Macroeconomic Effects of the Universe of EPA Regulations

Vladimir Smirnyagin Aleh Tsyvinski Xi Wu

NBER Conference on Decarbonizing Industrial Production December 9, 2023 Any views expressed are those of the authors and not those of the U.S. Census Bureau. The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to produce this product. This research was performed at a Federal Statistical Research Data Center under FSRDC Project Number 2012. (CBDRB-FY24-P2012-R11012)

Question: What are aggregate effects of environmental regulations?

Empirically

- Construct industry-specific index of EPA (federal) regulations
- Index captures the universe of active federal regulations in CFR
- Explore link b/w toxic releases and regulations
 - at facility & facility-chemical level

Quantitative analysis

- Build dynamic GE model of mnf sector in the U.S.
- Industries are linked through I-O network
- Explore cross-elasticities of pollution to regulations
- Transition dynamics: impact of regulations on aggregate emissions

Index of (federal) EPA regulations

- Time-varying at NAICS 3-digit level
- Time period covered: 1999-2021
- Reflects the universe of active regulations
- Index captures binding obligations and exposure to regulations

Leverage data on toxic releases from TRI

- 1 std \uparrow in index associated with 11.7% \downarrow in releases
- Results validated using another data (NEI)

Key results

- Aggregate pollution decreased by $\approx 15\%$ over 1999-2021
- Substantial heterogeneity across industries
- I-O are crucial for propagating regulations across the economy
 - w/o I-O cross-elasticities are typically negative
 - I-O linkages increase many cross-elasticities
 - leads to unintended consequences of regulations
- W/o GE the effect of regulations is larger

Work-in-progress

- Role of dynamic effect (capital can be adjusted right away)
- Role of changing technology

Related literature

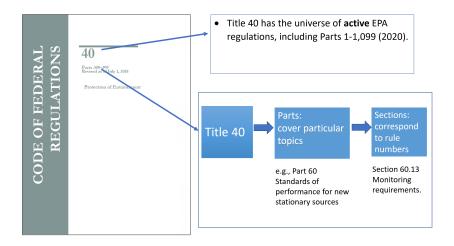
1 Empirics

2 Model Setup

3 Parameterization

4 Cross-Sectoral Elasticities

5 Regulations and Toxic Releases


Macroeconomic Effects of the Universe of EPA Regulations

Outline

1 Empirics

- 2 Model Setup
- **3** Parameterization
- 4 Cross-Sectoral Elasticities
- **5** Regulations and Toxic Releases

EPA Index

What it captures

- Total EPA regulation restrictions for each industry in each year
- Based on all effective regulation text from EPA since 1999

Data source

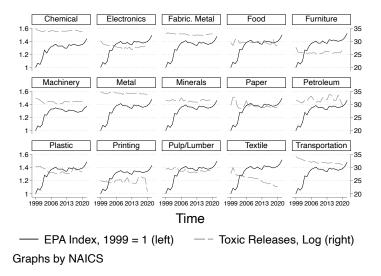
- Count of restriction words in CFR text
 - shall, must, may not, prohibited, cannot, forbidden, required
- Exposure of regulation text to each industry
 - count how many times a part is mentioned by EPA and in FR

Construction

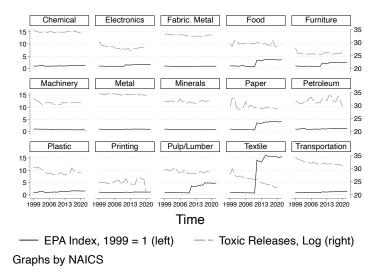
$$Reg_{j,t}^{Fed} = \frac{\sum_{p} Exposure_{j,p,t} \times Restriction_{p,t}}{\sum_{p} WordCount_{p,t}}$$

TRI commenced in 1987

- Tracks toxic chemicals that may cause harm to human health/environment
- Part of the Emergency Planning and Community Right-to-Know Act


Coverage of facilities:

- Certain industries (mnf included)
- \geq 10 employees
- Release of at least one chemical is above threshold


Coverage of chemicals changed over time

- Do robustness restricting to chemicals covered throughout
- Use toxicity weights (Risk-Screening Environmental Indicators)
- Toxicity = max{Inhalation toxicity, Oral toxicity}
- It is inverse of "exposure likely to be w/o appreciable health risk over lifetime"

