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Abstract	
A	central	prediction	of	evolutionary	theory	is	that	energy	invested	in	reproduction	comes	at	the	expense	
of	somatic	maintenance	and	repair,	accelerating	biological	aging.	In	women,	such	'costs	of	reproduction'	
(CoR)	are	supported	by	evidence	that	high	fertility	predicts	poor	health	and	shorter	lifespan	later	in	life.	
Nevertheless,	quantifying	effects	of	reproduction	on	aging	is	complicated	by	social	and	environmental	
factors	that	influence	both	fertility	and	aging,	and	by	limited	tools	for	measuring	biological	aging	in	
younger	adults.	Here,	we	examined	relationships	between	the	number	of	pregnancies	and	biological	
aging	in	825	young	(20-22	year	old)	women	from	the	Cebu	Longitudinal	Health	and	Nutrition	Survey,	
located	in	the	Philippines.	We	quantified	biological	aging	using	six	epigenetic	measures	reflecting	
several	dimensions	of	cellular	aging,	health,	and	mortality	risk	(Horvath,	Hannum,	PhenoAge,	GrimAge,	
DunedinPACE,	and	DNAmTL).	In	a	subset	of	331	women,	we	also	tested	whether	longitudinal	changes	in	
gravidity	between	young	(20-22	years	old)	and	early-middle	adulthood	(25-31	years	old)	were	
associated	with	changes	in	epigenetic	aging	over	that	same	time	period.	Sensitivity	analyses	were	run	to	
assess	any	role	of	changes	in	immune	cell	composition	to	findings.	Cross-sectionally,	gravidity	was	
associated	with	all	six	measures	of	accelerated	epigenetic	aging.	Furthermore,	longitudinal	increases	in	
gravidity	were	associated	with	faster	epigenetic	aging	using	the	Horvath	and	Hannum	epigenetic	clocks.	
These	effects	were	robust	to	socioecological,	environmental,	and	immunological	factors,	consistent	with	
the	hypothesis	that	reproduction	accelerates	biological	aging,	and	that	these	effects	can	be	detected	in	
young	women	in	a	high-fertility	context.		

	

	 	



Introduction	
	
A	central	evolutionary	theory	of	aging	posits	that	reproduction	will	occur	at	the	expense	of	
maintenance	and	repair,	leading	to	accelerated	biological	decline	(Williams,	1966).	This	idea	has	
been	supported	across	plant	and	animal	taxa	(Dijkstra	et	al.,	1990;	e.g.	Obeso,	2002;	Speakman,	
2008),	including	in	humans.	Based	upon	analyses	of	historical	records	spanning	the	8th	to	19th	
centuries,	women	in	the	British	Aristocracy	who	had	more	progeny	also	sustained	shorter	post-
reproductive	lifespans	(Westendorp	and	Kirkwood,	1998).	Similar	findings	have	been	reported	for	
frontier	women	settlers	of	early	Québec	and	the	South-West	United	States	(Gagnon	et	al.,	2009).	
While	improvements	in	nutrition	and	medical	care	have	likely	attenuated	some	of	the	costs	of	
reproduction	in	women	(Bolund	et	al.,	2016),	high	parity	is	still	associated	with	elevated	morbidity	
(Guan	et	al.,	2013;	Li	et	al.,	2019;	Lv	et	al.,	2015)	and	all-cause	mortality	(Grundy,	2009;	Grundy	and	
Tomassini,	2005;	Tamakoshi	et	al.,	2011;	Zeng	et	al.,	2016;	Grundy	and	Kravdal,	2008),	even	in	
industrialized,	economically	developed	contexts.	
	
Although	past	work	is	generally	consistent	with	the	premise	that	reproduction	carries	costs	that	
accelerate	biological	aging	in	women,	quantifying	these	costs	using	only	measures	of	health	and	
mortality	risk	later	in	life	has	at	least	several	obstacles.	First,	morbidity	and	mortality	are	generally	
only	observable	at	more	advanced	chronological	ages,	which	limits	their	utility	in	young	
populations	(Belsky	et	al.,	2015).	Quantification	of	biological	age	in	women	while	they	are	still	
young	may	be	advantageous	because	social	and	environmental	factors	can	contribute	to	both	
reproductive	decisions	and	pace	of	aging	(Lai	et	al.,	2017;	Schrempft	et	al.,	2021),	confounding	that	
is	compounded	by	the	long	human	lifespan	(Helle,	2017).	Second,	many	measures	of	morbidity	and	
mortality	are	unidirectional,	making	them	less	suitable	for	longitudinal	studies	of	individual	change	
in	biological	aging	over	time.	Longitudinal	studies	of	change	in	the	rate	of	aging	minimize	individual	
heterogeneity	in	genetic	background	and	access	to	resources	or	healthcare,	which	can	result	in	
positive	phenotypic	correlations	between	reproduction	and	health	or	lifespan	(Bolund,	2020).	
Phenotypic	correlations	occur	when	individuals	with	the	greatest	reserves	are	able	to	invest	more	
into	both	fecundity	and	somatic	maintenance,	effectively	masking	tradeoffs	(Noordwijk	and	de	Jong,	
1986).	Phenotypic	correlations	are	minimized	by	studying	individual	change	over	time,	and	
longitudinal	measurements	of	the	costs	of	reproduction	are	needed	(Bolund,	2020).	
	
