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Abstract

In this study, we examine the impact of federal environmental regulations on firm-level
decisions and aggregate pollution. Utilizing a novel index to measure industry-specific
regulatory intensity, we analyze the interactions between regulations and pollution lev-
els. Our empirical analysis employs administrative data to assess the effects on firm
performance. Theoretically, we develop a general equilibrium model that incorporates
cross-sectoral input-output linkages and optimizing forward-looking firms. The transi-
tion dynamics exercise reveals that environmental regulations account for a 15% decline
in toxic releases over the period 1999-2021.
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1 Introduction

The growing concerns about environmental-related issues have led to stricter environmental

regulations. In the U.S., the environmental protection agency (EPA) is the main regulatory

body of creating and enacting environmental rules. It has been shown that these regula-

tions are successful in curbing firm pollution (e.g., Shapiro and Walker, 2018; Greenstone

et al., 2012). However, firms’ compliance with the rules is often accomplished through real

activities, which may distort their investment and production decisions. The cost of such

distortions may go above and beyond the typical estimates based on expenditures on control

and monitoring equipment. In particular, environmental regulations imposed on one set of

firms may affect other firms through the general equilibrium feedback effect; as a result, this

can have important welfare implications. The analysis of these considerations is impossible

without a fully-fledged micro-founded structural model.

In this paper, we assess the costs and consequences of environmental regulations by com-

bining three key elements. First, we use an environmental regulation index that captures

time-varying industry-level total effective environmental regulations. Second, we characterize

the relationship between environmental regulation and pollution using detailed administra-

tive data. Third, we build a state-of-the-art heterogeneous firm general equilibrium model

that captures the relationship between environmental regulations and pollution observed in

the data. This approach allows us not only to study the distortions created by existing

environmental regulations, but also to assess various counterfactual scenarios. This way we

shed light on the effectiveness of various types of environmental regulations.

The project consists of two major parts: empirical analysis and the quantitative model.
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We next describe the objectives for both parts.

Empirics The existing literature on the impact of environmental regulations primarily

focuses on individual rules, such as the the Clean Air Act (e.g., Greenstone et al., 2012;

Ryan, 2012). These studies typically isolate the effect of individual regulations one at a

time. However, over the past decades, and in light of increasing concerns over environmental

issues, the EPA has implemented and modified hundreds of overlapping regulations. Many of

these regulations have not been analyzed through policy evaluation tools. It is also difficult

to apply the standard quasi-experimental research designs to study many of these regulations

due to the lack of natural control groups.

To study the effect of all EPA regulations, we use the time-varying measure of the total

new EPA restrictions at a disaggregated industry. This measure is based on the texts of all

effective EPA rules contained in the Code of Federal Regulations (CFR) since 1973 and the

machine-learned relevance of the regulations to each industry. We show that this measure

meaningfully captures the total restrictions of EPA regulations and can identify industry

specific variations.

Subsequently, we combine the constructed index with the administrative records from the

Annual Survey of Manufacturers (ASM) and the Census of Manufacturers (CM) to study the

impact of industry-level EPA regulations on firm-level performance, including their impact

on capital investment, labor and output decisions. We use these moments to put discipline

on our quantitative framework. Since our quantitative model features multiple sectors, we

additionally use Census data to estimate production functions at a fine NAICS 3-digit level

(following, for example, Gao and Kehrig, 2021; Smirnyagin, 2023).
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Theory We develop a multi-sector firm with heterogeneous firms; the model is set in

general equilibrium which is critical for the meaningful policy analysis. The model represents

a natural multi-sector extension of state-of-the-art models of firm dynamics with a rich set

of adjustment costs (e.g., Khan and Thomas, 2008; Winberry, 2021; Smirnyagin, 2023;

Smirnyagin and Tsyvinski, 2022). The presence of various capital adjustment frictions is

necessary for the success of the model at the micro-level.

Our analysis of EPA regulations in the model represents a combination of approaches

developed in classical papers, i.e. Restuccia and Rogerson (2008) and Shapiro and Walker

(2018). Specifically, following Shapiro and Walker (2018), we assume that firms require an

input of a dirty good to produce their final output. In turn, we model the price of the dirty

good as a time-varying wedge in the spirit of Restuccia and Rogerson (2008); we use the

EPA index to put discipline on the time-series properties of industry-specific wedges in our

model.

2 Model

We build a model of firm dynamics with multiple sectors in the spirit of Long and Plosser

(1983) and Bigio and La’O (2020). Time in the model is discrete and the horizon is infinite.

Each sector of the economy is populated by a representative firm; all firms are owned by

a representative household. Physical capital is produced by the capital good producer.

Households own shares in firms, supply labor, and consume goods.
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2.1 Environment

Technology The economy is comprised of N competitive sectors; a firm in each sector j

has access to a Cobb-Douglas production technology:

yj = Ajk
αjnνj

(
N∏
s=1

m
ωsj
s

)κj

dγj , (1)

where αj, νj, κj, γj > 0 and αj + νj + κj + γj < 1 for each j. Every firm produces output

y by combining capital k, labor n, intermediate goods {ms}Ni=1 and a dirty input d with

corresponding shares αj, νj, κj and γj.1 Parameters {Aj} capture industry-level productivity

levels.

The N -by-N input-output matrix Ω = {ωsj} contains information on how output of other

industries is used in the production process of a given industry; each row of this matrix adds

up to 1:
∑N

s=1 ω
s
j = 1 ∀j.

Labor Labor market is frictionless with the wage rate Wt.

Investment Firms enter period t with some predetermined level of capital kjt. The capital

in period t + 1 is determined by depreciation and investment made in period t. Capital is

produced by the representative capital producer; its price is Qt. Parameter δ ∈ (0, 1) denotes

depreciation.
1Such formulation of the production function is broadly applied in environmental literature; Copeland

and Taylor (2003) show that in this case pollution emissions can be treated as a joint input at the price of
an emission tax rate τj . See also the discussion in Shapiro and Walker (2018) and in Duan et al. (2021).
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Financing There is a representative household which owns all firms; the proceeds from

production net of depreciation and investment are paid out to the household as dividends

Djt. We assume no frictions on financial markets, and, thus, place no constraints on the

value of Djt.

Households The economy is populated by a unit mass of identical households. Each

household consumes and supplies labor.

