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1. Introduction

How should an online platform allocate fees between buyers and sellers? What antitrust damages

should be awarded when the platform raises fees anticompetitively? The theoretical literature on

two-sided markets emphasizes that both the platform’s revenue-maximizing fee structure and the

welfare impacts of those fees are theoretically ambiguous (Evans (2003), Rochet and Tirole (2006),

Rysman (2009)). It is widely understood that both sides of the market are in theory affected

by price changes on either side and that welfare impacts ultimately depend on the externalities

that platform users impose on each other. However, only rough guidance regarding the relevant

factors informing the incidence of harm or optimal pricing is provided by the theoretical literature

on platform economics, and the empirical literature that estimates those externalities in practice

is still underdeveloped. It is of immediate importance to make progress toward this end; the

difficulty of quantifying user interactions is a bottleneck in the regulation of these increasingly

popular platform markets.1

This paper develops a structural auction platform model with endogenous entry of bidders and

sellers in order to quantify network externalities in such a market. In line with the wider empirical

auction literature, it exploits a relatively controlled auction environment where strategic interac-

tions are accurately described by the equilibrium properties of an incomplete information game.2

Payoffs and equilibrium actions characterize precisely how the entry of an additional user onto the

platform affects the surplus of other users, providing a microfoundation for the platform’s network

externalities. With this novel approach, the identification of network externalities follows from

the identification of primitives of the structural model.3 An added benefit is that this allows such

externalities to be non-linear, depending on the shapes of the latent bidder and seller valuations

and their entry costs.

The paper also presents the first structural auction model with selective seller entry (see Hortaçsu

and Perrigne (2021)), which is an important feature of many platform markets. Seller selection

generates an interaction effect that is relevant for identifying how fee changes affect welfare. Bidders

in an auction platform expect lower (reservation) prices when sellers who value their goods less are

1For example, sellers claiming that eBay charged supracompetitive fees were denied a class action suit in 2010 due to the
absence of a method for quantifying damages in the presence of network effects (Tracer (2011)). Moreover, the 2018 landmark
Supreme Court decision in Ohio v. American Express Co. stipulated that plaintiffs must show harm on both sides of the
market (see, e.g., https://www.nytimes.com/2018/06/25/us/politics/supreme-court-american-express-fees.html, last accessed
December 23, 2021), increasing the urgency of the need for empirical two-sided market studies. See also Bomse and Westrich
(2005) and Evans and Schmalensee (2013).

2See Hendricks and Porter (2007) on the close links between auction theory, empirical practice and public policy.
3Empirical two-sided market papers instead rely on exclusion restrictions to overcome the reflection problem noted by Manski

(1993), as discussed by Rysman (2019) and Jullien, Pavan, and Rysman (2021). For example (taken from Jullien, Pavan, and
Rysman (2021)), a direct network effect can be identified in a model where the technology adoption decision of an agent is a
linear function of the number of other agents of the same type already adopting the technology and agent characteristics that
affect their own utility from adoption but that are excluded from the utility of other agents.

https://www.nytimes.com/2018/06/25/us/politics/supreme-court-american-express-fees.html


ESTIMATING AN AUCTION PLATFORM GAME WITH TWO-SIDED ENTRY 3

attracted to the platform, so bidder entry depends on both the expected number of sellers who enter

and their types.4 Quantifying the buyer-seller interaction and how it affects entry is important,

as many markets are designed to sell goods or services from heterogeneous sellers.5 For example,

the peer-to-peer lending market, which is expected to grow globally to over US$ 700 billion by

2030, is designed for individual lenders to invest in loans by heterogeneous borrowers.6 Selection

is a highly-relevant aspect of the business model; attracting more creditworthy borrowers makes a

lending platform more valuable to potential investors. By the same reasoning, platforms in the gig

economy –already employing one-third of the US workforce– will be more valuable to job posters

when they have a larger pool of qualified freelancers.7

The analysis exploits a new dataset of vintage wine auctions from an online marketplace that ex-

hibits the high-level characteristics of such peer-to-peer platforms. Most importantly, the reduced-

form evidence suggests that heterogeneous sellers enter selectively while bidders learn their valua-

tions after entry. Both results are compelling in this context. Sellers own the wine before creating

a listing on the platform and would know how much they value it. Bidders first need to understand

the wine’s many idiosyncrasies, such as its fill level (informative about the amount of oxidation),

whether it is stored in a temperature-controlled bonded warehouse, its provenance, delivery costs,

and more.

Building on these empirical facts, a suitable auction platform game with two-sided entry is

specified. Values are assumed to be private and independent across bidders and sellers, conditional

on auction observables, and entry is sequential. Sellers who enter pay the listing fee and the latent

opportunity cost of time and set a secret reserve price. Bidders who enter face an entry cost that

is associated with inspecting the listing, learn their valuation, and place a bid. It is shown that

the relevant distribution of conditional seller valuations (e.g., marginal costs) is identified in this

model for any counterfactual fee policy that reduces expected seller surplus, resulting, for instance,

from unilateral fee increases. Parametric assumptions are needed to extend identification beyond

this point. Another key result is that the two-sided entry equilibrium is the unique solution to a

fixed-point problem in seller valuation space with a nested zero-profit entry condition on the bidder

4The importance of such an effect for auction platform profitability was first postulated in Ellison, Fudenberg, and Mobius
(2004), but to date, it has not been modeled or addressed empirically. The authors hypothesized that a major reason why
Yahoo! and Amazon were unsuccessful as auction platforms was their zero listing fee policy, which attracted high reserve price
sellers that in turn deterred bidders from joining the platforms.

5At a high level, many peer-to-peer platforms such as Prosper, Upwork, Uship, Vinted, ClassicCarAuctions, or Bondora fit
the characterization.

6The market forecast is available at https://www.precedenceresearch.com/peer-to-peer-lending-market, last accessed Jan-
uary 16, 2023.

7See https://www.forbes.com/sites/forbesbusinesscouncil/2021/08/12/will-the-gig-economy-become-the-new-working-
class-norm/?sh=55d299fdaee6, last accessed January 17, 2023.

https://www.precedenceresearch.com/peer-to-peer-lending-market
https://www.forbes.com/sites/forbesbusinesscouncil/2021/08/12/will-the-gig-economy-become-the-new-working-class-norm/?sh=55d299fdaee6
https://www.forbes.com/sites/forbesbusinesscouncil/2021/08/12/will-the-gig-economy-become-the-new-working-class-norm/?sh=55d299fdaee6
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side.8

The two-sided entry setting with seller selection does complicate the estimation of the distribution

of seller valuations. First, the support for the distribution of reserve prices depends on the param-

eters to be estimated. Second, a full solution method that computes the equilibrium for each set

of candidate parameters is costly to implement —as with the Rust (1987) nested fixed-point algo-

rithm. Both issues are addressed by an estimation algorithm that resembles the Aguirregabiria and

Mira (2002) Nested Pseudo Likelihood estimator for single agent dynamic discrete choice games.9

The estimated model primitives are used to perform three sets of counterfactual analyses, shed-

ding light on the implications of seller selection for this market, the welfare effects of fee changes,

and the effect of the fee structure on platform profits.

The result that most clearly underscores the role of seller selection in the two-sided platform

setting is that the reduction in seller surplus after a unit increase of the listing fee is less than one.

It is driven by the positive externality that the exclusion of higher-valuation (cost) sellers from the

platform has on other sellers, as this exclusion increases the equilibrium number of bidders in all

remaining listings.10 Consequentially, it is estimated that a 1 British Pound Sterling (henceforth:

pound) increase in the listing fee lowers the expected surplus for sellers who remain on the platform

by only 65-87 pence. The loss in surplus is less for sellers with lower values and for all inframarginal

sellers when there is greater seller heterogeneity. Moreover, all users are better off when the 1 pound

higher listing fee is paired with a budget-neutral bidder entry subsidy, including the sellers, who

pay more to create a listing. These results are especially interesting as they provide evidence for

the special circumstance in two-sided markets that users can be better off despite paying higher

fees.

A second set of simulations analyzes the canonical two-sided market pricing problem of how to

allocate fees to user groups. Results show that alternative fee structures can increase platform

revenues by more than 40 percent. It is particularly striking that winning bidders should be given

a discount on the transaction price when paired with a higher seller commission or listing fee. A

8It is furthermore shown that the same model with selective bidder entry, where bidders enter after knowing their valuation,
also results in a unique entry equilibrium (Appendix D). Reduced form evidence confirms that the random entry model where
bidders need to inspect a listing to learn their valuation is more suitable for the empirical setting.

9Specifically, the initial estimates maximize a concentrated likelihood function derived from the first-order condition char-
acterizing optimal reserve prices, given a consistent estimate of the equilibrium seller entry threshold. These results are used in
the next step to compute the equilibrium seller entry threshold, and parameters are re-estimated by maximizing the likelihood
function concentrated at that value. The algorithm is guaranteed to converge in this setting by the uniqueness property of the
entry equilibrium, and therefore not subject to concerns about non-convergence expressed in Pesendorfer and Schmidt-Dengler
(2010), Kasahara and Shimotsu (2012), and Egesdal, Lai, and Su (2015).

10This is referred to as a “lemons effect” (after Akerlof (1970)), to emphasize that it crucially relies on the presence of private
information by users on one side of the market about something that users on the other side of the market care about. In the
auction platform setting, the lemons effect arises because bidders enter based on the expected distribution of unobserved reserve
prices. In peer-to-peer lending platforms it would apply when borrowers have private information about their creditworthiness,
as lenders care about the repayment probability (conditional on borrower observables).
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negative buyer commission would certainly be innovative for auction platforms but would resemble

pricing in other two-sided markets, such as cash-back policies on credit cards or free drinks for early

club-goers. Below-marginal cost pricing is in fact consistent with subsidizing users who generate

larger indirect network effects (Rysman (2009)).

Third, the model estimates facilitate the estimation of currently hard-to-measure antitrust dam-

ages from anticompetitive fee changes. The estimated damages from unilateral increases of com-

missions are larger than in simpler models without (seller) entry, and unlike what has been assumed

previously (in e.g., McAfee (1993), Ashenfelter and Graddy (2005), and Marks (2009)) even winning

bidders are affected. Their surplus decreases by 7.6 percent of the counterfactual hammer price

when the seller commission is doubled. However, 64 percent of the incidence of the damages falls

on sellers. These results are placed in the context of a high-profile 2001 Sotheby’s and Christie’s

commission-fixing case, where a simple (and flawed) rule of thumb was used to award most of the

$512 million settlement to winning bidders.

On the whole, the results underscore the importance of accounting for seller selection when

evaluating mechanism design changes for auction platforms and provide guidance for making much

needed progress in applying antitrust policy to specific two-sided markets. Moreover, the intuition

developed in this paper is not limited to auction settings alone; it also applies to posted-price

markets with heterogeneous sellers where sales volumes and prices are endogenous to the number

and type of users attracted to the platform.

Related literature. This paper builds on a large and influential literature on the nonparametric

identification and estimation of auction models. A comprehensive review is provided in a forth-

coming Handbook of Econometrics chapter by Hortaçsu and Perrigne (2021), which also places the

current paper in that literature.11 To summarize, the key methodological contribution of this paper

is that it develops and estimates a structural auction model with endogenous entry of heterogeneous

sellers and shows how the equilibrium entry decisions of bidders and sellers are interconnected in

an auction platform setting.

Related to the paper are structural analyses accounting for endogenous bidder entry, including

Kong (2020), Fang and Tang (2014), Li and Zheng (2012), Athey, Levin, and Seira (2011), and

Krasnokutskaya and Seim (2011). These papers use the commonly applied Levin and Smith (1994)

entry model—also part of the baseline model in this paper—in which bidders learn their values

after entering the auction. A model extension shows how the two-sided entry model functions in

the case of selective bidder entry, as in Samuelson (1985) and Menezes and Monteiro (2000), and

11The companion Handbook of Industrial Organization chapter on empirical auction papers, ?, also references the paper.
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by extension that the presented equilibrium results go through in the intermediate case of the

affiliated signal bidder entry model adopted by, e.g., Gentry and Li (2014), Roberts and Sweeting

(2013), and Ye (2007). The latter applies to marketplaces where bidders already know part of their

valuation before entry and requires an additional exclusion restriction for identification. While

almost the entire empirical auction literature adopts the perspective of one seller or assumes seller

homogeneity, Elyakime et al. (1994), Larsen and Zhang (2018), and Larsen (2020) are the few papers

accounting for seller heterogeneity but not entry. Recently, others have estimated demand in large

auction markets (e.g., Backus and Lewis (2016), Hendricks and Sorensen (2018), Bodoh-Creed,

Boehnke, and Hickman (2021), and Coey, Larsen, and Platt (2020)).12 These papers generally

focus on dynamic issues for relatively commoditized goods and rely on steady-state requirements

for tractability. Here, the listing inspection cost associated with idiosyncratic goods is exploited to

estimate a (static) two-sided auction platform model with seller heterogeneity.

Also relevant are studies on pricing and demand in two-sided markets (e.g., Lee (2013), Rysman

(2007), Ackerberg and Gowrisankaran (2006), Fradkin (2017), and Cullen and Farronato (2020)),

which build on an influential theoretical literature. A fundamental difference between the current

paper and these papers is that the structural auction model is used to quantify the expected user

surplus from entry as a function of the composition of buyers and sellers on the platform. Payoffs

from the auction platform game therefore provide a microfoundation for the platform’s network

externalities. These are simulated for counterfactual (fee) policies, resulting in a rich pattern of

direct and indirect nonlinear network effects. Typically, the empirical two-sided market literature

estimates linear effects by using instrumental variables or by relying on quasi-experimental vari-

ation.13 In a recent Handbook of Industrial Organization chapter, Jullien, Pavan, and Rysman

(2021) provide a comprehensive review of both the theory of two-sided markets and the applica-

tion of that theory. They additionally link the impact of seller selection found in this paper to an

analysis of seller selection into an internet brokerage platform in Hendel, Nevo, and Ortalo-Magné

(2009). Finally, Athey and Ellison (2011) and Gomes (2014) are conceptually related papers that

model the two-sidedness of position auctions.

The rest of the paper is organized as follows. Section 2 describes the data and provides empirical

facts related to the two-sided entry environment. Section 3 presents an auction platform game fitting

12Backus and Lewis (2016) propose a dynamic model that also accounts for bidder substitution across heterogeneous goods
and apply it in order to estimate demand for compact cameras on eBay. Hendricks and Sorensen (2018) study bidding behavior
for iPads with a model of sequential, overlapping auctions. To estimate the demand for Kindle e-readers, Bodoh-Creed, Boehnke,
and Hickman (2021) employ a dynamic search model with bidder entry. Coey, Larsen, and Platt (2020) model time-sensitive
consumer search and also evaluate the impact of changing the listing fee with that model.