A	single	gold	standard	for	quantifying	biological	age	across	the	lifespan	has	thus	far	been	elusive.	
However,	in	recent	years	a	collection	of	methods	based	on	DNA	methylation	(DNAm)	have	shown	
great	promise	towards	this	end.	These	DNAm-based	measures	of	aging	have	been	shown	to	
accurately	predict	chronological	age,	mortality	risk,	and	physiological	decline	(Horvath	and	Raj,	
2018;	Ryan,	2020).	They	also	appear	to	be	sensitive	to	major	life-history	transitions,	including	
pregnancy	(Ryan	et	al.,	2018)	and	menopause	(Levine	et	al.,	2016).	Importantly,	DNAm	measures	of	
aging	can	be	used	to	study	age	acceleration	decades	before	it	becomes	clinically	apparent	(Simpkin	
et	al.,	2016),	providing	an	early	indicator	of	biological	aging	in	young	adults.	The	predictive	power	
of	DNA	measures	of	aging	and	the	multitude	of	domains	of	aging	they	appear	to	capture	have	
brought	them	to	the	forefront	in	the	study	of	biological	aging	(Ferrucci	et	al.,	2020),	and	point	to	
their	utility	for	quantifying	possible	tradeoffs	between	reproduction	and	aging	in	humans	(Ryan,	
2020).		
	
Here	we	use	six	DNAm	measures	of	aging	to	test	tradeoffs	between	reproduction	and	biological	
aging	in	a	sample	of	825	young	women	in	the	Philippines.	Women	are	participants	in	the	Cebu	
Longitudinal	Health	and	Nutrition	Survey,	a	long-running	and	well-characterized	study	of	a	birth	
cohort	born	in	metropolitan	Cebu,	Philippines.	We	use	detailed,	prospectively-collected	



reproductive	records	to	focus	on	the	relationship	between	the	number	of	pregnancies	and	DNAm	
measures	of	aging.	Records	provide	detailed	measures	of	the	social	and	physical	environment,	
allowing	us	to	account	for	individual	differences	in	access	to	resources	or	healthcare	that	may	
independently	affect	the	pace	of	aging.	Third,	we	use	DNAm-derived	estimates	of	immune	cell	
counts	to	test	whether	or	not	relationships	between	DNAm	measures	of	aging	are	driven	by	the	
immunological	changes	that	accompany	pregnancy	and	breastfeeding	(Miller,	2009;	Ryan	et	al.,	
2022).	Finally,	we	capitalize	on	the	longitudinal	nature	of	this	study	by	following	up	on	a	subset	of	
331	women	and	asking	if	changes	in	DNAm	measures	of	aging	accompany	changes	in	pregnancy	
number.	This	longitudinal	approach	eliminates	residual	individual	variation	in	social	and	
environmental	exposures	by	comparing	women	at	follow-up	to	themselves	at	baseline,	providing	a	
strong	test	of	the	tradeoff	between	reproduction	and	biological	aging	(Jasienska,	2020).		
	 	



Results	
Our	baseline	sample	consisted	of	825	young	female	participants	in	the	Cebu	Longitudinal	Health	
and	Nutrition	Survey	(CLHNS).	The	CLHNS	is	a	prospective	1-year	birth	cohort	study	started	in	
1983	with	the	enrollment	of	3327	pregnant	women	and	their	offspring	in	the	Cebu	Metropolitan	
Area	in	the	Philippines.	The	women	in	our	sample	are	members	of	the	original	birth	cohort,	and	
have	been	participating	in	the	study	since	birth	(see	Adair	et	al.,	2011;	Kuzawa	et	al.,	2020).	
	
At	baseline,	women	were	on	average	21.7	±	0.36	years	old	(range	20.8-22.5y).	Of	825	women	in	the	
study,	314	had	a	history	of	at	least	one	pregnancy	at	baseline.	Within	this	group,	pregnancy	number	
ranged	from	1-5	(mean	1.61	±	0.82).	In	a	subset	of	331	participants	who	became	pregnant	at	least	
once	during	a	longitudinal	follow-up	conducted	from	2009-2014	(Table	1),	we	updated	
reproductive	histories	and	collected	additional	blood	samples	for	follow-up	DNAm	analysis.	DNAm	
was	collected	for	each	woman’s	last	pregnancy	during	the	follow-up	period,	which	ranged	in	time	
from	3.5-9	years	after	baseline	measurement.	During	this	time,	women	reported	having	been	
pregnant	between	1-8	times	(mean	2.31	±	1.11).	
	
Table	1.	Summary	of	sociodemographic	characteristics,	reproductive	histories,	and	DNAm	
measures	of	aging	for	women	in	the	full	baseline	sample	used	in	cross-sectional	analyses	(n	=	825)	
and	for	a	subsample	of	women	at	baseline	and	follow-up	used	in	the	longitudinal	analyses	(n	=	
331).	Data	come	from	the	Cebu	Longitudinal	Health	and	Nutrition	Survey	(CLHNS),	a	longitudinal	
study	of	health	and	development	based	in	Metropolitan	Cebu,	Philippines	and	described	in	more	
detail	in	the	methods	and	elsewhere	(Adair	et	al.,	2011;	Kuzawa	et	al.,	2020).	

