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U.S. iron and steel production, imports, 
exports, and emissions in a global context
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Country Production in 2022 
(thousand tons) Share

China 1,017,959 54%
India 125,377 7%
Japan 89,227 5%
United 
States 80,535 4%

Russia 71,469 4%

South Korea 65,846 3%

Germany 36,849 2%
Türkiye 35,134 2%
Brazil 34,090 2%
Iran 30,593 2%
Other 298,658 16%

Source: World Steel Association (2022, 2023)

7% of global energy related CO2 emissions
2% of U.S. GHG emissions



Iron and steel production: Two major routes
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Iron and steel processes, in living color
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Mon Valley Works, 
Pittsburgh, PA, USA

Direct reduced iron, 
Corpus Christi, TX, USA

Blast furnace, 
Valencia, 
Spain

Basic oxygen 
furnace, 
Pittsburgh, 
PA, USA

Electric arc furnace,
Osceola, AR, USA

Big River Steel,
Osceola, AR, USA

Integrated Route Electric Arc Furnace Route



The steel production supplied by the EAF 
route has increased since the early 1990s
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We compared the cost of pathways for 
decarbonizing both BF-BOF and EAF production

7BF-BOF Pathway Scrap- or DRI-EAF Pathway



Key assumptions used to estimate cost and 
CO2 emissions
• Emissions scopes: Scope 1 (direct from production), Scope 2 (mainly 

electricity), Scope 3 (mainly upstream ore extraction and processing)
• BF-BOF represents Best Available Technology in 2023. 
• Electricity CO2 based on US 2021 grid average, except for H2 / CCS, 

which are assumed to only be deployed if they can be operated on 
zero C electricity.

• The 100% NG DRI, 50% H2 and 100% H2 DRI assume the input gas 
stream is partially used for pre-heating. 

• Prices are fixed: cost of H2 is $4.68/kg (Pistorius, 2022), electricity 
price of 4 cents/kWh, + 3 cents/kWh for zero CO2 electricity.
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However, direct comparisons may be 
misleading because…
• Today, BF-BOF and EAF steel are not perfect substitutes – used to 

make different grades (exposed automotive vs. rebar)
• “Decarbonizing” the EAF route may require considering a higher-

emissions counterfactual – increasing share of DRI in the EAF charge 
(ore-based metallics such as pig iron or DRI are more GHG-intensive 
than scrap, but necessary to make higher-grade products)

• Our 100% DRI-EAF estimates should be considered as benchmarks 
that can be used in weighted averages to assess emissions as a 
function of DRI share in an EAF charge
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Our analysis considers two scenarios to 
evaluate cost of decarbonization
• A “route-specific” (RS) scenario: A scenario that maintains BF-BOF 

and EAF technology shares and deeply reduces CO2 emissions at least 
cost (often favored by labor and BF-BOF producers).

• A “substitution-in-place” (SP) scenario: A scenario that replaces BF-
BOF steelmaking with DRI-EAF steelmaking, with higher ore-based 
metallics than today’s scrap-EAF steelmaking (often favored by EAF 
producers, climate advocates).
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Our scenario analysis holds production fixed, 
uses literature values for inputs
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Costs of deeply reducing CO2 emissions from iron and steel 
production in the U.S. – “back of the envelope”
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Estimate RS Scenario SP Scenario

BF-BOF incremental capital cost $16 billion $0 billion

DRI incremental capital cost $7.2 billion $11.2 billion

EAF incremental capital cost $0 billion $12.4 billion

Total capital cost $23.2 billion $22.6 billion

BF-BOF incremental variable cost per year $2.3 billion $0 billion

EAF incremental variable cost per year $2.5 billion $3.5 billion

Total incremental variable cost per year $5.8 billion $3.5 billion

EAF zero CO2 electricity cost per year $0.8 billion $1.2 billion

Average CO2 emissions per tcs 0.289 t CO2 per tcs 0.213 t CO2 per tcs

% reduction in CO2 emissions per tcs 71% 80%



Takeaways so far…

• Overall, if DRI-EAF can meet product requirements, it may represent 
the most cost effective approach to reducing CO2 emissions.

• Models that do not recognize the potential to accomplish reductions 
with more limited DRI may reach the opposite conclusion.

• Important to compare options on both aggregate cost as well as local 
costs/benefits:

• Jobs (-)
• Public revenue generation (?)
• Air quality (+)
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Motivation

• Environmental Justice (EJ) concerns: siting of polluting plants
• exposure to fine particulate matter of diameters <2.5 μm (PM2.5)
• PM2.5 identified as the 5th-highest risk factor for mortality globally

• Colmer et al. (Science, 2020): absolute disparities in exposure to 
PM2.5 have fallen, but relative disparities persist

• the most polluted census tracts in 1981 remained the most polluted in 2016
• the most exposed pop subgroups in 1981 remained the most exposed in 2016
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Particulate Matter (PM2.5)
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Motivation

• Jbaily et al. (Nature, 2022): develop a data platform linking 
demographic to PM2.5 data across the U.S. from 2000-2016

• zip codes with >avg Black, Asian and Hispanic/Latino populations more exposed 
to PM2.5 than zip codes with >avg white and Native American populations

• zip codes with low-income populations exposed to higher PM2.5 levels than zip 
codes with high-income groups 

• disparities in exposure relative to safety standards set by US EPA and WHO have 
been increasing over time