13In addition, Lee (2013) estimates a dynamic network formation game in which heterogeneous consumers select into com-
peting platforms and Sokullu (2016) recovers nonlinear effects with a semiparametric estimator.
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to this empirical setting and solves for the equilibrium strategies. Nonparametric identification and

the estimation of model primitives is addressed in section 4. Structural estimates are presented in

section 5 and counterfactual simulations in section 6. Section 7 concludes.

2. Online wine auctions: empirical facts

Auction data for the empirical analysis in this paper come from the online auction platform

www.BidforWine.co.uk (BW). This platform offers a peer-to-peer marketplace for buyers and

sellers to trade their wine and caters (currently) to over 20,000 users. BW is one of 8 UK wine

auctioneers recognized by The Wine Society.14 Importantly, none of the other 7 intermediaries

provide a peer-to-peer format but instead work on consignment to trade on behalf of sellers. This

comes with additional shipping costs and value assessments by the intermediary, which is worthwhile

only for higher-end wine. This naturally positions BW at the lower end of the market.15 BW is

therefore taken to be a monopolist in the UK secondary market for lower-end fine wine, as its sellers

cannot readily switch to Bonhams or Sotheby’s when BW raises fees. To the extent that there are

local marketplaces for these products, their presence is captured by the opportunity cost of trading

on BW.

Items are sold through an English (ascending) auction mechanism with proxy bidding.16 A soft-

closing rule extends the end time of the auction by two minutes whenever a bid is placed in the

final two minutes of the auction. Therefore, there are no opportunities to use a bid sniping strategy

(bidding in the last few seconds, potentially aided by sniping software) on the BW platform. The

combination of proxy bidding with a soft closing rule suggests that the data are well approximated

by the second-price sealed bid auction model.

As in most empirical auction settings, bidder valuations are likely made up of both common

value and private value components. A few remarks regarding the suitability of the private values

assumption are warranted. First, conversations with the platform’s management suggest that users

who buy and sell wine on BW are reasonably informed about the factors that influence the quality

of a bottle of wine.17 For example, it is widely known that 1961 is a great Bordeaux vintage due

to favourable weather conditions, and that low fill levels (ullage) for the age of the wine point to

potential oxidation.18 These details and many more can be found on the listing page. This is

14The others are Bacchus, Bonhams, Chiswick, Christies, Sotheby’s, Sworders, and Tennants.
15Seller-managed listings are the focus of this paper. BW also offers consignment services for sales of large collections

exceeding five cases or for exclusive wines.
16Bidders submit a maximum bid, and the algorithm places their bids so that the current price is kept one increment above

the second-highest bid. When the highest bid is less than one increment above the second highest bid, the transaction price
remains the second highest bid. This differs from the pricing rule at eBay (see Hickman, Hubbard, and Paarsch (2017)).

17Management used the term “prosumers” to describe its user base; consumers with some specific knowledge of wine.
18To highlight the importance of weather conditions for wine quality, Ashenfelter (2008) predicts with surprising accuracy

www.BidforWine.co.uk
www.bacchuswineauctions.com
https://www.bonhams.com/press_release/30091/
https://www.chiswickauctions.co.uk/auction/details/26%20Mar%202020-Wine--Spirits?au=516
https://www.christies.com/departments/Wine-and-Spirits-61-1.aspx
https://www.sothebys.com/en/search-results.html?query=wine%20department
https://www.sworder.co.uk/
https://www.tennants.co.uk/departments/wine-whisky-spirits
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Table 1—: Fee structure in wine auction data

Fee Bidders / sellers Only if sold Notation Amount / rate For price range

Buyer premium Bidders ✓ cB 0
Seller commission Sellers ✓ cS 0.102 ≤ £200

0.090 £200.01- £1500
Listing fee Sellers eS £2.1

Notes. Fees include a 20 percent value-added tax. The platform also charges a reserve price fee that is made up of
0.50 pounds for raising the minimum bid and 0.25 pounds for adding a secret reserve price, but these are not part of
the analysis, which focuses on fee structure c = {cB , cS , eS}. Bidders and sellers furthermore face opportunity cost
of time from entering the platform.

important to point out because a common values model is appropriate when bidders expect that

other bidders possess additional information that would affect their own value of the wine, as in

the typical example of OCS oil and gas auctions. Another justification for a common values model

would be a resale motive, where bidders plan to sell the wine in the future at a higher price. Despite

any associations with luxury that readers might have—investment in luxury items such as art and

fine wine is increasingly common—the scope for profitable resale is limited in the context of the

lower-end fine wines in the sample. A bottle of wine in the main sample sells for 45 pounds on

average, delivery costs are approximately 12-16 pounds, storage is costly, and anticipated future

seller fees and opportunity cost of time reduce the gains from resale further.19 Overall, while it

cannot be ruled out that some of the bidders on some of the wines will update their valuation

after seeing other bids come in, it is considered reasonable that most of the variation in bidder

valuations is due to variation in bidders’ idiosyncratic tastes for the wine conditional on the rich

set of auction-level observables (described in section 5).20

During the time period under study, BW did not charge a buyer premium but did maintain a

seller commission of 10.2 percent for sale amounts below 200 pounds and 9 percent for marginal

amounts between 200 and 1500 pounds. Regardless of whether the sale is successful, sellers are

charged a listing fee of 2.1 pounds, a minimum bid fee (0.6 pounds, but only when increasing the

minimum bid) and a reserve price fee (0.3 pounds, but only when setting a secret reserve). These

fees include a 20% VAT. The buyer premium and seller commission are charged as a percentage of

the transaction price. Table 1 summarizes the fee structure.

the price of a sample of Bordeaux grand Cru’s using weather data.
19Indeed, the fact that winning bidders can use the BW platform to sell wine does not by itself call for an auction model

with resale—they must still expect to gain a profit by going through the process of buying and re-selling the wine. On the
investment prospects of luxury items such as art and high-end find wine, see, e.g., https://www.ft.com/content/aca193f8-5850-
11e4-a31b-00144feab7de, last accessed December 23, 2021.

20Moreover, empirical analysis of a common values ascending auction model would be infeasible given the lack of positive
identification results for such a model.

https://www.ft.com/content/aca193f8-5850-11e4-a31b-00144feab7de
https://www.ft.com/content/aca193f8-5850-11e4-a31b-00144feab7de
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Table 2—: Auction-level descriptive statistics

N Mean St. Dev. Min Median Max

Hammer price 3,481 140.33 239.68 1.00 82.24 6,000
Number of bidders 3,481 3.10 2.52 0 3 13
Number bottles 3,481 3.70 4.23 1 2 72
Is sold 3,481 0.64 0.48 0 1 1
Price per bottle if sold 2,228 74.81 124.55 0.50 35.00 2,200
Sold in Bond 3,481 0.16 0.37 0 0 1
Seller has feedback 3,481 0.29 0.46 0 0 1
Seller has ratings 3,481 0.73 0.45 0 1 1
Has any reserve 3,481 0.67 0.47 0 1 1
Reserve price 2,333 136.62 264.31 1.00 75.00 6,000

Notes. The hammer price equals the standing price when the auction closes, irrespective of whether the item is sold.
Sold “in bond” indicates that the wine has been stored in a bonded warehouse since arriving in the UK. Winning
bidders can provide textual feedback describing the interaction with the seller, and can also rate the interaction as
“positive”, “neutral”, or “negative”. Whether the listing has a reserve price includes both secret reserve prices and
increased minimum bid amounts.

A. Data description

The dataset of wine auctions was constructed by web-scraping all open auctions on BW at

30-minute intervals between January 2017 and May 2018. During these intervals, most of what

bidders observe is recorded. Observed wine characteristics include the type of wine (red, white,

rosé, sparkling, or fortified), grapes, vintage, region of origin, delivery and payment information,

storage conditions, returns and insurance, seller ratings and feedback, fill level of the bottle, and

the seller’s textual description. Summary statistics are reported in table 2. One-third of listings are

created by a seller with feedback from previous transactions, indicating the consumer-to-consumer

nature of the platform, and 27 percent of sellers have not been rated at all. Seller identities are

observable, but bidder identities are unobservable except for those bidders who have left feedback

after winning an auction. Sixteen percent of the listings offer wine sold “in bond”, which means

that they have been stored in bonded warehouses approved by HM Customs & Excise since being

imported into the UK. The alcohol duty due upon taking the wine out of storage depends on the

alcohol content and whether the wine is still or sparkling, and the duty amount is scraped from the

relevant listing pages.

The profile pages of all users ever registered were examined as well. When defining a potential

seller as a member who has listed a wine for sale at least once, only 264 out of 2,583 potential sellers

created a listing during the sample period. If we consider all 13,179 remaining users as potential

bidders, this simple accounting exercise indicates entry on the bidder side as well. Even under the
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extreme assumption that all auctions are populated by different bidders, only 10,856 actual bidders

would be counted.21 Moreover, in the structural analysis, bidders and sellers are treated as distinct

groups of users, but this is an abstraction: the data show that 41 out of the 246 feedback-leaving

winning bidders have also listed a wine for sale. While the share of bidders who also sell is probably

lower in the full sample if it is important for aspiring sellers to leave a positive footprint, one can

consider a user as belonging to the bidder or seller group merely for the duration of a potential

transaction. In the model, idiosyncratic conditional value distributions for buyers and sellers on

the platform are allowed (but not required) to be different.

The repetitive recording of bids for ongoing auctions was necessary to approximate the reserve

price distribution. The number of bidders and the standing price are observed every time that

auctions are scraped. Public reserve prices (e.g., raised minimum bid amounts) are recovered as

the standing price when there are no bidders. When a seller sets a reserve price without making it

public in the form of a minimum bid amount, the notifications “reserve not met” or “reserve almost

met” also accompany any standing price that does not exceed the reserve. Secret reserve prices are

approximated as the average of the highest standing price for which the reserve price is not met

and the lowest one for which it is met.22 Only 26 percent of listings have an increased minimum bid

amount, while 44 percent have a (secret) reserve price, and 3 percent have both. It is interesting to

note here that the use of secret reserve prices in auction platforms remains a puzzle in the empirical

auction literature, although solving that puzzle is beyond the scope of this paper (for more details

see, e.g., Jehiel and Lamy (2015) and Hasker and Sickles (2010)). In the rest of this paper, the

“reserve price” refers to the maximum of the minimum bid amount and the approximated secret

reserve price. Of greater consequence is the choice made by one-third of sellers to refrain from

setting any form of reserve. This is observable to bidders by the presence of a “no reserve price”

button—even before they enter the listing. Correspondingly, the model is constructed to result in

a different distribution of the equilibrium number of bidders for these two listing types.23

The sample includes 3, 481 auctions after excluding auctions that were consigned, include spirits,

or involve the sale of multiple lots at once. While there is a significant range of hammer prices, 80

21These statistics are provided for context; population sizes are not needed for the estimation of the model primitives.
22If all bids were recorded in real time, this approximation would be accurate up to half a bidding increment due to the proxy

bidding system. Additionally, the 30-minute scraping interval results in a good approximation of the reserve price distribution
obtained in a smaller sample where bids are recorded at 30-second intervals, as documented in Appendix G. Accuracy of the
reserve price approximation is also established separately when taking out unsold lots, for which the secret reserve price can
only be bounded from below. Treating the approximated reserve price as data in the remainder of the paper can be considered
as a cautious approach, in the sense that seller heterogeneity and its impact on bidder entry will be underestimated when
recognizing that higher-reserve listings are —all else equal— less likely to result in a sale.

23Treating no-reserve auctions separately from positive reserve auctions is also done for instructive reasons: zero reserve
price auctions serve as a benchmark to evaluate the two-sidedness of positive reserve price auctions against, as explained in the
discussion in section 3.C.
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percent of auctions fall in the lowest seller commission bracket (≤ 200 pounds) while also having a

reserve price lower than 200 pounds. These auctions are the focus of this paper and are referred to

as the “main sample”. The empirical analysis controls for observable wine characteristics in order

to estimate idiosyncratic residual value distributions for bidders and sellers. To still assess any

heterogeneous impacts of fee changes in different product classes, especially for the counterfactual

policy simulations in section 6.B, the model is estimated separately for “high-end” auctions with

hammer prices between 200 and 800 pounds and with a reserve price of at most 800 pounds.

B. Seller side

Sellers on this platform can be thought of as individual collectors with private values (marginal

costs) for each wine, which resonates with the way they are described by the platform’s management

(see footnote 17). While it is not surprising in our platform setting that sellers are heterogeneous

in various ways, it is important to document here because it also implies that counterfactual fee

structures affect the type of sellers that is attracted to the platform.

First, there is substantial variation in where sellers live, which is observed for the 63 percent of

sellers who indicate that the wine can be collected by the buyer. Sellers reside in all corners of the

UK; in cities like London, Leeds, Liverpool, and Belfast, as well as in rural parts of Wales and in

the picturesque villages of The Cotswolds. Sellers also differ in other observable ways, such as in

the number of words they use to describe a wine. These textual descriptions vary from a sober

“Original Wooden Case” to a 772-word history lesson about the origins of the “Les Bosquets des

Papes” vineyard of Chateauneuf du Pape by a seller named Roussillon located in South London.

Incidentally, Roussillon has been on the platform since March 2012 and is a stellar seller according

to 12 feedback-leaving winning bidders.24 The point of these remarks is mostly to highlight that it

is reasonable to assume that sellers are heterogeneous, too, in their unobserved idiosyncratic values

for a wine just as bidders have idiosyncratic tastes.25

Moreover, it is compelling that sellers know their idiosyncratic values before entering the platform

considering that they own the wines they offer for sale and sometimes have owned them for decades.

One way to explore the issue of selective seller entry in the data relies on information about potential

sellers and how likely they are to enter based on observed characteristics. Recall that all registered

users who have ever listed a wine for sale between January 2017 and May 2018 are labelled as

24To quote two of them: “Great service. Popped over and handed me the wine. Will deal with this gentleman again.” “Wines
delivered to my office near seller’s house. Both were in top condition and enjoyed over the festive season.”