	
	
Cross-sectional	analysis	of	reproductive	effort	and	biological	aging	
We	first	tested	if	women	who	had	been	pregnant	by	early	adulthood	were	biologically	older	than	
women	who	had	not	been	pregnant.	Following	our	pre-registered	analysis	plan	for	dealing	with	

Full baseline 
sample

Baseline Follow-up

N = 8251 N = 3311 N = 3311

Age 21.67 (0.36) 21.66 (0.35) 27.85 (1.53)

Pregnancy status at 
sampling

Not pregnant 761 (92%) 274 (83%) 0 (0%)

Pregnant 64 (7.8%) 57 (17%) 331 (100%)
Gravidity 0.61 (0.93) 0.89 (1.05) 3.11 (1.62)
Horvath -0.7 (3.9) -0.6 (4.0) 0.0 (3.6)
Hannum -0.3 (3.4) 0.1 (3.3) 0.09 (2.63)
PhenoAge 0.3 (4.3) 0.9 (4.3) 0.1 (4.4)
GrimAge -0.80 (2.35) -0.56 (2.32) -0.02 (2.03)
DunedinPACE 1.11 (0.12) 1.13 (0.12) 1.28 (0.10)
DNAmTL 0.04 (0.14) 0.02 (0.13) 0.00 (0.10)
Socioeconomic Score 0.00 (1.56) -0.32 (1.36) 0.02 (1.42)

Current Smoker (Y) 23 (2.8%) 7 (2.1%) 15 (4.5%)

Characteristic

1Mean (SD); n (%)



high-leverage	outliers,	we	fit	robust	models	as	defined	by	Yohai	(1987)	with	pregnancy	(ever	vs.	
never	pregnant)	as	the	exposure	and	six	DNAm	measures	of	aging	as	the	outcomes	of	interest.	
DNAm	measures	included	the	Horvath	and	Hannum	first	generation	clocks,	the	PhenoAge	and	
GrimAge	second-generation	clocks,	the	DunedinPACE	pace	of	aging	measure,	and	DNAmTL,	a	
DNAm	surrogate	measure	of	leukocyte	telomere	length.	As	covariates,	we	included:	a	composite	
measure	of	socioeconomic	status	that	included	all	sources	of	household	income,	education,	and	
assets	that	reflect	population-relevant	aspects	of	social	class;	a	measure	of	urbanicity	of	the	
participants’	primary	residence;	pregnancy	status	at	the	time	of	the	blood	sample;	smoking	status	
at	the	time	of	blood	sample;	and	the	top	ten	principal	components	of	genome-wide	genetic	
variation.	Additional	details	on	the	derivation	of	these	measures	are	provided	in	the	
Supplementary	Information.	
	
For	all	DNAm	measures	of	aging,	women	with	a	history	of	at	least	one	pregnancy	appeared	
biologically	older	than	women	who	had	never	been	pregnant	(Table	2,	Panel	A).	The	effect	sizes	
ranged	from	0.13	standard	deviations	for	the	GrimAge	clock	to	0.27	for	Horvath’s	clock	(Table	2,	
Panel	A).	As	expected,	the	effect	of	ever	having	been	pregnant	had	the	opposite	effect	on	DNAmTL	
(i.e.	pregnancy	was	associated	with	shorter	DNAmTL,	consistent	with	more	advanced	biological	
age).	These	effects	are	equivalent	to	between	3.7	and	13.1	months	of	accelerated	aging	for	first-	and	
second-generation	clocks,	an	accelerated	pace	of	aging	of	2%	per	year	according	to	DunedinPACE,	
and	a	shortening	of	0.03	kilobases	according	to	DNAmTL.	Results	for	both	robust	models	and	
ordinary	least	squares	models	including	high	leverage	data	points	are	provided	in	Table	S1.		
	
DNAm	in	blood	can	be	affected	by	leukocyte	composition	at	the	time	of	sampling	(Ziller	et	al.,	
2013),	which	may	be	reflected	in	DNAm	measures	of	aging	(Komaki	et	al.,	2022;	Zhang	et	al.,	2019).	
To	test	for	the	robustness	of	our	findings	to	differences	in	leukocyte	composition	between	women,	
we	refit	the	above	models	with	the	addition	of	estimates	of	CD4T,	CD8T,	Natural	Killer	cells,	B	cells,	
Monocytes,	and	Granulocytes	(Houseman	et	al.,	2012).	As	with	models	that	did	not	include	cell	
counts,	women	with	a	history	of	at	least	one	pregnancy	appeared	biologically	older	than	women	
who	had	never	been	pregnant	for	all	DNAm	measures	of	aging.	Results	for	both	robust	models	and	
ordinary	least	squares	models	including	high	leverage	data	points	and	controlling	for	cell	counts	
are	provided	in	Table	S2.		
	
