis H0 : Γβ = 0 is slightly over 5%.

Panel B of Table 8 presents the estimated coefficients of Residual NIO for alpha and beta.

The results are stronger. Specifically, the estimated coefficient for alpha is extremely small.

In contrast, the estimated coefficient for beta does all the work in explaining the return

spreads across the portfolios, strongly supporting the covariance channel. The bootstrapped

p-value for the null hypothesis H0 : Γα = 0 is over 50%. In contrast, the p-value for the null

hypothesis H0 : Γβ = 0 is below 1%.

The covariance channel manifests itself in bad times. Figure 3 presents anecdotal evi-

dence from the global financial crisis of 2008. Specifically, the figure shows the performance

and institutional ownership of the top and bottom portfolios based on the model-implied ex-

posure or Residual NIO during the global financial crisis. First, the price declines of the top

decile portfolios are substantially sharper than those of the bottom decile portfolios during

the global financial crisis (Panels (a) and (b)). Moreover, the price declines coincide with

institutional selling pressures (Panels (c) and (d)), especially for the portfolios formed by

Residual NIO. Specifically, the median total institutional ownership of the stocks in the top

Residual NIO decile portfolio decreased substantially (by 15 percentage points) during the

global financial crisis of 2008.22 In contrast, the median total institutional ownership of the

stocks in the bottom Residual NIO decile portfolio remains relatively constant throughout

the crisis period. The ownership results for the model-implied exposure are relatively weak.

Specifically, the median ownership for the top decile portfolio decreased by only 6 percentage

22The median institutional ownership generates more reliable inferences than the average institutional
ownership due to extreme observations in the 13F data.
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points. This is because Residual NIO better captures the cross-sectional variation in risk

exposure, particularly for the long leg (the riskiest stocks).

The anecdotal evidence in Figure 3 is generalizable. Panels C and D of Table 8 report the

returns of the portfolios based on the model-implied exposure and Residual NIO, respectively,

in months of stock market crashes, defined as months in which market returns are ranked

in the bottom 10% of all months in the sample period. The results show that the average

portfolio returns become more negative, moving from the bottom to the top decile portfolios.

Importantly, the differential price crashes arise through the differences in market betas across

the portfolios. The results are again stronger for the portfolios formed by Residual NIO.

6 Conclusion

This paper proposes a mechanism through which institutional investors’ correlated de-

mand shocks, caused by their incentive to beat a similar market index (e.g., the S&P 500),

provide a source of risk exposure in the cross-section of stock returns. I show that this

incentive induces procyclical risk-taking behavior among institutional investors, generating

demand shocks that covary with the direction of market movements. These correlated de-

mand shocks cause stocks to excessively comove with the market, amplifying their market

risk. This endogenous risk translates into stock price crashes during market downturns and

a return premium of 8.52% per year.

My findings suggest that institutional investors may influence firms’ investment decisions

through the cost of capital channel since many U.S. firms use the CAPM to measure their

cost of equity (Graham and Harvey, 2001). Investigating whether this mechanism is in play

will be an interesting avenue for future research.

Another important and interesting future direction would be to investigate the interna-

tional finance implications of my findings since many institutional investors hold internation-

ally well-diversified portfolios. One possibility is that institutional investors’ demand shocks

30



in a local market are transmitted to foreign markets through their portfolio management.

There is literature that interprets higher stock return R-squareds as indicative of a less

efficient stock market (Morck, Yeung, and Yu, 2000). Bartram, Brown, and Stulz (2019)

document a secular decline in idiosyncratic risk in the 2000s while the stock return R-

squared increased during the same period. Perhaps institutional investors’ correlated demand

shocks contributed to this trend, causing stocks to excessively comove with the market for

no fundamental reasons.

One might wonder whether the growth of passive investment implies that the effects I

document have become less important. Indeed, the rise of passive investing means a decrease

in the share of active players who produce noise in the stock market. However, the rise of

passive investing also implies a decrease in the share of competitive players who have elastic

demand. Interestingly, Haddad, Huebner, and Loualiche (2021) show that the stock market

is becoming more inelastic over time due to the popularity of passive investing. Consequently,

the same magnitude of demand shocks may generate a larger price impact as passive investors

become increasingly more important players in financial markets.
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Figure 1. Direction of Institutional Investors’ Stock Trading

The figure presents binned scatter plots showing the relationship between institutional investors’ stock trad-
ing and market returns. Panel (a) shows the fraction of mutual funds that outperform the market. Panel (b)
shows aggregate changes in active mutual funds’ cash holdings (in percentage points). Panel (c) presents
the fraction of institutional investors whose net dollar amount of trades for stocks is positive. In Panel (d),
institutional investors are considered to shift toward high-beta stocks if their total dollar amount of trades
for stocks with above-median market betas exceeds that for stocks with below-median market betas.

−0.2 −0.1 0 0.1 0.2

0.3

0.4

0.5

Quarterly Stock Market Returns

F
ra

ct
io

n
o
f

O
u

tp
er

fo
rm

in
g

F
u

n
d

s (a) Fraction of Outperforming Funds

−0.2 −0.1 0 0.1 0.2

−0.5

0

0.5

Quarterly Stock Market Returns
∆

C
a
sh

P
o
si

ti
o
n

s
(p

p
)

(b) Change in Cash Positions

−0.2 −0.1 0 0.1 0.2
0.4

0.45

0.5

0.55

0.6

Quarterly Stock Market Returns

F
ra

ct
io

n
o
f

In
st

it
u

ti
o
n

a
l

In
v
es

to
rs

(c) Fraction of Institutional Investors
Net Purchasing Stocks

−0.2 −0.1 0 0.1 0.2

0.5

0.55

0.6

Quarterly Stock Market Returns

F
ra

ct
io

n
o
f

In
st

it
u

ti
o
n

a
l

In
v
es

to
rs

(d) Fraction of Institutional Investors
Shifting to High-beta Stocks

37



Figure 2. Number of Funds After Russell Reconstitution Events

The figure plots the number of active and passive owners in December (six months after the reconstitution
events) against May (one month before the reconstitution events) market capitalization rankings. The sample
period spans the Russell reconstitution events between 2000 and 2006. Panel (a) shows the number of active
funds, and Panel (b) reports the number of passive funds. Rank is stocks’ market capitalization rankings in
May. Rank equals −200 (200) if a stock is ranked 800th (1,200th). Each bin represents the average of 10
ranks over the sample period. The solid lines are the fitted lines using linear polynomials with a triangular
kernel centered on the cutoff rank 0.
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Figure 3. Portfolio Returns and Institutional Ownership During the Global Fi-
nancial Crisis

The figure shows the cumulative returns and the median 13F institutional ownership of portfolios based on
the model-implied exposure (Panels (a) and (b)) and Residual NIO (Panels (c) and (d)) during the global
financial crisis in 2008. The portfolio formations are described in Table 7. Panels (a) and (c) present cumu-
lative monthly returns of the top and the bottom decile portfolios, and Panels (b) and (d) report the median
total 13F ownership of stocks in the top and the bottom decile portfolios.
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Table 1. Parameter Estimates and the Goodness of Fit

The table reports the parameter estimates from Equation 12 (Model I) and Equation 13 (Model II) with
value weights and the likelihood ratio test. Model I incorporates institutional investors’ concern about the
price impact of their trades, which is summarized by a parameter (λ) added to Model II. Model II is the
benchmark model following the assumptions in Edmans et al. (2012). I include ordinary common shares
(CRSP share codes 10 or 11) and stocks traded on the NYSE, AMEX, or NASDAQ (CRSP exchange codes
1, 2, or 3). I exclude stocks with zero 13F institutional ownership. Standard errors are reported in brackets.
The estimation procedures are detailed in Appendix E.

Model I Model II

α 0.025 0.025
[0.007] [0.006]

β 0.151 0.021
[0.075] [0.009]

λ 7.736 −
[2.986] −

Likelihood ratio 9.95 −
p-value 0.002 −
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Table 2. Amplification of Market Risk

The table reports quarterly Fama and MacBeth (1973) regressions of market betas on the model-implied
exposure (from Equation 12 in Section 3) and the number of 13F institutional owners (NIO). I include
ordinary common shares (CRSP share codes 10 or 11) and stocks traded on the NYSE, AMEX, or NASDAQ
(CRSP exchange codes 1, 2, or 3). I exclude stocks with zero 13F institutional ownership or negative
book value from Compustat. The market betas are computed by regressing daily stock returns in excess of
the risk-free rates on contemporaneous and lagged value-weighted market returns in excess of the risk-free
rates. The dependent variable is the sum of the two estimated coefficients. The main independent variables
are the log or the percentile rank of the model-implied exposure, the number of 13F institutional owners
(NIO), the number of active funds, and the number of passive funds. Mktcap is the quarter-end market
capitalization, and Price is the quarter-end stock price. Book-to-market is book equity divided by market
equity; Assets growth is the change in assets scaled by lagged assets (Fama and French, 2015; Hou et al.,
2015); and Profitability is revenue minus the cost of goods sold, scaled by total assets (Novy-Marx, 2013).
Past-6-month return is the natural logarithm of cumulative past-6-month returns excluding the most recent
month return. The Amihud ratio is computed within each quarter following Amihud (2002). t-statistics are
reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Dependent variable: Betaq+1

Sample period: 1980-2020 1980-2020 1980-2020 1997-2020 1980-2020 1997-2020

log(Model-implied exposureq) 0.034***
(12.79)

log(NIOq) 0.163***
(18.02)

Rank: Model-implied exposureq 0.007*** 0.007***
(18.46) (13.16)