2.2 Firm Optimization

The firm enters the period with some pre-determined level of capital k. Let vjt(k) denote

the value of the firm in sector j at the start of period t given state k. This value can be

written as:

vjt(k) = πjt(k) + max
k′≥0

{
−Qt(k

′− (1− δ)k)−Wt×AC(k, k′) +Et [M(SSS,SSS′)vjt+1(k
′)]

}
, (2)

where operating profits πjt are defined as:

πjt(k) = max
n,{ms},d≥0

PjtAjtk
αjnνj

(
N∏
s=1

m
ωsj
s

)κj

dγj −Wtn−
N∑
s=1

Pstms − τjtd. (3)

In Equation (3), Pjt denotes the price on good j at time t, and τjt is the tax firm in sector

j pays per unit of a dirty input d at time t. M(SSS,SSS′) is the stochastic discount factor, and

SSS denotes the aggregate state comprised of the cross-industry distribution of capital stocks

and taxes on dirty factor, SSS = {kj, τj}Nj=1. We study the impact of changes in {τj}tj on toxic

releases by conducting a transition dynamics exercise in Section 4.
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Following Shapiro and Walker (2018), we assume that pollution tax revenue is lost due

to rent-seeking. We assume that firms incur quadratic capital adjustment costs AC(k, k′) =

ϕ
(
k′−(1−δ)k

k

)2
k denominated in units of labor.

2.3 Capital Good Producer

New aggregate capital is produced by a representative capital good producer using the tech-

nology KαK
K NβK

K , where NK units of labor are used to produce capital, and KK =
∑

j kj

is the aggregate capital stock at the start of the period. Profit maximization leads to the

following equilibrium relative price of capital:

Qt =
Wt

βKK
αK
K NβK−1

K

. (4)

2.4 Household Optimization

The representative household supplies labor inelastically (total labor endowment is normal-

ized to 1) and maximizes the discounted stream of utilities:

max
{c1t,...,cNt}

E0

∞∑
t=0

βtU(c1t, . . . , cNt) (5)

subject to the budget constraint:

N∑
j=1

Pjtcjt ≤ Wt +
N∑
j=1

Djt(k), (6)
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where Djt(k) denotes dividends of the firm in sector j with capital k:

Djt(k) = πjt(k)−Qt(k
′ − (1− δ)k)−Wt × AC(k, k′). (7)

Utility We consider the following instantaneous utility function:

U(c1, . . . , cN) = log

(
N∏
j=1

c
vj
j

)
, (8)

where vj denotes expenditure share on good j. The detailed definition of equilibrium is

relegated to Appendix B.1.

3 Parameterization and Model Fit

The model parameters can be generally categorized into three groups: preferences, technol-

ogy, and pollution taxes. In the subsequent sections, we outline our approach to parameter-

ization.

3.1 Preferences

We set the model period to be one year; this aligns with the frequency of our data. We

therefore set the discount factor β = 0.96. In our quantitative implementation, model

industries correspond to fifteen NAICS 3-digit manufacturing industries.2

Given the form of the utility function (8), parameters {vs} capture expenditure shares on
2Specifically, we consider the following industries: Food, Textile, Pulp/Lumber, Paper, Printing,

Petroleum, Chemical, Plastic, Minerals, Metal, Fabricated Metal, Machinery, Electronics, Transportation
Equipment, and Furniture.
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Table 1: Parameter Values

Parameter Description Value Target/Source Data Model
β Discount factor 0.96
{vj} Expenditure share See text BEA cons. exp.
{αj} Capital elasticity See text ASM/CM/TRI
{νj} Labor elasticity See text ASM/CM/TRI
{Ω} Input-output matrix See text BEA
{κj} Intermed. good elasticity See text ASM/CM/TRI
{γj} Pollution elasticity See text ASM/CM/TRI
{Aj} Industry productivity See text BDS
δ Depreciation rate 0.10 E

[
i
k

]
0.10 0.10

ϕ Quadratic adj. cost 2 Benchmark value
αK Cap. good producer, capital 0.33
βK Cap. good producer, labor 0.67

output of various industries. We use data on personal consumption expenditures from the

BEA Input-Output table (see Figure C1 in Appendix) to assign values to these parameters.3

3.2 Technology

The depreciation rate, denoted as δ, is set to 0.10, which results in an average investment

rate of 10%. The quadratic adjustment cost parameter ϕ is set at 2. This value falls within

the range commonly used in the literature (Winberry, 2021; Smirnyagin, 2023).

Sectoral Production Functions We parameterize sector-specific production functions

(1) in two steps. First, we combine TRI data with the Annual Survey of Manufacturers

and the Census of Manufacturers to estimate production factor elasticities {αj, νj, γj, κj};

we discuss the details below in Section 3.3. Furthermore, we pick sectoral productivities

{Aj} to hit the size distribution of NAICS 3-digit manufacturing industries. Specifically, we

target employment shares sourced from the Business Dynamics Statistics (see Figure C2).4

3We use 2012 Use Table downloaded from https://www.bea.gov/industry/input-output-accounts-data.
4Data are available at https://www.census.gov/programs-surveys/bds.html.
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Input-Output Network We construct the Input-Output table Ω from the data; our

source is the 2012 Use Table from the BEA. Each row in this table represents a sectoral

commodity, while each column represents either an industry or a component of aggregate

demand. Each entry in this table indicates the spending by the column’s industry on the

commodity produced by its respective row, measured in U.S. dollars. For alignment with our

model, we consolidate this table to the NAICS 3-digit level, creating the Input-Output pro-

duction matrix for the U.S. manufacturing sector (Figure 1). The figure displays a prominent

diagonal, indicating the significance of an industry’s output for its own production. Notably,

there are some pronounced off-diagonal elements; for example, chemicals play a crucial role

in the manufacturing of plastics and textiles, while the metal industry’s output is extensively

utilized in the production of machinery and fabricated metal.

Capital Good Producer We assume that the capital good producer’s technology exhibits

constant returns to scale αK + βK = 1, and we set αK = 0.33. We explored how this choice

affects our key quantitative results and found that its role is not significant.

3.3 Estimating Production Function with a Dirty Factor

To estimate the industry-level production function with a dirty factor, we need to combine

plant-level information on output, capital, materials, and labor from ASM/CM with infor-

mation on total releases of toxic chemicals from the TRI data. We first outline the process of

merging the TRI data with the Census data and then delve into the details of the production

function estimation. Additional details about the datasets are in Appendix A.
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Figure 1: Input-Output Matrix for the Manufacturing Sector

Notes: Figure 1 visualizes the Input-Output matrix Ω used in the model. The underlying data are from the
BEA 2012 Use Table.

Manufacturing Census Data Both the ASM and CM are mail-back surveys of U.S.

manufacturing plants (NAICS 31-33). The CM is conducted at quinquennial frequency

(years ending in 2 and 7), and covers the universe of manufacturing establishments. The

ASM is conducted in non-Census years for about 50-60k establishments taken from the “mail

stratum” of the manufacturing sector. The main advantage of the ASM/CM is that they

provide rich plant-level information on capital expenditures, value of shipments, labor input

and materials which is essential for the production function estimation.