Next,	we	tested	whether	women	who	experienced	a	greater	number	of	pregnancies	appeared	
biologically	older	than	women	with	fewer	or	no	pregnancies.	We	again	fit	robust	models	as	defined	
by	Yohai	(1987),	with	gravidity	(number	of	pregnancies)	as	the	exposure	of	interest,	and	the	same	
six	DNAm	measures	of	aging	as	the	outcomes	of	interest.	Socioeconomic	status,	urbanicity,	
pregnancy	status,	genetic	variation,	and	smoking	status	were	again	included	as	covariates.	For	all	
DNAm	measures	of	aging,	women	with	a	history	of	more	pregnancies	looked	biologically	older	than	
women	with	fewer	pregnancies	(Table	2,	Panel	B).	The	per	pregnancy	effect	sizes	ranged	from	
0.05	standard	deviations	for	the	GrimAge	clock	to	0.12	standard	deviations	for	DunedinPACE.	
These	effects	are	equivalent	to	between	1.4	and	5.2	months	per	pregnancy	for	first-	and	second-
generation	clocks,	an	accelerated	pace	of	aging	of	1%	per	year	per	pregnancy	according	to	
DunedinPACE,	and	shortening	of	0.013	kilobases	per	pregnancy	according	to	DNAmTL.	Results	for	
both	robust	models	and	ordinary	least	squares	models	are	provided	in	Table	S3.	Gradients	in	
biological	aging	by	number	of	pregnancies	at	study	baseline	are	shown	in	Figure	1.		
	
Our	analysis	of	the	effect	of	pregnancy	number	on	DNAm	measures	of	aging	including	immune	cell	
composition	yielded	similar	results.	Results	for	both	robust	models	and	ordinary	least	squares	
models	controlling	for	cell	counts	are	provided	in	Table	S4.



Table	2.	Relationship	between	measures	of	reproductive	effort	and	six	DNAm	measures	of	biological	aging	in	825	young	women	in	the	
Philippines.	Panel	A	shows	the	relationship	between	pregnancy	(ever	pregnant	vs.	never	pregnant)	and	cross-sectional	DNAm	measures	
of	aging.	Panel	B	shows	the	relationship	between	pregnancy	number	and	cross-sectional	DNAm	measures	of	aging.	Estimates	and	95%	
confidence	intervals	are	in	standard	deviations,	equivalent	to	Cohen’s	d,	and	p-values	below	alpha	of	0.05	are	bolded.		
	

	
	

Predictors Estimates p Estimates p Estimates p Estimates p Estimates p Estimates p
0.27 <0.001 0.17 0.019 0.25 0.001 0.13 0.065 0.24 0.001 -0.2 0.008

(0.14 – 0.40) (0.03 – 0.32) (0.10 – 0.39) (-0.01 – 0.28) (0.10 – 0.38) (-0.35 – -0.05)
Observations 825 825 825 825 825 825
R2 / R2 adjusted 0.059 / 0.040 0.107 / 0.090 0.170 / 0.153 0.203 / 0.187 0.231 / 0.216 0.108 / 0.090

Predictors Estimates p Estimates p Estimates p Estimates p Estimates p Estimates p
0.11 0.002 0.08 0.030 0.08 0.041 0.05 0.194 0.12 0.002 -0.09 0.031

(0.04, 0.18) (0.01, 0.15) (0.00, 0.16) (-0.03, 0.13) (0.05, 0.20) (-0.17, -0.01)
Observations 825 825 825 825 825 825
R2 / R2 adjusted 0.051 / 0.032 0.106 / 0.088 0.162 / 0.146 0.201 / 0.185 0.230 / 0.214 0.105 / 0.087

Panel B. Relationship between pregnancy (number of times pregnant) and cross-sectional DNAm measures of biological aging
Horvath Hannum PhenoAge GrimAge Dunedin PACE DNAmTL

Gravidity

Ever Pregnant (Yes)

Panel A. Relationship between pregnancy (ever pregnant vs. never pregnant) and cross-sectional DNAm measures of biological aging
Horvath Hannum PhenoAge GrimAge Dunedin PACE DNAmTL



	
Figure	1.	Cross-sectional	relationship	between	number	of	pregnancies	and	first	(Horvath,	Hannum)	
and	second	(PhenoAge,	GrimAge)	generation	epigenetic	clocks,	DunedinPACE	pace	of	aging,	and	a	
DNAm	surrogate	measure	for	leukocyte	telomere	length	(DNAmTL).	Higher	values	for	all	clocks	
correspond	to	accelerated	biological	aging,	except	for	DNAmTL,	where	lower	values	correspond	to	
shorter	telomere	length	and	accelerated	aging.	Four	high	leverage	data	points	identified	during	
model	diagnostics	are	excluded	from	the	figure,	and	models	were	run	using	robust	regression.	
Results	for	both	robust	and	ordinary	least	squares	models	are	provided	in	Table	S2.	
	
Longitudinal	changes	in	reproductive	effort	and	epigenetic	aging		
We	next	asked	whether	the	pace	of	biological	aging	that	women	experienced	during	the	follow-up	
period	was	related	to	their	number	of	new	pregnancies	during	that	period.	This	approach	
minimizes	individual	variability	in	health	and	access	to	resources	that	may	confound	cross-
sectional	findings,	and	allowed	us	to	test	whether	greater	increases	in	reproductive	effort	between	
baseline	and	follow-up	were	associated	with	accelerated	biological	aging.		
	