25Location-based differences in living costs may also directly affect sellers idiosyncratic valuation. Information
on the magnitude of such differences, based on the UK’s Statistical Digest of Rural England, can be found here:
https://assets.publishing.service.gov.uk/Expenditure June 2021 final with cover page.pdf, last accessed November 15, 2022.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/996641/Expenditure_June_2021_final_with_cover_page.pdf
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Table 3—: Potential sellers: predicting entry

Dependent variable: 1(Entered market) Number listings in market

Regression model: Probit OLS OLS Zero-inflated OLS Zero-inflated
count data count data

(1) (2) (3) (4) (5) (6)

Duration membership BW (years) −0.090∗∗∗ −0.001∗∗∗ −0.004∗∗∗ −0.110∗∗∗ 0.005 −0.012+

(0.009) (0.0003) (0.0003) (0.010) (0.004) (0.007)
Nr members joined same month (100s) −0.268∗∗∗ −0.003∗ −0.012∗∗∗ −0.099 0.042∗ 0.058

(0.051) (0.001) (0.002) (0.066) (0.020) (0.044)
Nr ratings received (100s) 0.205∗∗∗ 0.022∗∗∗ 0.102∗∗∗ 0.134∗∗∗

(0.041) (0.002) (0.016) (0.032)
Nr ratings received (100s), squared −0.008∗∗∗ −0.001∗∗∗ −0.003∗∗∗ 0.010∗∗∗

(0.002) (0.0001) (0.001) (0.002)
Share ratings = negative −0.482+ −0.008 1.051∗∗ 0.465∗∗∗

(0.285) (0.008) (0.365) (0.104)
Share ratings = neutral −0.235 −0.003 0.769+ 0.039

(0.254) (0.006) (0.406) (0.082)
Has negative ratings 0.255∗∗ 0.004 −0.377∗∗∗ −0.359∗∗∗

(0.089) (0.004) (0.065) (0.050)
Nr r = 0 listings other sellers (100s) 0.129 0.003 0.010∗∗∗ 0.963∗∗∗ 0.139∗∗∗ 0.333∗∗∗

(0.081) (0.002) (0.002) (0.067) (0.033) (0.051)
Nr r > 0 listings other sellers (100s) 0.197∗∗∗ 0.006∗∗∗ −0.290∗∗∗ −0.035+

(0.044) (0.001) (0.039) (0.019)
Share other markets entered 4.093∗∗∗ 0.755∗∗∗ 2.723∗∗∗ 7.752∗∗∗

(0.146) (0.010) (0.078) (0.128)
Constant −2.168∗∗∗ 0.001 0.048∗∗∗ 0.522∗∗∗ −0.203∗∗∗ 1.262∗∗∗

(0.104) (0.003) (0.004) (0.122) (0.045) (0.090)

Observations 30,972 30,972 30,972 30,972 30,972 30,972
Adjusted R2 0.234 0.007 0.171
Log Likelihood −1,789.745 −4,054.471 −6,152.514

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.05; ∗∗∗p<0.01. Based on the main sample only.

Table 4—: Sellers: suggestive evidence for selection

Dependent variable: Reserve price 1(Reserve price>0)
Regression model: OLS Tobit Probit Probit Probit Probit

(1) (2) (3) (4) (5) (6)

Predicted entry dummy (column 3 table 3) 1,200.592∗∗∗ 1,200.592∗∗∗ 10.699∗∗∗ −2.702∗

(125.327) (125.243) (0.821) (1.121)
Predicted entry count (column 6 table 3) 1.071∗∗∗ −0.479∗∗∗

(0.107) (0.124)

Observations 1,499 1,499 2,350 2,350 2,350 2,350
Adjusted R2 0.057
Log Likelihood −8,071.505 −1,531.626 −1,564.178 −833.622 29.115

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.05; ∗∗∗p<0.01. Based on the main sample only.
Column 6 includes auction observables used for the homogenization of auctions in the structural analysis, listed in
table C. 5.
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potential sellers. The time dimension of the data must therefore be exploited to generate variation

in the entry decision of potential sellers. For the sake of this descriptive analysis, define a market

as a month, and consider the reduced form seller selection equation

(1) yshm = Xs
hmβs − vhm,

where the expected surplus from entering for seller h in market m (yshm) is strictly decreasing in

its unobserved idiosyncratic valuation vhm, reducing gains from trade, and may also be a function

of observed seller and market characteristics Xs
hm. Seller h enters market m iff yshm > 0, a process

that is formalised as the zero profit seller entry condition in the structural model (see lemma 3).

Similar to the analysis done in Roberts and Sweeting (2011) based on a Heckman regression

model of selective bidder entry, the predicted entry probability Xs
hmβ̂s is used in a second stage

to assess whether seller selection can be detected in the data. The reasoning goes as follows. It is

well-known that reserve prices and the benefit of setting a positive reserve price are both increasing

in vhm (Riley and Samuelson (1981), Jehiel and Lamy (2015)). For sellers with a higher expected

utility from entering based on observed characteristics (Xs
hmβ̂s), higher values of vhm will satisfy

yshm > 0. This will be picked up by a positive association between the (average) reserve price and

Xs
hmβ̂s for all sellers that did enter. A key identifying assumption for interpreting this as seller

selection is that Xs
hm is independent of vhm, so that that conditional on entry, Xs

hm does not affect

the reserve price.

Estimation results for the selection equation in (1) are reported in table 3 and reveal some

interesting empirical facts. Seller-level variables in Xs
sm describe how many years they have been

registered with the platform, the number of users that joined in the same month as they did,

and how they have been rated. We also know the number of listings in the market offered by

other sellers, which correlates positively with the decision to enter perhaps because the platform

used marketing campaigns to engage users. Marketing campaigns or other outside factors boosting

interest in the platform would also explain the negative effect of the number of members that joined

in the same month. Having more listings in more other markets than m makes a seller more likely

to enter into market m too, highlighting the fact that some sellers post listings on a regular basis.

Columns 4-6 of table 3 repeat the analysis but with as dependent variable the number of listings

that are created by a potential seller in a market. Here, the preferred specification is the zero-

inflated Poisson count model that accounts for the abundance of seller-market observations with

zero listings. As the exclusion restriction is more difficult to defend for seller ratings and for the

share of other markets they enter, a smaller entry model including only the time when the seller
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joined the platform and the number of other zero reserve price listings offered by other sellers is

used to predict Xs
hmβ̂s (columns 3 and 6 of table 3).26 A downside of this approach is that the low

predictive power of this more conservative entry model might mask the effect of seller selection in

the second stage.

Estimation results from the second stage reported in table 4 support the conjecture that higher

reserve prices are associated with a higher predicted entry probability, which is indicative of selective

seller entry as explained above.27 However, these results should be taken as suggestive only as the

data does not contain strong entry shifters that are plausibly excluded from the seller’s valuation,

and the effect disappears when including the rich set of auction-level observables that is used in the

structural analysis to homogenize auctions (see section 4.B). Nonetheless, it is considered reasonable

to assume that potential sellers are heterogeneous and know their own idiosyncratic value draws,

and to let the structural estimation determine how heterogeneous sellers are.

C. Bidder side

Selective seller entry has interesting ramifications for bidder entry into such platforms as well,

as for instance outlined in Ellison, Fudenberg, and Mobius (2004).28 For bidders, entry is the act

of entering into a listing on the platform. Whether or not bidders know their idiosyncratic value

for a wine before entering will affect how profitable it is to change the fee structure and to attract

additional bidders. Unfortunately, bidder identities are not observed, so we have to rely on indirect

empirical evidence towards this end.

First, OLS regression results are consistent with non-selective bidder entry: while an extra bidder

in an auction is associated with a transaction price that is approximately 10 pounds higher, markets

(months) that attract more total bidders for a product do not have significantly different prices.29

26Including the share of other markets entered could violate the exclusion restriction if regular entrants also are more
professional and, say, are less attached to their wine or have higher opportunity cost of selling. The ratings variables might
suffer from similar issues, and the positive coefficient on the number of ratings received can also result from reverse causality.

27While the estimation results go in the expected direction for five regression specifications, the effect is insignificant in one of
those, and when including additional auction-level variables the coefficient swaps sign. Column 1 is based on an OLS regression
of reserve prices on the entry probability. Column 2 presents results from a Tobit model with left-censoring of the reserve price
at the lowest observed value. The dependent variable in columns 3-6 is an indicator for whether the seller has set a positive

reserve price. Columns 4-6 furthermore use the alternative measure of Xs
hmβ̂s from the zero-inflated Poisson count model based

on the number of listings that seller h created in market m.
28These authors make the following concluding remarks regarding the interaction of bidder and seller entry. “We would like

to develop a model that incorporates adverse selection in the market-participation decision. Our causal empiricism suggests
that a major reason that the Amazon and Yahoo! auction sites have struggled is that they tried to compete by having zero
listing fees. This led to their listings being filled up with products being offered by nonserious sellers with very high reserve
prices. If we suppose that there is a cost to reading web pages, or to investigating the quality of a good and/or its seller, then
buyers will prefer to frequent sites with a high percentage of good listings—listings by reputable sellers who have high-quality
goods and are willing to sell them at a reasonable price.

29The coefficient on the total number of bidders in the market is economically small and statistically insignificant (−0.013
with a standard error of 0.074 for zero reserve auctions in the main sample, a finding which is robust to numerous specifications).
For the purpose of this reduced-form analysis, a market is defined as a month, and a product is defined through a combination
of the high-level filters used on the platform: type of wine, region of origin, and vintage decade. Red Bordeaux from the 1960s
and nonvintage Champagne are, for instance, classified as different products in the regressions. See table C. 2 in Appendix B.
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Table 5—: Thin markets

— Percentiles: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of times product listed, 4 weeks: 1 1 1 1 1 2 2 3 6 37
Number of times product listed, 15 months: 1 1 1 1 2 3 4 8 16.2 222
Number of times same title occurs, 15 months: 1 1 1 1 1 1 1 1 2 17

Notes. The table reports deciles of distributions of the number of times a product or listing title is observed in the
sample. In the first row, an observation is a product in each 4 week non-overlapping interval. Conservative product
definitions are used (region x wine type x vintage decade), corresponding to high-level filters on the website, and
products that do not occur in a month are not counted to avoid the large mass at 0. In the second row an observation
is a product and in the third row it is the title of the listing, in both cases counting how often they occur within the
full 15 months of the sample.

By contrast, selective bidder entry would appear in the data as markets that have more listings

of a certain product attracting more total bidders and having stochastically lower bids, given that

bidders with higher valuations would enter first.30

Moreover, that the wines offered for sale are preowned by heterogeneous sellers is also important

as it generates a listing inspection cost. Indeed, listing pages report much for bidders to inspect:

the wine’s storage conditions, provenance, bond status, estimated alcohol duty, and other relevant

characteristics that are not provided in the brief landing page excerpts. The wine’s ullage classifica-

tion (fill level) is also given as a measure of the degree of oxidation. For instance, the classification

“Base of Neck” is better than “Top Shoulder” in Bordeaux-style bottles, and Burgundy-style bot-

tles without a pronounced “neck” and “shoulders” have a metric classification in centimeters from

the bottom of the capsule.

Nonselective bidder entry is also plausible when listing inspection cost are important simply

because bidders learn their valuations after inspecting the auction characteristics. The data can

speak to the presence of a constant cost of inspecting a listing, as this would imply that listings

are independent of each other even when they are similar in product characteristics or end in close

proximity to each other. In other words, as explained further in section 3.C, the listing inspection

cost depletes all expected surplus from entering in another auction after having entered the current

one. Indeed, in the data the presence of more competing listings does not systematically affect the

average number of bidders per listing, the transaction price, or the reserve price.31

30In second-price sealed-bid auctions it is optimal to bid one’s valuation independent of the number of competing bidders.
31These results are consistent across 18 different definitions of what constitutes a competing listing (see table C. 1 in Appendix

B). Specifically, a competing listing is defined as a listing whose auction ends within a rolling window of i) 30 days, ii) 7 days,
or iii) 2 days of the listing in question and that offers the same product, with product definitions ranging from any wine to one
of five combinations of the high-level filters.



16

D. Conclusions from empirical facts

The presented empirical patterns underscore that the auction platform under consideration is

notably distinct from those studied previously. Auction platform models with dynamic or static

search elements and without seller selection (or entry) have fittingly been estimated for more

commodity-like products.32 One distinguishing feature of an auction platform with heterogeneous

goods is that at each point in time, the platform contains a low number of highly similar listings.

This is certainly true for the BW wine auction platform. Even with the coarse product definitions

derived from the high-level filters discussed above, for 50 percent of listings on BW, there is only

one such product offered during the same month, and for another 30 percentage points, only three

such products are available (see table 5). The next section presents a parsimonious model suitable

to study auction platforms with two-sided entry, selection of heterogeneous sellers, and a listing

inspection cost.

3. A model of an auction platform with two-sided entry

This section develops an empirically tractable structural auction platform model with two-sided

entry and solves for the game’s equilibrium strategies.

A. Setting and model assumptions

A monopoly platform offers listing services to facilitate trade between buyers and sellers. The

listings use second-price sealed bid auctions to allocate indivisible goods among bidders with unit

demands. The platform’s fee structure c = {cB, cS , eS} contains respectively a buyer premium, a

seller commission (both are shares of the transaction price), and a listing fee, any of which might

be zero. Risk-neutral users face a deterministic opportunity cost of time spent on the platform, on

top of any monetary fees charged. For bidders, these are referred to as “listing inspection cost”

eoB associated with each listing they enter.33 Sellers set non-negative secret reserve prices.34 The

opportunity cost of time for sellers is denoted by eoS and also referred to as “entry cost”.

This setting is modelled as a two-stage game. In the first stage, potential sellers —owning a good

and knowing their valuation for it— decide to create a listing or not, and potential bidders decide

32Structural auction (platform) models have been applied to the study of compact cameras (Backus and Lewis (2016)), Kindle
e-readers (Bodoh-Creed, Boehnke, and Hickman (2021)), iPads (Hendricks and Sorensen (2018)), pop music CDs (Nekipelov
(2007)), CPUs (Anwar, McMillan, and Zheng (2006)), and iPods (Adachi (2016)).

33Listing inspection cost are not expected to be different for auctions with or without a reserve price. The model therefore
restricts the two to be the same, and this restriction is then tested empirically. A second remark to make here is that any
option value for bidding in an auction is depleted by bidders’ zero profit entry condition given the assumption that each listing
incurs its own eoB . Hence, intra-auction dynamics captured in Kong (2021) and Hickman, Hubbard, and Paarsch (2017) do not
arise in this model. The (related) absence of a scale effect is discussed in section 3.C.

34In a more general sense, the secret reserve price represents an aspect of the seller side that is imperfectly observed by
buyers while important for their expected surplus.
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to enter or not after observing the number of listings on the platform and whether they have a

reserve price.35 Listings are ex-ante identical up to having a reserve price, so conditional on this

bidders are sorted with some constant probability over listings.36

To simplify the exposition, the model contains two separate potential bidder populations that are

distinct only by a preference for positive- or zero reserve auctions.37 As such, NB
r=0, N

B
r>0, and NS

respectively denote the number of potential bidders for no reserve auctions, the number of potential

bidders for positive reserve auctions, and the number of potential sellers. NB = NB
r=0+NB

r>0 denotes

the total number of potential bidders. NB and N S respectively denote the sets of potential bidders

and sellers.