Toxics Release Inventory The TRI Program at the EPA tracks the industrial manage-

ment of toxic chemicals that may cause harm to human health and the environment.5 The
5https://www.epa.gov/toxics-release-inventory-tri-program/tri-data-and-tools.
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program commenced in 1987 as part of the Emergency Planning and Community Right-

to-Know Act (EPCRA) in order to support and promote emergency planning as well as to

provide the public with information about releases of toxic chemicals in their community.

Not all plants are required to file with the TRI; the coverage of plants by the TRI depends on

several factors. First, the facility needs to be operating in certain industries (manufacturing

sector is included), the plant has to be sufficiently large with at least 10 employees, and, fi-

nally, the release of at least one toxic chemical is above the threshold determined by the TRI.

There are currently nearly 800 different chemicals that plants report to the TRI; however,

the coverage of chemicals has been changing over time reflecting varying TRI requirements.

In our analysis, we include all chemicals listed in the TRI. Additionally, we present findings

for a subset of chemicals consistently reported from 1987 to 2019; in most cases, we find that

the results are broadly similar.

For the purposes of the production function estimation, we need to aggregate chemicals

at the plant-year level. To the best of our knowledge, there is no consensus in the literature

on the best way of bringing various chemicals on equal footing. Some studies (i.e., Arora

and Cason, 1995, 1999) argue that weighting chemicals by their toxicity—as measured by

reportable quantity (RQ) toxicological index, or the threshold planning quantity (TPQ)—

leads to similar (with respect to equal weighting) results since most widely used chemicals

have similar toxicity. We chose to weigh chemical releases by thier toxicity weights provided

by the Risk-Screening Environmental Indicators (RSEI) table housed by the Environmental

Protection Agency. Specifically, the toxicity weight we use is the maximum taken over the

inhalation and oral toxicity. Each of these metrics represents the inverse of the “exposure to

the human population (including sensitive subgroups) that is likely to be without appreciable
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risk of deleterious health effects during a lifetime”.6

Merging TRI Data with ASM/CM The challenge of merging the ASM/CM dataset

with TRI arises from two main factors: firstly, the manufacturing sample in ASM/CM is

structured at the establishment level, in contrast to the more granular facility level of the

TRI; and secondly, the absence of a shared identifier across both datasets.

To circumvent these challenges, we utilized a combination of exact and fuzzy matching

techniques to link TRI facilities with manufacturing plants from the ASM/CM dataset. We

aggregated TRI data based on physical addresses, operating under the assumption that

facilities sharing a physical address are likely part of the same plant. The ASM/CM dataset,

however, does not readily provide specific addresses for establishments. To fill this gap, we

sourced establishment-level addresses and names from the Business Registrar housed by the

Census Bureau.

Following that, we merged the TRI data with ASM and CM requiring an exact match

on NAICS 4-digit codes and state identifiers. Subsequently, we fuzzy matched observations

based on plant’s name, street address, city, and ZIP code. This way we were able to suc-

cessfully match over 70% of the unique TRI facilities with entities in the ASM/CM dataset.

To bolster the accuracy of the fuzzy matching, we standardized terms within both datasets.

As an example, we abbreviated terms such as “corporation” to “corp” and “street” to “str”.

The resulting dataset is used for the production function estimation.

Estimation of Production Function Our objective is to obtain estimates of production

elasticities {α̂j, ν̂j, κ̂j, γ̂j}Nj=1. We estimate (1) individually at the level of NAICS 3-digit

6Data are available at https://www.epa.gov/rsei/rsei-data-dictionary-chemical-data.
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industries; we found that this choice strikes a balance between the granularity of an industry

and the sample size within each industry cell.7 In our empirical implementation, we combine

materials with an energy input.

We experimented with three different methods of estimation: a “naive” approach, where

we regressed the logarithm of output on the logarithms of inputs thereby disregarding the

endogeneity bias originating from unobserved productivity, and the methods proposed by

Olley and Pakes (1996) [OP] and Levinsohn and Petrin (2003) [LP]. In summary, we ob-

served that the OP and LP methods yielded highly comparable estimates {γ̂j}. Furthermore,

the “naive” approach identified the same qualitative patterns (i.e., industries with high dirty

factor elasticity using the “naive” approach also exhibit it high in OP and LP cases); how-

ever, the quantitative difference between the methods is significant. To render the volume

of output amenable to disclosure from the Census, we opted to employ the LP method. In

our perspective, this method not only accounts for unobserved productivity but also is less

dependent on the longitudinal features of the data (i.e., in the OP method, one must incor-

porate exit dummies; although feasible, exit is not perfectly quantified due to the rotating

nature of the ASM panel).

Accounting for Time-Varying Technology In order to investigate the evolution of

technology over time, we divided the sample into two segments (before and after 2002) and

re-estimated production functions for each subset. We treat the estimates derived from the

earlier subset as indicative of the initial technology. We then assume that the elasticities
7We discovered that even when analyzing at the NAICS 3-digit level, certain industry categories are

notably small and fail to meet the U.S. Census Bureau’s disclosure concentration statistics thresholds. One
example is the Apparel Manufacturing (NAICS 315), which is not included in our analysis.
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Table 2: Production Function Estimates

Industry NAICS Capital (α̂) Labor (ν̂) Materials (κ̂) Pollution (γ̂)
Food 311 0.193 0.145 0.416 0.001

(0.0243) (0.0080) (0.0186) (0.0008)
Textile 313 0.390 0.298 0.464 0.004

(0.1616) (0.0263) (0.0488) (0.0023)
Pulp/Lumber 321 0.224 0.161 0.552 0.003

(0.0418) (0.0097) (0.0238) (0.0011)
Paper 322 0.337 0.229 0.507 0.006

(0.0547) (0.0180) (0.0352) (0.0017)
Printing 323 0.052 0.364 0.437 0.003

(0.0534) (0.0216) (0.0489) (0.0052)
Petroleum 324 0.143 0.217 0.569 0.005

(0.0740) (0.0152) (0.0386) (0.0022)
Chemical 325 0.367 0.199 0.470 0.002

(0.0314) (0.0073) (0.0152) (0.0011)
Plastic 326 0.194 0.239 0.487 0.002

(0.0194) (0.0100) (0.0182) (0.0011)
Minerals 327 0.199 0.323 0.421 0.008

(0.0354) (0.0108) (0.0162) (0.0013)
Metal 331 0.295 0.266 0.482 0.004

(0.0701) (0.0108) (0.0166) (0.0013)
Fab. Metal 332 0.270 0.318 0.412 0.003

(0.0278) (0.0082) (0.0137) (0.0007)
Machinery 333 0.426 0.285 0.525 0.002

(0.0992) (0.0111) (0.0266) (0.0009)
Electronics 334 0.243 0.085 0.457 0.001

(0.1051) (0.0257) (0.0237) (0.0024)
Transportation 336 0.143 0.282 0.482 0.003

(0.0352) (0.0127) (0.0189) (0.0009)
Furniture 337 0.138 0.228 0.515 0.003

(0.0886) (0.0245) (0.0391) (0.0026)
Notes: Table 2 reports production function elasticities for NAICS 3-digit manufacturing industries estimated
using Levinsohn and Petrin (2003) method. Numbers in parentheses are standard errors. Underlying data
are ASM/CM and TRI.

of capital, labor, materials, and the dirty factor are linearly evolving over time ultimately

aligning with the levels observed in the latter subset. Estimates for the two subsamples are

reported in Appendix (see Tables D1 and D2).