Rank: NIOq 0.008***
(19.19)

Rank: NIOq (active) 0.006***
(15.11)

Rank: NIOq (passive) 0.003***
(4.98)

log(Mktcapq) −0.002 −0.060*** −0.049*** −0.063*** −0.060*** −0.084***
(−0.32) (−9.73) (−8.57) (−8.17) (−9.61) (−11.42)

1/Priceq 0.050*** 0.027** 0.043*** 0.073*** 0.027** 0.056***
(4.50) (2.35) (3.87) (3.87) (2.41) (3.03)

log(Book-to-marketq) −0.066*** −0.081*** −0.074*** −0.053*** −0.080*** −0.062***
(−9.41) (−11.04) (−10.13) (−5.31) (−10.91) (−6.46)

Assets growthy−1 0.099*** 0.110*** 0.100*** 0.070*** 0.106*** 0.084***
(10.59) (12.32) (10.70) (5.84) (11.77) (7.28)

Profitabilityy−1 0.013 −0.011 −0.004 −0.050*** −0.012 −0.078***
(1.03) (−0.89) (−0.37) (−3.01) (−0.99) (−4.72)

Past-6-month return −0.028 0.008 −0.026 −0.044 0.005 −0.015
(−1.33) (0.36) (−1.23) (−1.46) (0.23) (−0.52)

Amihud ratioq −0.048*** −0.044*** −0.053*** −0.088*** −0.050*** −0.085***
(−7.18) (−6.83) (−7.23) (−7.78) (−7.03) (−7.77)

Betaq 0.242*** 0.232*** 0.237*** 0.292*** 0.230*** 0.282***
(21.12) (20.73) (20.93) (19.26) (20.77) (19.23)

Observations 624,867 624,867 624,867 355,484 624,867 355,484
R-squared 0.170 0.176 0.173 0.211 0.177 0.218
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Table 3. Alternative Explanations

The table reports quarterly Fama and MacBeth (1973) regressions of market betas on the number of active
mutual funds. I include ordinary common shares (CRSP share codes 10 or 11) and stocks traded on the
NYSE, AMEX, or NASDAQ (CRSP exchange codes 1, 2, or 3). I exclude stocks with zero 13F institutional
ownership or negative book value from Compustat. The market betas are computed by regressing daily
stock returns in excess of the risk-free rates on contemporaneous and lagged value-weighted market returns
in excess of the risk-free rates. The dependent variable is the sum of the two estimated coefficients. The
main independent variables are the percentile rank of the number of high-flow, low-flow, winning, and losing
funds. High-flow funds are those that receive flows moving in the same direction as the market. The rest
are low-flow funds. Winning funds are those that have outperformed the market during the quarter. The
rest are losing funds. Mktcap is the quarter-end market capitalization, Price is the quarter-end stock price,
and Book-to-market is book equity divided by market equity. Assets growth is the change in assets scaled
by lagged assets (Fama and French, 2015; Hou et al., 2015). Profitability is revenue minus the cost of goods
sold, scaled by total assets (Novy-Marx, 2013). Past-6-month return is the natural logarithm of cumulative
past-6-month returns excluding the most recent month return, and the Amihud ratio is computed within
each quarter following Amihud (2002). t-statistics are reported in parentheses. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

Dependent variable: Betaq+1

(1) (2) (3) (4) (5) (6)

Rank: NIOq+1 (high-flow) 0.002*** 0.001***
(7.76) (3.58)

Rank: NIOq+1 (low-flow) 0.003*** 0.003***
(11.11) (9.60)

Rank: NIOq+1 (winning) 0.001*** 0.001***
(4.44) (3.73)

Rank: NIOq+1 (losing) 0.003*** 0.002***
(9.62) (7.64)

log(Mktcapq) 0.011** −0.004 −0.010* 0.024*** −0.002 −0.002
(2.08) (−0.71) (−1.67) (4.77) (−0.39) (−0.30)

1/Priceq 0.070*** 0.072*** 0.071*** 0.079*** 0.071*** 0.078***
(3.78) (3.84) (3.85) (4.23) (3.81) (4.20)

log(Book-to-marketq) −0.044*** −0.054*** −0.053*** −0.043*** −0.051*** −0.050***
(−4.61) (−5.64) (−5.54) (−4.44) (−5.38) (−5.12)

Assets growthy−1 0.070*** 0.077*** 0.076*** 0.064*** 0.076*** 0.070***
(5.87) (6.52) (6.44) (5.28) (6.35) (5.80)

Profitabilityy−1 −0.021 −0.039** −0.040** −0.027 −0.035** −0.045***
(−1.22) (−2.28) (−2.35) (−1.62) (−2.02) (−2.72)

Past 6-month return −0.049 −0.051* −0.049 −0.052* −0.050* −0.053*
(−1.64) (−1.71) (−1.65) (−1.75) (−1.69) (−1.79)

Amihud ratioq −0.093*** −0.092*** −0.092*** −0.089*** −0.092*** −0.088***
(−8.09) (−8.07) (−8.09) (−7.90) (−8.12) (−7.97)

Betaq 0.299*** 0.297*** 0.295*** 0.294*** 0.297*** 0.291***
(19.32) (19.36) (19.33) (19.34) (19.35) (19.32)

Observations 355,484 355,484 355,484 355,484 355,484 355,484
R-squared 0.207 0.208 0.210 0.210 0.208 0.213
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Table 4. Comparison of Ownership Measures

The table reports quarterly Fama and MacBeth (1973) regressions of market betas on the model-implied
exposure (from Equation 12 in Section 3), the number of 13F institutional owners (NIO), the total 13F
ownership, and the Herfindahl-Hirschman index of 13F institutional ownership (HHI). I include ordinary
common shares (CRSP share codes of 10 or 11) and stocks traded on the NYSE, AMEX, or NASDAQ
(CRSP exchange codes of 1, 2, or 3). I exclude stocks with zero 13F institutional ownership or/and negative
book value from Compustat. The market betas are computed by regressing daily stock returns in excess of
the risk-free rates on contemporaneous and lagged value-weighted market returns in excess of the risk-free
rates. The dependent variable is the sum of the two estimated coefficients. The main independent variables
are the percentile rank of the model-implied exposure, the number of 13F institutional owners (NIO), the
total 13F institutional ownership, and the Herfindahl-Hirschman index of 13F institutional ownership (HHI).
Mktcap is the quarter-end market capitalization; Price is the quarter-end stock price; and Book-to-market is
book equity divided by market equity. Assets growth is the change in assets scaled by lagged assets (Fama
and French, 2015; Hou et al., 2015). Profitability is revenue minus the cost of goods sold scaled by total
assets (Novy-Marx, 2013). Past-6-month return is the natural logarithm of cumulative past-6-month returns
excluding the most recent month return, and the Amihud ratio is computed within each quarter following
Amihud (2002). t-statistics are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively.

Dependent variable: Betaq+1

(1) (2) (3) (4) (5) (6)

Rank: Model-implied exposureq 0.007*** 0.002***
(18.46) (4.42)

Rank: NIOq 0.008*** 0.006***
(19.19) (11.60)

Rank: 13F ownershipq 0.003*** 0.002*** 0.001***
(21.88) (11.37) (5.61)

Rank: HHIq −0.004*** −0.002*** −0.000
(−18.89) (−11.82) (−1.60)

log(mktcapq) −0.049*** −0.060*** 0.017*** 0.003 −0.022*** −0.053***
(−8.57) (−9.61) (4.83) (0.95) (−3.66) (−7.97)

1/Priceq 0.043*** 0.027** 0.052*** 0.043*** 0.051*** 0.035***
(3.87) (2.41) (4.63) (3.81) (4.49) (3.08)

log(book-to-marketq) −0.074*** −0.080*** −0.069*** −0.066*** −0.074*** −0.079***
(−10.13) (−10.91) (−9.70) (−9.27) (−10.20) (−10.88)

Assets growthy−1 0.100*** 0.106*** 0.096*** 0.091*** 0.095*** 0.104***
(10.70) (11.77) (10.28) (9.66) (10.03) (11.79)

Profitabilityy−1 −0.004 −0.012 −0.011 0.004 −0.019 −0.018
(−0.37) (−0.99) (−0.90) (0.30) (−1.61) (−1.53)

Past 6-month return −0.026 0.005 −0.025 −0.023 −0.021 0.002
(−1.23) (0.23) (−1.20) (−1.09) (−1.01) (0.09)

Amihud ratioq −0.053*** −0.050*** −0.049*** −0.052*** −0.048*** −0.047***
(−7.23) (−7.03) (−7.17) (−7.22) (−7.25) (−7.06)

Betaq 0.237*** 0.230*** 0.238*** 0.239*** 0.233*** 0.228***
(20.93) (20.77) (20.91) (20.77) (20.72) (20.77)

Observations 624,867 624,867 624,867 624,867 624,867 624,867
R-squared 0.173 0.177 0.173 0.172 0.177 0.179
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Table 5. Regression Discontinuity Approach

The table reports stock-quarter-level regression results of market beta on the number of active funds following
a fuzzy regression discontinuity approach. The sample period spans the Russell reconstitution events between
2000 and 2006. In Panel A, the dependent variable is the number of active funds following the reconstitution
events. Treatment is a dummy variable that equals one if a stock is expected to be included in the Russell 1000
index in June based on its May market capitalization ranking. In Panel B, the dependent variable is market
beta. In each quarter, I regress each stock’s daily returns in excess of the risk-free rates on contemporaneous
and one-day-lagged CRSP value-weighted returns in excess of the risk-free rates and estimate slopes on the
contemporaneous and lagged market returns. I compute beta as the sum of these two slopes. In Panel B, I use
Treatment in Panel A as an instrumental variable for the number of active funds following the reconstitution
events. I use the same set of control variables as in Table 2, and further control for changes in active and
passive ownership following the reconstitution events. I report results using different bandwidths around
the cutoff (50, 75, 100, and 125 ranks). I control for the third degree of polynomials of the ranking variable
as well as their interaction terms with Treatment. t-statistics are reported in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively. Standard errors are clustered by stock.