The entry stage is followed by a standard auction stage: sellers set a secret reserve price and

bidders bid after learning their valuations. To show that the assumption that bidders learn their

valuations after entering does not drive the equilibrium results, an extension with selective bidder

entry is presented in appendix D.38 FV0 and FV respectively denote the valuation distributions

for potential sellers and bidders. The empirical analysis controls for auction-level observables so

V0 and V should be interpreted as conditional valuations, and the model assumes no unobserved

auction-level heterogeneity. V0 is equivalently interpreted as a seller’s (marginal) cost of selling.

The following assumptions on the valuation distributions are maintained when solving for the

game’s equilibrium strategies:

Assumption (Two-sided IPV). All i = {1, ..., NB} potential bidders independently draw values vi

from V ∼ FV and all k = {1, ..., NS} potential sellers independently draw values v0k from V0 ∼ FV0

such that:

i) vi ⊥ vi′ ∀i ̸= i′ ∈ NB, and

ii) vi ⊥ v0k ∀i ∈ NB and ∀k ∈ N S.

FV and FV0 satisfy regularity conditions: supp(V )=[v, v̄], supp(V0)=[v0, v̄0], FV is absolutely con-

tinuous, and fV (x)
1−FV (x) increases in x ∀x ∈ [v, v̄] (Increasing Failure Rate or IFR).

35One way to justify this assumption is that the platform in the empirical application attaches a highly visible “no reserve
price” button to auctions without a reserve price, which bidders observe before selecting a listing. The distinction also helps to
clarify the source of the two-sidedness of auctions with positive secret reserve prices in the model by benchmarking the results
against those for zero reserve auctions.

36When bringing the model to data, listings can be grouped according to additional observables such as filters on the website.
37The results would be identical with one pool of potential bidders who are in equilibrium indifferent between the two types

of listings. Just as with two populations, as dictated by the zero profit entry conditions, potential bidders would enter into
positive- and zero reserve auctions to the point of depleting all expected surplus. Besides this abstraction, it is a meaningful
restriction that potential bidders draw their private values from the same distribution rather than being systematically different
in that dimension. Data from the empirical application supports this assumption. Bidder identities are generally unobserved,
but for 247 bidders their identities are known as they won an auction and left feedback to the seller. From the 133 feedback-
leaving winning bidders that are observed multiple times, 70 percent has won in both zero- and positive reserve auctions, so at
least in this small sample the majority of bidders randomize between the two types of listings over time.

38The non-selective bidder entry assumption made in the baseline model reflects the idea that the model describes two-sided
entry in a platform with significant listing heterogeneity and (associated) costly listing inspection. The reduced form evidence
based on data from a wine auction platform presented in section 2 supports this assumption.
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Most importantly, these assumptions guarantee that conditional on the vector of observed prod-

uct attributes, variation in values across buyers and sellers is of a purely idiosyncratic —private

values— nature. In addition, the idiosyncratic variation is independent. Note that the two valua-

tion distributions, as well as their supports, are allowed but not restricted to differ for populations

on the two sides of the market (potential sellers and bidders).

The valuation distributions, allocation mechanism, platform fees, and entry costs are assumed to

be common knowledge. Finally, the entry equilibrium results are derived under a large population

approximation, which guarantees empirical tractability of the game and does not require players

to know the exact population sizes. Specifically, it is maintained that

Assumption (Poisson game). The populations NB
r=0 and NB

r>0 are large, so that the number of

bidders per listing has a probability mass function approximated by

(2) fNr(k;λr) =
exp(−λr)λ

k
r

k!
, ∀k ∈ Z+,

for r ∈ {r = 0, r > 0}, denoting respectively zero and positive reserve price auctions.

Intuitively, the population of potential bidders considering whether or not to enter the platform is

large relative to the number of bidders in a listing, so that the distribution of the number of bidders

per listing is approximately Poisson and fully characterized by its mean.39 A particular benefit of

this assumption is that, when bringing the model to data, it avoids the large combinatorial problem

where expected seller surplus needs to be computed for any realization of the number of bidders

that enter given their equilibrium entry probability.40 Proof that the approximation does not drive

equilibrium existence and uniqueness is provided in Appendix C where results for the game with a

finite population of potential bidders are presented.

B. Equilibrium strategies

Equilibrium strategies are solved for by backwards induction, and all results are subject to the

assumptions made in the previous section. Attention is restricted to symmetric Bayesian-Nash

equilibria in weakly undominated strategies requiring that strategies are best-responses given com-

petitors’ strategies and that beliefs are consistent with those strategies in equilibrium.

39It is good to note here that the empirical distribution of the number of bidders closely resembles a Poisson distribution in
the empirical application (figure 2 plot f). Further, in a platform setting it is natural to assume that the populations of potential
bidders are large relative to the observed number of bidders, and the assumption is previously made in e.g. Engelbrecht-Wiggans
(2001), Bajari and Hortaçsu (2003), Jehiel and Lamy (2015), and Bodoh-Creed, Boehnke, and Hickman (2021).

40Appendix A proves that the relevant decomposition property of the Binomial distribution exploited also in Myerson (1998)
applies to the presented model where the total number of bidders who enter is a function of the number of listings.
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Auction stage

Conditional on entry decisions and the sorting of bidders over listings, the heterogeneous-good

auction platform is made up of independent second-price sealed bid auctions. Standard reserve

pricing (as in Riley and Samuelson (1981)) and bidding (as in Vickrey (1961)) strategies are there-

fore derived, up to the impact of buyer premium and seller commission. In particular, A bidder

with valuation v bids

(3) b∗(v, c) ≡ v

1 + cB
.

This follows directly from Vickrey (1961): bidding more may result in negative utility and bidding

less decreases the probability of winning without affecting the transaction price.

Auctions without a reserve price attract more bidders, but the benefit of setting a positive reserve

price increases in the seller’s value. Combined with a positive reserve price fee, the set of sellers

that sets a zero reserve price is determined by a threshold-crossing problem (as in Jehiel and Lamy

(2015)). Let vR0 denote the no-reserve screening value.41

Following the standard reserve price derivation, it can be shown that a seller with valuation

v0 ≥ vR0 sets a reserve price that solves

(4) r∗(v0, c) =
v0

1− cS
+

1− FV ((1 + cB)r
∗(v0, c))

(1 + cB)fV ((1 + cB)r∗(v0, c))
.

Note that, if cS = cB = 0, the optimal reserve price is identical to the Riley and Samuelson (1981)

public reserve price in auctions with a fixed number of bidders. Because r∗(v0, c) is secret, it does

not affect the number of bidders in the seller’s listing. The optimal reserve price is increasing in

cS and (given IFR) decreasing in cB. In what follows, let r̃ denote the buyer premium-adjusted

41The decision to set a positive reserve price is optimal in the sense that only higher-valuation sellers do so, but the threshold
value vR0 is taken to be exogenous as endogenizing vR0 complicates the estimation of the game further. Four points should be

made in this regard. Conceptually, endogenizing vR0 would strengthen the importance of the seller selection effect on bidder
entry in r > 0 auctions. To see why, consider a policy that would make bidder entry into r > 0 auctions more attractive.
As the number of bidders per r > 0 listing increases, vR0 would adjust downwards in addition to the seller (platform) entry
threshold v∗0 shifting upwards as captured by the model, resulting in a stochastically lower reserve price distribution than when

not endogenizing vR0 and hence encouraging additional bidders to enter into r > 0 auctions. Second, endogenizing vR0 could in
theory lead to multiple equilibria of the two-sided entry game. For example, if for some policy change r > 0 listings become
more attractive relative both to the outside option and to r = 0 auctions, so that vR0 decreases while v∗0 increases, and given the

ambiguous effect that this has on bidders in r > 0 auctions, multiple combinations of vR0 and v∗0 could be sustained. Numerical
simulations based on the estimated model primitives confirm that changes in cS and cL both would have a negligible effect
on vR0 compared to the effect that they have on v∗0 , and that there is no ambiguity as vR0 moves in the same direction as v∗0 .

Also, endogenizing vR0 would (therefore) be especially interesting when studying (counterfactual) reserve price policies. This,
and a more detailed analysis of the reserve price choice, is left for future research and might provide additional insight into
unresolved puzzles regarding the use of secret reserve prices in auctions (see e.g. Jehiel and Lamy (2015) and references in
Hasker and Sickles (2010)). Finally, the analysis considers only fee structures for which v∗0 ∈ (v0, v̄0] and lets vR0 ∈ (v0, v∗0),
restricting attention to the case where at least some sellers find it optimal to create listings with and without a reserve price
on the platform.
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optimal reserve price

r̃ = (1 + cB)r
∗(v0, c)

The entry equilibrium relies on expected surpluses for bidders and sellers in the auction stage,

which are defined next. Before knowing their valuation and conditional on entry, the expected

surplus for bidders in a listing with n− 1 competing bidders, fee structure c, when the seller has a

private value of v0 equals

πb(n, c, v0) ≡
1

n
E[V(n:n) −max(V(n−1:n), r̃)|V(n:n) ≥ r̃][1− FV(n:n)

(r̃)],(5)

with the last term denoting the sale probability and the max(.) term the transaction price including

buyer premium.42 Expected surplus for a seller in such a listing equals

πs(n, c, v0) ≡ (E[max(Vn−1:n, r̃)|Vn:n ≥ r̃](1− cS)− v0) [1− FV(n:n)
(r̃)].(6)

For auctions without a reserve price, expected bidder and seller surplus simplify to

πb(n, c, 0) ≡
1

n
E[V(n:n) − V(n−1:n)](7)

πs(n, c, 0) ≡ E[
V(n−1:n)

1 + cB
],(8)

permitting a slight abuse of notation as sellers do not necessarily have v0 = 0 when setting no reserve

price, and adopting the convention that πb and πs are zero when n = 0. The entry equilibrium

relies on the following properties from the auction stage. Listing-level expected surplus for bidders,

πb(n, c, v0), decreases in the number of (competing) bidders in the listing n.43 πb(n, c, v0) decreases

in the seller’s valuation v0, as higher-v0 sellers set weakly higher reserve prices, unless they have

a low enough v0 to set no reserve price in which case there is no effect on expected listing-level

bidder surplus. Further, listing-level expected seller surplus πs(n, c, v0) decreases in sellers own v0,

e.g. by reducing gains from trade, and it increases in the number of bidders by driving up expected

transaction prices and as r∗ in (4) is independent of n.

42X(i:n) is order statistics notation to refer to the (n− i+ 1)th highest out of a sample of n draws from random variable X.
43To be precise, the result that listing-level expected bidder surplus decreases in the number of competing bidders relies on

the Increasing Failure Rate (IFR) property of FV . Li (2005) proves that a monotonically nondecreasing failure rate implies
decreasing spacings so that E[V(n+1:n+1) − V(n:n+1)] − E[V(n:n) − V(n−1:n)] ≤ 0. The inequality is strict if the failure rate is
strictly increasing and holds in the case with or without a reserve price as it is independent of n.
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Entry stage

Typically, an entry equilibrium of the auction platform game consists of two bidder entry proba-

bilities, as potential bidders learn values after entering (as in Levin and Smith (1994)), and a seller

entry threshold as sellers know their values before listing. Under the large population approxima-

tion it can on the bidder side be captured by the equilibrium mean number of bidders per listing.

This equilibrium λr (for r ∈ {r = 0, r > 0}) is endogenous to the fee structure and in positive

reserve auctions also depends on seller selection.

The equilibrium results are derived in the next 2.5 pages. It is first documented that any candidate

seller entry threshold (ṽ0) maps to an equilibrium mean number of bidders per listing λ∗
r>0(c, ṽ0) in

auctions with positive reserve prices. That mapping is used to solve for the equilibrium seller entry

threshold v∗0(c). It turns out that because the mean number of bidders in positive reserve price

auctions is strictly decreasing in ṽ0, sellers’ best-response entry thresholds satisfy a single-crossing

property, so that the entry game has a unique equilibrium despite its two-sidedness.44 In addition,

the mean number of bidders per listing in auctions with zero reserve price (λ∗
r=0(c)) is independent

of the seller entry threshold. Section 3.C summarizes the economic intuition behind these results,

and discusses model extensions and implications.

Entry stage: bidder entry

The bidder entry equilibrium is characterized by the λr>0 (λr=0) that solves potential bidders’ zero

profit condition in positive (zero) reserve price auctions. In the case of r > 0, let Πb,r>0(c, ṽ0;λr>0)

denote potential bidders’ expected surplus from entering the platform. Besides fees and the listing

inspection cost, it includes listing-level surplus πb(n, c, v0) in expectation over: 1) seller-values V0

given candidate threshold ṽ0, and 2) the Poisson-distributed number of competing bidders, and can

be written as

(9) Πb,r>0(c, ṽ0;λr>0) =

∫
E[πb(n+ 1, c, v0)|V0 ∈ [vR0 , ṽ0]]fNr>0(n;λr>0)dn− eoB.

It is crucial to note here that Πb,r>0(c, ṽ0;λr>0) is independent of the number of listings (Tr>0),

as conditional on the number of competing bidders in a listing the number of other listings on the

platform does not affect bidder surplus. In the zero reserve price case, Πb,r=0(c;λr=0) does not

44A no-trade equilibrium where no bidders and sellers enter is excluded from consideration.



22

depend on seller values and equals

Πb,r=0(c;λr=0) =

∫
πb(n+ 1, c, 0)fN,r=0(n;λr=0)dn− eoB.(10)

The following Lemma describes the equilibrium entry decisions on the bidder side.

Lemma 1. For any candidate seller entry threshold ṽ0, a unique equilibrium λ∗
r>0 solves potential

bidders’ zero profit condition in positive reserve auctions

(11) λ∗
r>0(c, ṽ0) ≡ argλr>0∈R+{Πb,r>0(c, ṽ0;λr>0) = 0},

and a unique equilibrium λ∗
r=0 solves

(12) λ∗
r=0(c) ≡ argλr=0∈R+{Πb,r=0(c;λr=0) = 0)}.

These results follow from listing-level surpluses πb(n, c, v0) and πb(n, c, 0) strictly decreasing in

n, and fNr>0(n;λ) increasing in a first-order stochastic dominance sense in λ. Entry decisions are

conditional on ṽ0 or independent of it so the result also follows from Levin and Smith (1994) and

Ginsburgh, Legros, and Sahuguet (2010). It holds for any realized number of listings with a positive

reserve price (Tr>0) given ṽ, and also for any number of listings with a zero reserve price (Tr=0).

Entry stage: seller entry

Central for the analysis of the two-sided entry equilibrium is the following result, describing how

the equilibrium number of bidders per listing responds to the seller entry threshold.