EPA Index and Toxic Releases

EPA Index (w/o part 63) and Toxic Releases

 $\log\left(\mathit{TRI}_{i,t+k}\right) = \alpha + \beta \Delta \mathit{Reg}^{\mathit{Fed}}_{j,t} + \epsilon_{i,t}$

- Industry & year FE, SE double clustered at industry-year

	Pa	nel A: All Ir	ndustries		
Years Ahead	0	1	2	3	4
ΔReg^{Fed}	-0.734*	-0.696*	-0.612	-0.611	-0.556
	(0.416)	(0.404)	(0.372)	(0.362)	(0.344)
Observations	443,496	403,732	367,453	334,052	303,232
Adj R ²	0.170	0.171	0.171	0.171	0.171
	Panel B:	Manufactu	iring Indust	ries	
Years Ahead	0	1	2	3	4
ΔReg^{Fed}	-1.332**	-1.292**	-1.152**	-1.127**	-1.035**
	(0.504)	(0.480)	(0.439)	(0.439)	(0.415)
Observations	395,132	359,950	327,741	298,066	270,726
Adj R ²	0.137	0.137	0.135	0.134	0.133

Interpretation: 1 std \uparrow in index associated with 21% \downarrow in releases

Summary statistics

EPA Index and Toxic Releases: Dynamic Effect

log TRI _{i,t}	
ΔReg_t^{Fed}	-1.032**
	(0.444)
ΔReg_{t-1}^{Fed}	-1.016*
	(0.564)
ΔReg_{t-2}^{Fed}	-0.561
	(0.368)
ΔReg_{t-3}^{Fed}	-0.313
	(0.234)
ΔReg_{t+1}^{Fed}	-0.237
	(0.416)
ΔReg_{t+2}^{Fed}	0.085
	(0.423)
ΔReg_{t+3}^{Fed}	-0.100
	(0.345)
Cons	5.981***
	(0.093)
Observations	378,485
Adj R ²	0.136
Industry and Year FE	Y

EPA Index and Toxic Releases: Chemical Level

	le	og TRI _{ict+k}			
Years Ahead	0	1	2	3	4
ΔReg^{Fed}	-0.125*	-0.098*	-0.105**	-0.075**	-0.086*
	(0.064)	(0.049)	(0.037)	(0.032)	(0.045)
Cons	3.916***	3.970***	4.020***	4.064***	4.108***
	(0.004)	(0.003)	(0.002)	(0.002)	(0.003)
Observations	1,222,365	1,090,204	976,749	876,541	786,620
Adj R ²	0.695	0.702	0.707	0.712	0.716
Plant FE	Y	Y	Y	Y	Y
Year-by-chemical FE	Y	Y	Y	Y	Y

▶ By type of pollutant

EPA Index and Air Pollutants: Evidence from NEI

Details

- Sample restricted to mnf industries
- Data frequency is 3 years
- Six major air pollutant: CO, NOX, VOC, SO2, PM10, PM2.5.

	log NEI _{it}		
ΔReg^{Fed}	-0.775***	-0.389**	-0.334**
	(0.169)	(0.139)	(0.155)
Cons	-0.339***	-0.345***	-0.222***
	(0.002)	(0.002)	(0.002)
Observations	387,198	385,892	359,376
Adj R ²	0.232	0.745	0.925
Plant FE		Y	
Industry FE	Y		
Plant-by-pollutant FE			Y
Year-by-pollutant FE	Y	Y	Y

Outline

1 Empirics

2 Model Setup

3 Parameterization

4 Cross-Sectoral Elasticities

5 Regulations and Toxic Releases

Model: Environment

Agents:

- N competitive sectors, one firm in each sector
- Representative household
- Capital good producer

Production sector:

- Firms use capital, labor, intermediate inputs, and dirty factor
- Capital choice is intertemporal
- Take prices as given

Representative household:

- Consumes, supplies labor, owns firms

Capital good producer:

