Public Health Co-benefits of Decarbonizing Industrial Production in Europe

Laure de Preux1 Yixuan Gu2 Daven K. Henze3 Ulrich J. Wagner2

1Imperial College London
2University of Mannheim
3University of Colorado Boulder

The Economics of Decarbonizing Industrial Production: NBER Conference
December 8, 2023
STILL PRELIMINARY

HEAL Project
Industrial GHG Emissions and Co-pollution

- 12 Gt of CO$_2$-equivalent annually emitted worldwide (20%)

- Public Health Benefits of Decarbonizing Industry:
 - Direct benefits of climate change mitigation
 - Health co-benefits of reducing air pollution due to
 - co-pollutants jointly emitted with CO$_2$ from fossil fuel use
 - co-pollutants of CO$_2$ process emissions
 - non-CO$_2$ GHGs (CH$_4$, N$_2$O, HFCs, PFCs, SF$_6$ and NF$_3$)

- Goal of this paper is to **quantify**
 - health benefits of reduced PM$_{2.5}$ pollution due to industrial decarbonization (past and future)
 - contributions of different industries and pollutant species
 - distributional impacts

- Local nature of co-benefits provides a rationale for targeted subsidies to carbon intensive industries. How much? And where?
We focus on industrial activities regulated in the EU Emissions Trading Scheme (EU ETS)

Health co-benefits depend on
1. co-pollution intensity
2. location
3. atmospheric dispersion
4. population density

Figure: EU ETS Facilities and Population Density
Methods and Data
Research Design: Micro-founded Integrated Assessment

Summary:

1. Decarbonization Scenario

2. Facility-level Emissions of Air Pollutants: Location, Scale, Mix

3. Atmospheric Pollution Dispersion and Population Exposure

4. Public Health Burden in terms of Mortality Impacts
Steps 3 & 4: New Chemical Transport Model for Europe

- Nested GEOS-Chem adjoint model (Gu et al., 2023)

- Model input:
 Primary pollutants NO\textsubscript{x}, SO\textsubscript{2}, NH\textsubscript{3}, OC, BC, SOAP

- Model outputs
 - Population exposure to PM\textsubscript{2.5} on a 0.25°×0.3125°-grid
 - PM\textsubscript{2.5} related premature deaths using dose-response from Global Burden of Disease Study 2019 (Murray et al., 2020):

\[
J_{PM_{2.5}} = \sum_{L} \sum_{A} \sum_{k \in D} \sum_{(I,J) \in k} (POP_{I,J,A} \times MOR_{I,J,A,L} \times AF_{I,J,A,L})
\]

where \(AF_{I,J,A,L} = \frac{RR_{I,J,A,L} - 1}{RR_{I,J,A,L}}\) and \(L \in \{\text{COPD, IHD, LRI, LC, T2D, stroke}\}\)

- Source appointment (adjoint):
 Compute sensitivity of premature deaths to specific pollution source without additional computational costs
PM$_{2.5}$ exposure, population, and health burden in Europe

Source: Gu et al. (2023a)

- 449,813 PM$_{2.5}$-related premature deaths in 2015 (relative to total pop. 598.97m)
- 59% due to anthropogenic NO$_x$, NH$_3$, SO$_2$, OC, BC, SOAP
- Between 2005-15, reduced industrial emissions avoided 4,000 premature deaths to industrial emissions
Step 2: Microdata on Emissions of CO$_2$ and Air Pollutants

1. European Union Transaction Log (EUTL)
 - Register of all ETS installations
 - Verified emissions and permit allocations

2. European Pollutant Release and Transfer Register (E-PRTR)
 - Pollutant releases to air, water and land
 - 91 Pollutants, between 1 and 50 per facility (s.t. reporting thresholds)

Entity linked across data (De Preux, Kassem and Wagner, 2023)

- >8,000 EUTL installations (48.7 percent) matched to EPRTR facilities
- Matched installations account for 95.5 percent of EU ETS emissions
- Annual data from 2007-17
Step 1: Decarbonization Scenarios

1. Recent trends in CO₂ and co-pollution emissions 2008-2015
2. Naive decarbonization by 80%
3. Cost-effective (at current ETS prices) decarbonization of Portland cement
Recent Trends in Industrial Emissions
Emissions reductions under the cap were mostly driven by combustion activities (main part of ‘other’)

Note: Combustion activities includes many industrial boilers
Three largest industries have reduced emissions by about 15%

In line with causal effect of ETS price on energy related emissions (Colmer, Martin, Muuls, Wagner, 2023)

Note: Increased emissions from bulk chemicals, ammonia due to 2013 ETS changes
Cement and refining reduced NO$_x$ and SO$_x$ emissions by almost 40%, respectively

Not entirely driven by decarbonization
Changes in Carbon Emissions, 2008-15 (log scale, balanced sample)
Changes in PM$_{2.5}$ precursor emissions, 2008-15 (logs, balanced)

(a) Carbon emissions

(b) Cement

(c) Iron & Steel

(d) Refining
Health Impacts of Decarbonization Scenarios
Scenario 1: Avoided mortality due to recent emissions reductions

Associated PM$_{2.5}$ related premature deaths 2008-15

<table>
<thead>
<tr>
<th>Industry</th>
<th>Level in 2008</th>
<th>Change 2008 to 2015</th>
<th>Imputed Change 2008-15 w/ pollution intensity from median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>2,205</td>
<td>-738</td>
<td>-347</td>
</tr>
<tr>
<td>Steel</td>
<td>946</td>
<td>-237</td>
<td>-264</td>
</tr>
<tr>
<td>Refining</td>
<td>1,889</td>
<td>-741</td>
<td>-198</td>
</tr>
<tr>
<td>Total</td>
<td>5,040</td>
<td>-1,715</td>
<td>-696</td>
</tr>
</tbody>
</table>

