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U.S. iron and steel production, imports,
exports, and emissions in a global context
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Iron and steel production: Two major routes

Integrated (BF-BOF) route Electric arc furnace route
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Iron and steel processes, in living color
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The steel production supplied by the EAF

route has increased since the early 1990s
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We compared the cost of pathways for
decarbonizing both BF-BOF and EAF production
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Key assumptions used to estimate cost and
CO, emissions

* Emissions scopes: Scope 1 (direct from production), Scope 2 (mainly
electricity), Scope 3 (mainly upstream ore extraction and processing)

* BF-BOF represents Best Available Technology in 2023.

* Electricity CO, based on US 2021 grid average, except for H, / CCS,
which are assumed to only be deployed if they can be operated on

zero C electricity.

* The 100% NG DRI, 50% H, and 100% H, DRI assume the input gas
stream is partially used for pre-heating.

* Prices are fixed: cost of H, is $4.68/kg (Pistorius, 2022), electricity
price of 4 cents/kWh, + 3 cents/kWh for zero CO, electricity.



However, direct comparisons may be
misleading because...

* Today, BF-BOF and EAF steel are not perfect substitutes — used to
make different grades (exposed automotive vs. rebar)

* “Decarbonizing” the EAF route may require considering a higher-
emissions counterfactual — increasing share of DRI in the EAF charge
(ore-based metallics such as pig iron or DRI are more GHG-intensive

than scrap, but necessary to make higher-grade products)

* Our 100% DRI-EAF estimates should be considered as benchmarks
that can be used in weighted averages to assess emissions as a

function of DRI share in an EAF charge



Our analysis considers two scenarios to
evaluate cost of decarbonization

* A “route-specific” (RS) scenario: A scenario that maintains BF-BOF
and EAF technology shares and deeply reduces CO, emissions at least
cost (often favored by labor and BF-BOF producers).

* A “substitution-in-place” (SP) scenario: A scenario that replaces BF-
BOF steelmaking with DRI-EAF steelmaking, with higher ore-based
metallics than today’s scrap-EAF steelmaking (often favored by EAF
producers, climate advocates).



Our scenario analysis holds production fixed,
uses literature values for inputs

Table 1: Assumptions for CO5 reduction scenarios

Measure Quantity Source

U.S. BF-BOF capacity (2021) 40 mtpa  WSA (2022)
U.S. BF-BOF production (2021) 26 mtpa WSA (2022)
U.S. EAF capacity (2021) 89 mtpa WSA (2022)
U.S. EAF production (2021) 59 mtpa  WSA (2022)

Pig iron input for EAF, 15% of charge 8.9 mtpa  Assumption

Notes: This table reports current capacity and production for the BF-BOF and EAF production separately,
Given the relative stability of U.S. steel production around 80 mtpa, we assume in our scenarios that
abatement actions address CO, emissions from existing production.
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Costs of deeply reducing CO, emissions from iron and steel
production in the U.S. — “back of the envelope”

Estimate RS Scenario SP Scenario

BF-BOF incremental capital cost $16 billion SO billion
DRI incremental capital cost §7.2 billion $11.2 billion
EAF incremental capital cost S0 billion $12.4 billion
Total capital cost $23.2 billion $22.6 billion
BF-BOF incremental variable cost per year $2.3 billion S0 billion
EAF incremental variable cost per year S2.5 billion S3.5 billion
Total incremental variable cost per year $5.8 billion $3.5 billion
EAF zero CO, electricity cost per year $0.8 billion $1.2 billion
Average CO, emissions per tcs 0.289 t CO2 per tcs 0.213 t CO2 per tcs

% reduction in CO, emissions per tcs 71% 80%




Takeaways so far...

e Overall, if DRI-EAF can meet product requirements, it may represent
the most cost effective approach to reducing CO, emissions.

* Models that do not recognize the potential to accomplish reductions
with more limited DRI may reach the opposite conclusion.

* Important to compare options on both aggregate cost as well as local
costs/benefits:

 Jobs (-)
e Public revenue generation (?)
* Air quality (+)



Motivation

* Environmental Justice (EJ) concerns: siting of polluting plants

e exposure to fine particulate matter of diameters <2.5 um (PM2.5)
 PM2.5 identified as the 5th-highest risk factor for mortality globally

* Colmer et al. (Science, 2020): absolute disparities in exposure to
PM2.5 have fallen, but relative disparities persist
* the most polluted census tracts in 1981 remained the most polluted in 2016
* the most exposed pop subgroups in 1981 remained the most exposed in 2016
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Particulate Matter (PM2.5)
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Motivation

* Jbaily et al. (Nature, 2022): develop a data platform linking
demographic to PM2.5 data across the U.S. from 2000-2016

* zip codes with >avg Black, Asian and Hispanic/Latino populations more exposed
to PM2.5 than zip codes with >avg white and Native American populations

 zip codes with low-income populations exposed to higher PM2.5 levels than zip
codes with high-income groups

 disparities in exposure relative to safety standards set by US EPA and WHO have
been increasing over time

* Decarbonization may generate co-benefit of PM2.5 reductions

* Hernandez-Cortes and Meng (JPubE, 2023): California’s carbon market (2013)
* lowered GHG, PM2.5, PM10, and NOx emissions by 3-9% annually between 2012-2017
e caused EJ gaps in PM2.5, PM10, and NOx from those facilities to narrow by 6-10% annually

16



U.S. Steel's Gary Works, on the Lake Michigan shore in Lake County, is the largest steel mill in North America. - Center

for Land Use Interpretation



Map of Current U.S. BF-BOF and EAF Facilities
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Data

Location of U.S. furnaces used in iron and steel production
* Global Energy Monitor (GEM)