3.4 Measuring Distortions

To study the aggregate effect of all EPA regulations, we use the measure of the total new

EPA restrictions imposed on each industry each year. This measure is based on the texts
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of all effective EPA rules contained in the Code of Federal Regulations (CFR) since 1999

and the machine-learned relevance of the regulations to each industry. We show that this

measure meaningfully captures the total restrictions of EPA regulations and can identify

industry specific variations. The detailed explanation of how the index was constructed is

TBA.

EPA Index and Aggregate Toxic Releases Figure 2 shows the time-series of the con-

structed EPA index and toxic releases by NAICS 3-digit industry. Chemical, metal and

transportation equipment industries are the most polluting ones, while textile and printing

industries are the least polluting in the aggregate. There is also a noticeable heterogeneity in

the evolution of regulations across industries. For example, our index captures a significant

increase in regulations on the furniture and pulp/lumber industries over the sample time

period. At the same time, regulations on machinery and printing industries grew less.

3.5 Pollution Tax and EPA Regulations

In our quantitative implementation, we assume that the cost per unit of toxic emissions in

industry j is a function of EPA regulations, and has the following functional form:

τjt = κj0e
κ1EPAjt , (9)

where {κj0} and κ1 are parameters.

In order to estimate κ1, consider the first-order condition of the firm’s profit (3) with
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Figure 2: Evolution of the EPA Index and Toxic Releases by Industry
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Notes: Figure 2 plots the evolution of the EPA index and aggregate toxic releases by NAICS 3-digit man-
ufacturing industry. EPA index is normalized to 1 in 1999. See details on index construction in Section
??.

respect to the toxic releases d:

PjAjγjk
αjnνjmκjdγj−1 = κj0κ1e

κ1EPAjt ,

where m is the component combining all intermediate inputs. Dividing both sides by the

revenue yields:

γj
d

=
κj0κ1e

κ1EPAjt

Pjyj
.

After taking logarithms, first-differencing the equation, as well as adding idiosyncratic inno-
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Table 3: Estimation of κ1

(1) (2)
ζ̂1 0.165∗∗ 0.278∗∗∗

(0.070) (0.054)
Sample All Mnf
Industry & Year FE X X
R2 0.090 0.086

Notes: Table 3 reports OLS estimates of Equation (10). Column (1) is based on Compustat data, while
columns (2)-(3) are based on ASM/CM sample. In case of Census data, observations are weighted by the
population weights reported in ASM/CM. Numbers in parentheses are standard errors clustered at the
industry level. ∗, ∗∗, ∗∗∗ denotes significance at 10%, 5%, and 1% level, respectively.

vations ηit, we obtain:

∆ log

(
ỹit
dit

)
= κ1∆EPAj(i)t + ηit, (10)

where ỹ denotes revenue.

We estimate Equation (10) on a pooled across industries sample, saturating the model

with year and establishment fixed effects and normalizing the EPA index to 1 in 1999.

Table 3 reports the estimation results; we find that the estimated coefficient is statistically

significant; moreover, its magnitude is stable across the reported specifications.

Given the value of κ̂1, we obtain industry-specific coefficients {κ̂j0} by requiring the model

to hit the distribution of toxic releases across industries in 1999,
{∑

i∈j di,1999∑
i di,1999

}N
j=1

, where

di,1999 denotes toxic releases of plant i in 1999. Figure 3 demonstrates that emissions of

chemicals are highly concentrated; Chemical industry (NAICS 325) accounts for more than

one third of overall emissions, while Petroleum (NAICS 324), Primary Metal (NAICS 331)

and Transportation Equipment (NAICS 336) industries collectively account for more than

50% of toxic releases.
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Figure 3: Pollution Shares

Notes: Figure 3 visualizes pollution shares for 15 manufacturing NAICS 3-digit industries in 1999. The
underlying data are from the TRI.

4 Quantitative Exploration

In Section 2, we developed a quantitative model whereby forward-looking firms are inter-

connected through a general equilibrium adjustment of prices and input-output linkages. In

this section, our primary objective is to quantitatively examine the role of EPA regulations,

along with other model components, in shaping the evolution of toxic releases in the U.S.

manufacturing sector.

We start off by computing the cross-elasticities of toxic releases across manufacturing

industries in response to a 10% increase in the EPA index of a specific industry. This

procedure echoes the approach in Caliendo et al. (2022). When we repeat this exercise using

a version of the model without input-output linkages, it becomes evident that the input-
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output network plays a pronounced role in propagating environmental regulations across

industries. In particular, we find that input-output linkages increase many cross-elasticities

thereby leading to unintended increases in toxic releases within indirectly affected industries.

We then conduct a transition dynamics exercise by feeding in the industry-specific EPA

index into our model. We find that tightening of environmental regulations during 1999-2021

time period led to a 17% decline in aggregate toxic releases. Besides, we observe a substantial

heterogeneity in the evolution of toxic releases across manufacturing industries over time.

For example, while Chemical industry saw a 15% decline in pollution, some other industries

saw a decline of over 60% (e.g., Printing and Plastics industries).

In sharp contrast with the baseline model, the version of the model without input-output

linkages results in the overall similar dynamics of toxic releases across industries. This is

consistent with our cross-elasticities results, whereby we argued that input-output linkages

may lead to unintended increases in toxic releases.

4.1 Pollution Cross-Elasticities

We compute the pollution cross-elasticity of industry-level toxic releases between the initial

steady-state and the steady-state corresponding to the environment where EPA index for a

given industry increased by 10%. This exercise is reminiscent of the analysis of distortions

in Caliendo et al. (2022).

Figure 4 presents the results. Panels (A) and (C) correspond to the version of the model

without cross-industry linkages (Ω = III), while Panels (B) and (D) are for the version with

the calibrated input-output matrix. Specifically, Panels (A) and (B) indicate that all off-
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Figure 4: Cross-Elasticities of Pollution

(a) Ω = III, PE (b) Calibrated Ω, PE

(c) Ω = III, GE (d) Calibrated Ω, GE

Notes: Figure 4 consists of four panels. Each panel depicts the percentage change in pollution across
manufacturing NAICS 3-digit industries (rows) to a 10% increase in τj in a given (column) industry. The
top row corresponds to a partial equilibrium exercise, whereby prices are held fixed. The bottom row shows
cross-elasticities in case prices are allowed to adjust. Panels (A) and (C) use the identity input-output
matrix, while panels (B) and (D) use the calibrated input-output matrix Ω (as in Figure 1).

diagonal cross-elasticities are zero in the partial equilibrium analysis. It is the adjustment

of prices that enables the model to generate spillovers across industries.