- Combines capital and labor to produce investment good

Model: Firms

- *N* sectors, production function, $y_j = A_j k^{\alpha_j} n^{\nu_j} \left(\prod_{s=1}^N m_s^{\omega_j^s}\right)^{\kappa_j} d^{\gamma_j}$
- Operating profits:

$$\pi_{jt}(k) = \max_{n, \{m_s\}, d \ge 0} P_{jt} A_{jt} k^{\alpha_j} n^{\nu_j} \left(\prod_{s=1}^N m_s^{\omega_j^s} \right)^{\kappa_j} d^{\gamma_j} - W_t n - \sum_{s=1}^N P_{st} m_s - \tau_{jt} d$$

- Value at start of period:

$$\begin{aligned} v_{jt}(k) &= \pi_{jt}(k) + \max_{k' \ge 0} \left\{ -Q_t(k' - (1 - \delta)k) - W_t \times AC(k, k') + \\ &+ \mathbb{E}_t \left[M(\mathbf{S}, \mathbf{S}') v_{jt+1}(k') \right] \right\} \end{aligned}$$

- Dividends:

$$D_{jt}(k) = \pi_{jt}(k) - Q_t(k' - (1 - \delta)k) - W_t \times AC(k, k')$$

Preferences and budget

- Value consumption, labor inelastic $U = \log \left(\prod_{s=1}^{N} c_s^{v_s}\right)$
- Expenditure shares $\{v_s\}_{s=1}^N$ taken off the data
- Labor supplied inelastically
- Budget constraint

$$\sum_{s=1}^{N} P_{st} c_{st} \leq W_t + \sum_{s=1}^{N} D_{st}$$

Capital good producer

- Technology: $K_{K}^{\alpha_{K}} N_{K}^{\beta_{K}}$, $\alpha_{k} + \beta_{k} = 1$
- Profit maximization pins down $Q_t = \frac{W_t}{\beta_K \kappa_K^{a_K} N_K^{\beta_{K-1}}}$

Outline

1 Empirics

2 Model Setup

3 Parameterization

4 Cross-Sectoral Elasticities

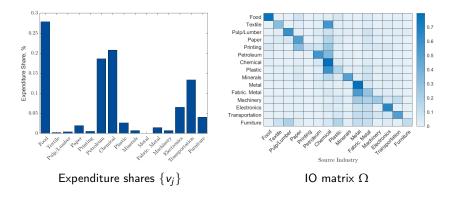
5 Regulations and Toxic Releases

Parameterization: Technology

Production functions at NAICS 3-digit level (N = 15)

- Combine TRI with ASM/CM
- No unique identifier
 - source plant name/address from Business Registrar
 - exact (NAICS & state) and fuzzy matching (name, address, zip, city)
- About 70% of TRI facilities matched to Census sample
- Estimate $\{\widehat{\alpha}_j, \widehat{\nu}_j, \widehat{\kappa}_j, \widehat{\gamma}_j\}_{j=1}^{15}$
- Experimented with OP, LP and simple "naive" regressions
- LP treating *d* as a state is our preferred method

Technology has changed over time


- Re-estimated for early (1987-2002) and late (2003-2019) subperiods

Estimates: 1987-2019 > Estimates: 1987-2002 > Estimates: 2003-2019

Parameterization (cont'd)

Technology and preferences

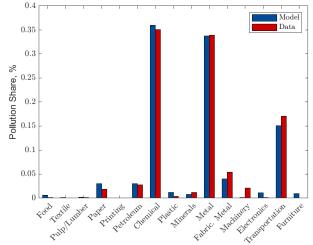
- Expenditure shares $\{v_j\}$ from BEA
- Input-Output matrix Ω from aggregate data (we model mnf sector)
- Sectoral productivities $\{A_i\}$ chosen to hit emp. shares

Parameterization (cont'd)

Price of dirty factor governed by EPA regulations $\tau_{jt} = \zeta_0^j e^{\zeta_1 E P A_{jt}}$

- From FOC (taking logs and first-diff):

$$\Delta \log \left(\frac{y_{it}}{d_{it}}\right) = \zeta_1 \Delta EPA_{j(i)t} + \eta_{it}$$


- Compustat-based estimate $\widehat{\zeta}_1=0.278^{***}$

		(-)
	(1)	(2)
$\widehat{\zeta}_1$	0.165**	0.278***
	(0.070)	(0.054)
Sample	All	Mnf
Industry & Year FE	\checkmark	\checkmark
R^2	0.090	0.086