Panel A: First Stage

Dependent variable: Number of active funds

Treatment 72.90*** 61.29*** 50.32*** 52.67***
(2.92) (2.75) (2.62) (3.20)

RD bandwidth 50 75 100 125
RD controls Cubic Cubic Cubic Cubic
Time FE Yes Yes Yes Yes
Observations 2,402 3,578 4,711 5,890
R-squared 0.301 0.307 0.307 0.314

Panel B: Second Stage

Dependent variable: Beta

Number of active funds (IV) 0.008* 0.009** 0.010** 0.012**
(1.90) (2.17) (2.16) (2.08)

RD bandwidth 50 75 100 125
RD controls Cubic Cubic Cubic Cubic
Control variables Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Observations 2,402 3,578 4,711 5,890
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Table 6. Return Predictability

The table shows quarterly Fama and MacBeth (1973) regressions of stock returns on the model-implied
exposure (from Equation 12 in Section 3) and the number of 13F institutional owners (NIO). I include
ordinary common shares (CRSP share codes 10 or 11) and stocks traded on the NYSE, AMEX, or NASDAQ
(CRSP exchange codes 1, 2, or 3). I exclude stocks with zero 13F institutional ownership. The dependent
variable is the natural logarithm of cumulative stock returns computed within each quarter. The main
independent variables are the log or the percentile rank of the model-implied exposure, the number of 13F
institutional owners (NIO), the number of active funds, and the number of passive funds. The changes
in NIO and the number of funds are defined following Chen et al. (2002) and are ranked in each quarter.
Mktcap is the quarter-end market capitalization; Book-to-market is book equity divided by market equity;
and Assets growth is the change in assets scaled by lagged assets (Fama and French, 2015; Hou et al., 2015).
Profitability is revenue minus the cost of goods sold, scaled by total assets (Novy-Marx, 2013). Past-6-month
return is the natural logarithm of cumulative past-6-month returns excluding the most recent month return.
t-statistics are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels,
respectively.

Dependent variable: Returnq+1

Sample period: 1980-2020 1980-2020 1980-2020 1997-2020 1980-2020 1997-2020

log(Model-implied exposureq) 0.226**
(2.33)

log(NIOq) 1.337***
(3.84)

Rank: Model-implied exposureq 0.070*** 0.079***
(4.27) (2.85)

Rank: NIOq 0.063***
(3.78)

Rank: NIOq (active) 0.079***
(3.35)

Rank: NIOq (passive) −0.019
(−1.33)

Rank: ∆NIOq 0.010*** 0.007 0.009***
(3.07) (1.32) (2.73)

Rank: ∆NIOq (active) 0.007
(1.32)

Rank: ∆NIOq (passive) −0.005
(−1.29)

log(Mktcapq) −0.628*** −1.139*** −1.179*** −1.389*** −1.119*** −1.220***
(−3.12) (−3.66) (−4.53) (−3.45) (−3.75) (−3.12)

log(Book-to-marketq) 0.880*** 0.750*** 0.845*** 0.426 0.808*** 0.329
(3.48) (2.90) (3.35) (1.16) (3.24) (0.92)

Assets growthy−1 −0.733*** −0.681*** −0.731*** −0.637*** −0.708*** −0.622***
(−5.11) (−5.01) (−5.21) (−3.18) (−5.26) (−3.41)

Profitabilityy−1 2.124*** 1.931*** 1.980*** 1.474** 1.953*** 1.380**
(5.52) (5.03) (5.09) (2.56) (5.03) (2.38)

Past 6-month return 0.017*** 0.020*** 0.015** −0.002 0.019*** 0.001
(2.69) (3.67) (2.47) (−0.21) (3.37) (0.14)

Observations 613,312 618,521 613,312 337,807 618,521 337,807
R-squared 0.039 0.041 0.040 0.036 0.042 0.040
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Table 7. Returns and Betas of Portfolios

The table reports the average value-weighted monthly returns and the CAPM alphas and betas of portfolios.
I include ordinary common shares (CRSP share codes 10 or 11) traded on the NYSE, AMEX, or NASDAQ
(CRSP exchange codes 1, 2, or 3). I exclude stocks with zero 13F institutional ownership. In Panel A, I form
10 portfolios by sorting stocks on the model-implied exposure (from Equation 12 in Section 3). In Panel B,
I form 10 portfolios by sorting stocks on Residual NIO. Specifically, I regress the natural logarithm of 1 +
NIO on the natural logarithm of market capitalization each month and form 10 portfolios in the next month
based on the residuals. The portfolios are rebalanced monthly. Return is the time-series average of the
value-weighted monthly portfolio returns. CAPM alphas and betas are estimated using the CAPM model
(Sharpe, 1964; Lintner, 1965; Mossin, 1966). Returns and alphas are show in percentages. t-statistics are
adjusted for heteroscedasticity and autocorrelations.

Panel A: Portfolios Sorted by Model-implied Exposure

Deciles L 2 3 4 5 6 7 8 9 H H−L

Return 0.52 0.59 0.69 0.92 0.71 0.83 0.89 1.03 1.00 1.09 0.57
t(Return) 2.23 2.05 2.30 3.36 2.92 3.56 4.15 4.89 4.47 4.43 2.91
CAPM α −0.27 −0.36 −0.36 −0.04 −0.27 −0.15 −0.06 0.07 0.00 0.04 0.31
t(CAPM α) −1.56 −1.94 −2.03 −0.21 −2.33 −1.38 −0.74 1.17 0.06 0.46 1.61
CAPM β 0.73 0.95 1.12 0.97 1.02 1.01 0.97 0.99 1.04 1.12 0.39

Panel B: Portfolios Sorted by Residual NIO

Deciles L 2 3 4 5 6 7 8 9 H H−L

Return 0.89 0.99 1.00 1.18 1.04 1.13 1.09 1.18 1.34 1.60 0.71
t(Return) 3.51 4.15 4.67 5.29 5.01 5.36 5.10 5.30 5.22 4.84 2.09
CAPM α −0.09 0.00 0.01 0.16 0.01 0.08 0.02 0.05 0.13 0.27 0.35
t(CAPM α) −0.69 −0.01 0.19 2.64 0.18 0.98 0.24 0.46 0.80 1.02 1.04
CAPM β 0.93 0.94 0.94 0.99 0.99 1.01 1.04 1.14 1.25 1.44 0.52
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Table 8. The Covariance Channel

The table reports the estimation results of Equation 17 and the average value-weighted monthly returns
of portfolios based on the model-implied exposure (Panels A and C) and Residual NIO (Panels B and D).
The portfolio formations are described in Table 7. Panels A and B report the parameter estimates from
Equation 17 and the test results of the null hypotheses H0 : Γα = 0 and H0 : Γβ = 0. The p-values are
calculated from bootstrapped statistics following Kelly et al. (2019). Panels C and D report the portfolio
returns during the stock market crash months defined as months in which CRSP value-weighted market
returns in excess of the risk-free rates are ranked in the bottom 10%. Ret−Mkt is the time-series average of
monthly portfolio returns in excess of stock market returns. CAPM α is the time-series average of monthly
portfolio returns in excess of risk-free rates minus CAPM β multiplied by market excess returns. The CAPM
βs are estimated on a rolling basis using the past-60-month observations. Returns and alphas are shown in
percentages.

Panel A: Estimation Results (Model-implied Exposure)

Γα Γβ R2 H0 : Γα = 0 H0 : Γβ = 0
(p-value) (p-value)

0.003 0.125 0.742 0.660 0.054

Panel B: Estimation Results (Residual NIO)

Γα Γβ R2 H0 : Γα = 0 H0 : Γβ = 0
(p-value) (p-value)

0.001 0.189 0.803 0.574 0.003

Panel C: Price Crashes in Bad Times (Model-implied Exposure)

Deciles L 2 3 4 5 6 7 8 9 H H−L

Ret−Mkt 2.26 −0.52 −1.98 0.11 −0.96 −0.88 0.06 0.07 −0.39 −0.55 −2.81
t(Ret−Mkt) 3.11 −0.75 −2.30 0.13 −1.72 −1.45 0.18 0.26 −1.39 −1.52 −3.84
CAPM α 0.14 −0.33 −0.66 0.06 −0.56 −0.79 −0.20 0.05 −0.13 0.46 0.32
t(CAPM α) 0.20 −0.49 −0.78 0.07 −1.00 −1.31 −0.62 0.22 −0.46 1.31 0.44
CAPM β 0.74 1.03 1.17 0.99 1.06 1.01 0.97 1.00 1.03 1.12 0.38

Panel D: Price Crashes in Bad Times (Residual NIO)

Deciles L 2 3 4 5 6 7 8 9 H H−L

Ret−Mkt 0.42 0.48 0.67 0.27 0.41 0.07 −0.02 −0.84 −1.68 −3.08 −3.50
t(Ret−Mkt) 0.78 1.39 2.63 0.92 1.32 0.23 −0.06 −1.81 −3.05 −4.63 −3.33
CAPM α 0.08 0.28 −0.08 0.16 0.30 0.18 0.25 0.26 0.20 −0.03 −0.11
t(CAPM α) 0.13 0.83 −0.26 0.53 1.03 0.63 0.68 0.55 0.36 −0.04 −0.10
CAPM β 0.97 0.98 0.91 0.98 0.99 1.01 1.04 1.14 1.24 1.39 0.43
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Appendix A Data Sources

A.1 13F Institutional Ownership Data

I obtain 13F institutional ownership information from the Thomson Reuters Financial

database (S34 dataset). The sample period spans 1980 Q2 to 2020 Q2. I merge securities

with data from CRSP using their historical CUSIP.