Panel (C) demonstrates that even without industry linkages, the model can generate con-

siderable variation in cross-elasticities, with both positive and negative off-diagonal elements

present. Notably, cross-elasticities are in most cases negative, a trend resulting from two
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combined effects. Firstly, increased regulations on an industry primarily have a negative im-

pact on it, all other things being equal. Secondly, reduced profits from a specific sector lead

to a lower household consumption, subsequently diminishing the production incentives for

firms in other industries. More often than not, this combined effect outweighs the benefits

of declining wages and lower price for the capital good.

Panel (D) revisits the general equilibrium analysis, this time including input-output link-

ages. Contrasting with Panel (C), more off-diagonal elements in this model are positive.

With cross-sectoral linkages, regulations on one industry decrease the demand for interme-

diate goods from affected firms. As a result, the prices for those intermediates drop (all else

being equal), potentially benefiting other industries that use these inputs in their production.

In essence, our findings underscore the critical influence of the input-output model structure

on the propagation of environmental regulation effects across industries. This often leads to

unintended increases in pollution across firms that are not directly affected.

4.2 EPA Regulations and Toxic Releases

To study the effects of EPA regulations on overall toxic emissions, we conduct a transition

dynamics exercise with perfect foresight. Conceptually, we feed our constructed index into

the model and observe the subsequent behavior of firms. This exercise technically entails an

iterative process. We first guess sequences of prices and then determine the optimal decisions

of firms by working backward in time. Equipped with the optimal investment decisions of

firms, we then iterate capital holdings forward to calculate the sequences of excess demands

across markets for every time period along the transition path. We update our initial price
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Figure 5: Environmental Regulations and Toxic Releases

(a) Calibrated Ω (b) Ω = III

Notes: Figure 5 consists of two panels. Panel (A) corresponds to the version of the model with input-output
linkages. Panel (B) corresponds to the model where Ω = III. The figure demonstrates the results of the
transition dynamics exercise, whereby the EPA index was fed into the model developed in Section 2. Each
line shows percentage deviation of toxic releases from the 1999 level. Red dashed line is the aggregate toxic
release; the other four lines (with markers) correspond to industries with the highest levels of toxic releases:
Petroleum, Metal, Chemical, and Transportation Equipment. Production technologies are time-invariant,
corresponding production elasticities are reported in Table 2.

guess and continue this iterative procedure until the excess demands are sufficiently small.

Further computational details are relegated to Appendix B.3.

Panel (A) of Figure 5 showcases the findings. Federal environmental regulations led to

approximately a 17% reduction in total toxic emissions from 1999 to 2021. A rapid increase

in regulations between 1999 and 2004 (see Figure 2) is reflected in the swift decline of toxic

releases during that time period.

Decomposition of Toxic Releases by Industry We also break down aggregate toxic

releases by industry and plot the percent deviation from 1999 level for the 4 most contributing

industries: Petroleum, Chemical, Metal and Transportation. As is evident from Figure 5,

there is a sizable heterogeneity in the trajectory of emissions among sectors. For example,

the chemical industry, which accounts for one-third of all toxic releases, saw a decline of
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about 15% during this time frame, primarily influencing the overall trend. At the same

time, emissions made by the petroleum industry declined by over 23%.

It is worth noting that while the most polluting industries experienced a decline in toxic

releases in the range of 15-25%, some industries achieved even more dramatic reductions in

pollution. For instance, emissions from Printing (NAICS 323) and Plastics (NAICS 326)

industries dropped by over 60% over the two decades. This, however, had a minor effect in

the aggregate due to the relatively small share of total releases these industries account for.

Role of Input-Output Linkages Feeding the same sequence of environmental regulations

into the version of the model without input-output linkages results in the overall similar

dynamics of aggregate releases (panel (B) in Figure 5). This is anticipated since input-

output linkages have a relatively small impact on the magnitude of the direct effect (diagonal

elements in Figure 4); therefore, the aggregate dynamics in both models are comparable.

We note that, remarkably, the four most contributing industries demonstrate very similar

transition paths; besides, the lines are nearly indistinguishable during 1999-2004.

In Section 4.1, we argued that input-output linkages increase many cross-elasticities,

leading to some unintended increases in toxic releases within indirectly affected industries.

This section demonstrates that this mechanism is quantitatively pronounced and manifests

itself during the transition to the new steady state.

Role of General Equilibrium Last but not least, we examine the role of general equi-

librium in the transition to a new steady state. The results reported thus far were obtained

by searching for sequences of prices that clear the markets along the transition path (see
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Figure 6: Environmental Regulations and Toxic Releases: General vs. Par-
tial Equilibrium

Notes: Figure 6 demonstrates the results of the transition dynamics exercise, whereby the EPA index was
fed into the model developed in Section 2. Each line shows percentage deviation of toxic releases from the
1999 level. The solid line corresponds to the model in general equilibrium, the dashed line refers to the model
in partial equilibrium. Production technologies are time-invariant, corresponding production elasticities are
reported in Table 2.

Appendix B.3 for computational details). To elucidate the role of general equilibrium, we

conduct a transition dynamics exercise in which firms anticipate the sequence of environ-

mental regulations, yet they operate under constant prices. Figure 6 showcases the results:

we find that in a partial equilibrium scenario, the decline in aggregate toxic releases is more

pronounced, decreasing by over 21% from 1999 to 2021. This is consistent with the cross-

elasticity results reported earlier, where we demonstrated that in a partial equilibrium, all

indirect effects are eliminated, and thus there are no spillover effects that can offset—partially

or fully—the significant negative direct effects.
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5 Conclusion

In this study, we examine the impact of federal environmental regulations on firm-level deci-

sions and aggregate pollution. Utilizing a novel index to measure industry-specific regulatory

intensity, we analyze the interactions between regulations and pollution levels. Our empirical

analysis employs administrative data to assess the effects on firm performance. Theoreti-

cally, we develop a general equilibrium model that incorporates cross-sectoral input-output

linkages and optimizing forward-looking firms. The transition dynamics exercise reveals

that environmental regulations account for a 15% decline in toxic releases over the period

1999-2021.
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Appendix A: Empirical Appendix
This appendix provides further details for the empirical part of the paper, including data
background, sample selection and additional empirical results referenced throughout the
main text.