Lemma 2. The equilibrium fNr>0(n;λ
∗
r>0(c, ṽ0)) decreases in a first-order stochastic dominance

sense in ṽ0.

It follows because any candidate seller entry threshold ṽ0 affects Πb,r>0(c, ṽ0;λr>0) only through

the distribution of reserve prices in those listings. A higher ṽ0 draws in sellers with higher values

that set higher reserve prices, resulting in lower πb(n, c, v0). The zero profit condition in (11)

therefore dictates that λ∗
r>0(c, ṽ0) strictly decreases in ṽ0. This property is central to the equilibrium

uniqueness result as is shown after introducing more notation.

Let Πs(c, v0;λ
∗
r>0(c, ṽ0), ṽ0) denote expected surplus for a seller with valuation v0 > vR0 when

competing sellers enter the platform if and only if their valuation is less than threshold ṽ0.
45

45Using fNr>0
(n;λ∗

r>0(c, ṽ0)) avoids introducing additional notation to capture that sellers care about competing bidders +1.
This is without loss: the two distributions are identical by the environmental equivalence property of the Poisson distribution
(Myerson (1998)).
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Besides fees and the opportunity cost of time, it involves: 1) their listing-level expected surplus,

and 2) an expectation over the number of bidders per listing given ṽ0 and bidders’ equilibrium

best-response to this threshold summarised in Lemma 2, and equals

(13) Πs(c, v0;λ
∗
r>0(c, ṽ0), ṽ0) =

∫
πs(n, c, v0)fNr>0(n;λ

∗
r>0(c, ṽ0), ṽ0)dn− eS − eoS .

The seller entry equilibrium is characterized by the v∗0 that solves the zero profit entry condition

for the marginal seller. Importantly, Lemma 2 implies that sellers’ expected surplus decreases in

the threshold that competing sellers adopt, through the impact that this threshold has on the

number of bidders they expect in their own listing. This results in a unique seller entry threshold

as formalised in the next Lemma.

Lemma 3. A unique equilibrium seller entry threshold solves the marginal seller’s zero profit con-

dition

v∗0(c) ≡ argṽ0s.t.FV0
(ṽ0)∈[0,1]{Πs(c, ṽ0;λ

∗
r>0(c, ṽ0), ṽ0) = 0},(14)

with λ∗
r>0(c, ṽ0) ≡ argλr>0∈R+{Πb,r>0(c, ṽ0;λr>0) = 0} as defined in (11).

The proof requires three parts. First, sellers have a unique best-response for any competing ṽ0,

because Πs(c, v0;λ
∗
r>0(c, ṽ0), ṽ0) strictly decreases in their own v0. Second, given that 1) λ∗

r>0(c, ṽ0)

is strictly decreasing in ṽ0 (Lemma 2), and 2) entry of competing sellers does not affect seller

surplus in other ways, the best-response function is strictly decreasing in competing sellers entry

threshold. Third, symmetry then delivers a unique equilibrium threshold, v∗0(c), which is the fixed

point in seller value space solving (14) i.e., making the marginal seller indifferent between entering

and staying out. The results from this section, as proven with Lemma’s 1-3, can be summarized as

follows.

Corollary. The entry equilibrium of the auction platform game presented in section 3.A exists and

is unique. It is characterized by the set:{
v∗0(c), λ∗

r>0(c, v
∗
0(c)), λ∗

r=0(c)

Seller entry threshold Mean bidders r > 0 Mean bidders r = 0

}

The values of v∗0(c), λ
∗
r>0(c, v

∗
0(c)), and λ∗

r=0(c) solve zero profit conditions of the marginal seller

and potential bidders as defined respectively in equations (14), (11), and (12).
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C. Discussion

Two-sided market and equilibrium uniqueness

Figure 1 shows graphically why the entry equilibrium is unique in this model despite the presence

of cross-side externalities that make the platform more attractive to bidders when there are more

sellers and vice versa. The figure depicts the best-response entry threshold of seller i as a function

of the threshold adopted by competing sellers (on the x-axis). The solid line shows what happens

on the equilibrium path. As shown by Lemma 3, the best-response function v̄0
BR
i (v̄0−i, λ

∗
r>0(v̄0−i))

is downward-sloping: a higher competing seller entry threshold decreases expected seller surplus

for any v0, lowering the threshold vBR
0i for which seller i breaks-even. It can be explained by the

particular two-sidedness of this market: bidders expect a less attractive reserve price distribution

when higher-value sellers populate the platform and respond by entering less numerously, which

negatively affects the expected surplus for all sellers including seller i. The downward-sloping best-

response function generates a single crossing property resulting in a unique symmetric seller entry

threshold where the best-response function intersects the 45-degree line.

A specific challenge in two-sided markets is what happens off the equilibrium path. Simply put,

multiple equilibria exist when, if one side adopts a non-equilibrium entry strategy, this strategy is

sustainable due to the best-response of users on the other side. Consider the case where bidders

enter more numerously than their equilibrium strategy (λ > λ∗
r>0(v̄0−i)). The dashed line in figure

1 represents seller i’s best-response threshold. It shifts up relative to the solid line as expected

seller surplus is higher for any v0 due to the increased number of bidders per listing. However, this

cannot be an equilibrium in the two-sided entry game as it violates bidders’ zero-profit condition:

with expected bidder surplus strictly decreasing in ṽ0 (detailed in Lemma 1), λ > λ∗
r>0 can only be

sustained by some ṽ0 < v∗0(λ
∗
r>0). In turn, the latter leaves money on the table for sellers with values

∈ [ṽ0, v
∗
0(λr>0)] and is therefore also excluded as an equilibrium. For the same reasons λ < λ∗

r>0

cannot be sustained in equilibrium as that would require expected seller surplus to decrease in the

number of bidders.

Network effects

Network effects are nonlinear in this model and, following i.e. Katz and Shapiro (1985), are

defined by how much expected surplus from entering the platform changes if an additional user

on the other or own side enters exogenously. The case with positive reserve prices is the most

interesting as it can be used to illustrate the role of seller selection and the resulting effect on
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v̄0−i

v̄0
BR
i

v∗0(λ
∗
r>0)

v∗0(λr>0)

v∗0(λ
∗
r>0) v∗0(λr>0)

v̄0
BR
i (v̄0−i, λ

∗
r>0(v̄0−i))

v̄0
BR
i (v̄0−i, λr>0 > λ∗

r>0(v̄0−i))

off equilibrium path:

Figure 1. : Graphic representation of unique entry equilibrium result

Notes. The solid black line represents the equilibrium entry threshold of seller i as best-response to competing sellers
adopting threshold v̄0−i and potential bidders best responding with λ∗

r>0(v̄0−i), i.e. the seller best-response function
v̄0

BR
i (v̄0−i, λ

∗
r>0(v̄0−i)). Details are provided in section 3.C.

bidder entry.46 The main model predictions are summarized in table 6.

Consider an exogenous increase in the seller entry threshold so that more and higher v0 sellers

enter, setting higher reserve prices. This lowers the expected surplus for all sellers (who were

already on the platform) because it results in stochastically fewer bidders per listing, and hence the

model generates a negative seller-side direct network effect. It is precisely this feature of bidders

being uncertain about the height of the reserve price that they will face upon entering, and the fact

that excluding high reserve price setting sellers (“lemons”) results in a more favorable reserve price

distribution on the platform, that justifies the labeling of the negative seller-side direct network

effect as a lemons effect after Akerlof (1970). As discussed above, it is also precisely this feature of

the model that generates a unique equilibrium despite the two-sidedness of the market.

The lemons effect does not exist in the zero reserve price benchmark. The same holds for positive

reserve price auctions as long as the seller type distribution (i.e., the reserve price distribution) is

held fixed, which occurs in the model when the platform’s fee structure does not change so that

v∗0(c) remains constant. For those cases, the model predicts that the average number of bidders

per listing is independent of the number of listings. Bidders will enter to the point of depleting

46Indeed, the case without reserve prices primarily functions as a benchmark to explain what happens in platforms where
sellers have no private information about something that buyers also care about.
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Table 6—: Summary of network effects generated by the model

r > 0 r = 0 benchmark
and seller selection (or: no seller selection)

(or: v∗0(c) constant)
Direct network effect seller-side - (“lemons effect”) 0
Indirect network effect sellers on bidders ? +
Direct network effect bidder-side ? 0
Indirect network effect bidders on sellers + +

Notes. An indirect network effect considers how the entry of an additional user affects users on the other side, before
any equilibrium adjustments. A direct network effects also takes the equilibrium response of those users on the other
side into account, but not the equilibrium adjustment of users on the own side. In addition to the explanations
provided in the text, the indirect network effect of sellers on bidders is ambiguous in the case of r > 0 as the benefit
of more listings is at least partially offset by the expectation of less favorable reserve prices. The direct bidder-side
network effect is ambiguous because the entry of additional bidders attracts more but higher-reserve setting sellers,
although in equilibrium bidders are all equally well off given their zero profit entry condition.

the additional surplus generated by the additional listings, and as there is no change in the reserve

price distribution the resulting distribution of the number of bidders per listing will remain the

same. As such, this is a property that can be referred to as constant returns to scale when holding

the seller type distribution constant.

The model prediction of constant returns to scale conditional on the seller type distribution can

be verified with data from the empirical application, where the fee structure is held fixed over the

period under consideration. By contrast, in the presence of a positive scale effect the mean number

of bidders per listing would need to increase with the number of listings in equilibrium even when

holding v∗0(c) constant or when looking at auctions without a reserve price. This is most cleanly

assessed in the sample with r = 0 where the number of bidders per listing is directly observed. The

regression results reported in table C. 3 in the appendix show that the mean number of bidders

per listing does not vary with the total number of listings of that product, supporting the absence

of a scale effect in the data. It reflects that, in the context of unvetted listings of vintage wines,

bidders need to inspect each listing’s many product idiosyncracies before knowing how much to

value the wine.47 Of course it remains true that more listings attract more bidders, and regressing

the total number of bidders for a product in a market on the number of listings of that product in

that market reveals a positive correlation.

The described (indirect) network effects create a clear trade-off for the platform that will be

explored further in counterfactual simulations. Lower fees increase the number of listings and

boost the sales volume, but higher fees populate the platform with lower reserve price listings

47The absence of positive scale effects is consistent with quasi-experimental empirical evidence in other peer-to-peer platforms
(see, for instance, Cullen and Farronato (2020) and Li and Netessine (2020)).
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and more bidders per listing. Moreover, the platform faces the classic two-sided market pricing

problem of how to best allocate fees between the two sides. The magnitudes of the network effects

are important here and depend crucially on the latent value distributions and entry costs. If sellers

are relatively homogeneous, for example, reflected by low dispersion in values drawn from FV0 , the

seller selection channel is less important. In that case the benefit from adding additional listings

might outweigh the cost of attracting sellers with higher values for the platform. A primary task

for the remainder of the paper is therefore to recover the model primitives that pin down the

magnitudes of the described network effects, which drive how changes in fees affect outcomes of

interest.

Generalizability

The presented model with its unique entry equilibrium is useful as a starting point for structural

analysis of other two-sided markets as well, especially those where the selection of users on one side

creates the negative own-side network effect that is described above. One example is credit markets

such as Prosper.com, studied in e.g. Kawai, Onishi, and Uetake (2022), Liu, Wei, and Xiao (2020),

and Freedman and Jin (2017). To expand on this, the market is expected to generate positive

indirect network effects as funding probabilities and interest rates are endogenous to the number

of lenders per listing. Borrowers can be considered to have private information about their credit-

worthiness beyond their observable characteristics and do not internalize the impact of their entry

decisions on other platform users. Similar to the wine auction setting, the selection of borrowers

with lower creditworthiness is then expected to decrease the equilibrium lender/borrower ratio as

the market grows. The model can also describe interaction effects in markets with intermediaries

more generally, and the impact of fee changes on equilibrium outcomes. Consider for instance the

market for realtor services, when relatively patient sellers offer their house for sale through a direct

channel such as a For-Sale-By-Owner platform (as in Hendel, Nevo, and Ortalo-Magné (2009)).

The fact that realtors charge high commissions could be explained by the benefit of excluding the

most patient sellers from their pool of listings, in order to keep the buyer-to-seller ratio and the

resulting transaction prices high.

Moreover, Lemma 2 implies that a model extension with a match value, where the probability

that a bidder finds a suitable item increases in the number of listings, still results in a unique

equilibrium as long as the seller selection effect dominates so that each additional listing generates

a lower additional expected surplus for potential bidders.48 The presence of other negative seller-

48In a theoretical auction model with endogenous entry of buyers and sellers, no seller selection, heterogeneous entry cost,
and a match value, Deltas and Jeitschko (2007) show that the entry equilibrium is unstable and the platform profit function
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side externalities, such as modeled by Belleflamme and Toulemonde (2009) or arising from price

competition intensifying in the number of competing listings as in Karle, Peitz, and Reisinger

(2020), would also fit the framework, as they would result in a more steeply downward-sloping best-

response function (v̄0
BR
i (v̄0−i, λ

∗
r>0(v̄0−i))) than in the model presented in section 3.A. Moreover,

when bidders lean their valuation before entering (as in e.g., Samuelson (1985) and Menezes and

Monteiro (2000)), the seller best-response function remains downward-sloping —although at a

shallower slope.49 By extension, an auction platform model where bidders decide to enter based

on a somewhat informative signal of their valuation (as in e.g., Gentry and Li (2014) and Roberts

and Sweeting (2013)) also results in a unique two-sided entry equilibrium.

On the other hand, the seller best-response function will not be downward-sloping in two-sided

markets with a strong positive scale effect where additional listings increase the expected bidder

surplus from each listing beyond the potential decrease in surplus from the selection of higher-

valuation sellers.50

4. Empirical strategies to recover model primitives

This section discusses identification and estimation of model primitives (most importantly: val-

uation distributions and latent entry costs) given the assumptions of the model outlined in section

3 and given observables, which include the number of bidders, the hammer price, the reserve price,

and the platform’s fee structure. Specifically, the model restricts that the actual number of bidders

observed in zero reserve price auctions is equal to the number of bidders that entered into the

listing (Nr=0 with realization n). In positive reserve price auctions, the number of bidders that

entered (Nr>0) is allowed to be larger than the number of actual bidders that are observed (Ar>0),

motivated by some unspecified degree of censoring associated with information revealed when the

standing price is below the reserve price (the “reserve not met” and “reserve almost met” messages).

The hammer price equals the second-highest bid (Bn−1:n) in auctions without a reserve price when

n ≥ 2.51

discontinuous in the listing fee. One implication of Lemma 2 is that an empirically tractable model can still be estimated for
settings where seller heterogeneity has a relatively strong effect on expected bidder surplus relative to the match value.