• Decarbonization may generate co-benefit of PM2.5 reductions
• Hernandez-Cortes and Meng (JPubE, 2023): California’s carbon market (2013) 

• lowered GHG, PM2.5, PM10, and NOx emissions by 3-9% annually between 2012-2017
• caused EJ gaps in PM2.5, PM10, and NOx from those facilities to narrow by 6-10% annually
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This Work: Decarbonizing Steel and Iron Industry
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Map of Current U.S. BF-BOF and EAF Facilities
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Data
• Location of U.S. furnaces used in iron and steel production

• Global Energy Monitor (GEM)

• Demographic and socioeconomic variables 
• median household income (2019 USD)
• share of population below the poverty line
• share of 25+ pop. w/ or w/o college degree
• share of African Americans (or nonwhites)
• share of 16+ pop. unemployed
• share of 16+ pop. out of labor force
• population (total and density)

• American Community Survey (ACS): 5-year averages
• 2010-2014, and 2015-2019
• data at census tract level: 600-3,000 people

• PM2.5: van Donkelaar et al. (EST, 2021)
• annual mean in µg/m3 at 0.01o x 0.01o resolution (0.7 x 0.7 miles)
• satellite + chem transport model + calibration (ground-based obs.)
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Empirical Strategy

• World steel production capacity: 72% BF-BOF & 28% EAF
• March 2022: planned capacity mirrored those proportions
• March 2023: notable change in plans – 57% BF-BOF & 43% EAF

• U.S. current steel production capacity:  30% BF-BOF & 70% EAF
• this reflects the setting the world is moving toward
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Operating steelmaking capacity by technology type
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Empirical Strategy

• Descriptive analysis 
• average outcomes across varying distances from steel plants stratified by
• steelmaking technologies (BF-BOF vs. EAF) & time (2010-2014 vs. 2015-2019)
• distance bins: 0-2 miles, 2-5 miles, 5-10 miles, 10-20 miles, and 20-30 miles

• Difference in differences analysis
• Δ outcome within BF-BOF & EAF areas relative to 0-2 miles from plants
• DiD: BF-BOF difference minus EAF difference – for each distance bin
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furnace
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Distance Bins



Results: Avg PM2.5 Levels by Distance to Steel Plants
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2021 WHO 
Annual PM2.5 

Guidelines: 
5µg/m3



Map of Current U.S. BF-BOF and EAF Facilities
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Results: Estimated PM2.5 Differences Relative to 0-2 
Miles from Steel Plants
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Comparison: 
Currie et al. 

(2023)’s 
estimated 
effects of 

“2005” NAAQS 
for PM2.5:

 
0.73 µg/m3



Results: Estimated PM2.5 Differences Relative to 0-2 
Miles from Steel Plants With Additional Controls

27

Comparison: 
Currie et al. 

(2023)’s 
estimated 
effects of 

“2005” NAAQS 
for PM2.5:

 
0.73 µg/m3



Results: Median Household Income (2019 USD)
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Results: Median Household Income (2019 USD)
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Results: Share of Pop. 25+ with College Degree
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Results: Share of Pop. 25+ with College Degree
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Results: Share of African Americans
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Results: Share of African Americans
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Results: Share of Pop. 16+ Out of Labor Force
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Results: Share of Pop. 16+ Out of Labor Force
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Results: Population Density (1K)
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Results: Population (100K)
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Results: Share of Pop. Below the Poverty Line
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Results: Share of Pop. Below the Poverty Line
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Results: Share of Nonwhites
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Results: Share of Nonwhites
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Results: Share of Pop. 16+ Unemployed
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Results: Share of Pop. 16+ Unemployed
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Concluding Remarks

• Communities experience worse air quality near BF-BOF vs. EAFs 
• CCS installation may not address local air quality issues

• Transition from BF-BOF to EAF (DRI-EAF, or even DRI-BOF): co-benefits 
of PM2.5 reductions

• Hernandez-Cortes and Meng (JPubE, 2023): California’s carbon market (2013) 
• lowered GHG, PM2.5, PM10, and NOx emissions by 3-9% annually between 2012-2017
• EJ gaps in PM2.5, PM10, and NOx from those facilities narrowed by 6-10% annually

• Counterfactual evidence from Clean Power Plan regulatory impact analysis

• Currie, Voorheis, and Walker (AER, 2023): >60% of convergence in Black-
White PM2.5 exposure since 2000 attributable to Clean Air Act

• areas with larger Black populations saw greater CAA-related declines in PM2.5 44



THANK YOU!

Questions? Comments?
vkarplus@andrew.cmu.edu 
edsons@andrew.cmu.edu
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Comparison of magnitude: Currie et al. (AER, 2023)
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Comparison of magnitude: Currie et al. (AER, 2023)
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Challenges to keep in mind when evaluating 
industrial decarbonization pathways
• Industrial production involves multiple interdependent steps, with 

interdependencies in decarbonization decisions across steps.
• Important to disaggregate – within 3312 - Steel Works, Blast Furnaces 

(Including Coke Ovens), and Rolling Mills, 30-fold difference in CO2 intensity. 
• Abatement options are not always additive: efficiency of a given 

process(low capex, limited reduction potential) versus replacing that 
process (high capex, greater reduction potential).

• Multiple margins for innovation: (1) ability to substitute toward 
scrap-based (less GHG intensive) pathways over pathways requiring 
virgin material or (2) innovation across the supply chain to support 
decarbonization of a particular process step.
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