Demographic and socioeconomic variables
* median household income (2019 USD)
* share of population below the poverty line
 share of 25+ pop. w/ or w/o college degree
* share of African Americans (or nonwhites)
e share of 16+ pop. unemployed
* share of 16+ pop. out of labor force
» population (total and density)

American Community Survey (ACS): 5-year averages
e 2010-2014, and 2015-2019
e data at census tract level: 600-3,000 people

PM2.5: van Donkelaar et al. (EST, 2021)

* annual mean in pg/m3 at 0.01° x 0.01° resolution (0.7 x 0.7 miles)
 satellite + chem transport model + calibration (ground-based obs.)
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Empirical Strategy

* World steel production capacity: 72% BF-BOF & 28% EAF
* March 2022: planned capacity mirrored those proportions
* March 2023: notable change in plans —57% BF-BOF & 43% EAF

e U.S. current steel production capacity: 30% BF-BOF & 70% EAF

* this reflects the setting the world is moving toward
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Operating steelmaking capacity by technology type
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Empirical Strategy

* Descriptive analysis
e average outcomes across varying distances from steel plants stratified by
» steelmaking technologies (BF-BOF vs. EAF) & time (2010-2014 vs. 2015-2019)
* distance bins: 0-2 miles, 2-5 miles, 5-10 miles, 10-20 miles, and 20-30 miles

* Difference in differences analysis

* A outcome within BF-BOF & EAF areas relative to 0-2 miles from plants
e DiD: BF-BOF difference minus EAF difference — for each distance bin



Distance Bins
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Results: Avg PM2.5 Levels
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Map of Current U.S. BF-BOF and EAF Facilities
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Results: Estimated PM2.5 Differences Relative to 0-2
Miles from Steel Plants
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Results: Estimated PM2.5 Differences Relative to 0-2
Miles from Steel Plants With Additional Controls
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Results: Median Household Income (2019 USD)
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Results: Median Household Income (2019 USD)
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Results: Share of Pop. 25+ with College Degree

Share of Pop. 25+ w/ College Degree
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Results: Share of Pop. 25+ with College Degree
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Share of African Americans
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Estimated Share Differences

Results: Share of African Americans
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Results: Share of Pop. 16+ Out of Labor Force
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Population Density (1K)

Results: Population Density (1K)
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Population (100K)
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Results: Share of Pop.
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Results: Share of Pop. Below the Poverty Line
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Share of Nonwhites
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Estimated Share Differences

Results: Share of Nonwhites

| |
2-5 5-10 10-20
Distance to Furnace (miles)

I BF-BOF Diff [ EAF Diff [ DD

|
20-30

41



Results: Share of Pop. 16+ Unemployed
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Estimated Share Differences
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Concluding Remarks

* Communities experience worse air quality near BF-BOF vs. EAFs
* CCSinstallation may not address local air quality issues

* Transition from BF-BOF to EAF (DRI-EAF, or even DRI-BOF): co-benefits
of PM2.5 reductions

* Hernandez-Cortes and Meng (JPubE, 2023): California’s carbon market (2013)
* lowered GHG, PM2.5, PM10, and NOx emissions by 3-9% annually between 2012-2017
e EJgapsin PM2.5, PM10, and NOx from those facilities narrowed by 6-10% annually

* Counterfactual evidence from Clean Power Plan regulatory impact analysis

e Currie, Voorheis, and Walker (AER, 2023): >60% of convergence in Black-
White PM2.5 exposure since 2000 attributable to Clean Air Act

* areas with larger Black populations saw greater CAA-related declines in PM2.5 "



THANK YOU!

Questions? Comments?
vkarplus@andrew.cmu.edu
edsons@andrew.cmu.edu



Comparison of magnitude: Currie et al. (AER, 2023)
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Comparison of magnitude: Currie et al. (AER, 2023)

TABLE 3—THE IMPACT OF THE 2005 IMPLEMENTATION OF PM2.5 STANDARDS ON PM2.5 LEVELS

PM2.5  PM2.5 In(PM2.5) In(PM2.5
(1) (2) (3) (4)

PM2.5 In(PM2.5) In(PM2.5)
(6) (7) (8)

PM2.5 nonattain —1.230 —1.237 —0.075 —0.076 0.726 —0.036 —0.036
X post (0.335) (0.334) (0.020) (0.020) (0.082) (0.006) (0.006)

PM?2.5 non 0.149 0.008 0.048 0.004
X black (0.088) (0.007) (0.091) (0.005)

X post

Year FE X X X X

State-Year FE X X X

County FE X X X X X X X

Observations 32,360,000 32,360,000 32,360,000 32,360,009832,360,000842,360,000 32,360,000 32,360,000

Notes: This table presents regression coefficients from 8 separate versions of equation (3), one per column, where
the dependent variable consists of PM2.5 or In(PM2.5) for an individual in a given year. Columns 2, 4, 6, and 8
add an additional interaction for African Americans to test for heterogeneity in regulatory impacts for African

Americans. Regressions are weighted by census survey weights and errors are clustered by CZ. FE = fixed effects.
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Challenges to keep in mind when evaluating
industrial decarbonization pathways

* Industrial production involves multiple interdependent steps, with
interdependencies in decarbonization decisions across steps.

* Important to disaggregate — within 3312 - Steel Works, Blast Furnaces
(Including Coke Ovens), and Rolling Mills, 30-fold difference in CO, intensity.

* Abatement options are not always additive: efficiency of a given
process(low capex, limited reduction potential) versus replacing that
process (high capex, greater reduction potential).

* Multiple margins for innovation: (1) ability to substitute toward
scrap-based (less GHG intensive) pathways over pathways requiring
virgin material or (2) innovation across the supply chain to support
decarbonization of a particular process step.
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