A.2 Fund-level Data

I obtain fund-level holdings information of 13F institutional investors and mutual funds

(S12 dataset) from the Thomson Reuters Global Mutual Fund Ownership database. The

sample period spans 1997 Q2 to 2020 Q2. I merge securities with CRSP data using their his-

torical CUSIP. I include U.S. funds and drop finance companies, foundations, private equity

and venture capital, sovereign wealth funds, research firms, strategic entities, corporations,

holding companies, individual investors, and government agents as identified by the owner

type code. I classify funds as active or passive, relying on the owner orientation code.

I obtain information on returns and cash holdings for mutual funds from the CRSP

Survivor-Bias-Free Mutual Fund Database and merge these data with the mutual-fund stock-

holdings data using the MFLINKS file from WRDS.

A.3 Factor Data

The capital asset pricing model (CAPM) (Sharpe, 1964; Lintner, 1965; Mossin, 1966),

the Fama-French three-factor model (Fama and French, 1993), the Fama-French-Carhart

four-factor model (Carhart, 1997), the Fama-French five-factor model (Fama and French,

2015), and the Fama-French-Carhart six-factor model (Fama and French, 2018) factors are

from Kenneth French’s website: https://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/. The Hou-Mo-Xue-Zhang q5 factor model (Hou et al., 2015; Hou, Mo, Xue, and
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Zhang, 2021) factors are from the q-factor data library website: https://global-q.org/

index.html.
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Appendix B Variable Definitions

Variable Definition Source

Number of institutional
owners (NIO)

The number of 13F institutional owners for stock in
each quarter.

Thomson Reuters

13F ownership The total 13F institutional ownership for stock in each
quarter.

Thomson Reuters

HHI The Herfindahl-Hirschman index of 13F institutional
ownership in each quarter.

Thomson Reuters

Number of active funds The number of active fund owners for stock in each
quarter based on the owner orientation code.

Thomson Reuters Global

Active fund ownership The total active fund ownership for stock in each quar-
ter.

Thomson Reuters Global

Number of passive funds The number of passive fund owners for stock in each
quarter based on the owner orientation code.

Thomson Reuters Global

Passive fund ownership The total passive fund ownership for stock in each
quarter.

Thomson Reuters Global

Beta The sum of stocks’ coefficients on contemporaneous
and lagged CRSP value-weighted returns using daily
returns within each quarter.

CRSP

Idiosyncratic volatility The standard deviation of the residuals from the
CAPM model using daily returns within each quarter.

CRSP

Mktcap The quarter-end stock market capitalization. CRSP

Price The quarter-end stock price. CRSP

Past-6-month return The cumulative past-6-month returns excluding the
most recent month return.

CRSP

Amihud ratio The quarterly average of absolute daily returns scaled
by the daily dollar volume in $ million.

CRSP

Book-to-market The quarterly book-to-market ratio, computed as book
equity divided by market equity.

CRSP, Compustat

Assets growth Changes in total assets scaled by lagged total assets. Compustat

Operating profitability Revenue minus the cost of goods sold, scaled by total
assets.

Compustat

50



Appendix C General Equilibrium

The model presented in Section 3 takes the exogenously specified functional form of

institutional investors’ demand shocks as given. This section shows that the key economic

mechanism prevails in a more realistic model, building on the general equilibrium framework

of Basak and Pavlova (2013). In this framework, institutional investors’ demand shocks

arise endogenously due to their concern about their performance relative to a similar market

index.

C.1 Economic Setup

Following Basak and Pavlova (2013), I consider a pure exchange market economy that

evolves in continuous time. There is a representative retail investor and H institutional

investors, indexed by h = 1, ..., H. There is a risk-free bond, N risky stocks, and N sources

of risk, specified by a standard N -dimensional Brownian motion ω = (ω1, ..., ωN)ᵀ. For

j = 1, ..., N , I assume that the stock price, Sjt, follows the dynamics given by

dSjt = Sjt

[
µSjt

dt+ σSjt
dωt

]
, (C.1)

where the vector of stock mean returns is µSt
= (µS1t , ..., µSNt

)ᵀ and the stock volatility

matrix is σSt = {σSjkt
; j, k = 1, ..., N}. Note that the stock returns and volatility are

endogenously determined in equilibrium. The risk-free bond is in zero net supply and pays a

zero interest rate without loss of generality. The value of the stock market portfolio, SMKT, t,

is the sum of the stock prices given by

SMKT, t =
N∑
j=1

Sjt, (C.2)

with assumed dynamics given by
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dSMKT, t = SMKT, t

[
µMKT, tdt+ σMKT, tdωt

]
. (C.3)

Institutional investors, indexed by h = 1, ..., H, are given a distinct investment universe,

a set of stocks they are allowed to hold. In this economy, institutions are only allowed to

trade stocks included in their investment universe.23 There are H index portfolios, and each

index consists of stocks that comprise the investment universe of each institution. To be

specific, consider H natural numbers, M1, ..., MH , where 0 < M1 < M2 < ... < MH < N .

(Recall that N is the total number of stocks in the economy.) The first index consists of

the first M1 stocks that comprise the investment universe of the first institution (h = 1);

M1 = {S1, ..., SM1}, the second index consists of the first M2 stocks that comprise the

investment universe of the second institution (h = 2); M2 = {S1, ..., SM2}, ..., and the

H th index consists of the first MH stocks that comprise the investment universe of the last

institution (h = H); MH = {S1, ..., SMH
}. Note that the first M1 stocks, {S1t, ..., SM1},

belong to the investment universe of all institutional investors. The last N −MH stocks,

{SMH+1, ..., SN}, do not belong to any investment universe of institutional investors. The

degree to which the remaining stocks belong to institutions’ investment universe lies between

the two extreme cases. The value of the indexes, denoted as S1
t , ..., S

H
t , is the sum of the

stock prices in the index given by

Sht =

Mh∑
j=1

Sjt. (C.4)

Each stock is in positive net supply, and its terminal payoff (or dividend) DjT , due at

time T , follows the process given by

dDjt = Djtσjdωt, (C.5)

23As discussed earlier, the investment universe of institutional investors does not need to be completely
restrictive. For simplicity, however, I assume that institutions face strict constraints.
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where σj > 0 is the constant N -dimensional vector. The process Djt represents the cash flow

news about the terminal stock dividend DjT . Therefore, DjT equals the stock price at time

T (i.e., SjT = DjT ). For tractability, I assume that the stocks’ fundamentals (dividends)

are independent. That is, only the jth element of σj is nonzero. This implies σᵀjσk = 0 for

all j 6= k. Importantly, I assume that the last stocks of each index and the stock market

portfolio (i.e., SM1 , SM2 , ..., SMH
, SN) do not follow the process in Equation (C.5). In what

follows, I specify processes for the sums of all stocks in the indexes and the stock market.

This modeling device is taken from Basak and Pavlova (2013), which in turn is inspired by

Menzly, Santos, and Veronesi (2004). It allows one to assume that the cash flow news of the

indexes and the stock market portfolio follow geometric Brownian motion processes (as in

Equations (C.6) and (C.7)), which improves the tractability of the model considerably.

The stock market has a terminal payoff SMKT, t = DT , determined by the process

dDt = Dtσdωt, (C.6)

where σ > 0 is the constant N -dimensional vector. Each index has the terminal payoff IhT ,

due at time T , determined by the process

dIht = Iht σhdωt, (C.7)

where σh > 0 is the constant N -dimensional vector with the first Mh non-zero components

and the remaining zero components. Therefore, stocks that comprise the index Sht are

positively correlated with the index in terms of the cash flow news, while stocks that are

not a member of the index Sht have zero correlations with the index. That is, σᵀjσh > 0 for

j = 1, ...,Mh, while σᵀjσh = 0 for j = Mh + 1, ..., N .

Each type of investor (indexed by i = 1, ..., H,R) dynamically chooses a multidimensional

portfolio process φi, where R refers to the retail investor and φi = (φi1, ..., φiN)ᵀ represents

the portfolio weights in each stock. The retail investor can invest in all N stocks. How-
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ever, the institutions are only allowed to hold stocks included in their investment universe;

M1, ...,MH . The portfolio value of each investor Wit follows the dynamics given by

dWRt = WRtφ
ᵀ
Rt

[
µSt

dt+ σStdωt
]

(C.8)

dWht = Whtφ
ᵀ
ht

[
µhSt

dt+ σhSt
dωht

]
, (C.9)

where R refers to the retail investor and h = 1, ..., H. In addition, the term φht is the |Mh|-

dimensional vector; the term µhSt
is the |Mh|-dimensional subvector of µSt

that consists

of the drift terms of the stocks that comprise the investment universe of institution h; the

term σhSt
is the |Mh|-dimensional submatrix of σSt that consists of the diffusion terms of

the stocks that comprise the investment universe of institution h; and the term ωht is the

|Mh|-dimensional subvector of ωt, which consists of the risk components of the stocks that

comprise the investment universe of institution h.