49A full analysis of the case with selective bidder entry is provided in Appendix D.
50Many two-sided markets feature positive scale effects, see Jullien, Pavan, and Rysman (2021).
51A complete characterization of the hammer price H in this model where the reserve price r is secret, with r ≥ 0, as a

function of the number of bidders allocated to the auction (n) and their bids and values, when the opening bid is set at 1 is
given below. The model implications regarding the observed actual number of bidders, a, given the conditions on r and n, is
given in the final column.

H =



1 r = 0 n ≤ 1 a = n
Bn−1:n = Vn−1:n r = 0 n ≥ 2 a = n
1 r > 0 n = 0 a = 0
Bn:n = Vn:n r > 0 n ≥ 1 Vn:n < r (unsold) a ≤ n
r r > 0 n = 1 Vn:n ≥ r (sold) a ≤ 1
max(Bn−1:n = Vn−1:n, r) r > 0 n ≥ 2 Vn:n ≥ r (sold) a ≤ n
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A. Nonparametric identification

The distribution of bidder valuations FV is identified from the second-highest bid and the number

of bidders in auctions with r = 0 and n ≥ 2, which follows directly from Athey and Haile (2002,

Theorem 1). The second-highest (equilibrium) bid relates to the second-highest value according to

(3), so that in the wine auction setting where cB = 0 the two are identical. This gives the distri-

bution of the second-highest valuation. Then, FV is obtained by inverting the known relationship

between this distribution, e.g. the distribution of the second-highest out of n i.i.d. draws from

FV , and FV itself, where n denotes a realization of the random variable Nr=0. Specifically, the

distribution of the second-highest valuation (FVn−1:n) satisfies ∀v ∈ [v, v̄] and n ≥ 2

(15) FVn−1:n(v) = n(n− 1)

∫ v

v
FV (u)

n−2[1− FV (u)]du,

so that inverting this relationship separately for each n identifies FV . This is the standard identifi-

cation argument based on order statistics that is applicable to symmetric IPV ascending auctions.52

Next consider identification of the distribution of seller values. We focus on identifying

(16) FV0|v0≥vR0
=

FV0(v0)− FV0(v
R
0 )

1− FV0(v
R
0 )

because, under the restriction that vR0 is structural, the part of the support of V0 < vR0 is irrelevant

in counterfactuals where at least one seller finds it profitable to enter and set a positive reserve

price. Assuming that sellers play the equilibrium reserve price strategy, each reserve price maps to

that seller’s value as can be seen by rearranging (4) to

(17) v0(r) = (1− cS)

(
r − 1− FV (r(1 + cB))

(1 + cB)fV (r(1 + cB))

)
.

Here, v0(r) denotes the seller valuation implied by reserve price r, which is known as FV (and hence

fV ) is identified and the other elements on the right-hand side of (17) are observed.53 As such, the

distribution of implied seller values, Fv0(r), is equal to the distribution of seller values conditional

52Hence, in line with the literature standard regarding analysis of ascending auction data, the identification proof relies on
the absence of unobserved heterogeneity conditional on the set of observed auction-level characteristics. New identification
methods for a bidding model with unobserved heterogeneity could be applied to settings where additional data is available
to the econometrician. These methods rely for instance on exogenous shifters in bidder participation (Hernández, Quint, and
Turansick (2020)) or the observation of multiple bid order statistics (e.g. Freyberger and Larsen (2022), Luo and Xiao (2020)).
These more stringent data requirements are not met in the empirical application presented in this paper. Moreover, it is shown
that the rich set of auction observables explains a remarkably large share of the variation in second-highest bids, minimizing
the potential impact of unobserved heterogeneity. Also relevant to mention in this context is that Roberts (2013) uses variation
in reserve prices to control for unobserved heterogeneity but require sellers to be homogeneous.

53Note that it is not strictly necessary that sellers play the optimal Riley and Samuelson (1981) reserve price strategy: the
identification result applies to any known strategy. For uniqueness of the two-sided entry equilibrium it is only strictly required
that v0(r) is monotonically increasing in r.
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on entering and setting a positive reserve price. In particular, ∀v ∈ [vR0 , v
∗
0] it equals

(18) Fv0(r)(v) =
FV0≥vR0

(v)

FV0≥vR0
(v∗0)

.

Equation 18 shows that without identifying variation in v∗0 and unless v∗0 = v̄0 and all potential

sellers enter, the population distribution FV0≥vR0
is not nonparametrically identified on the part of

its support exceeding v∗0. However, the (identified) right-truncated distribution of potential seller

values in (18) is the foundation for any counterfactual that reduces expected seller surplus, including

unilateral fee increases. The counterfactuals show that this is the relevant part of the support in

our empirical context, where the lemons effect described in section 3.C appears important enough

to justify modifying the fee structure to exclude some high-v0 sellers on the platform.

Given the identification of FV and observing all platform fees in c, the entry cost amounts eoS

and eoB are identified from the zero profit conditions that govern platform users’ entry decisions

(e.g., (11), (12), and (14)). This follows from Πb,r>0, Πb,r=0, and Πs being revealed in the data at

equilibrium up to —and strictly decreasing in— the entry costs. In particular, eoS is identified as

the value that sets

(19) Πs(c, v
∗
0;λ

∗
r>0(c, v

∗
0), v

∗
0) = 0.

The bidder listing inspection cost eoB is the value that either sets

(20) Πb,r=0(c;λ
∗
r=0) = 0

or that sets

(21) Πb,r>0(c, v
∗
0;λ

∗
r>0) = 0

so that, clearly, eoB is overidentified.54 It is also easy to see that the expected bidder surplus in

zero reserve auctions in (20) is knowable directly from the data. The number of bidders (equal

to Nr=0) is observed and FV is identified, so we can simply take the sample average of expected

listing-level surplus in (7). But as (potential) bidders might be censored in auctions with r > 0,

the zero profit conditions in (19) and (21) rely on the entry equilibrium that is recovered as follows.

v∗0 is revealed as the maximum of seller values implied by (17). λ∗
r>0 is recovered as the value that

54Recall that eoB is assumed to be the same in auctions with and without a reserve price as the cost of inspecting a listing is
not expected to differ between these two listing types. The fact that eoB can be identified using either subset exploits a degree
of freedom in the data and allows for testing this restriction empirically.
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maximizes the likelihood of the sample of observed second-highest bids and the number of bidders

in auctions with r > 0, given FV . This likelihood will in practice also depend on an additional

parameter, p0,r>0 ≥ 0, introduced below to allow for any unexplained variation in the entry process

causing relatively many r > 0 listings to have no bidders. The value of p0,r>0 is identified given the

parametric restrictions of the generalized Poisson distribution, as best fitting the observed variation

in the number of actual bidders into a lower-dimensional (two, together with the λ∗
r>0 played in

the data) parameter space. The last structural parameter that still requires attention is vR0 , which

is identified as the minimum seller value in r > 0 listings implied by (17).

B. Estimation method

The strategies to estimate the model primitives closely follow their respective nonparametric

identification arguments. However, to extrapolate beyond the support on which FV0≥vR0
is identi-

fied, and to estimate FV independent of the number of bidders, the latent value distributions are

parameterized.55 The demeaning approach introduced in Haile, Hong, and Shum (2003) is applied

to account for auction heterogeneity.

Overview and estimation of bidder taste parameters

Let Z denote the rich set of auction covariates, including the number of bottles, type of wine, its

fill level, storage conditions, and information about how the wine is regarded by experts. Potential

bidder and seller values are taken to satisfy the following single-index structure:

ln(Ṽ ) = g(Z) + V(22)

ln(Ṽ0|Ṽ0 ≥ vR0 ) = g(Z) + V0,(23)

assuming furthermore that (V, V0,Z) are mutually independent, and using tilde notation to indi-

cate unconditional values. In our setting, g(Z) can be interpreted as the quality of a wine with

characteristics Z, and V and V0 as the idiosyncratic taste components of bidders and sellers. Fur-

thermore, parametric restrictions are based on an initial assessment of the empirical CDF of V ,

which can be estimated nonparametrically for each number of bidders n ≥ 2, and the empirical

CDF of V0, which can be estimated nonparametrically on the observed part of its support. Details

of the demeaning approach and how to obtain the relevant estimation samples are provided below.

What is important to note here is that both for bidders and for sellers these nonparametrically

estimated idiosyncratic value distributions are unimodal and continuous but not symmetric. The

55To be exact, nonparametric estimation of FV requires conditioning on each realization n of Nr=0 because the relationship
between the second-highest bid, conditional on auction observables, and FV is nonlinear in n (see (15)).
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Generalized Gaussian Distribution (GGD) appears suitable (see plots a and b in figure 2), and the

estimation results are therefore based on:56

V ∼ GGD(µb, σ
2
b , κb)(24)

V0 ∼ GGD(µs, σ
2
s , κs).(25)

A particular benefit of this distribution is that it allows for additional flexibility relative to the

often-imposed Normal distribution, with values of κ > 0 (κ < 0) introducing skewness to the left

(right).

Estimating the parameters of the bidder taste distribution (θb = (µb, σ
2
b , κb)) is done by maximum

likelihood estimation in line with previous analysis of ascending auction data, so a brief description

suffices. First, the demeaning (or homogenization) approach is applied to be able to estimate FV

across auctions with different covariates. Specifically, with cB = 0 in the data and following the

identification arguments from section 4.A, the quality term is estimated by regressing the log of the

second-highest bid on auction characteristics in auctions with more than one bidder. The residual

plus intercept of this regression deliver (the log of) homogenized second-highest values Vn−1:n for

all auctions in this sample with r = 0, forming the basis of the likelihood function.57

Estimating the parameters of the seller taste distribution (θs = (µs, σ
2
s , κs)) is more complex as

they depend on v∗0 that itself is a function of θs. A second issue stems from v∗0 being the solution

to a fixed point problem with a nested threshold-crossing problem ((14)), making full maximum

likelihood estimation (computationally) infeasible. The following solution is proposed. First, an

initial estimate θ̂0s is obtained by maximum concentrated likelihood estimation using the mapping

of equilibrium reserve prices to homogenized seller values and a consistent estimate of v∗0. Then,

the entry equilibrium is solved given θ̂0s and θ̂b. Finally, seller parameters are re-estimated using

56The GGD(µ, σ2, κ) has PDF:

f(x;µ, σ2, κ) =
ϕ(y)

σ2 − κ(x− µ)
,with ϕ(.) the standard normal PDF and

y =
x− µ

σ2
I{κ = 0}+−

1

κ
ln(1−

κ(x− µ)

σ2
)I{κ ̸= 0},

57Tr0 denotes the set of listings with a zero reserve price and h(.|nt, zt; θb) the density of homogenized hammer prices given
the number of bidders nt and auction covariates zt in auction t, as a function of bidder parameters θb. For all auctions with
a zero reserve price, and with cB = 0 in the data, it equals the probability that the homogenized second-highest bid bt is the
second-highest among nt draws from FV . Hence ∀t ∈ Tr0:

h(bt|nt, zt; θb) = nt(nt − 1)FV (bt; θb)
nt−2[1− FV (bt; θb)]FV (bt; θb)(26)

The log likelihood of bidder parameters given data is specified as:

L(θb; {nt, zt, bt}t∈Tr0 ) =
∑

t∈Tr0

ln((h(bt|nt, zt; θb)))(27)
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the resulting equilibrium v∗0. The steps are explained in more detail below.

Estimation of seller taste parameters

Let Tr>0 denote the set of auctions with r > 0. Based on equations 17 and 25, and with cB = 0

we know that ∀t ∈ Tr>0

v̂0t = ln

(
(1− cS)

(
rt −

1− FV (ln(rt)− ĝ(zt); θ̂b)

fV (ln(rt)− ĝ(zt); θ̂b)

))
− ĝ(zt),(28)

with rt the reserve price, zt auction covariates, and v̂0t the implied conditional seller value in

auction t, and ĝ(zt) and θ̂b respectively the estimated quality term in auction t and the estimated

bidder taste parameters. The density of implied seller values given entry threshold v∗0, rt, and zt

(h(v̂0t |v∗0, rt, zt; θs)) equals ∀t ∈ Tr>0
58

h(v̂0t|v∗0, rt, zt; θs) =
fV0≥vR0

(v̂0t; θs)

FV0≥vR0
(v∗0; θs)

.(29)

Using this density, we get an initial estimate of the seller taste parameters (θ̂0s), by maximizing

the resulting likelihood function concentrated at a consistent estimate of the seller entry threshold

υ̂Tr>0 = max({v̂0,t}t∈Tr>0):
59

L(θs; {v̂0,t, rt, zt}t∈Tr>0 , υ̂Tr>0) =
∑

t∈Tr>0

ln(h(v̂0t|v∗0 = υ̂Tr>0 , rt, zt; θs))(30)

θ̂0s = argmaxL(θs; {v̂0,t, rt, zt}t∈Tr>0 , υ̂Tr>0)(31)

The next step is to compute the entry equilibrium to recover v∗0 by solving (14), using the estimated

taste parameters (θ̂b, θ̂
0
s) to determine the value of V0 at which a seller is indifferent between entering

and staying out of the platform.60 Finally, θ̂s is obtained by plugging the resulting equilibrium

threshold (denoted by v∗0(θ̂
0
s)) and solving

θ̂s = argmaxL(θs; {v̂0,t, rt, zt}t∈Tr>0 , v
∗
0(θ̂

0
s)).(32)

The described estimation algorithm resembles the Aguirregabiria and Mira (2002) nested pseudo

likelihood (NPL) estimator, albeit with a nested concentrated likelihood estimator derived from

58The no-reserve screening value that determines the lower bound on the support is simply v̂R0 = min({v̂0,t}t∈Tr>0
).

59υ̂Tr>0
is a consistent estimate of v∗0 with υ̂Tr>0

→ v∗0 as Tr>0 → ∞ at the true population parameters, by the law of large
numbers, asymptotically over multiple iterations of the game.

60Expected seller surplus is also based on the maximum likelihood estimate of the distribution of Nr>0, described in the last
paragraph of this section.
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the optimal reserve price strategy to recover structural parameters.61

Estimation of entry parameters

Estimation of the entry costs requires solving for the values that satisfy the zero profit conditions

in (19), (20), and (21) given the estimated taste parameters and the computed entry equilibrium,

following the steps outlined in the identification section. The bidder listing inspection cost is

estimated separately from the subsets of auctions with and without a reserve price (resulting in

êoB,r>0 and êoB,r=0) to test the model restriction that the two are equal. As anticipated, an additional

share (p0,r>0 ≥ 0) of listings in r > 0 auctions is allowed to attract no bidders, and this share is

estimated to maximize the joint likelihood of the observed number of actual bidders and the second-

highest bid given the generalized Poisson distribution of Nr>0.
62 The empirical distribution of the

number of bidders in zero reserve auctions, which can be estimated nonparametrically, shows that

no such flexibility is needed there (see plot f in figure 2). Further details about the computation of

the entry equilibrium and estimation of these parameters are provided in online appendices E-F.

