A Simple Model of Group Conflict, Inequality and Stratification

Brendan Brundage & Daniele Tavani
@BrendanBrundage & @danieletavani

Colorado State University

NBER Race and Stratification Conference
Boston, March 31, 2023
Stratification Economics vs. Economics of Discrimination

- **Stratification Economics (SE):** discrimination = rational “defense” mechanism of the dominant group(s). Accordingly,
Stratification Economics vs. Economics of Discrimination

- **Stratification Economics (SE):** discrimination = rational “defense” mechanism of the dominant group(s). Accordingly,
 - **Prejudicisim** is a purposeful action aimed at maintaining the dominant group’s dominance position.

- **Economics of discrimination** focuses on:
 - Taste for discrimination (Becker, 1957)
 - Statistical discrimination (Arrow, 1973; Phelps, 1972), but also
 - Identity-driven behavior (Akerlof and Kranton, 2000)
 - Unsuccessful behavior by marginalized group members (Fang & Loury, 2005)

- The difference with SE is that it presupposes purposeful **economic harm** perpetrated by some individuals onto others.
Contribution

- Provide a micro model to capture some basic features of SE.
Contribution

- Provide a micro model to capture some basic features of SE.
- Keep the model as simple as possible.
Dominant group members are willing to spend resources to maintain their status & limit access to econ. opportunities for marginalized groups.
Contribution (2)

- Dominant group members are willing to spend resources to maintain their status & limit access to econ. opportunities for marginalized groups.

- Not every dominant group member needs to fully engage in discriminatory activities:
 - They can *free ride* on discriminatory effort by other members of the same group.
Contribution (2)

- Dominant group members are willing to spend resources to maintain their status & limit access to econ. opportunities for marginalized groups.
- Not every dominant group member needs to fully engage in discriminatory activities:
 - They can free ride on discriminatory effort by other members of the same group.
- Marginalized group members have limited ability to counter discriminatory effort:
 - Clear power imbalance.
Contribution (2)

- Dominant group members are willing to spend resources to maintain their status & limit access to econ. opportunities for marginalized groups.
- Not every dominant group member needs to fully engage in discriminatory activities:
 - They can **free ride** on discriminatory effort by other members of the same group.
- Marginalized group members have limited ability to counter discriminatory effort:
 - Clear **power** imbalance.
- Discriminatory effort \rightarrow income & wealth inequality between groups; it is also **inefficient** from a societal standpoint.
Contribution (2)

- Dominant group members are willing to spend resources to maintain their status & limit access to econ. opportunities for marginalized groups.
- Not every dominant group member needs to fully engage in discriminatory activities:
 - They can free ride on discriminatory effort by other members of the same group.
- Marginalized group members have limited ability to counter discriminatory effort:
 - Clear power imbalance.
- Discriminatory effort → income & wealth inequality between groups; it is also inefficient from a societal standpoint.
- Yet, it persists because it is ‘rational’ for the dominant group, & the costly nature of anti-discriminatory measures & enforcement.
Key Elements of the Model

- The model builds on ideas advanced verbally by Lewis (1985).
- Two groups: a dominant group (D) and a marginalized group (M).
- Each group member lives for two periods:
 - **Pre-market** period where they invest in acquiring skills to become competitive in the
The model builds on ideas advanced verbally by Lewis (1985).

Two groups: a dominant group (D) and a marginalized group (M).

Each group member lives for two periods:
- **Pre-market** period where they invest in acquiring skills to become competitive in the
- **Market** period where skill investment determines their income.
Key Elements of the Model

- The model builds on ideas advanced verbally by Lewis (1985).
- Two groups: a dominant group \(D\) and a marginalized group \(M\).
- Each group member lives for two periods:
 - **Pre-market** period where they invest in acquiring skills to become competitive in the
 - **Market** period where skill investment determines their income.
 - \(D\)-group members can engage in discriminatory activities against members of the \(M\)-group in order to make them non-competitive in the market period.
 - \(D\)-individuals can free ride on discriminatory activity by other \(D\)-individuals.
Key Elements of the Model

- The model builds on ideas advanced verbally by Lewis (1985).
- Two groups: a dominant group (D) and a marginalized group (M).
- Each group member lives for two periods:
 - **Pre-market** period where they invest in acquiring skills to become competitive in the
 - **Market** period where skill investment determines their income.
 - D-group members can engage in discriminatory activities against members of the M-group in order to make them non-competitive in the market period.
 - D-individuals can free ride on discriminatory activity by other D-individuals.
 - But someone *must* discriminate, otherwise discrimination would not exist in equilibrium.
Individuals in the Marginalized Group

There are $j = 1, \ldots, Q$ individuals in group M, choosing how much to invest $h_{j,M}$ in skill acquisition to earn income y_{j}^{M} in the market period.