Each institution is initially endowed with λh fraction of the stock market and, thus, has

initial assets worth Wh0 = λhSMKT, 0, where
∑H

i=1 λ
h = λ. As discussed earlier, I assume

that institutional investors are concerned about their performance relative to the overall

stock market. Under the Basak and Pavlova (2013) framework, the correct formalization

of this assumption would be to set each institution’s objective function as uh(WhT ) = (1 +

bST )log(WhT ). Unfortunately, this specification does not allow me to drive closed-form

solutions. For tractability, I instead set the objective function of each institution as

uh(WhT ) = (1 + bShT )log(WhT ), (C.10)

where b > 0 and ShT is the terminal value of the index that consists of the stocks that

comprise the investment universe of institution h. With this approach, each institution

perceives the stock market performance through the lens of its index portfolio performance,

which is correlated with the overall stock market. This modeling device enables me to model
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institutional investors’ concerns about relative performance evaluation while delivering exact

closed-form solutions.24

The representative retail investor is initially endowed with 1 − λ fraction of the stock

market and therefore has initial assets worth WR0 = (1−λ)SMKT, 0. The objective function

of the retail investor is the standard logarithmic utility function: uR(WRT ) = log(WRT ).

C.2 Portfolio Choice

Lemma 1 shows the investors’ optimal portfolios in closed-form.

Lemma 1. The retail and institutional investors’ optimal portfolio processes are given by

φRt =
(
σSt [σSt ]

ᵀ
)−1
µSt

φht =
(
σhSt

[σhSt
]ᵀ
)−1
µhSt

+
bIht

1 + bIht

(
[σhSt

]ᵀ
)−1
σhh,

(C.11)

where σhh > 0 is the |Mh|-dimensional subvector of σh that consists of the first Mh non-zero

components.

The optimal portfolio of the representative retail investor is the standard mean-variance

efficient portfolio. On the other hand, each institution holds the mean-variance efficient

portfolio (per its investment universe) plus an additional portfolio that is positively correlated

with the aggregate cash flow news. (Recall that Iht is positively correlated with the market-

wide cash flow news, Dt.)

Following good cash flow news, the marginal utility of wealth increases among insti-

tutional investors, dictated by their objective functions in Equation (C.10). Intuitively,

institutional investors seek to post a higher return in order not to fall behind when the stock

24Each index could also be thought of as a benchmark index. An alternative interpretation is that insti-
tutional managers strive to perform well when their benchmarks are outperforming. However, institutions’
investment mandates are usually not publicly disclosed; thus, benchmark information is difficult to obtain.
The exception is the mutual fund industry. There are 14 benchmarks that account for 90% of the mutual
fund industry’s assets under management: S&P 500, CRSP US Total Market, Russell 1000 Growth, Russell
1000 Value, Russell 2000, Russell Mid Cap Growth, Russell Mid Cap Value, Russell 3000 Growth, Russell
3000, Russell 2000 Value, Russell 2000 Growth, Russell 1000, Russell 3000 Value, and Russell Mid Cap.
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market is performing well. They do so by increasing their portfolio exposure to the stock

market by demanding more stocks that comprise their investment universe (i.e., increase

the riskiness of their portfolios). Note that institutional investors take on more (less) risk

during bull (bear) markets. That is, the effective risk appetite of institutional investors is

procyclical according to their optimal portfolio choices in Equation (C.11).

Proof. See Appendix D.

C.3 Price

Equilibrium in this economy is standard. Equilibrium portfolios and asset prices are

such that (i) retail and institutional investors maximize their objective functions, and (ii)

financial markets clear. Note that the wealth of investors and asset prices are simultaneously

determined in this economy.

Proposition 1 reports the equilibrium stock prices in closed-form.

Proposition 1. The equilibrium prices of the market portfolio, SMKT, t; the stocks that are

a member of some index portfolios, Sjt; and the stocks that are not a member of any index

portfolios, Skt, are given by

SMKT t = S̄MKT, t

1 +
∑H

h=1
λhb

1+bIh0
(Iht − Ih0 )

1 +
∑H

h=1
λhb

1+bIh0
(e−σ

ᵀ
hσ(T−t)Iht − Ih0 )

Sjt = S̄jt
1 +

∑H
h=1

λhb
1+bIh0

(e(−σᵀ
hσ+σᵀ

jσh)(T−t)Iht − Ih0 )

1 +
∑H

h=1
λhb

1+bIh0
(e−σ

ᵀ
hσ(T−t)Iht − Ih0 )

Skt = S̄kt,

(C.12)

where S̄MKT t, S̄jt, and S̄kt are the equilibrium prices of the market portfolio, the stocks that

are a member of some index portfolios, and the stocks that are not a member of any index

portfolios, respectively, in the benchmark economy with no institutions given by
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S̄MKT t = e−‖σ‖
2(T−t)Dt, S̄jt = e−σ

ᵀ
jσ(T−t)Djt, S̄kt = e−σ

ᵀ
kσ(T−t)Dkt (C.13)

Equation (C.12) shows that the price levels of the stock market and the stocks that

compose some index portfolios increase in the presence of institutions (i.e., λh > 0). This

is simply a wealth effect as in Kyle and Xiong (2001), yet the effect becomes stronger as

institutions’ effective risk appetite becomes an increasing function of the level of cash flow

news according to their optimal portfolio choices. Because institutional managers increase

their portfolios’ exposure to the stock market, they benefit substantially more from good cash

flow news. As they become wealthier and their effective risk appetite increases, institutional

investors’ demand for stocks increases. Since stocks are in fixed supply and institutions want

to buy more, the stock prices should be higher in equilibrium.

Note that the term σᵀjσh in the second line of Equation (C.12) is non-zero only if stock j

comprises index h (i.e., if stock j is included in the investment universe of institution h).

Therefore, a stock included in the investment universe of more institutional investors exhibits

a higher price level as it faces greater demand by more institutional investors. Recall that

institutional investors are only allowed to hold stocks included in their investment universe.

Therefore, a stock with a higher number of institutional owners (i.e., high NIO) exhibits a

higher price level in equilibrium.

Proof. See Appendix D.

C.4 Volatility

Proposition 2 reports the equilibrium stock return volatility in closed-form.

Proposition 2. The equilibrium return volatility of the market portfolio, σMKT, t; the stocks

that are a member of some index portfolios, σjt; and the stocks that are not a member of

any index portfolios, σkt, are given by
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σMKT, t = σ̄MKT t +

∑H
h=1

λhb
1+bIh0

[
1 +X − βh

(
1 + Y

)]
Iht σh(

1 +X
)(

1 + Y
)

σjt = σ̄jt +

∑H
h=1

λhb
1+bIh0

[
eσ

ᵀ
jσh(T−t)

(
1 +X

)
−
(

1 + γj

)]
βhI

h
t σh(

1 + γj

)(
1 +X

)

σkt = σ̄kt,

(C.14)

where σ̄MKT t, σ̄jt, and σ̄kt are the equilibrium return volatility of the market portfolio, the

stocks that are a member of some index portfolios, and the stocks that are not a member of

any index portfolios, respectively, in the benchmark economy with no institutions given by

σ̄MKT, t = σ, σ̄jt = σj, σ̄kt = σk. (C.15)

βh, γj, X, and Y are given by

βh = e−σ
ᵀ
hσ(T−t), γj =

H∑
h=1

λhb

1 + bIh0

(
βhe

σᵀ
jσh(T−t)Iht − Ih0

)
X =

H∑
h=1

λhb

1 + bIh0

(
βhI

h
t − Ih0

)
, Y =

H∑
h=1

λhb

1 + bIh0

(
Iht − Ih0

)
.

Equation (C.14) shows that stock market volatility increases in the presence of institu-

tions (i.e., λh > 0). Since institutional investors increase their portfolios’ exposure to the

stock market, they earn (lose) substantially more from good (bad) cash flow news in the

stock market and thus their demand for stocks increases (decreases) as they get wealthier

(poorer). The procyclical nature of institutional investors’ effective risk appetite in Equa-

tion (C.11) magnifies the portfolio rebalancing behavior. Since stocks are in fixed supply but

institutional investors “excessively” buy or sell stocks, depending on the sign of the cash flow

news, the stock prices fluctuate substantially. In other words, the portfolio rebalancing of
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institutional investors amplifies the cash flow news of the economy, increasing the volatility

of the stock market in equilibrium.

Note that the term σᵀjσh in the second line of Equation (C.14) is non-zero only if stock j

is included in index h (i.e., if stock j is included in the investment universe of institution

h). Therefore, a stock included in the investment universe of more institutional investors

exhibits higher volatility. This increase in volatility occurs because institutional investors’

amplification of cash flow news only affects stocks included in their investment universe.

As such, a stock with a higher number of institutional owners (i.e., high NIO) exhibits

higher volatility in equilibrium. Panel (a) of Appendix Figure A.I graphically illustrates the

relationship between NIO and the equilibrium volatility. Panel (b) shows the relationship

between NIO and the equilibrium market betas.25

Proof. See Appendix D.

C.5 Sharpe Ratio

Proposition 3 reports the equilibrium Sharpe ratios in closed-form.