Women	who	had	more	pregnancies	between	baseline	and	follow-up	showed	greater	changes	in	
both	Horvath	and	Hannum	first-generation	clocks,	but	no	significant	changes	according	to	any	of	
the	other	DNAm	measures	of	aging	(Table	3).	Horvath	and	Hannum	effect	sizes	were	similar	to	
those	of	our	cross-sectional	analysis.	Horvath	epigenetic	age	increased	0.06	standard	deviations	–	
equivalent	to	2.9	months	–	for	each	additional	pregnancy	(95%	CI	b	=	0.01-0.11,	p	=	0.024).	
Hannum’s	epigenetic	clock	increased	0.06	standard	deviations	–	equivalent	to	2.4	months	–	for	each	
additional	pregnancy	(95%	CI	b	=	0.01-0.11,	p	=	0.026).	Results	for	both	robust	models	and	
ordinary	least	squares	models	are	provided	in	Table	S5.	Gradients	in	changes	in	DNAm	measures	
of	aging	by	change	in	pregnancy	number	between	baseline	and	follow-up	are	shown	in	Figure	2.		



	
Our	sensitivity	analysis	that	included	changes	in	immune	cell	composition	yielded	similar	results.	
Results	for	both	robust	models	and	ordinary	least	squares	models	controlling	for	cell	counts	are	
provided	in	Table	S6.	
	



Table	3.	Relationship	between	longitudinal	changes	in	reproductive	effort	and	changes	in	six	DNAm	measures	of	biological	aging	in	331	
young	women	in	the	Philippines.	Estimates	and	95%	confidence	intervals	are	in	standard	deviations,	equivalent	to	Cohen’s	d,	and	p-values	
below	alpha	of	0.05	are	bolded.	

	
	

Predictors Estimates p Estimates p Estimates p Estimates p Estimates p Estimates p
0.06 0.06 -0.03 -0.03 -0.03 -0.01

(0.01, 0.11) (0.01, 0.11) (-0.12, 0.05) (-0.12, 0.05) (-0.10, 0.03) (-0.07, 0.06)
Observations 331 331 331 331 331 331
R2 / R2 adjusted 0.485 / 0.457 0.711 / 0.695 0.438 / 0.408 0.522 / 0.496 0.513 / 0.487 0.513 / 0.486

0.884DGravidity 0.024 0.026 0.419 0.441 0.329

Relationship between longitudinal changes in pregnancy number and  longitudinal changes in DNAm measures of biological aging
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Figure	2.	Longitudinal	association	between	change	in	pregnancy	number	and	change	in	biological	
aging	measured	using	and	first	(Horvath,	Hannum)	and	second	(PhenoAge,	GrimAge)	generation	
epigenetic	clocks,	DunedinPACE	pace	of	aging,	and	a	DNAm	surrogate	measure	for	leukocyte	
telomere	length	(DNAmTL).	Higher	values	for	all	clocks	correspond	to	accelerated	biological	aging,	
except	for	DNAmTL,	where	lower	values	correspond	to	shorter	telomere	length	and	accelerated	
aging.	Four	high	leverage	data	points	identified	during	model	diagnostics	are	excluded	from	the	
figure,	and	models	were	run	using	robust	regression.	Results	for	both	robust	and	ordinary	least	
squares	models	are	provided	in	Table	S5.	
	
	



Discussion	
Using	six	DNAm	measures	shown	to	predict	mortality	risk,	physiological	dysregulation,	and	
biological	decline,	we	provide	evidence	that	women	with	a	history	of	at	least	one	pregnancy	
exhibited	faster	biological	aging	compared	to	those	without	a	history	of	pregnancy.	We	also	show	
that	women	who	had	experienced	a	greater	number	of	pregnancies	by	early	adulthood	exhibited	
faster	biological	aging.	Longitudinally,	women	who	experienced	a	greater	number	of	pregnancies	
between	baseline	and	follow-up	exhibited	faster	rates	of	biological	aging	using	the	Horvath	and	
Hannum	clocks.	These	relationships	were	robust	to	potential	social,	environmental,	and	genetic	
confounding	in	the	form	of	socioeconomic	status	and	measures	of	urbanicity,	smoking,	and	genetic	
variation,	and	were	not	substantively	modified	by	adjustment	for	differences	in	estimated	cell	
composition.	Taken	together,	these	findings	provide	evidence	that	pregnancy	accelerates	molecular	
aging	in	a	healthy,	young	adult	population.	
	