A.1 ASM and CM

The Annual Survey of Manufacturers (ASM) and the Census of Manufacturers (CM) are
establishment-level datasets which cover the U.S. manufacturing sector (NAICS 31-33). As
in the case of the LBD, the unit of observation is an establishment, which is defined as a
single location where business is conducted. Currently, the ASM/CM are available for years
1976-2019.

A.1.1 General Information

Both the ASM and the CM are mail-back surveys; the CM covers the Census years (end-
ing in 2 and 7), and the ASM covers the years in between them. The ASM/CM contain
the information about plants in which the predominant activity is production; thus, purely
administrative establishments are not included. The CM covers all the manufacturing es-
tablishments in the U.S., which amounts to 300-350 thousand observations per year. In
turn, the ASM covers plants from the “mail stratum” of the manufacturing sector, which
results in 50-60 thousand observations per year. The “non-mail stratum” generally consists
of small establishments that collectively account for a very small fraction of aggregate activ-
ity; their chance to be selected in the ASM panel is zero. Following Kehrig (2015), in order
to construct a consistent panel where the number of (weighted) observations is not driven
by the sampling practices of the Census, I drop all observations from the non-mail stratum
(denoted by ET = 0). The ASM covers all “large” establishments with certainty along with a
selection of “small” establishments. The ASM is essentially a rotating panel, since every five
years (years ending in 4 and 9) Census updates its small establishment sample. The Census
provides frequency weights (the inverse of the sampling probability) which I use to infer the
underlying population of manufacturing plants not surveyed by the Census.

A.1.2 Construction of Plant-level Variables

The ASM/CM contain a wealth of information on plants’ sizes, productivities, inputs, sales,
etc. For the purposes of this project, I only need a subset of this information. In what
follows, I describe how I construct different variables using the raw data from the ASM/CM
data.

Measure of Real Output Ideally, I need to obtain a measure of real production. Unfor-
tunately, neither plant-level real output, nor prices are available. As a result, I construct a
proxy for the real output following the methodology of Kehrig (2015) and Yeh (2017). In
particular, I combine information on:

– total value of shipments (tvs),
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– beginning- and end-of-year works-in-progress (wib and wie),

– beginning- and end-of-year inventories (fib and fie).

Provided that deflators for inventories are not publicly available (Kehrig, 2015), I use the
6-digit NAICS industry-level shipment price deflator piship from the NBER-CES Manufac-
turing database.8 As a result, I construct a measure of real output of plant p in year t as
follows:

Qp,t =
tvsp,t

pishipi(p),t
+

fiep,t − fibp,t
pishipi(p),t

+
wiep,t − wibp,t
pishipi(p),t

, (A.1)

where i(p) denotes a 6-digit NAICS industry plant p operates in.

Labor Input I measure labor input as a total number of hours worked. However, the
ASM/CM provide the total number of hours worked for production workers only (ph). I
follow Lee and Mukoyama (2015) and Yeh (2017), and combine two additional pieces of
information to infer the total hours worked. In particular, the ASM/CM provide information
on the total payroll (sw) and the wage bill for production workers (ww). I then construct the
labor input as follows:

Lp,t = php,t ×
swp,t
wwp,t

. (A.2)

In rare cases when either the total payroll or production workers’ wage bill is zero or negative,
I use the production hours php,t as a measure of the labor input.

Materials Input I measure materials as the sum of expenditures on materials and parts,
resales and contract work. I deflate nominal values with a 6-digit materials deflator pimat
from the NBER-CES data. Specifically, the value of materials is then:

Mp,t =
cpp,t + crp,t + cwp,t

pimati(p),t
. (A.3)

On a side note, some papers (Kehrig, 2015) treated the value of resales cr as finished goods
rather than materials, since resales are not used in the production process. I experimented
with this alternative classification of resales and found my results to be robust:

Energy Input The plant-level expenditures on energy is the sum of expenditures on fuels
(cf) and electricity (ee). I deflate nominal values by the 6-digit NAICS deflator pien from
the NBER-CES Manufacturing database. As a result, the real value of the energy input is:

Ep,t =
cfp,t + eep,t
pieni(p),t

. (A.4)

Capital The construction of capital is complicated by several factors. First, the values of
capital stock are reported only for years 1976-1987 (with an exception of 1986) and 1992.
Second, in those years when capital stocks are reported, only the book values are available.

8NBER-CES Manufacturing Database is available at http://data.nber.org/nberces/.
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Moreover, the imputation of capital stocks for the remaining years is complicated by the
absence of information on the plant-level depreciation.

Fortunately, the ASM/CM report capital expenditures for all years, which makes it pos-
sible to construct a measure of capital using forward and backward inventory methods. I
consider two types of capital: structures and equipment. In what follows, I describe a se-
quence of steps I undertake to construct a consistent over years measure of the capital input.

For plants which entered in or before 1985, I convert the reported end-of-year stocks of
structures (bae) and equipment (mae) into market values using the current and historical
industry-level cost of capital stocks from the BEA Fixed Asset Tables.9 The ASM/CM do not
provide the breakdown of the end-of-year total assets (tae) into structures and equipment
starting from 1988 (Census year 1992 is an exception). I, nevertheless, can recover the
capital stock for the remaining years for establishments which entered in or before 1985
using the forward perpetual inventory method, since the data report capital expenditures on
structures (cbe) and machinery(cme) for all years.10 In particular, the stock of structures
and machinery for plant p in year t is constructed according to the following equations:

Kstp,t = (1− δsti(p),t)Kstp,t−1 +
cbep,t

piinvi(p),t
,

Keqp,t = (1− δeqi(p),t)K
eq
p,t−1 +

cmep,t
piinvi(p),t

,

where δsti(p),t and δ
eq
i(p),t are the 3-digit depreciation rates from the BLS Capital Tables.11 Defla-

tor piinv is available at 6-digit NAICS level from the NBER-CES Manufacturing database.
For plants which first show up in the ASM/CM sample after 1987, I initialize the capital

stock using the nearest Census year when the plant is still active (the total value of assets
is only reported in the CM). For that purpose, I leverage information from the NBER-CES
on the amounts of industry-level capital stocks of equipment and structures. In particular,
I split the plant-level amount of total assets across equipment and structures according to
the 6-digit industry-level distribution of capital across equipment and structures. Once the
capital stock is initialized, I use the forward and backward perpetual inventory methods to
impute capital in non-Census years.

9The BEA contains information at the 3-digit NAICS level with some exceptions. In particular, BEA
groups industries with NAICS codes 311 and 312 into “Food and beverage and tobacco products”, 313 and 314
into “Textile mills and textile product mills” and 315 and 316 into “Apparel and leather and allied products”.
I perform necessary adjustments to make these groupings consistent with the NAICS classification. The
data are available at https://www.bea.gov/national/FA2004/SelectTable.asp.

10For some years, the data only report total capital expenditures (tce) along with capital expenditures
on new and used machinery (cme). I calculate capital expenditures on structures as the difference between
tce and cme.