Proposition 3. The equilibrium Sharpe ratios of the stocks are given by

κt = σ −

∑H
h=1

λhb
1+bIh0

e−σ
ᵀ
hσ(T−t)Iht σh

1 +
∑H

h=1
λhb

1+bIh0

(
e−σ

ᵀ
hσ(T−t)Iht − Ih0

) . (C.16)

Equation (C.16) shows that the Sharpe ratios of the stocks decrease in the presence

of institutions (i.e., λh > 0). Recall that σh is the N -dimensional vector with the first

Mh positive components and the remaining zero components. (Recall that MH denotes

the number of stocks in index h.) Therefore, a stock’s Sharpe ratio decreases more if it

is included in the investment universe of more institutional investors. For example, the

first component of κt, which is the Sharpe ratio of the stock included in the investment

universe of all institutional investors, is smaller than the remaining components since the

25The equilibrium market beta of stock j is computed as σᵀ
jtσjt/[σMKT, t]

ᵀ[σMKT, t].
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first component of σh (i.e., see the vector σh next to Iht in the numerator) is positive for all

h = 1, ..., H. As such, a stock with a higher number of institutional owners (i.e., high NIO)

exhibits a lower Sharpe ratio in equilibrium. Panel (c) of Appendix Figure A.I graphically

illustrates the relationship between NIO and the equilibrium Sharpe ratios.

Proof. See Appendix D.

C.6 Premium

In the model, it is unclear whether the high NIO stocks command a premium. Under

no arbitrage, the premium in equilibrium can be expressed as µSt
= σᵀSt

κt. Recall that the

Sharpe ratio (κt) decreases in NIO, while the volatility (σSt) increases in NIO. Therefore,

the premium (µSt
) increases in NIO only if the the volatility effect dominates.

Intuitively, how dominant institutional investors are in the economy is important for

determining the relationship between NIO and the equilibrium premium. Consider the fol-

lowing two extreme cases. In an economy with no mean-variance efficient investors, I find

that institutional investors’ demand for stocks becomes so strong that they are willing to

hold stocks even when the Sharpe ratios are very low (i.e., low premium and high volatil-

ity). Therefore, in this economy, the premium decreases in NIO even though the volatility

increases in NIO. On the other hand, in an economy with no institutional investors, every

stock becomes identical in terms of price, volatility, Sharpe ratio, and premium.

Consequently, the presence of both mean-variance efficient investors and institutional

investors is a necessary condition for the high NIO stocks to command a premium. This is

because the former are the marginal players who require compensation for bearing “excessive”

volatility as they dislike volatility the most, and without the latter, there is no volatility

amplification. However, it is important to note that what happens, in reality, is likely

that institutional investors dislike the increased volatility as much as other investors do.

Therefore, the high NIO stocks would command a premium regardless of the presence of
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mean-variance efficient investors. In the model, with plausible parameter choices,26 I find

that the higher volatility can translate into a premium. Panel (d) of Appendix Figure A.I

graphically illustrates the relationship between NIO and the equilibrium premium.

Overall, the theoretical framework replicates the empirical patterns in the data well.

Institutional investors need to perform better than their benchmark indexes and face con-

straints on the set of stocks they are allowed to hold (i.e., investment universe). These two

mechanisms create the cross-sectional variation in stock return volatility and market be-

tas. Finally, the amplified systematic volatility is priced in the cross-section with plausible

parameter choices.

Appendix D Proofs

D.1 Proof of Lemma 1

I assume a dynamically complete market with a riskless bond and N risky stocks. It is

known that there exists a state price density process ξ such that the time-t value of payoff

CT is given by ξtCt = Et[ξTCT ]. The state price density process follows the dynamics given

by

dξt = −ξtκᵀt dωt, (D.1)

where κt = µ−1
St
σSt is the N -dimensional Sharpe ratio process. Investor i’s dynamic budget

constraint (C.8), (C.9) can be expressed as

26I calibrate the model as follows: There are N = 50 stocks, indexed by j = 1, ..., 50, and H = 50

benchmark index portfolios, indexed by h = 1, ..., 50. The first index includes the first stock, the second

index includes the first and the second stocks, ..., and the last (50th) index includes all stocks. The parameter

values are λ = 0.3, b = 1, t = 1, T = 20, and Ih0 = 1 for all h. In addition, Iht = 1.25 for all h, and σj = 0.3ij

for all j, where ij is an N -dimensional unit vector with the jth element equal to 1 and the remaining values

equal to 0. Further, σh = 0.3
∑Mh

j=1 ij/
√
Mh for all h, where Mh is the number of stocks in index h, and

σ = 0.3
∑N
j=1 ij

√
N .
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Et[ξTWiT ] = ξtWit. (D.2)

Maximizing the institution’s expected objective function (C.10) subject to (D.2) evalu-

ated at time t = 0 yields the institution’s optimal terminal wealth, given by

WhT =
1 + bIhT
yhξT

,

where 1/yh solves (D.2) evaluated at t = 0. Since Dt is log-normally distributed for all t,

1

yh
=
λhξ0SMKT 0

1 + bIh0
.

Then, the institution’s optimal terminal wealth is given by

WhT =
λhξ0SMKT 0

ξT

1 + bIhT
1 + bIh0

. (D.3)

Combining (D.2) and (D.3), the institution’s optimal time-t wealth can be expressed as

ξtWht = λhξ0SMKT 0
1 + bIht
1 + bIh0

. (D.4)

Applying Itô’s lemma to both sides of (D.4), and using (C.8), (C.9) and (D.1), gives me

ξtWht(φ
ᵀ
htσ

h
St
− [κht ]

ᵀ)dωht = λhξ0SMKT 0
bIht

1 + bIht
σhdω

h
t ,

where κht is the |Mh|-dimensional subvector of κᵀt that consists of the Sharpe ratios of the

stocks included in the investment universe of institution h.

Matching the diffusion terms and rearranging gives the institution’s optimal portfolio

(C.11). Similarly, the retail investor’s optimal terminal and time-T wealth are given by

WRT =
(1− λ)ξ0SMKT 0

ξT
(D.5)
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ξtWRt = (1− λ)ξ0SMKT0. (D.6)

Applying Itô’s lemma gives the retail investor’s optimal portfolio (C.11). �

D.2 Proof of Proposition 1

I first determine the equilibrium-state price-density process. Combining the market-

clearing condition, W1T + ...+WHT +WRT = DT , (D.3), and (D.5), gives me

ξT =
ξ0SMKT 0

DT

[
1 +

H∑
h=1

λhb

1 + bIh0

(
IhT − Ih0

)]
. (D.7)

Using log-normal distributionsEt[1/DT ] = e‖σ‖
2(T−t)/Dt, Et[I

h
T/DT ] = e(‖σ‖2−σᵀ

hσ)(T−t)Iht /Dt,

(D.7), and rearranging gives

ξt =
ξ0SMKT 0

Dt

e‖σ‖
2(T−t)

[
1 +

H∑
h=1

λhb

1 + bIh0

(
e−σ

ᵀ
hσ(T−t)Iht − Ih0

)]
. (D.8)

Using (D.7) and after some manipulation, the equilibrium market portfolio price is given

by

ξtSMKT t = Et[ξTDT ]

= ξ0SMKT 0Et

[
1 +

H∑
h=1

λhb

1 + bIh0

(
Iht − Ih0

)]
.

(D.9)

Combining (D.8) and (D.9) gives the equilibrium market portfolio price in (C.12). The

price in the benchmark economy without institutions is obtained by setting b = 0.

Using (D.7) and after some manipulation, the equilibrium price of the stocks that are

members of some index portfolios is given by

63



ξtSjt = Et[ξTDjT ]

= ξ0SMKT 0Et

[
DjT

DT

[
1 +

H∑
h=1

λhb

1 + bIh0

(
Iht − Ih0

)]]
.

(D.10)

Log-normal distributions give

Et

[
DjT

DT

]
= e(‖σ‖2−σᵀ

jσ)(T−t)Djt

Dt

Et

[
DjT I

h
T

DT

]
= e(σᵀ

jσh+‖σ‖2−σᵀ
hσ−σ

ᵀ
jσ)(T−t)DjtI

h
t

Dt

.

After some manipulation, (D.10) becomes

ξtSjt = ξ0SMKT 0e
(‖σ‖2−σᵀ

jσ)(T−t)Djt

Dt

×

[
1 +

H∑
h=1

λhb

1 + bIh0

(
e(−σᵀ

hσ+σᵀ
jσh)(T−t)Iht − Ih0

)]
.

(D.11)

Combining (D.7) and (D.11) gives the equilibrium price of the stocks that are members

of some index portfolios in (C.12). The price in the benchmark economy without institutions

is obtained by setting b = 0.

The equilibrium price of the stocks that are not members of any index portfolios can be

obtained by setting σᵀjσh = 0. �

D.3 Proof of Proposition 2

The equilibrium market portfolio price can be expressed as SMKT t = S̄MKT tXt/Zt.

Applying Itô’s lemma gives me σMKT t = σ + σXt − σZt where
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σXt =

∑H
h=1

λhb
1+bIh0

Iht σh

1 +
∑H

h=1
λhb

1+bIh0

(
Iht − Ih0

)
σZt =

∑H
h=1

λhb
1+bIh0

e−σ
ᵀ
hσ(T−t)Iht σh

1 +
∑H

h=1
λhb

1+bIh0

(
e−σ

ᵀ
hσ(T−t)Iht − Ih0

) .
After some manipulation, I obtain the equilibrium market portfolio return volatility as

in (C.14).