Our	findings	are	consistent	with	our	preregistered	hypotheses	based	on	evolutionary	theory,	and	
are	in	broad	agreement	with	previous	cross-sectional	work	documenting	relationships	between	
reproductive	effort	and	DNAm	measures	of	biological	age.	In	a	pilot	sample	from	this	population,	
we	previously	reported	that	gravidity	was	associated	with	accelerated	aging	using	Horvath’s	clock	
as	well	as	leukocyte	telomere	length,	another	measure	of	molecular	aging	(Ryan	et	al.,	2018).	
Similarly,	Kresovich	and	colleagues	found	evidence	that	parity	was	associated	with	faster	Horvath,	
Hannum,	and	PhenoAge	clocks	in	a	large	sample	of	American	women	participating	in	the	Sister	
Study	(Kresovich	et	al.,	2019).	Notably,	the	standardized	effect	sizes	reported	by	Kresovich	et	al.	for	
both	Horvath	and	Hannum	clocks	are	comparable	to	those	reported	here	(Horvath	b=0.10	vs.	0.11;	
Hannum	b=0.12	vs.	0.08).	These	findings	contrast	with	a	recent	cross-sectional	study	among	young	
Finnish	women,	which	reported	no	relationship	between	nationally-registered	births	and	four	
measures	of	epigenetic	aging	(Harville	et	al.,	2021).	To	the	extent	that	individual	differences	in	
access	to	resources	and	factors	like	healthcare	might	obscure	tradeoffs	at	the	population	level,	
social	and	economic	differences	between	countries	may	partly	explain	these	divergent	findings.	The	
women	in	our	study	come	mostly	from	low	or	middle-income	households,	have	limited	state-level	
social	support,	and	variable	access	to	high-quality	healthcare	(Adair	et	al.,	2011).	Furthermore,	our	
study	is	characterized	by	comparatively	high	fertility	and	early	age	at	reproductive	debut.	Support	
for	costs	of	reproduction	on	biological	aging	in	the	CLHNS	is	consistent	with	the	expectation	that	
tradeoffs	between	reproduction	and	somatic	maintenance	will	be	greatest	when	resources	are	
limited,	reproductive	effort	is	high,	and	when	pregnancy	overlaps	temporally	with	late	adolescent	
growth	(Jasienska,	2020).		
	
Our	cross-sectional	analyses	are	consistent	with	an	effect	of	gravidity	on	the	pace	of	biological	
aging.		Although	we	control	for	potential	social,	environmental,	genetic,	and	immunological	
confounders,	estimates	of	the	effect	of	pregnancy	on	biological	aging	using	cross-sectional	data	
could	be	sensitive	to	residual	confounding	by	variation	not	captured	using	these	measures.	
Longitudinal	approaches	that	model	the	predictors	of	change	in	the	outcome	over	time	minimize	
the	impact	of	factors	that	vary	across	individuals	but	are	stable	within	individuals	over	time	(e.g.	
birth	weight,	early	growth	and	development,	family	socioeconomic	stratum,	parental	
education)(Singer	et	al.,	2003).	Using	this	longitudinal	approach,	we	found	that	women	who	had	
more	pregnancies	between	baseline	and	follow-up	aged	more	quickly	according	to	both	Horvath	
and	Hannum	clocks.	To	our	knowledge,	this	is	the	first	study	connecting	longitudinal	changes	in	
pregnancy	number	to	longitudinal	changes	in	DNAm	measures	of	aging,	thus	providing	a	stronger	
basis	for	causal	inference.		
	



It	is	unclear	why	the	effect	of	gravidity	on	longitudinal	changes	in	epigenetic	age	were	present	for	
Horvath	and	Hannum	clocks,	but	not	the	other	DNAm	measures	of	aging	we	examined.	One	
potential	explanatory	factor	is	the	underlying	construction	of	the	various	DNAm	measures	of	aging,	
which	differ	in	the	predictive	targets	and	data	used	in	their	development.	Both	Horvath	and	
Hannum	were	trained	using	machine-learning	algorithms	to	predict	chronological	age.	In	contrast,	
PhenoAge,	GrimAge,	and	DunedinPACE	were	trained	using	measures	of	blood	chemistry,	
physiology,	and	organ-system	integrity,	and	were	built	using	samples	from	high-income,	Western	
settings	(Belsky	et	al.,	2021;	Levine	et	al.,	2018;	Lu	et	al.,	2019).	The	metabolic,	immunological,	and	
inflammatory	profiles	prevalent	in	high-income,	Western	settings	often	differ	from	those	observed	
in	the	CLHNS	and	other	non-Western	contexts	(McDade	et	al.,	2010,	2009).	More	importantly,	all	of	
our	follow-up	samples	were	taken	from	pregnant	women,	whose	metabolic,	physiological	and	
immunological	profiles	–	as	well	as	methylomes	–	are	quite	different	from	the	largely	non-pregnant	
population	used	in	the	training	datasets	(Gruzieva	et	al.,	2019;	Miller,	2009;	Ryan	et	al.,	2022).	As	a	
result,	PhenoAge,	GrimAge,	and	DunedinPACE	may	be	less	well-suited	to	detect	mortality	and	
physiological	decline	in	our	study.		
	
First-generation	Horvath	and	Hannum	clocks	trained	on	chronological	age	may	therefore	be	less	
sensitive	to	differences	between	populations	and	to	reproductive	status.	Alternatively,	the	fact	that	
we	detected	a	longitudinal	relationship	between	gravidity	and	DNAm	age	for	Horvath	and	Hannum	
clocks	alone	could	reflect	an	artifact	of	the	clocks	themselves.	Both	of	these	clocks	were	trained	to	
predict	chronological	age	blind	to	other	age-correlated	variables,	including	reproductive	effort	
(Hannum	et	al.,	2013;	Horvath,	2013).	It	is	possible,	therefore,	that	some	portion	of	the	
chronological	age-associated	signal	in	Horvath	and	Hannum	clocks	reflects	gravidity	in	the	training	
dataset,	which	by	necessity	is	positively	correlated	with	chronological	age.	While	it	is	difficult	to	
test	this	theory	in	the	original	data	used	to	develop	Horvath	and	Hannum	clocks,	which	lack	
information	on	reproductive	history,	other	approaches,	such	as	simulations	generating	
chronological	age	clocks	with	and	without	reproductive	history	as	a	covariate	in	the	training	data,	
may	help	to	resolve	this	question.		
	