Parameterization (cont'd)

Level parameters $\{\zeta_0^j\}$:

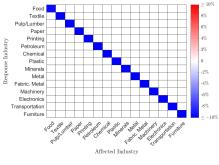
- Target distribution of pollution in 1999

Outline

1 Empirics

- 2 Model Setup
- **3** Parameterization
- 4 Cross-Sectoral Elasticities
- **5** Regulations and Toxic Releases

Cross-Sectoral Elasticities: Partial Equilibrium

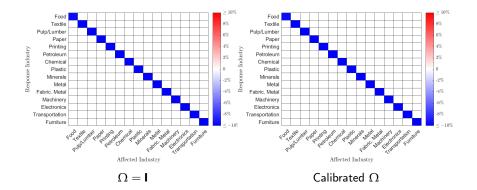

Response of pollution to a 10% increase in τ_i in a given industry

- Other prices held fixed

Cross-Sectoral Elasticities: Partial Equilibrium

Response of pollution to a 10% increase in τ_i in a given industry

- Other prices held fixed



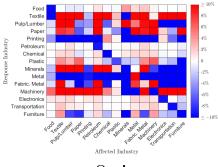
 $\boldsymbol{\Omega}=\boldsymbol{\mathsf{I}}$

Cross-Sectoral Elasticities: Partial Equilibrium

Response of pollution to a 10% increase in τ_j in a given industry

- Other prices held fixed

Cross-Sectoral Elasticities: General Equilibrium

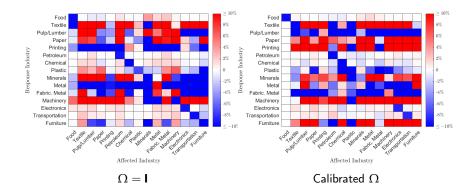

Response of pollution to a 10% increase in τ_i in a given industry

- All prices adjust (steady state to steady state)

Cross-Sectoral Elasticities: General Equilibrium

Response of pollution to a 10% increase in τ_i in a given industry

- All prices adjust (steady state to steady state)

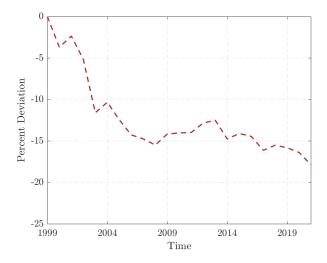


 $\boldsymbol{\Omega}=\textbf{I}$

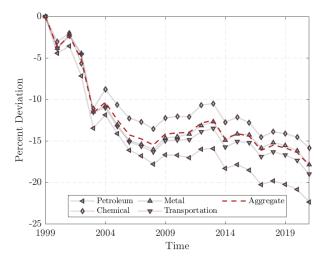
Cross-Sectoral Elasticities: General Equilibrium

Response of pollution to a 10% increase in τ_i in a given industry

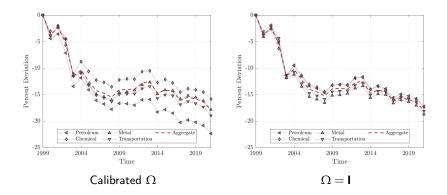
- All prices adjust (steady state to steady state)

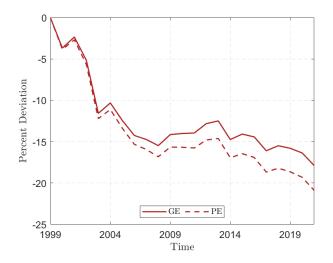


Outline


1 Empirics

- 2 Model Setup
- **3** Parameterization
- 4 Cross-Sectoral Elasticities
- **5** Regulations and Toxic Releases


EPA Regulations and Toxic Releases


EPA Regulations and Toxic Releases

Role of I-O Linkages

GE vs. PE

Summary:

- Studied the impact of environmental regulations on toxic releases
- Summarized all effective federal regulations with an index
- Developed a GE model of mnf sector with I-O linkages
- Found that EPA regulations account for a 15% decline in releases

Road ahead:

- Construct index of state regulations
- Role of changing technology
- Role of the dynamic effect
- Federal vs. state regulations