The equilibrium price of the stocks that are members of some index portfolios can be

expressed as Sjt = S̄jtXjt/Zjt. Applying Itô’s lemma gives σjt = σj + σXjt
− σZjt

, where

σXjt
=

∑H
h=1

λhb
1+bIh0

e−(σᵀ
hσ+σᵀ

jσh)(T−t)Iht σh

1 +
∑H

h=1
λhb

1+bIh0

(
e−(σᵀ

hσ+σᵀ
jσh)(T−t)Iht − Ih0

)
σZjt

=

∑H
h=1

λhb
1+bIh0

e−σ
ᵀ
hσ(T−t)Iht σh

1 +
∑H

h=1
λhb

1+bIh0

(
e−σ

ᵀ
hσ(T−t)Iht − Ih0

) .
After some manipulation, I obtain the equilibrium return volatility of the stocks that are

members of some index portfolios as in (C.14). The return volatility of the stocks that are

not members of any index portfolios can be obtained from Skt = S̄kt. �

D.4 Proof of Proposition 3

Applying Itô’s lemma to both sides of (D.8) gives

κᵀt dωt = σdωt −

∑H
h=1

λhb
1+bIh0

e−σ
ᵀ
hσ(T−t)Iht σhωt

1 +
∑H

h=1
λhb

1+bIh0

(
e−σ

ᵀ
hσ(T−t)Iht − Ih0

) . (D.12)

�
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Appendix E Supplementary Results

E.1 Estimation Procedure

Equation 12 can be estimated by nonlinear least squares (NLS), and Equation 13 can

be estimated by ordinary least squares (OLS). In estimating Equation 12, I introduce an

algorithm, starting with initial guess values of α and β.

1. Given α and β, estimate λ by NLS.

2. Given λ, estimate α and β by OLS.

3. Stop if the objective function is minimized. If not, go to step 1 with updated α and β.

E.2 Estimation with Equal Weights

I estimate Equations 12 and 13 using my data set for the period 1980 Q2 to 2020 Q2 with

equal weights. Following the recommendation in Hou et al. (2020), I exclude microcaps (i.e.,

drop stocks with firm size below the 20th percentile of NYSE breakpoints) in estimating the

models.

Table A.I presents the estimated parameters. The results are almost identical as in

Table 1. Most importantly, the estimated λ is positive, suggesting that institutional investors

are cautious when trading assets in which they have a large ownership stake (see Equation 6).

E.3 Estimation with Alternative Specification

One could argue that investors concerned about their price impact would care more

about their ownership relative to trading volume rather than the total shares outstanding.

This idea is reasonable, so I incorporate this measure in the below equation. Specifically,

Equation 12 can be written as
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E
[
rk,t+1

]
=

[
φ · E

[
ft+1

]
+ θ · E

[
ft+1

]
· 1

v́k,t

∑
i

Ai,t ·
(
wi,k,t ·

(
1− λ · śi,k,t

)
+ ψi,t

)]
, (E.1)

where v́k,t−1 is the quarterly dollar trading volume (instead of market value), and śi,k,t−1 is

investor i’s ownership in asset k scaled by quarterly trading volume (instead of total shares

outstanding).

I estimate Equation E.1, and the parameter of interest is λ. As before, my goal is not to

estimate φ, θ, and E
[
ft+1

]
separately. Instead, I set φ ·E

[
ft+1

]
= α and θ ·E

[
ft+1

]
= β and

estimate α, β, and λ. Table A.II presents the estimation results. The conclusion remains

unchanged. Institutional investors are cautious when trading assets in which they have a

high ownership stake relative to trading volume.

E.4 Idiosyncratic Volatility

Appendix Table A.III presents the relationship between idiosyncratic volatility and the

model-implied exposure or NIO. The results are mixed. When using the log specification,

the model-implied exposure is negatively related to idiosyncratic volatility. In contrast, NIO

is strongly related to idiosyncratic volatility. A percentile rank increase of 50 for NIO is

associated with an increase in idiosyncratic volatility of 40 basis points. This relationship is

driven by active rather than passive funds.

E.5 High-beta Stocks

Appendix Table A.IV shows the relationship between market betas and the model-implied

exposure or NIO with interactions with an indicator variable for high-beta stocks (those with

above-median betas). All interaction terms are economically and statistically significant.

The results are consistent with the idea that institutional investors increase the riskiness of

their portfolios partly by tilting toward risky stocks.

67



E.6 Portfolios with Alternative Measures

In Panel A of Appendix Table A.V, I regress the total 13F institutional ownership on

the natural logarithm of market capitalization each month and form 10 portfolios in the

next month based on the residuals (Residual IOR). The portfolios’ returns and market betas

exhibit similar patterns as in Table 7, yet the economic magnitudes are smaller. Panel (a) of

Appendix Figure A.III shows the performance of these portfolios around the global financial

crisis in 2008. Note that the economic magnitude of the crash is smaller than that in Figure 3,

and there is no apparent sign of reversals. Panel (b) of Appendix Figure A.III shows that

the total 13F ownership of the top decile portfolio is somewhat constant during the global

financial crisis.

In Panel B of Appendix Table A.V, I regress 1−HHI on the natural logarithm of market

capitalization each month and form 10 portfolios in the next month based on the residuals

(Residual 1−HHI). The portfolios’ returns and market betas exhibit similar patterns as in

Table 7, yet the economic magnitudes are smaller. Panel (b) of Appendix Figure A.III shows

the performance of these portfolios around the global financial crisis in 2008. Note that the

economic magnitude of the crash is smaller than that in Figure 3, and there is a less apparent

sign of reversals. Panel (d) of Appendix Figure A.III shows that the total 13F ownership of

the top decile portfolio is somewhat constant during the global financial crisis.

The portfolios formed by HHI exhibit stronger patterns than the portfolios formed using

total 13F ownership, yet they are weaker than the portfolios sorted by Residual NIO. The

stronger patterns plausibly arise because high Residual 1−HHI captures a dispersed own-

ership structure. However, the high Residual 1−HHI stocks include stocks with low 13F

institutional ownership, which implies a lower price impact. The high Residual NIO stocks

have high and dispersed institutional ownership structures.
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Figure A.I. Equilibrium

The figure plots the equilibrium volatility, market beta, Sharpe ratio, and premium against the number of
institutional owners (NIO). I calibrate the model as follows: There areN = 50 stocks, indexed by j = 1, ..., 50,
and H = 50 benchmark index portfolios, indexed by h = 1, ..., 50. The first index includes the first stock,
the second index includes the first and the second stocks, ..., and the last (50th) index includes all stocks.
The parameter values are λ = 0.3, b = 1, t = 1, T = 20, and Ih0 = 1 for all h. In addition, Iht = 1.25 for all
h and σj = 0.3ij for all j, where ij is an N -dimensional unit vector with the jth element equal to 1 and the

remaining values equal to 0. Further, σh = 0.3
∑Mh

j=1 ij/
√
Mh for all h, where Mh is the number of stocks

in the index h and σ = 0.3
∑N
j=1 ij

√
N .
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Figure A.II. Number of Funds Before Russell Reconstitution Events

The figure plots the number of active and passive owners in December (six months before the Russell recon-
stitution events) against May (one month before the reconstitution events) market capitalization rankings.
The sample period spans the Russell reconstitution events between 2000 and 2006. Panel (a) shows the
number of active funds, and Panel (b) reports the number of passive funds. Rank is stocks’ market capital-
ization rankings in May. Rank equals −200 (200) if a stock is ranked 800th (1,200th). Each bin represents
the average of 10 ranks over the sample period. The solid lines are the fitted lines using linear polynomials
with a triangular kernel centered on the cutoff rank 0.
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Figure A.III. Portfolio Returns and Institutional Ownership During the Global
Financial Crisis

The figure shows the cumulative returns and the median 13F ownership of portfolios around the global
financial crisis in 2008. The portfolios are formed as in Appendix Table A.V. I include ordinary common
shares (CRSP share codes 10 or 11) and stocks traded on the NYSE, AMEX, or NASDAQ (CRSP exchange
codes 1, 2, or 3). I exclude stocks with zero 13F institutional ownership. In Panels (a) and (b), I regress
total 13F institutional ownership on the natural logarithm of market capitalization each month and form
10 portfolios in the next month based on the residuals (Residual IOR). In Panels (c) and (d), I regress
1−HHI on the natural logarithm of market capitalization each month and form 10 portfolios in the next
month based on the residuals (Residual 1−HHI). The portfolios are rebalanced monthly, and returns are
value-weighted. Panels (a) and (c) present cumulative monthly returns of the top and the bottom decile
portfolios, and Panels (b) and (d) report the median total 13F ownership of stocks in the top and the bottom
decile portfolios.
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Table A.I. Estimation with Equal Weights

The table reports the parameter estimates from Equation 12 (Model I) and Equation 13 (Model II) with
equal weights and the likelihood ratio test. Model I incorporates institutional investors’ concern about the
price impact of their trades, which is summarized by a parameter (λ) added to Model II. Model II is the
benchmark model following the assumptions in Edmans et al. (2012). I include ordinary common shares
(CRSP share codes 10 or 11) and stocks traded on the NYSE, AMEX, or NASDAQ (CRSP exchange codes
1, 2, or 3). I exclude stocks with zero 13F institutional ownership and stocks with firm size below the 20th
percentile of NYSE breakpoints. Standard errors are reported in brackets. The estimation procedures are
detailed in Appendix E.

Model I Model II

α 0.028 0.027
[0.009] [0.009]

β 0.164 0.026
[0.066] [0.009]

λ 9.954 −
[1.264] −

Likelihood ratio 10.32 −
p-value 0.001 −

Table A.II. Estimation with Alternative Specification

The table reports the parameter estimates from Equation E.1 with equal weights (EW) and value weights
(VW). I include ordinary common shares (CRSP share codes 10 or 11) and stocks traded on the NYSE,
AMEX, or NASDAQ (CRSP exchange codes 1, 2, or 3). I exclude stocks with zero 13F institutional
ownership. I drop stocks with firm size below the 20th percentile of NYSE breakpoints for the estimation
with equal weights. Standard errors are reported in brackets. The estimation procedures are detailed in
Appendix E.