Our	findings	should	be	interpreted	in	the	context	of	several	limitations.	First,	we	used	gravidity	–	
the	number	of	pregnancies	–	as	a	proxy	for	reproductive	effort,	and	did	not	include	other	forms	of	
reproductive	investment,	such	as	breastfeeding	and	child-rearing	(Jasienska,	2020).	Pregnancy	
number	provides	an	unambiguous	measure	of	reproductive	effort	compared	to	breastfeeding	or	
child-rearing,	which	are	highly	heterogeneous	and	often	socially-stratified	(Ekholuenetale	et	al.,	
2021).	However,	tallying	the	number	of	pregnancies	is	unlikely	to	fully	reflect	reproductive	
investment,	thus	underestimating	the	costs	of	reproduction	in	these	women	(Jasienska,	2020).	A	
second	limitation	is	the	use	of	relatively	young	women	in	both	cross-sectional	and	longitudinal	
analyses.	If	the	costs	of	reproduction	are	cumulative,	becoming	most	evident	at	older	ages	and	
higher	parity,	our	analysis	may	not	capture	the	full	impact	of	pregnancy	on	DNAm	measures	of	
biological	aging.	Work	in	at	least	one	large	representative	sample	of	American	women	suggests	that	
the	effect	of	reproductive	effort	on	biological	aging	may	not	be	fully	apparent	until	later	in	life	
(Shirazi	et	al.,	2020).	If	this	is	the	case	in	the	Philippines,	our	focus	on	young	women	would	tend	to	
underestimate	the	effect	of	gravidity	on	DNAm	measures	of	biological	aging.	Third,	we	are	not	yet	
able	to	link	these	DNAm	measures	of	biological	to	morbidity	and	mortality	in	later	life	in	this	
population.	While	such	links	are	now	well-established	among	older	individuals	in	the	USA	and	
Europe,	the	connection	between	faster	biological	aging	and	morbidity	and	mortality	in	young	
people,	and	in	individuals	living	in	non-Western	contexts	–	where	physiological	and	molecular	
aging	follows	different	trajectories	(e.g.	Horvath	et	al.,	2016)	–	is	still	unclear.	Future	work	
validating	the	predictive	ability	of	DNAm	measures	of	aging	among	younger	individuals,	and	in	
more	socioecologically	diverse	global	samples	like	the	Philippines,	is	urgently	needed.	



	
Conclusions	
This	is	the	first	pre-registered,	large-scale	study	to	examine	a	suite	of	DNAm	measures	of	aging	in	
young	women	in	a	high	fertility	context	while	controlling	for	a	range	of	social,	environmental,	
genetic,	and	immunological	confounders.	We	find	support	for	an	effect	of	gravidity	on	DNAm	
measures	of	aging,	consistent	with	theorized	tradeoffs	between	reproduction	and	aging	and	
supported	by	epidemiological	findings	that	high	reproductive	effort	may	increase	the	risk	for	a	
range	of	diseases	and	early	mortality.	These	findings	suggest	that	gravidity	accelerates	biological	
aging	early	in	women’s	reproductive	careers,	and	that	these	effects	may	be	detectable	starting	at	a	
relatively	young	age.	
	 	



Methods	
	
Population	and	Study	Context	
Data	are	derived	from	the	Cebu	Longitudinal	Health	and	Nutrition	Survey	(CLHNS),	a	birth	cohort	
study	started	in	1983-84	in	Metropolitan	Cebu,	Philippines,	and	are	available	for	download	at:	
https://dataverse.unc.edu/dataverse/cebu.	The	current	study	focuses	on	surveys	conducted	in	
2005	(baseline)	and	2009-2014	(follow-up).	Descriptive	statistics	of	both	baseline	and	follow-up	
samples	are	provided	in	Table	1.	Surveys	were	conducted	in-home	by	a	trained	interviewer,	and	
included	questions	about	mental	and	physical	health,	behavior,	socioecological	context.	A	subset	of	
questions	focused	on	reproductive	history,	including	number	of	known	pregnancies,	their	duration,	
and	outcomes.	Pregnancy	status	in	2005	was	reported	at	the	time	of	sampling,	and	through	back-
calculation	from	subsequent	surveys	based	on	parturition	within	9	months	of	the	original	interview	
(all	past	pregnancies	and	their	outcomes	are	recorded	as	part	of	ongoing	tracking	process).	
Household	income,	parental	education,	and	assets	were	used	to	create	a	composite	score	of	
socioeconomic	status,	described	in	more	detail	in	Ryan	et	al.	(2018)	and	in	the	Supplementary	
Information.	Follow-up	samples	focused	on	a	subset	of	participants	enrolled	in	additional	surveys	
tracking	new	pregnancies	between	2009-2014.	Informed	consent	was	obtained	from	all	
participants	and	data	collection	was	conducted	with	approval	and	in	accordance	with	the	
Institutional	Review	Boards	of	the	University	of	North	Carolina	at	Chapel	Hill,	the	Office	of	
Population	Studies	Foundation,	and	Northwestern	University		
	