However, y_{j}^{M} can be reduced by the total discriminatory effort $d \in [0, 1]$ by the D-group. Thus, we postulate $y_{j}^{M}(h_{j,M}, d)$ & assume:

1. $y_{j}^{M}(0, d) = 0$ (No free-lunch);
2. $\partial y_{j}^{M} / \partial h_{j,M} > 0$, $\partial^{2} y_{j}^{M} / \partial h_{j,M}^{2} < 0$ (Monotonicity; strict concavity).
3. $\partial y_{j}^{M} / \partial d < 0$ (Economic harm from discrimination).

We assume:

$$y_{j}^{M}(h_{j,M}, d) = Ah_{j,M}^{\alpha}(1 - d)^{1-\alpha} \quad \alpha \in (0, 1), A \in (0, 1)$$ \hspace{1cm} (1)$$

where A is a positive productivity parameter, restricted for model consistency.
Choice

- Individual j in group M chooses $h_{j,M}$ to maximize
 \[y^M_j (h_{j,M}, d) - h_{j,M} \]

- **Reaction function**
 \[h_M(d) = (\alpha A)^{\frac{1}{1-\alpha}} (1 - d) \] (3)

 equal across all M-individuals.
The intensity of “human capital” investment by a j individual decreases in the total discriminatory effort d by the dominant group.

“Low educational attainment” by marginalized group members is due to discriminatory action against them.

Market income for an M-individual is

$$y_j^M(d) = \alpha \frac{\alpha}{1-\alpha} A \frac{1}{1-\alpha} (1 - d) = y^M(d)$$

(4)

also symmetric across all $j \in M$ and linearly decreasing in d.
Individuals in the Dominant Group

- A D-group individual $i = 1, \ldots, N$ is not discriminated against.
- Thus, assuming away productivity differences between groups:

$$y_i^D = Ah_{i,D}^\alpha$$ \hspace{1cm} (5)
Choice & Free-riding

- A D-individual chooses $h_{i,D}$ and d_i to maximize the difference between their own market income and the income of a typical marginalized group individual.

- We assume that the cost of active discrimination is convex: $c(d_i) = d_i^2/2$.

- **Free-riding** issue: total discriminatory effort by the D-group is

$$d = \eta d_i + (1 - \eta) d_{-i}; \quad \eta \in (0, 1)$$

so that each of the $\{i, M\}$ individuals takes discriminatory effort by the other members of the same group as given.
Choice: Discrimination Effort

- The choice of skill investment and discriminatory effort are:

\[
h_{i,D} = (\alpha A)^{\frac{1}{1-\alpha}} = h_D \forall i
\]

\[
d_i = \eta(1 - \alpha)Ah_{j,M}^\alpha(1 - d)^{-\alpha}
\]

- Extent of discrimination increases in
 - Extent of skill investment by \(M\)-group;
 - Productivity \(A\): as \(M\)-group members become more productive, efforts to make them non-competitive will intensify.
Choice: Discrimination Effort

- The choice of skill investment and discriminatory effort are:

\[h_{i,D} = (\alpha A)^{\frac{1}{1-\alpha}} = h_D \forall i \quad (7) \]
\[d_i = \eta (1 - \alpha) Ah_{j,M}^\alpha (1 - d)^{-\alpha} \quad (8) \]

- Extent of discrimination increases in
 - Extent of skill investment by \(M \)-group;
 - Productivity \(A \): as \(M \)-group members become more productive, efforts to make them non-competitive will intensify.
An equilibrium allocation is defined as:

- A choice \(h_{j,M} \) that max’s market income for \(M \)-individuals given the PC and given \(d \) for all \(j \in M \);
- A choice \(\{h_{i,D}, d_i\} \) by \(i \in D \) that max’s difference in market incomes.

Equilibrium discriminatory effort is symmetric and equal to

\[
d = \eta \left(\frac{1 - \alpha}{\alpha} \right) (\alpha A)^{\frac{1}{1 - \alpha}}
\]

\((9)\)
An equilibrium allocation is defined as:

- A choice \(h_{j,M} \) that max’s market income for \(M \)-individuals given the PC and given \(d \) for all \(j \in M \);
- A choice \(\{h_{i,D}, d_i\} \) by \(i \in D \) that max’s difference in market incomes.