Appendix

	Mean	SD	10%	50%	90%
ΔReg^{Fed}	0.06	0.16	-0.03	0.01	0.20
log (TRI)	7.91	3.89	2.30	8.65	12.12
$\Delta \log (Sale / TRI)$	5.95	4.44	0.00	6.64	14.76

▶ Back

Identification of $\widehat{\zeta}_1$

	(1)	(2)
$\hat{\zeta}_1$	0.165**	0.278***
	(0.070)	(0.054)
Sample	All	Mnf
Industry & Year FE	\checkmark	\checkmark
R^2	0.090	0.086

Production Function Estimates: 1987-2019

Industry	NAICS	Capital ($\hat{\alpha}$)	Labor (\hat{v})	Materials ($\hat{\kappa}$)	Pollution $(\hat{\gamma})$
Food	311	0.193	0.145	0.416	0.001
		(0.0243)	(0.0080)	(0.0186)	(0.0008)
Textile	313	0.390	0.298	0.464	0.004
		(0.1616)	(0.0263)	(0.0488)	(0.0023)
Pulp/Lumber	321	0.224	0.161	0.552	0.003
		(0.0418)	(0.0097)	(0.0238)	(0.0011)
Paper	322	0.337	0.229	0.507	0.006
		(0.0547)	(0.0180)	(0.0352)	(0.0017)
Printing	323	0.052	0.364	0.437	0.003
		(0.0534)	(0.0216)	(0.0489)	(0.0052)
Petroleum	324	0.143	0.217	0.569	0.005
		(0.0740)	(0.0152)	(0.0386)	(0.0022)
Chemical	325	0.367	0.199	0.470	0.002
		(0.0314)	(0.0073)	(0.0152)	(0.0011)
Plastic	326	0.194	0.239	0.487	0.002
		(0.0194)	(0.0100)	(0.0182)	(0.0011)
Minerals	327	0.199	0.323	0.421	0.008
		(0.0354)	(0.0108)	(0.0162)	(0.0013)
Metal	331	0.295	0.266	0.482	0.004
		(0.0701)	(0.0108)	(0.0166)	(0.0013)
Fab. Metal	332	0.270	0.318	0.412	0.003
		(0.0278)	(0.0082)	(0.0137)	(0.0007)
Machinery	333	0.426	0.285	0.525	0.002
		(0.0992)	(0.0111)	(0.0266)	(0.0009)
Electronics	334	0.243	0.085	0.457	0.001
		(0.1051)	(0.0257)	(0.0237)	(0.0024)
Transportation	336	0.143	0.282	0.482	0.003
		(0.0352)	(0.0127)	(0.0189)	(0.0009)
Furniture	337	0.138	0.228	0.515	0.003
		(0.0886)	(0.0245)	(0.0391)	(0.0026)

Production Function Estimates: 1987-2002

Industry	NAICS	Capital ($\hat{\alpha}$)	Labor (\hat{v})	Materials ($\hat{\kappa}$)	Pollution ($\hat{\gamma}$)
Food	311	0.158	0.150	0.514	-0.001
		(0.1203)	(0.0104)	(0.0465)	(0.0011)
Textile	313	0.369	0.279	0.540	0.000
		(0.1527)	(0.0281)	(0.0569)	(0.0026)
Pulp/Lumber	321	0.162	0.208	0.635	-0.001
		(0.0649)	(0.0126)	(0.0506)	(0.0012)
Paper	322	0.255	0.253	0.666	0.001
		(0.0945)	(0.0323)	(0.0794)	(0.0025)
Printing	323	0.034	0.319	0.423	-0.002
		(0.0740)	(0.0263)	(0.0639)	(0.0074)
Petroleum	324	0.065	0.175	0.760	0.003
		(0.0717)	(0.0195)	(0.0396)	(0.0032)
Chemical	325	0.197	0.178	0.574	-0.001
		(0.0897)	(0.0109)	(0.0250)	(0.0018)
Plastic	326	0.187	0.226	0.550	0.003
		(0.0591)	(0.0128)	(0.0336)	(0.0015)
Minerals	327	0.382	0.277	0.355	0.003
		(0.0846)	(0.0188)	(0.0363)	(0.0018)
Metal	331	0.150	0.279	0.517	0.000
		(0.0545)	(0.0104)	(0.0369)	(0.0013)
Fab. Metal	332	0.190	0.341	0.394	0.003
		(0.0508)	(0.0094)	(0.0230)	(0.0010)
Machinery	333	0.320	0.274	0.617	0.003
		(0.1504)	(0.0191)	(0.0298)	(0.0014)
Electronics	334	0.123	0.301	0.541	0.004
		(0.1387)	(0.0295)	(0.0451)	(0.0035)
Transportation	336	0.160	0.340	0.512	0.000
		(0.0614)	(0.0175)	(0.0289)	(0.0016)
Furniture	337	0.138	0.221	0.558	0.004
		(0.1041)	(0.0349)	(0.0495)	(0.0031)