5. Estimation results

This section describes the estimation results that are reported in table 7. Unless otherwise

specified, the discussion in this section refers to the estimates from the main estimation sample

that are of primary interest. Estimates from the high-end sample are used only to introduce a

relevant dimension of heterogeneity when simulating platform revenues in counterfactual 6.B.

A. Parameter estimates and model validation

The data contain information on observables related to the type of wine, the region of origin,

the number and type of bottles, the auction month, storage in a temperature-controlled warehouse,

delivery cost/conditions, returns and insurance, payment options, seller ratings, ullage, in-bond

lot status, and more. The extent to which auction characteristics explain the variation in prices

61The entry equilibrium is computed only once because this is the slowest part of the estimation algorithm and as any number
of iterations results in a consistent estimator (Aguirregabiria and Mira (2002)). Practically, updating once also achieves the
highest likelihood across iterations, when iterating until convergence. More details on the estimation algorithm are provided
in Appendix E. NPL is more widely used as a solution to solving parameters involving fixed point characterizations in the
estimation of (dynamic) discrete choice entry games, and Roberts and Sweeting (2010) previously applied NPL to an auction
setting with bidder entry. Pesendorfer and Schmidt-Dengler (2010), Kasahara and Shimotsu (2012) and Egesdal, Lai, and Su
(2015) provide conditions under which NPL may (not) converge to the true equilibrium. A best-response stable equilibrium is
a sufficient condition for the algorithm to converge to the truth and this is guaranteed by the entry game reducing to a single
agent (marginal seller) discrete choice problem with a unique equilibrium (see section 3.C).

62The generalized (or zero-inflated) Poisson distribution has PDF:

fNr>0
(k;λr>0, p0,r>0) = (1− p0,r>0)

exp(−λr)λk
r

k!
+ p0,r>0I{k = 0},

which reduces to a standard Poisson distribution for p0,r>0 = 0.
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Table 7—: Estimated structural parameters

Conditional valuation (taste) parameters µ̂b σ̂2
b κ̂b µ̂s σ̂2

s κ̂s

Main sample
2.409 0.880 0.015 2.532 0.727 0.306
(0.022) (0.002) (0.002) (0.024) (0.005) (0.005)

High-end sample 5.315 0.449 -0.484 5.562 0.449 -0.348
(0.025) (0.002) (0.008) (0.025) (0.014) (0.015)

Entry parameters êoB,r>0 êoB,r=0 êoS p̂0,r>0 v̂R0

Main sample
1.809 2.236 1.250 0.049 -0.462
(0.126) (0.134) (0.128) (0.0004) (0.030)

High-end sample 14.152 15.036 14.811 0.116 4.821
(0.393) (0.423) (0.403) (0.0004) (0.027)

Notes. The structural estimates are based on 2731 observations in the main sample and 592 observations in the
high-end sample. Standard errors based on 250 nonparametric bootstrap repetitions are reported in parenthesis.

is explored to assess the degree to which abstracting from unobserved heterogeneity might be

problematic. Obtaining the data by scraping the content of the listing pages results in an unusually

rich dataset that contains at least the majority of what bidders also observe. To fully exploit this

information, text mining techniques are applied to the description of the wine provided by the

seller. Words that relate to each of the following three categories are identified. First, the category

expert opinion includes listings for which the description refers to tasting notes or points from

well-known wine critics Robert Parker or Janice Robinson. The second category includes listings

whose descriptions include words indicating that the wine was bought en primeur (French for “in

advance” or “first”), which refers to the sale of a portion of Bordeaux wines based on young barrel

samples taken after the latest harvest but before the wine has been bottled and matured.

While the first classification provides the bidder with information about the wine’s taste, the

second classification relates to its provenance and the professionalism of the seller. The third

category includes listings with words related to the delivery or shipment of the wine.63 Whether

the description contains words in each of these categories and the number of words in the description

are included in the set of auction covariates.

A regression of the log of the hammer price per bottle in zero reserve auctions with at least

two bidders on these characteristics, done to homogenize the auctions and allow the data from

heterogeneous auctions to be pooled together, shows that the observables explain a strikingly large

share of the price variation.64 In the main sample the R2 is 0.51 and 0.57 when including dummies

63For example, words related to expert opinion include “advocate”, “points”, “color”, and “tannin”; words related to en
primeur status include “temperature”, “member”, “facility”, and “society”; and words related to delivery and storage include
“insurance”, “arrange”, “quote”, “wales”, and “invoice”.

64Tables C. 5-C. 6 in the appendix report estimation results from these regressions, and also provide a comparison with
variations that are based on the level of the hammer price rather than the logarithm, that include dummies for the number of
bidders, or that are estimated only on the sample where r = 0.
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(a) FV (b) FV0≥vR0
(c) Second-highest bid

(d) Reserve price (e) Hammer price (f) fN,r=0

Figure 2. : Model fit: main sample

Notes. Model predictions and observed values of (a) FV , and empirical CDF for n = 2, ..., 11 bidders (r = 0 auctions),
(b) FV0 , and empirical CDF (r > 0 auctions), (c) Second-highest bid (r = 0 auctions), (d) Reserve price (prediction
includes estimated quality, r > 0 auctions), (e) Hammer price (r > 0 auctions), and (f) Number of bidders per listing
(r = 0 auctions). Simulations of bidder values based on 1000 draws for each bidder and simulations of seller values
based on 5000 draws. Observed values are based on the estimation sample. The same plots for the high-end sample
are provided in the appendix (figure C.3).

for the number of bidders, and in the high-end sample the R2 is 0.94. These results compare

favorably to the amount of price variation that can typically be explained in auction studies,

including in studies of more homogeneous goods and in those that use innovative methods to recover

information otherwise unobservable to the econometrician (see, e.g., Bodoh-Creed, Boehnke, and

Hickman (2017) and Kong (2020)). It is impossible to capture literally everything that might affect

bidder valuations in the data, but unobserved heterogeneity likely plays a minor role in the current

context.

The impact of key variables is generally as expected. Prices are higher for bottles sold by the

case and conditional on this case effect, the price is lower when more bottles are included in the

lot. All fill levels that are not the best earn (weakly) lower prices. Having words related to expert

opinion or En primeur in the textual description, or having a longer description, is favorable for

the price, as is fast shipping.
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Table 7 reports the remaining estimated structural parameters.65 The estimated taste distribu-

tion parameters imply that, on average, tastes in the populations of potential bidders and sellers

(for r > 0 auctions) are virtually the same for lower-end bottles; in levels, the mean idiosyncratic

value is about 11 pounds in the main sample. The sunk opportunity cost of time and the platform

listing fee work to keep sellers with the highest values (marginal costs of selling) away from the plat-

form. The average idiosyncratic value for sellers on the platform reduces to 10 pounds. Additional

gains from trading on the platform are generated from the fact that only the highest-value bidder in

the listing trades with the seller when bidding more than the reserve price. The estimation results

also show that, even in the population of sellers with values exceeding v̂R0 , the distribution of their

idiosyncratic tastes is more left-skewed than that of bidders. The opposite is true in the high-end

sample where there is a long upper tail with some bidders having particularly high values.

The listing inspection costs are estimated to be substantial at 2-15 pounds. While the estimated

inspection cost is in absolute terms seven times as large in the high-end sample, it is more infor-

mative to compare them in relation to the hammer price. Also in relative terms is the estimated

inspection cost higher in the main sample (about 5 percent of the per-bottle equivalent average

hammer price of 41 pounds) than in the high-end sample (about 10 percent of the per-bottle equiv-

alent average hammer price of 155 pounds). Estimates do in both cases correspond to the idea that

the cost of inspecting a listing to prepare for bidding is significant, justified by the heterogeneous

nature of the goods and by a platform setting of unvetted listings generated by individual sellers.66

A key source of model validation is the comparison of êoB,r=0 with êoB,r>0. The model restricts

these costs to be identical as there is no reason to suspect that the presence of a reserve price affects

how time intensive it is to inspect listings if the presence of a reserve price does not reveal any

information about the quality of the item. Indeed, the estimated listing inspection cost are highly

similar in both the main and high-end samples. Recalling that these values are estimated from two

different subsets of the data as the values that satisfy the zero profit conditions of potential bidders

in zero- and positive reserve price auctions (which are, as explained, estimated using different

methods), these results are encouraging.

The model also fits the data well on the usual dimensions, as illustrated by the various plots

in figure 2.67 It is particularly convincing that predicted hammer prices in r > 0 auctions match

the observed values closely —given that the distribution of bidder values is estimated from the

65Estimation of θs excludes the 8.3 (2.3 in the high-end sample) percent of sellers for which v̂0t is estimated to be negative.
Moreover, both û0,t and ĝ(Z) are trimmed at their 1st and 99th percentiles to minimize the impact of outliers.

66By comparison, entry cost averages 2 percent of the winning bid in USFS timber auctions (Roberts and Sweeting (2013)).
67Plots d and e include draws of estimated quality to simulate second-highest bids and reserve prices, which are out-of-sample

predictions for the reserve price sample, and the second-highest bid is simulated in expectation over the number of bidders per
listing.



38

disjoint subset of auctions with no reserve price. This finding lends further support to the idea

that bidders in positive and zero reserve auctions can be treated as identical up to their preference

for bidding in either auction type. As another measure of model fit, the mean absolute deviation

between the observed and predicted second-highest bids in r = 0 auctions is computed separately

for n = {2, 3.., 10} bidders: the mean absolute deviations are small, between 0.04-1.4 pounds, and

there is no clear pattern by the number of bidders. Furthermore, two-sample Kolmogorov–Smirnov

tests cannot reject the null hypothesis that the observed and predicted reserve prices are drawn

from the same population distribution (p value 0.39).

Plot f of figure 2 displays the goodness of fit of the assumed Poisson distribution with the esti-

mated λ̂∗
r=0 relative to the empirical distribution. Notably, the data do not reveal any overdispersion

relative to the Poisson distribution. This indicates that while preferences for high-level characteris-

tics (filters) might vary across the population of potential bidders, the uniform sorting over listings

—conditional only on the reserve price button— assumed in the estimation captures the first-order

effects of entry behavior in the BW data. A chi-squared goodness-of-fit test fails to formally reject

the hypothesis that N is generated by a Poisson distribution (p value 0.14).68

Finally, at the estimated parameters, setting no reserve price attracts about the same number of

bidders. It makes intuitive sense that this participation differential is larger in the high-end sample

(2.5), as the probability of being the sole entrant and winning the more expensive wine for the 1

pound opening bid is more valuable.

Taken together, these results suggest that the parsimonious model presented in section 3 provides

a plausible description of behavior and payoffs on this platform.

B. Seller selection and indirect network effects

The impact of fee changes depends on the entry elasticities of potential bidders and sellers and

hence on the network effects generated by user interactions on the platform. The signs of these

network effects are given in table 6, and why they arise in this setting is discussed in section 3.C.

This section estimates their magnitudes on the BW platform according to the following procedure.

First, homogenized auctions are simulated by applying equilibrium strategies to the estimated

parameters while altering either the number of bidders (M) or sellers (T , incorporating selection)

on the platform. Then, the expected bidder and seller surplus are estimated. The results are

reported in table 8 for various values of M and T , based on homogenized auctions with r > 0, and

68The high-end sample does contain some underdispersion, and the test barely fails to reject the null (p value 0.06). This could
be explained by (some) bidders entering auctions with a lower standing price rather than entering randomly. The counterfactual
simulations abstract from such behavior insofar as there are departures from the uniform matching assumption in the high-end
sample.
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Table 8—: Estimated indirect network effects

Main sample High-end sample

Exogenous change number of sellers (T): -50 -10 +10 +50 -50 -10 +10 +50

Effect on Πb -0.013 -0.002 0.002 0.013 -0.333 -0.071 0.075 0.431
Effect on Πb (no selection) -0.030 -0.006 0.006 0.029 -0.727 -0.141 0.139 0.677

Main sample High-end sample

Exogenous change number of bidders (M): -50 -10 +10 +50 -50 -10 +10 +50

Effect on Πs (marginal seller) -0.025 -0.005 0.005 0.025 -0.434 -0.087 0.087 0.434
Effect on Πs (median seller) -0.053 -0.011 0.011 0.053 -1.249 -0.249 0.249 1.243

Notes. Simulations are based on r > 0 homogenized auctions in the two samples.

separately for the high-end sample for illustration purposes.

Indirect network effects, by its usual definition as in i.e. Katz and Shapiro (1985), have the

following magnitude: adding 10 additional bidders to the platform increases the expected surplus

of the marginal seller by 0.5 pence, and this effect is about twice as large as the effect of adding

10 additional sellers on the expected surplus of bidders. One benefit of the structural analysis is

that it relaxes the assumption that these network effects are constant. In fact, the results display

heterogeneity. Sellers with lower valuations for the item on sale benefit more: the indirect network

effect is about twice as large for the median potential seller than the marginal seller (at the 90th

percentile). Increasing the number of sellers also has a weaker effect on bidders than reducing that

number, which is more pronounced in the high-end sample.

These results are driven by the estimated bidder and seller taste parameters, which impact

the importance of the seller selection channel. For example, a lower level of dispersion in seller

tastes/reserve prices would increase the indirect network effect of attracting additional sellers. The

estimates indicate that taste distributions are such that seller selection plays a significant role on the

BW platform. Relative to an environment where sellers are homogeneous, the gain from adding 50

listings (the positive indirect network effect on bidders) is dampened by 55 percent because sellers

in these listings set relatively high reserve prices. These patterns are similar in the high-end sample

but the effects are an order of magnitude larger.

C. Commission index and revenue-volume trade-off

It is also useful to use model estimates to illustrate two features of the market. The first is the role

of what is called a “commission index”, defined as α = cB+cS
1+cB

. Ginsburgh, Legros, and Sahuguet

(2010) show that expected platform revenue (and bidder and seller surplus) are independent of

(cB, cS) as long as α remains constant. They do not model seller entry or heterogeneity, but their
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(a) Platform revenue (b) Sales volume

Figure 3. : Illustrating the commission index and revenue-volume trade-off

Notes. The game is estimated on a grid of: cB × cS (cB = {−0.3,−0.2,−0.1, 0, 0.1}, cS = {−0.1, 0, 0.1, 0.2, 0.3}) and
interpolated linearly. Values are normalised by baseline levels and are based on parameter estimates from the main
sample.

result applies here, too, since the marginal seller’s expected surplus (and hence v∗0) remains con-

stant unless α changes. Hence, only the commission index and the flat fees matter for the platform

revenue-maximization problem. Figure 3 plot (a) confirms that the simulated counterfactual plat-

form revenue levels line up perfectly with the theoretical commission-index level lines (in orange).