Equilibrium discriminatory effort is symmetric and equal to

\[
d = \eta \left(\frac{1 - \alpha}{\alpha} \right) (\alpha A)^{\frac{1}{1-\alpha}} \tag{9}
\]

Equilibrium investments in skill acquisition:

\[
\begin{align*}
 h^M &= (\alpha A)^{\frac{1}{1-\alpha}} \left[1 - \eta \left(\frac{1 - \alpha}{\alpha} \right) (\alpha A)^{\frac{1}{1-\alpha}} \right] \tag{10} \\
 h^D &= (\alpha A)^{\frac{1}{1-\alpha}} \tag{11}
\end{align*}
\]
Equilibrium Inequality

- Given the differences in human capital investment across the two groups, **racial income inequality** is obtained simply as the ratio:

\[
\frac{y_D}{y_M} = \frac{1}{1 - \eta \left(\frac{1-\alpha}{\alpha}\right)(\alpha A)^{\frac{1}{1-\alpha}}} > 1
\]

(12)

- Inequality would disappear if discriminatory effort had no effect on the D-group income ($\alpha = 1$), or if $\eta = 0$ (complete free-riding by every individual i in the D-group).
Welfare

- A benevolent social planner chooses \(h_M, h_D, d \) to maximize the society’s net average market income

\[
W = \frac{1}{N + Q} \left[\sum_{j=1}^{Q} (y_j^M (h_j, M, d) - h_j, M) + \sum_{i=1}^{N} (y_i^D (h_i, D) - h_i, D - d_i) \right]
\]

(13)

taking into account that all the \(j \in M \)-individuals and the \(i \in D \)-individuals allocate the same amount of resources into skill acquisition (and discrimination activities).

- The SWF is **monotonically decreasing in discriminatory effort**:
A benevolent social planner chooses h_M, h_D, d to maximize the society’s net average market income

$$W = \frac{1}{N + Q} \left[\sum_{j=1}^{Q} (y^M_j (h_{j,M}, d) - h_{j,M}) + \sum_{i=1}^{N} (y^D_i (h_{i,D}) - h_{i,D} - d_i) \right]$$

(13)

taking into account that all the $j \in M$-individuals and the $i \in D$-individuals allocate the same amount of resources into skill acquisition (and discrimination activities).

- The SWF is **monotonically decreasing in discriminatory effort**:
- The **efficient allocation** involves $d^*_i = 0$ for all $i \in D \rightarrow$ is also egalitarian.
Anti-Discrimination Policy

- A government could engage in anti-discrimination effort $\varepsilon \in [0, 1]$ so that market income for an M-individual becomes

$$y^M(d; \varepsilon) = Ah^\alpha_M[1 - d(1 - \varepsilon)]^{1-\alpha}$$

which eliminates the effects of discrimination when $\varepsilon = 1$.

- The reaction function and market income for an M-individual as a function of d and ε are now:

$$h^M(d; \varepsilon) = (\alpha A)^{1-\alpha} [1 - d(1 - \varepsilon)]$$ (14)

$$y^M(d; \varepsilon) = \alpha^{1-\alpha} A^{1-\alpha} [1 - d(1 - \varepsilon)]$$ (15)
Consider D-individuals. It turns out that the difference is not the extent of discriminatory effort, but how effective the discriminatory effort will be:

- any amount $d_{i,M}$ will be scaled down by an amount ε because of anti-discriminatory policies.

Thus, in equilibrium, the extent of market income inequality is

$$\frac{y^{E,D}}{y^{E,M}(\varepsilon)} = \frac{1}{1 - (1 - \varepsilon)\eta \left(\frac{1-\alpha}{\alpha}\right)(\alpha A)^{\frac{1}{1-\alpha}}} \tag{16}$$

and the egalitarian allocation is obtained when $\varepsilon = 1$.
Why isn’t Discrimination Eliminated then?