11Data is available at https://www.bls.gov/mfp/mprdload.htm.
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Appendix B: Model Appendix

B.1 Definition of Equilibrium

The Recursive Competitive Stationary Equilibrium for this economy (for a fixed vector of
{τj}) consists of the following functions and objects:{

{vj}, {nj}, {kj}, {k′j}, {dj}, {ms
j},W, {Pj}, Q, {cj}

}
,

such that:

1. {cj} solve the household’s problem (5)-(6),

2. {vj} solves the firm’s problem (2)-(3), and
(
{nj}, {k′j}, {dj}, {ms

j}
)
are the correspond-

ing policy functions,

3. Q is the market clearing price for capital,

4. labor market clears

1 =
N∑
j=1

[nj + ACj] +NK ,

where {nj} is labor demand of industry j, ACj = ϕ
(
k′(kj)−(1−δ)kj

kj

)2
kj denotes adjust-

ment costs of industry j, and NK is labor demand of the capital good producer;

5. goods market clears for each product j ∈ {1, . . . , N}:

yj(k) = cj +
N∑
s=1

ms
j(k),

where ms
j denotes the demand on good j from producers in sector s,

6. the cross-industry distribution of capital stocks {kj} are induced by decision rules {k′j}.
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B.2 Computation Algorithm: Steady-State

We use collocation methods to solve the firm’s functional equations. In practice, we use
Chebyshev polynomials to approximate value functions.

We set up a grid of collocation nodes K, with NK nodes. The computation of the
stationary state of the model proceeds in the following 4 steps:

1. guess the equilibrium wage rate W , price of capital Q and goods {Pj};

2. solve for individual decision rules
(
{nj}, {k′j}, {dj}, {ms

j}
)
;

3. given the decision rules, compute stationary equilibrium;

4. compute the excess demand on the labor market, as well as on N product markets.
Besides, compute the implied price of capital Qimplied = W

βKN
βK−1

K KαK
. Stack all N + 1

excess demands as well as the difference between the guessed and implied price of
capital good into one vector, and search for the price vector which returns zero excess
demands. We found that a combination of the bisection method with normalizing
prices to be 1 on average in cross-section works well.

B.2.1 Approximation of Value Functions

We approximate N value functions (one for each sector j): {vj(·)}. We represent these value
functions as weighted sums of orthogonal polynomials:

v1(k) =
∑NK

a=1 θ
a
1T

a(k),

v2(k) =
∑NK

a=1 θ
a
2T

a(k),

. . .

vN(k) =
∑NK

a=1 θ
a
JT

a(k),

where Θ = {θaj }Nj=1 are approximation coefficients, and T i(·) is the Chebyshev polynomial
of order i.

We use a collocation method to simultaneously solve for Θ. Collocation method requires
setting the residual equation to hold exactly at NK points ; therefore, we essentially solve for
N × NK unknown coefficients. We compute the basis matrices for Chebyshev polynomials
using Miranda and Fackler (2002) Compecon toolbox. Subsequently, we solve for a vector
of unknown coefficients using Newton’s method. A much slower alternative is to iterate on
the value function. Given the current guess of coefficients, we solve for the optimal policy
k′(k) using vectorized golden search. After we solve for the policy function, we recompute
decision rules on a finer grid, and, subsequently, compute the stationary distribution.

B.2.2 Stationary Distribution

When we solve for a stationary distribution Lj (j ∈ {1, . . . , N}), we iterate on a mapping
using firms’ decisions rules:

L′j = Q′jLj,
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where Lj is a current distribution of firms across the state space in sector j. Matrix Qj is a
transition matrix, which determines how mass of firms shifts in the k-space. It is constructed
so that the model generates an unbiased distribution in terms of aggregates.12 More precisely,
element (i, j) of the transition matrix Qj̃ informs which fraction of firms with the current
idiosyncratic state ki will end up having kj tomorrow. Therefore, this entry of the matrix is
computed as:

Qj̃(i, j) =

[
1k′∈[kj−1,kj ]

k′ − kj
kj − kj−1

+ 1k′∈[kj ,kj+1]
kj+1 − k′

kj+1 − kj

]
.

12See Young (2010) for more details.
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B.3 Computation Algorithm: Transition Dynamics

In this section, we outline an algorithm for computing transition dynamics. While the paper
assumes perfect foresight for firms, we provide here, for completeness, an algorithm designed
to compute transition dynamics for the case where firms do not know the sequence of {τjt}.
In this context, firms receive shocks in each period along the transition path.

1. Compute the steady-state for the initial period (Tstart); that is, EPA regulations are
normalized to 1, and firms solve their problems believing that regulations will stay at
that level indefinitely;

2. Move to the next year, Tstart + 1. Solve for the transition dynamics from the level of
regulations prevalent in Tstart to the new level of Tstart + 1. From the entire transition
path, keep only the first period (i.e., when the shock occurred);

Intermediate step: computation of the transition dynamics of the once-and-for-all
change in regulations:

(a) Consider a transition horizon T . In practice, we set T = 100;

(b) Compute two steady-states, one for t = 0 (initial level of regulations) and t = T
(new level of regulations);

(c) We approximate the paths of prices in our model using cubic polynomials. That
is, we assume that each price Pjt in the model evolves as:

Pjt = αj0 + αj1t+ αj2t
2 + αj3t

3,

where t denotes time that runs from 1 to T . The algorithm outlined below searches
for coefficients {αj1, α

j
2, α

j
3} for each price (and marginal utility). Note that pa-

rameters {αj0} are pinned down by the price level at the eventual steady-state.
Given the guess {αj1, α

j
2, α

j
3}, we recover sequences of prices {P̂jt}T−1t=1 , a sequence

of wages {Ŵt}T−1t=1 , a sequence of capital prices {Q̂t}T−1t=1 and marginal utilities
{Û ′t}T−1t=0 ;

(d) Given that we know the value function in the terminal period T , ṽj,T , we can
solve for the optimal decision in t = T − 1:

k̂′j,T−1 = arg max
k′≥0

(
Û ′T−1 ×

{
πj(k, z)− Q̂t(k

′ − (1− δ)k)−

−Ŵt × AC(k, k′)
}

+ βṽj,T (k′)
)
.

Note that we are using value functions scaled by the marginal utility: ṽj,t =

Û ′t×vj,t. Flow profits πj(k, z) are calculated assuming that the wage rate is ŴT−1

and prices are {P̂jT−1}Nj=1. Clearly, we can also recover value functions in period
T − 1, ṽj,T−1;

(e) Solving backwards (i.e., by repeatedly executing the previous step), we can recover
the entire path of decision rules for t = 1, . . . , T − 1;
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(f) Take the steady-state distribution for period t = 0. Apply the recovered sequence
of decision rules, {k̂j,t}T−1t=0 , to compute the evolution of capital stocks over the
entire transition horizon;

(g) Compute excess demand functions on product markets, labor market, as well as
the deviation of the guessed sequence of capital good prices from the implied se-
quence (as per Equation 4), and the deviation of the implied sequence of marginal
utilities from the guessed one;

(h) If the norm of deviations taken across markets and time is sufficiently small,
terminate. Otherwise, guess new polynomial coefficients and go back to step (c).