Production Function Estimates: 2003-2019

Industry	NAICS	Capital ($\hat{\alpha}$)	Labor (\hat{v})	Materials ($\hat{\kappa}$)	Pollution ($\hat{\gamma}$
Food	311	0.156	0.156	0.386	0.001
		(0.0282)	(0.0102)	(0.0203)	(0.0011)
Textile	313	0.148	0.402	0.389	0.009
		(0.2753)	(0.0437)	(0.0772)	(0.0049)
Pulp/Lumber	321	0.208	0.163	0.529	0.007
		(0.0449)	(0.0148)	(0.0291)	(0.0016)
Paper	322	0.368	0.262	0.464	0.010
		(0.0433)	(0.0283)	(0.0344)	(0.0031)
Printing	323	0.068	0.402	0.518	0.007
		(0.0594)	(0.0326)	(0.0582)	(0.0081)
Petroleum	324	0.077	0.217	0.558	0.004
		(0.1541)	(0.0193)	(0.0432)	(0.0035)
Chemical	325	0.382	0.205	0.441	0.003
		(0.0340)	(0.0100)	(0.0159)	(0.0017)
Plastic	326	0.193	0.269	0.464	0.002
		(0.0272)	(0.0143)	(0.0206)	(0.0014)
Minerals	327	0.174	0.343	0.426	0.011
		(0.0174)	(0.0120)	(0.0185)	(0.0019)
Metal	331	0.307	0.282	0.476	0.007
		(0.0968)	(0.0141)	(0.0215)	(0.0018)
Fab. Metal	332	0.268	0.323	0.411	0.002
		(0.0349)	(0.0107)	(0.0140)	(0.0009)
Machinery	333	0.405	0.308	0.500	0.001
		(0.1085)	(0.0135)	(0.0254)	(0.0011)
Electronics	334	0.802	0.177	0.355	0.000
		(0.2054)	(0.0379)	(0.0345)	(0.0036)
Transportation	336	0.189	0.297	0.467	0.003
		(0.0405)	(0.0168)	(0.0212)	(0.0012)
Furniture	337	0.171	0.253	0.483	0.004
		(0.1215)	(0.0370)	(0.0592)	(0.0037)

Related Literature

Environmental regulations & pollution

- Greenstone List Syverson 2012, Shapiro Walker 2018, Colmer et al. 2013
 - construct a measure of regulations over 4 decades
 - both federal and at state level

Firm dynamics in environmental context

- Shapiro Walker 2018
 - dynamic, multisector model with I-O linkages

Models with production network

- Bigio La'O 2020, vom Lehn Winberry 2022
 - develop a dynamic model in general equilibrium
 - solve the model globally, analyze transition dynamics

▶ Back

Mnf industries

- Strongest effect for air pollutants

		log TRI _{Air}			og TRI _{Wate}	r		log TRI _{Land}	
Years Ahead	0	1	2	0	1	2	0	1	2
ΔReg^{Fed}	-1.162**	-1.154**	-1.035**	-0.037	-0.038	-0.039	0.027	-0.013	-0.043
	(0.445)	(0.437)	(0.388)	(0.062)	(0.051)	(0.049)	(0.054)	(0.055)	(0.051)
Cons	4.734***	4.775***	4.801***	0.592***	0.610***	0.627***	0.408***	0.415***	0.422***
	(0.020)	(0.020)	(0.017)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Observations	395,131	359,946	327,745	395,131	359,946	327,745	395,131	359,946	327,745
Adj R ²	0.142	0.142	0.141	0.108	0.111	0.113	0.052	0.055	0.057
Industry and Year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y