EW VW

α 0.027 0.025
[0.008] [0.006]

β 0.160 0.151
[0.059] [0.069]

λ 0.178 0.167
[0.016] [0.017]
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Table A.III. Idiosyncratic Volatility

The table reports quarterly Fama and MacBeth (1973) regressions of idiosyncratic volatility on the number
of institutional owners (NIO). I include ordinary common shares (CRSP share codes 10 or 11) and stocks
traded on the NYSE, AMEX, or NASDAQ (CRSP exchange codes 1, 2, or 3). I exclude stocks with zero
13F institutional ownership or negative book value from Compustat. Idiosyncratic volatility is the standard
deviation of the residuals from the CAPM model using daily stock returns within each quarter (Sharpe, 1964;
Lintner, 1965; Mossin, 1966). The independent variables are the log or the percentile rank of the number
of 13F institutional owners (NIO), the number of active funds, and the number of passive funds. Mktcap
is the quarter-end market capitalization, Price is the quarter-end stock price, and Book-to-market is book
equity divided by market equity. Assets growth is the change in assets scaled by lagged assets (Fama and
French, 2015; Hou et al., 2015), and Profitability is revenue minus the cost of goods sold scaled by total
assets (Novy-Marx, 2013). Past-6-month return is the natural logarithm of cumulative past-6-month returns
excluding the most recent month return, and the Amihud ratio is computed within each quarter following
Amihud (2002). t-statistics are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively.

Dependent variable: Idiosyncratic volatilityq+1

Sample period: 1980-2020 1980-2020 1980-2020 1997-2020 1980-2020 1997-2020

log(Model-implied exposureq) −0.013***
(−2.66)

log(NIOq) 0.189***
(10.81)

Rank: Model-implied exposureq 0.000 0.002**
(0.70) (2.45)

Rank: NIOq 0.008***
(11.70)

Rank: NIOq (active) 0.009***
(11.71)

Rank: NIOq (passive) 0.000
(0.95)

log(Mktcapq) −0.175*** −0.315*** −0.195*** −0.224*** −0.300*** −0.324***
(−23.07) (−23.37) (−21.57) (−17.58) (−24.17) (−23.20)

1/Priceq 0.636*** 0.620*** 0.635*** 0.941*** 0.617*** 0.921***
(15.19) (14.90) (15.12) (20.09) (15.00) (19.93)

log(Book-to-marketq) −0.134*** −0.164*** −0.133*** −0.138*** −0.157*** −0.160***
(−14.63) (−17.56) (−14.06) (−10.32) (−16.87) (−12.25)

Assets growthy−1 0.063*** 0.080*** 0.062*** 0.045** 0.073*** 0.054***
(4.62) (6.38) (4.56) (2.14) (5.77) (2.68)

Profitabilityy−1 −0.147*** −0.206*** −0.158*** −0.173*** −0.206*** −0.239***
(−7.06) (−9.37) (−7.51) (−5.00) (−9.37) (−6.68)

Past 6-month return −0.568*** −0.527*** −0.570*** −0.581*** −0.536*** −0.557***
(−18.06) (−17.34) (−18.12) (−12.16) (−17.56) (−11.99)

Amihud ratioq 0.072*** 0.092*** 0.081*** 0.113*** 0.089*** 0.120***
(8.70) (9.78) (9.12) (8.01) (9.46) (8.26)

Idiosyncratic volatilityq 0.521*** 0.516*** 0.522*** 0.450*** 0.518*** 0.446***
(42.06) (42.12) (42.43) (31.24) (42.15) (31.69)

Observations 624,867 624,867 624,867 355,484 624,867 355,484
R-squared 0.546 0.547 0.545 0.484 0.547 0.486

73



Table A.IV. Amplification of Market Risk: High-beta Stocks

The table reports quarterly Fama and MacBeth (1973) regressions of market betas on the model-implied
exposure (from Equation 12 in Section 3) and the number of 13F institutional owners (NIO) with interactions
with an indicator variable for high-beta stocks. I include ordinary common shares (CRSP share codes 10
or 11) and stocks traded on the NYSE, AMEX, or NASDAQ (CRSP exchange codes 1, 2, or 3). I exclude
stocks with zero 13F institutional ownership or negative book value from Compustat. The market betas are
computed by regressing daily stock returns in excess of the risk-free rates on contemporaneous and lagged
value-weighted market returns in excess of the risk-free rates. The dependent variable is the sum of the
two estimated coefficients. The main independent variables are the log or the percentile rank of the model-
implied exposure, the number of 13F institutional owners (NIO), the number of active funds, and the number
of passive funds. 1(High-beta) is an indicator variable that equals one if a stock has above-median beta.
Mktcap is the quarter-end market capitalization, Price is the quarter-end stock price, and Book-to-market is
book equity divided by market equity. Assets growth is the change in assets scaled by lagged assets (Fama
and French, 2015; Hou et al., 2015), and Profitability is revenue minus the cost of goods sold scaled by total
assets (Novy-Marx, 2013). Past-6-month return is the natural logarithm of cumulative past-6-month returns
excluding the most recent month return, and the Amihud ratio is computed within each quarter following
Amihud (2002). t-statistics are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively.

Dependent variable: Betaq+1

Main variable: log(Model-implied exposureq) 0.027***
(10.61)

Main variable: log(NIOq) 0.134***
(15.46)

Main variable: Rank: Model-implied exposureq 0.005***
(14.34)

Main variable: Rank: NIOq 0.006***
(15.75)

Main variable × 1(High-beta) 0.013*** 0.049*** 0.003*** 0.003***
(27.84) (27.19) (26.56) (25.93)

log(Mktcapq) −0.005 −0.061*** −0.048*** −0.059***
(−0.91) (−9.91) (−8.83) (−9.83)

1/Priceq 0.047*** 0.027** 0.044*** 0.029**
(4.32) (2.36) (3.95) (2.60)

log(Book-to-marketq) −0.064*** −0.079*** −0.072*** −0.078***
(−9.25) (−10.87) (−9.98) (−10.82)

Assets growthy−1 0.095*** 0.106*** 0.095*** 0.101***
(10.30) (11.94) (10.22) (11.30)

Profitabilityy−1 0.005 −0.017 −0.011 −0.018
(0.41) (−1.43) (−0.90) (−1.49)

Past 6-month return −0.027 0.007 −0.028 0.003
(−1.27) (0.36) (−1.32) (0.16)

Amihud ratioq −0.050*** −0.047*** −0.056*** −0.053***
(−7.44) (−7.19) (−7.53) (−7.34)

Betaq 0.173*** 0.172*** 0.184*** 0.179***
(16.42) (16.95) (17.33) (17.24)

Observations 624,867 624,867 624,867 624,867
R-squared 0.177 0.183 0.180 0.184
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Table A.V. Portfolios with Alternative Ownership Measures

The table reports the average value-weighted monthly returns and the CAPM alphas and betas of portfolios
formed by 13F institutional ownership (IOR) or the Herfindahl-Hirschman index of 13F institutional own-
ership (HHI). I include ordinary common shares (CRSP share codes 10 or 11) traded on the NYSE, AMEX,
or NASDAQ (CRSP exchange codes 1, 2, or 3). I exclude stocks with zero 13F institutional ownership. In
Panel A, I regress total 13F institutional ownership on the natural logarithm of market capitalization each
month and form 10 portfolios in the next month based on the residuals (Residual IOR). The portfolios are
rebalanced monthly. In Panel B, I regress 1−HHI on the natural logarithm of market capitalization each
month and form 10 portfolios in the next month based on the residuals (Residual 1−HHI). The portfolios
are rebalanced monthly. Return is the time-series average of the value-weighted monthly portfolio returns.
CAPM alphas and betas are estimated using the CAPM model (Sharpe, 1964; Lintner, 1965; Mossin, 1966).
Returns and alphas are shown in percentages. t-statistics are adjusted for heteroscedasticity and autocorre-
lations.

Panel A: Portfolios Sorted by Residual IOR

Deciles L 2 3 4 5 6 7 8 9 H H−L

Return 0.94 1.03 1.04 1.11 1.16 1.11 1.10 1.20 1.09 1.09 0.15
t(Return) 4.44 4.67 4.63 4.97 5.16 4.98 5.08 5.09 4.66 4.34 0.84
CAPM α −0.03 0.02 0.04 0.05 0.11 0.00 0.00 0.06 −0.07 −0.11 −0.08
t(CAPM α) −0.44 0.38 0.67 0.87 1.39 0.04 0.01 0.52 −0.61 −0.77 −0.41
CAPM β 0.91 0.97 0.95 1.03 1.03 1.10 1.10 1.16 1.19 1.24 0.33

Panel B: Portfolios Sorted by Residual 1−HHI

Deciles L 2 3 4 5 6 7 8 9 H H−L

Return 0.91 1.00 1.12 1.07 1.12 1.16 1.19 1.22 1.22 1.42 0.50
t(Return) 4.14 4.69 5.22 4.91 4.98 4.92 4.76 4.64 4.31 4.25 1.73
CAPM α −0.06 −0.01 0.05 −0.04 −0.01 −0.01 0.01 0.02 0.01 0.15 0.21
t(CAPM α) −0.61 −0.24 0.82 −0.49 −0.13 −0.05 0.10 0.14 0.04 0.65 0.75
CAPM β 0.92 0.97 1.05 1.11 1.14 1.20 1.21 1.24 1.26 1.34 0.43
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