Suppose that the burden of proving to be a victim of discrimination falls upon the discriminated, and the cost of ensuring enforcement is convex $c(\varepsilon) = \frac{1}{2} \varepsilon^2$. A group-$M$ individual solves:

$$\max \{ h_M, \varepsilon \} \quad A h_M^\alpha [1 - d(1 - \varepsilon)]^{1-\alpha} - h_M - \frac{1}{2} \varepsilon^2$$

In equilibrium,

$$\varepsilon = \eta(1 - \alpha)^2 \alpha^{\frac{2\alpha}{1-\alpha}} A^{\frac{2}{1-\alpha}} \propto d^2 < d$$

[Remember that $d \in (0, 1)$]

Thus, discrimination will be lessened but never eliminated.
Wealth Inequality & Stratification

- Through intergenerational altruism & bequests, income inequality reverberates into wealth inequality → stratify the society.
- We adapt the Galor-Zeira (1993) model to this setting.
- An individual in group \(r = \{ M, D \} \) earns market income \(y^r \).
- Utility defined over consumption \(c_r \) and bequests \(b_r \) as follows:

 \[
 u^r(c_r, b_r) = \beta \ln c_r + (1 - \beta) \ln b_r \tag{19}
 \]

- We need to consider the possibility of investing one’s inheritance, earning rate of return \(\rho > 0 \).
Stratification (2)

The PC’s for group-M and group-D individuals are now:

\[w_j^M + y_{j,M} - h_{j,M} \geq w_j^M (1 + \rho) \quad (20) \]
\[w_i^D + y_{i,D} - d_i - h_{i,D} \geq w_i^D (1 + \rho) \quad (21) \]

The chosen amount of bequests is a constant fraction of mkt income — the opportunity cost of interest on inherited wealth:

\[b_r = (1 - \beta)(y^r - \rho w^r) \quad (22) \]
Wealth Inequality

Stratification (3)

- Bequest left by the current generation = initial wealth of the following one → evolution of group r’s wealth:

$$w_{r+1}^r = (1 - \beta)(y^r - \rho w^r) \quad (23)$$

Steady state:

$$w_{ss}^r = \frac{1 - \beta}{1 - (1 + \beta)\rho} y^r \quad r = \{D, M\} \quad (24)$$

Wealth inequality is proportional to income inequality.
Wealth Inequality

Stratification (3)

- Bequest left by the current generation = initial wealth of the following one → evolution of group r’s wealth:

$$w_{r+1}^r = (1 - \beta)(y^r - \rho w^r)$$ \hspace{1cm} (23)

Steady state:

$$w_{ss}^r = \frac{1 - \beta}{1 - (1 + \beta)\rho} y^r \hspace{0.5cm} r = \{D, M\}$$ \hspace{1cm} (24)

- Thus,

$$\frac{w_{ss}^D}{w_{ss}^M} = \frac{y^D}{y^M}$$ \hspace{1cm} (25)

Wealth inequality is proportional to income inequality.
A simple exercise shows that the amount of reparations needed to eliminate inequality in the baseline model with $\varepsilon = 0$ is

$$R = d = \eta \left(\frac{1 - \alpha}{\alpha} \right) (\alpha A)^{\frac{1}{1-\alpha}}$$

(26)
A simple exercise shows that the amount of reparations needed to eliminate inequality in the baseline model with $\varepsilon = 0$ is

$$R = d = \eta \left(\frac{1 - \alpha}{\alpha} \right) (\alpha A)^{\frac{1}{1-\alpha}}$$ \hspace{1cm} (26)

This is way too simple!

- Society has been stratified through several generations;
- Intergenerational altruism can actually amplify wealth disparities;
- Rates of return are different across racial groups.

An infinite-horizon model will likely imply much higher wealth inequality between groups.
Stratification Economics sees discrimination as a purposeful (costly) activity by dominant groups to maintain their status.

Even though some D-group members will not be actively engaged in discrimination, they will still benefit from it.

Someone must have discriminated: $d_i > 0$ for at least one i. Discrimination is wasteful from a societal standpoint (not Pareto-efficient); Yet, it persists because anti-discrimination measures are costly to enforce, especially if the burden falls upon the discriminated. Intergenerational altruism provides the link from income inequality to wealth inequality.
Stratification Economics sees discrimination as a purposeful (costly) activity by dominant groups to maintain their status.

Even though some D-group members will not be actively engaged in discrimination, they will still benefit from it.

Someone must have discriminated: $d_i > 0$ for at least one i.

Discrimination is wasteful from a societal standpoint (not Pareto-efficient);

Yet, it persists because anti-discrimination measures are costly to enforce, especially if the burden falls upon the discriminated.

Intergenerational altruism provides the link from income inequality to wealth inequality.
Thank you!