3. Repeat Step 2 for other years Tstart + 2 : Tend, using the cross-sectional distribution
saved in the previous step as a starting point for the transition;

4. The recovered sequences of capital stocks, decision rules and prices represents the
transition of the economy over the time period Tstart : Tend, whereby firms interpret
EPA regulations as unexpected each period.
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Appendix C: Figures

Figure C1: Expenditure Shares

Notes: Figure C1 visualizes personal consumption expenditures at NAICS 3-digit level for the manufacturing
sector. The underlying data are from the BEA 2012 Use Table.
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Figure C2: Employment Shares

Notes: Figure C2 visualizes employment shares for 20 manufacturing NAICS 3-digit industries. The under-
lying data are from the Business Dynamics Statistics for year 1987.
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Appendix D: Tables

Table D1: Production Function Estimates: 1987-2002

Industry NAICS Capital (α̂) Labor (ν̂) Materials (κ̂) Pollution (γ̂)
Food 311 0.158 0.150 0.514 -0.001

(0.1203) (0.0104) (0.0465) (0.0011)
Textile 313 0.369 0.279 0.540 0.000

(0.1527) (0.0281) (0.0569) (0.0026)
Pulp/Lumber 321 0.162 0.208 0.635 -0.001

(0.0649) (0.0126) (0.0506) (0.0012)
Paper 322 0.255 0.253 0.666 0.001

(0.0945) (0.0323) (0.0794) (0.0025)
Printing 323 0.034 0.319 0.423 -0.002

(0.0740) (0.0263) (0.0639) (0.0074)
Petroleum 324 0.065 0.175 0.760 0.003

(0.0717) (0.0195) (0.0396) (0.0032)
Chemical 325 0.197 0.178 0.574 -0.001

(0.0897) (0.0109) (0.0250) (0.0018)
Plastic 326 0.187 0.226 0.550 0.003

(0.0591) (0.0128) (0.0336) (0.0015)
Minerals 327 0.382 0.277 0.355 0.003

(0.0846) (0.0188) (0.0363) (0.0018)
Metal 331 0.150 0.279 0.517 0.000

(0.0545) (0.0104) (0.0369) (0.0013)
Fab. Metal 332 0.190 0.341 0.394 0.003

(0.0508) (0.0094) (0.0230) (0.0010)
Machinery 333 0.320 0.274 0.617 0.003

(0.1504) (0.0191) (0.0298) (0.0014)
Electronics 334 0.123 0.301 0.541 0.004

(0.1387) (0.0295) (0.0451) (0.0035)
Transportation 336 0.160 0.340 0.512 0.000

(0.0614) (0.0175) (0.0289) (0.0016)
Furniture 337 0.138 0.221 0.558 0.004

(0.1041) (0.0349) (0.0495) (0.0031)
Notes: Table D1 reports production function elasticities for NAICS 3-digit manufacturing industries esti-
mated using Levinsohn and Petrin (2003) method. Numbers in parentheses are standard errors. Underlying
data are ASM/CM and TRI.
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Table D2: Production Function Estimates: 2003-2019

Industry NAICS Capital (α̂) Labor (ν̂) Materials (κ̂) Pollution (γ̂)
Food 311 0.156 0.156 0.386 0.001

(0.0282) (0.0102) (0.0203) (0.0011)
Textile 313 0.148 0.402 0.389 0.009

(0.2753) (0.0437) (0.0772) (0.0049)
Pulp/Lumber 321 0.208 0.163 0.529 0.007

(0.0449) (0.0148) (0.0291) (0.0016)
Paper 322 0.368 0.262 0.464 0.010

(0.0433) (0.0283) (0.0344) (0.0031)
Printing 323 0.068 0.402 0.518 0.007

(0.0594) (0.0326) (0.0582) (0.0081)
Petroleum 324 0.077 0.217 0.558 0.004

(0.1541) (0.0193) (0.0432) (0.0035)
Chemical 325 0.382 0.205 0.441 0.003

(0.0340) (0.0100) (0.0159) (0.0017)
Plastic 326 0.193 0.269 0.464 0.002

(0.0272) (0.0143) (0.0206) (0.0014)
Minerals 327 0.174 0.343 0.426 0.011

(0.0174) (0.0120) (0.0185) (0.0019)
Metal 331 0.307 0.282 0.476 0.007

(0.0968) (0.0141) (0.0215) (0.0018)
Fab. Metal 332 0.268 0.323 0.411 0.002

(0.0349) (0.0107) (0.0140) (0.0009)
Machinery 333 0.405 0.308 0.500 0.001

(0.1085) (0.0135) (0.0254) (0.0011)
Electronics 334 0.802 0.177 0.355 0.000

(0.2054) (0.0379) (0.0345) (0.0036)
Transportation 336 0.189 0.297 0.467 0.003

(0.0405) (0.0168) (0.0212) (0.0012)
Furniture 337 0.171 0.253 0.483 0.004

(0.1215) (0.0370) (0.0592) (0.0037)
Notes: Table D2 reports production function elasticities for NAICS 3-digit manufacturing industries esti-
mated using Levinsohn and Petrin (2003) method. Numbers in parentheses are standard errors. Underlying
data are ASM/CM and TRI.

42



References for Appendix
Kehrig, Matthias, “The Cyclical Nature of the Productivity Distribution,” SSRN Working

Paper 1854401, 2015.

Lee, Yoonsoo and Toshihiko Mukoyama, “Entry and Exit of Manufacturing Plants over
the Business Cycle,” European Economic Review, 2015, 77, 20–27.

Yeh, Chen, “Are Firm-level Idiosyncratic Shocks Important for U.S. Aggregate Volatility?,”
CES Working Paper 17-23, 2017.

43


	Introduction
	Model
	Environment
	Firm Optimization
	Capital Good Producer
	Household Optimization

	Parameterization and Model Fit
	Preferences
	Technology
	Estimating Production Function with a Dirty Factor
	Measuring Distortions
	Pollution Tax and EPA Regulations

	Quantitative Exploration
	Pollution Cross-Elasticities
	EPA Regulations and Toxic Releases

	Conclusion
	Empirical Appendix
	ASM and CM

	Model Appendix
	Definition of Equilibrium
	Computation Algorithm: Steady-State
	Computation Algorithm: Transition Dynamics

	Figures
	Tables