- Significant health effects. Cement is most harmful industry
- Imputation: Scales co-emissions in proportion to observed carbon abatement
 ⇒ Observed mortality reductions in mortality only partially due to decarbonization
Decomposing Change in PM$_{2.5}$ related premature deaths, 2008-15

<table>
<thead>
<tr>
<th>Industry</th>
<th>Level in 2008</th>
<th>Change 2008-15</th>
<th>Decarbonization Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>observed</td>
<td>imputed (2008)</td>
<td></td>
</tr>
<tr>
<td>Cement</td>
<td>2,205</td>
<td>-33%</td>
<td>-17%</td>
</tr>
<tr>
<td>Steel</td>
<td>946</td>
<td>-25%</td>
<td>-17%</td>
</tr>
<tr>
<td>Refining</td>
<td>1,889</td>
<td>-39%</td>
<td>-11%</td>
</tr>
<tr>
<td>Total</td>
<td>5,040</td>
<td>-34%</td>
<td>-15%</td>
</tr>
</tbody>
</table>

- Largest decarbonization contribution from steel where health impact is smallest.
- Largest health benefit in refining where the contribution of decarbonization is smallest.
- Next: Use 2015 pollution intensities to abstract from such other impacts.
Scenario 2: 80% Reduction in Emissions and Co-emissions

▶ Naive approach: Scale co-emissions in proportion to large decarbonization.
▶ Useful to gauge potential magnitude of health benefits different industries

▶ Likely consistent with:
 ▶ output change
 ▶ (large) energy efficiency improvements
 ▶ electrification or
 ▶ hydrogen-based production

▶ Not necessarily consistent with:
 ▶ Carbon Capture and Storage
 ▶ fuel substitution,
 ▶ major process innovations
80% Decarbonization: Avoided Premature Deaths due to PM$_{2.5}$

<table>
<thead>
<tr>
<th>Industry</th>
<th>NOX (Deaths)</th>
<th>SOX (Deaths)</th>
<th>NH$_3$ (Deaths)</th>
<th>Total (Deaths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1,000</td>
<td>300</td>
<td>20</td>
<td>1,520</td>
</tr>
<tr>
<td>Steel</td>
<td>500</td>
<td>100</td>
<td>10</td>
<td>610</td>
</tr>
<tr>
<td>Refinery</td>
<td>1,500</td>
<td>450</td>
<td>30</td>
<td>2,080</td>
</tr>
<tr>
<td>Total</td>
<td>3,000</td>
<td>1,050</td>
<td>60</td>
<td>4,110</td>
</tr>
</tbody>
</table>

Avoided Deaths per kilo ton:
- NH$_3$: 20.3
- NOX: 4.9
- SOX: 2.5

Emissions-weighted average of marginal impacts across industries.
80% Decarbonization: Avoided Premature Deaths due to PM$_{2.5}$

Avoided Deaths per kiloton:
- NH$_3$: 20.3
- NO$_x$: 4.9
- SO$_x$: 2.5

Emissions-weighted average of marginal impacts across industries

Associated deaths with an 80% reduction in emissions in 2015
Marginal Mortality Impacts of Pollutants by Industry

Between 2008 and 2015 (95% CI)
Marginal Health Impacts per Mt of CO$_2$e by Source Country

Emissions from cement, steel and refining in 2015. Vertical lines are means.
Scenario 3: Decarbonizing Cement Production

Levers for decarbonizing Portland Cement that are profitable at 80 Euros per tCO2e or less: (Glenk et al., 2023)

1. Reducing Clinker to Cement ratio:
 ▶ optimized grinding of cement
 ▶ addition of new supplementary cementitious materials (SCMs) and of recycled cement
 ▶ Air quality (AQ) impact is positive (lower fossil fuel use)

2. Fuel Switching:
 ▶ Biomass: AQ impact depends on specific fuel and pollution control equipment
 ▶ Waste: AQ impact depends on alternative disposal (incineration vs. land fill)

3. Carbon Capture and Storage with LEILAC.
 ▶ We disregard LEILAC and other CCS technologies (likely no AQ benefit).
Cost-effective Decarbonization of Portland Cement Production

Compute pollution reduction factor following Fenell et al. (2021, *Joule*)

\[
\frac{CO_2}{CO_2_{base}} = \frac{Clinker}{Clinker_{base}} (1 - \text{Digitization})(1 - \text{EnEff})(1 - \text{Hydrogen})(1 - \text{AltFuel}) \tag{1}
\]

We follow their assumptions and assume:

- Lower clinker requirement: from 0.7 to 0.6 (low) or 0.5 (high)
- Digitization improves efficiency by 10%
- Energy efficiency improvements of 5%
- Hydrogen share = 0
- Alternative fuel share: low 10%, high 50%

Back-of-Envelope Calculation

- Reduction in fuel based emissions reduction by 33% (low) or 69% (high)
- Avoided premature deaths from cement production 547 (low) or 1,145 (high) p.a.
- Monetized benefits (VSL at €2.7 m) of €1.5 bn and €3.1 bn
Conclusion and Outlook

- Industrial decarbonization offers sizable PM$_{2.5}$ related health co-benefits in Europe
- Magnitude depends on which industries decarbonize, and where
- Cement & clinker production is a prime candidate, given size, pollution intensity, and economics of readily available decarbonization levers
- Analysis *still preliminary*
- Distributional analysis of health burden is feasible but computationally expensive.
Thank You!