DNA	methylation	and	Epigenetic	Clocks	
Blood	samples	for	DNA	methylation	were	collected	concurrent	with	in-home	interviews.	Baseline	
blood	samples	were	collected	in	EDTA-coated	vacutainer	tubes	from	overnight	fasted	subjects.	
Follow-up	blood	samples	were	collected	using	capillary	whole	blood	collected	on	filter	paper.	DNA	
was	extracted	using	a	standard	protocol;	750ng	of	genomic	DNA	was	treated	with	sodium	bisulfite	
(Zyme	EZDNA,	Zymo	Research,	Irvine,	CA,	USA)	and	160ng	of	converted	DNA	was	applied	to	the	
Illumina	Infinium	MethylationEPIC	BeadChip	under	standard	conditions	(Illumina	Inc.,	San	Diego,	
CA,	USA).	Technicians	were	blind	to	information	regarding	participant	characteristics,	and	samples	
were	randomly	assigned	to	plate,	chip,	and	row.	Background	subtraction	and	color	correction	were	
performed	using	Illumina	Genome	Studio	with	default	parameters.	Data	were	then	exported	into	R	
for	further	analysis.	Quality	control	for	baseline	was	performed	as	part	of	a	larger	sample	to	
confirm	participant	sex	and	replicate	status.	This	was	followed	by	quantile	normalization	on	all	
probes	including	SNP-associated	and	XY	multiple	binding	probes.	To	maximize	the	number	of	sites	
available	for	the	epigenetic	age	calculator,	probes	with	detection	p-values	above	0.01	were	called	
NA	for	poor	performing	samples	only	and	were	otherwise	retained	(Ryan	2020).	The	same	quality	
control	steps	were	followed	for	follow-up	samples.	DNAmAge	for	DNAmHorvath,	DNAmHannum,	
DNAmPheno,	DNAmGrim,	and	DNAmTL	clocks	were	calculated	using	the	online	calculator	
(http://labs.genetics.ucla.edu/horvath/dnamage/).	Background-corrected	beta	values	were	
processed	further	using	the	calculator’s	internal	normalization	algorithms.	The	DNAmPACE	clock	
was	generated	using	the	DunedinPACE	calculator,	available	at	
(https://github.com/danbelsky/DunedinPACE).	
	
Statistical	Methods	
We	first	examined	cross-sectional	DNAm	measures	of	aging	for	women	at	baseline	who	had	never	
been	pregnant	compared	to	those	who	had.	We	next	examined	the	relationship	between	cross-
sectional	DNAm	measures	of	aging	and	gravidity	as	a	continuous	variable.	In	both	cases,	DNAm	
measures	of	aging	were	the	outcome	of	interest,	with	age,	gravidity,	pregnancy	status	at	the	time	of	
blood	sampling,	composite	score	of	socioeconomic	status,	an	urbanicity	score	(Dahly	and	Adair,	



2007),	smoking	status,	and	the	top-10	principal	components	of	genetic	variation	as	covariates.	
Exploratory	data	analysis	and	quality	checks	revealed	potential	outliers	with	values	greater	than	3	
standard	deviations	from	the	mean	for	several	epigenetic	clocks.	In	accordance	with	our	pre-
registration	analysis	plan	(https://osf.io/mqb37),	we	fit	ordinary	least	squares	models	including	
these	values	and	examined	diagnostics	plots.	These	extreme	observations	had	large	Cook’s	
distances	and	were	high	leverage,	with	influential	effects	on	model	estimates	(Figures	S1	and	S2).	
Again,	in	accordance	with	our	preregistration	protocol,	we	fit	all	models	using	a	robust	regression	
method	defined	by	Yohai	(1987).	Results	shown	in	the	manuscript	are	for	models	fit	with	robust	
regression,	but	both	approaches	yielded	qualitatively	similar	results.	Results	for	ordinary	least	
squares	regression	including	high-leverage	outliers	are	provided	in	the	Supplementary	
Information.	Next,	we	fit	modelled	longitudinal	effects	of	reproduction	by	examining	whether	
changes	in	DNAm	measures	of	aging	were	associated	with	changes	in	gravidity.	Here,	change	in	
DNAm	measures	of	aging	were	the	outcome	of	interest,	changes	in	gravidity	was	the	predictor	of	
interest,	and	change	in	age,	baseline	pregnancy	status	at	the	time	of	blood	sampling,	composite	
score	of	socioeconomic	status,	urbanicity	score,	smoking	status,	and	the	top-10	principal	
components	of	genetic	variation	were	included	as	covariates.	Finally,	we	ran	sensitivity	analyses	on	
all	models	that	included	bioinformatically	estimated	proportions	of	CD4T,	CD8T,	Natural	Killer	
(NK),	B	cell,	Monocytes,	and	Granulocytes	(Houseman	et	al.,	2012).	Cross-sectional	analyses	at	
baseline	included	baseline	measures	of	immune	cell	counts,	while	longitudinal	models	included	
changes	in	cell	counts	between	baseline	and	follow-up.		
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