However, theory can tell us no more than the combinations of cB and cS that keep platform revenue

and user surplus constant, motivating the empirical analysis in this paper.

Secondly, the platform faces a trade-off between maximizing revenues and maximizing the volume

of sales. Intuitively, increasing fees lowers the sales volume but increases the share of that volume

paid to the platform. In the case of commissions, it is important to note that this holds even when

the commission index is held constant. For example, increasing cB and decreasing cS such that α is

unchanged would lower the volume because bidders scale down their bids, while at the same time,

the reserve price and sale probability are unaffected (as shown by Ginsburgh, Legros, and Sahuguet

(2010)).69 Plot b of figure 3 illustrates this point: the simulated volume levels decrease when

moving up (when cB becomes higher) along the commission index level lines. Similarly, increasing

the listing fee generates more revenue but depresses the sales volume by reducing the number of

listings on the platform. This is especially relevant as fee structures that increase platform revenue

69Note that platform revenue = volume×(cB +cS) + income from (eS , eB , eR). Even when entry is held constant, and hence
cB+cS
1+cB

, the sales volume decreases in cB .
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at the expense of reducing volume (by a large amount) are generally considered unattractive.70 To

account for the volume impact without placing restrictions on the platform growth dynamics, in

what follows a nonparametric volume constraint is reported alongside the platform revenues.

6. Counterfactuals

In this section the model estimates are used to address the two key indeterminacies of two-sided

markets: 1) how do fee changes affect user welfare, and 2) what fee structures improve platform

profitability? Each simulated variation in the fee structure requires solving the auction platform

game for a new entry equilibrium and new auction outcomes.

A. Welfare impacts and lemons effect

Being able to quantify the welfare effects of fee changes in a two-sided market is of immediate

policy relevance. While it is widely understood that both sides of the market are affected by price

changes on either side, the difficulty of quantifying network effects has been a bottleneck in the

application of antitrust policy to two-sided markets.71

To illustrate what is termed in section 3.C as the “lemons effect” of two-sided markets with

seller (listing) heterogeneity, the first simulation focuses on the effect on sellers when the listing

fee is increased by 1 pound. In a model that ignores entry, the expected surplus for all sellers on

the platform would decrease by 1 pound, and no other user groups would be affected. Instead,

when the equilibrium is recomputed with two-sided entry, the expected surplus for sellers who

remain on the platform decreases by less than 1 pound. The higher listing fee excludes some of the

highest-valuation sellers from the platform, increasing the expected surplus for potential bidders

and driving up the number of bidders per listing.

Figure 4 shows that the magnitude of the lemons effect is inversely related to the inframarginal

seller’s value draw. Increasing the listing fee by 1 pound reduces expected seller surplus by 13-

35 percentage points less than when the two-sided entry is not taken into account. The effect

increases with the degree of seller heterogeneity in the market. To illustrate, the figure includes

results simulated after increasing the variance in the distribution of seller values (σ2
s) by 10 percent

(“additional seller heterogeneity”). Fully accounting for the welfare impacts on sellers, those who

70The trade-off is crucial in any scenario in which the volume of sales affects future revenues, for instance, through word of
mouth or brand awareness. See also Evans and Schmalensee (2010), who explain why startups focus on network growth in their
early years using a platform model with myopic users, no switching costs, and significant indirect network effects.

71See, e.g., Bomse and Westrich (2005), Tracer (2011), Evans and Schmalensee (2013). For example, in one eBay case
sellers claiming that eBay charged supracompetitive fees were denied a class action suit due to the absence of a method
for quantifying damages in the presence of network effects (https://casetext.com/case/in-re-ebay-seller-antitrust-litigation-
7, last accessed December 23, 2021). Furthermore, the landmark 2018 Ohio v. American Express Co. Supreme Court
decision required plaintiffs (merchants) to provide evidence that anti-steering rules negatively impact consumers as well
(https://www.supremecourt.gov/opinions/17pdf/16-14545h26.pdf last accessed December 23, 2021).

https://casetext.com/case/in-re-ebay-seller-antitrust-litigation-7
https://casetext.com/case/in-re-ebay-seller-antitrust-litigation-7
https://www.supremecourt.gov/opinions/17pdf/16-1454_5h26.pdf
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(a) Only increasing listing fee
(b) Adding bidder entry subsidy

Figure 4. : Lemons effect: heterogeneous change in expected seller surplus when increasing the
listing fee by one pound.

Notes. The estimated effects are plotted by decile of FV0|V0≥ṽ0 , for sellers who are inframarginal (with v0 ∈ [ṽ0, v
∗
0 ])

both at baseline and in the counterfactual. Simulations are based on r > 0 homogenized auctions in the main sample.

set no reserve price simply experience the full 1 pound loss in surplus, while the expected surplus

of the 5 percent of sellers who are pushed out of the market but would otherwise set a positive

reserve price must be lower in the counterfactual scenario.

Furthermore, plot (b) of figure 4 demonstrates that the network effects in BW can be exploited to

make all sellers (weakly) better off despite paying a 1 pound higher listing fee by using the proceeds

to subsidize bidder entry. The budget-neutral size of the bidder entry subsidy is computed to deplete

all additional revenue raised through the higher listing fee. This makes the marginal entrant with

V0 = v∗0 slightly better off. Inframarginal sellers with V0 ∈ [vR0 , v
∗
0) are also better off: their expected

surplus increases by up to 1.8 pounds. These results are especially interesting in that they provide

evidence for the special circumstance in two-sided markets that (some) users could be better off

when paying higher fees.72 No intervention by a social planner is needed to bring about these

benefits: the fee change is estimated to increase both the sales volume and platform profits, driven

by a higher sale probability and higher transaction prices.73

72Even sellers who set a zero reserve price are better off. At the estimated values of the model primitives, the benefits of
the subsidy-induced entry of additional bidders into auctions with r = 0 outweigh the cost of the higher listing fee. Due to
the zero-profit entry condition, bidders are unaffected in expectation, and as the number of listings remains constant, the total
surplus for bidders as a group also remains unaffected.

73In terms of practical implementation, the platform could invest in lowering listing inspection cost by increasing the stan-
dardization of listings or by introducing an estimated quality index, in which case the bidder subsidy does not need to be paid
out of pocket. A negative bidder entry fee is infeasible (if it costs users less to enter the platform and collect it), but a voucher
to reduce the transaction price for winning bidders would also stimulate entry. In a similar vein, the next section discusses a
negative buyer commission to encourage bidder entry.
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B. Platform revenues and listing heterogeneity

In two-sided markets, it is profitable to subsidize the entry of users on the side that generates

stronger positive externalities for the other side, as those users can then be charged a higher price

(Rochet and Tirole (2006)). As documented above, bidders generate stronger indirect network

effects than sellers, which is partly driven by the fact that any additional sellers attracted to

the platform set higher reserve prices. This is not lost on platform management, who, up to a

nonnegativity constraint, have set the lowest optimal buyer commission cB = 0 and bidder entry

fee eB = 0. The previous section discussed the benefits of subsidizing bidder entry by, for instance,

lowering the cost of inspecting a listing or by giving cash back to winning bidders. Here, a negative

buyer commission is considered, which is merely a discount on successful sales. While charging

negative commissions would certainly be innovative in the auction platform world, it is similar to

the (temporary) discount vouchers periodically offered on eBay or the cash-back policies of certain

credit cards.

To study the impact of fee changes on the composition of listings on the platform, in addition

to those related to seller heterogeneity, the results in this section include homogenized auctions

based on parameter estimates from the high-end sample. Figure 5 illustrates that also in this

richer setting a self-imposed nonnegativity constraint on the buyer commission is binding. The

plot shows that platform revenues cannot increase by changing the allocation of commissions to

buyers and sellers unless buyers are subsidized through a winning bidder discount. When doing

so, the estimates reveal that volume-constrained revenues can increase by about 40 percent when

combining a negative cB with a larger increase in cS . The latter is needed to finance the winning

bidder discount. Such a change results in a higher commission index and generates benefits through

the selection of sellers with lower valuations.

In the unit–percentage seller fee space, when cB = 0, the volume- and revenue index levels are

parallel to each other in both the main and the high-end sample. Hence, any global improvement

requires a buyer discount to relax the volume constraint and/or relies on compositional changes

from changing the share of high-end listings on the platform. A platform wanting to establish itself

in the higher-end market should tilt the fee structure on the seller side towards flat rather than

proportional fees, which increases the share of high-end listings.

The model relies on the monopoly position of the platform, which is motivated by the fact that

BW is the only large UK wine auction platform that uses an unvetted seller-managed listing format.

An interesting direction for further research would be to model the competition in fee structures

between (auction) platforms. While such an analysis is beyond the scope of this paper, we can
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Figure 5. : Platform revenue at alternative fee structures

Notes. Figure displaying contour plots of simulated platform revenues, normalised by baseline revenues. The grey
vertical bar corresponds to cS ∈ [0.9 (high-end), 0.102 (main sample)], the horizontal bar indicates the baseline cB = 0,
and eS is held at its baseline level of 2.1. The game is estimated on a grid of: cB ×cS (cB = {−0.3,−0.2,−0.1, 0, 0.1},
cS = {−0.1, 0, 0.1, 0.2, 0.3}), and values are interpolated linearly. Results are based on parameter estimates from
both main and high-end samples.

consider briefly two non-differentiated platforms competing only with one fee.74 If a competing

platform best-responds to a fee increase on BW by also increasing its fee, this would appear as a

higher entry (opportunity) cost for the targeted users. In that case, users’ true entry elasticity with

respect to an increase in the fee on BW would be lower than simulated, and the estimated revenue

impacts of an increase in the fees on BW would be conservative.

C. Antitrust damages

The incidence of a (potentially anticompetitive) change in fees depends crucially on the assump-

tions made about entry and whether sellers set a reserve price. For instance, the idea that winning

bidders are unaffected by changes in either the buyer or seller commission (as argued in, e.g.,

McAfee (1993), Ashenfelter and Graddy (2005), and Marks (2009)) is correct only in a market

74As a starting point for further analysis, Karle, Peitz, and Reisinger (2020) provide a competing platform model with a
negative seller-side externality. E-commerce platforms compete in the listing fee in a model where the competition among
homogeneous-cost sellers intensifies in the number of competing sellers that post a listing in the same product category.
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without entry and with fully elastic sellers, as bidders simply scale down their bid by the amount of

cB (as in (3)) and sellers accept any price. A different paradigm was adopted in the 2001 Sotheby’s

and Christie’s commission fixing case: in the absence of a method for evaluating the incidence of

commission increases, pro-rata damages were deemed appropriate and most of the $512 million

settlement went to the winning bidders.75 With this rule of thumb, damages to buyers (sellers) are

equal to the overcharge in buyer (seller) commissions as a share of the realized hammer price. An

advantage of the structural approach advocated for in this paper is that it allows for the estimation

of the welfare impacts of any fee change without having to rely on such rules of thumb.76

This is demonstrated by simulating the effects of a doubling of the commission index by increasing

the seller commission from 0.102 to 0.204. The results are reported in table 9 and further illustrate

the bias present in simpler models without (seller) entry.77 One take-away from the table is that

while in the two referenced benchmark paradigms the incidence of the seller commission increase

falls for 100 percent on sellers, this number is substantially lower when accounting for entry or for the

adjustment of reserve prices.78 Moreover, the total welfare loss for sellers is 34 percent higher than

when abstracting from entry. Another take-away is that also buyers experience substantial damages

of 7.6 percent of the average hammer price, rather than being unaffected as in the two benchmark

scenarios. These damages are also underestimated when shutting down the entry response on both

sides (2.1 percent) or when only allowing bidders to enter endogenously (4 percent).

7. Conclusions

This paper studies an auction platform with two-sided entry. A structural model is presented

that captures user interactions on such a platform in order to study the welfare and revenue impacts

of the platform’s fee structure. A computationally feasible estimation algorithm is provided, and

it is shown that the relevant model primitives are nonparametrically identified with basic auction

data. The model is estimated with data from a wine auction platform —after presenting reduced

75See Ashenfelter and Graddy (2005) and https://casetext.com/case/in-re-auction-houses-antitrust-litigation-61, last ac-
cessed December 23, 2021.

76Of course, the structural approach also facilitates the simulation of the welfare impacts of multiple simultaneous fee changes
and allows for more detailed breakdowns by user subgroups, if desired.

77Damages are computed as the reduction in expected surplus resulting from the increase in commission for groups of
(expected) buyers and sellers on the platform and per-user as a percentage of the expected counterfactual hammer price. For
an equivalent increase in the commission index brought about by increasing the buyer commission to 0.1281, the total damages
and the incidence on sellers are the same, but because the hammer price decreases by more, the estimated percentage damages
are larger. These results are provided in appendix B.

78When fixing entry but letting r∗ adjust optimally, the incidence of sellers is estimated to be 80.2 percent (see the “no entry”
row in table 9). Although the hammer price is lower in this scenario, even winning bidders are worse off in expectation, as the
sale probability also decreases. At the estimated values of the model primitives, the incidence on sellers drops from 80.2 to 75.8
percent when also endogenizing bidder entry while holding the set of listings constant (the “no seller entry” row). Fewer bidders
enter because reserve prices are higher so the additional loss in seller surplus is driven by the exclusion of some bidders who
would have become the highest bidders. In the full two-sided entry equilibrium also the number of listings decreases, although
the entry of additional bidders attracted by the more favorable reserve price distribution on the platform undoes part of the
reduction in seller surplus. In this case, the incidence on sellers is only 64.2 percent.

https://casetext.com/case/in-re-auction-houses-antitrust-litigation-61
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Table 9—: Antitrust damages of doubling the commission index (cS + 0.102)

Simulated effects Benchmarks
No entry No seller entry Two-sided entry Elastic seller Pro-rata

Total damage (1000s pounds) 4 5.9 6.7
Incidence on sellers (%) 80.2 75.8 64.2 100 100
Hammer price (% change) -0.8 -7.3 -3.4 0 0
Buyer damage (% post-hammer) 2.1 4 7.6 0 0
Seller damage (% post-hammer) 8.5 12.6 13.6 10.2 10.2

Notes. Simulations are based on homogenized auctions with r > 0 in the main sample. To stay close to antitrust
applications, damages are computed as a share of the counterfactual expected hammer price (expected sale probability
multiplied by the expected transaction price conditional on a sale). Buyer and seller damages are computed in
expectation for groups of buyers and sellers, with a buyer being the in expectation winning bidder, including in
unsold listings. In the pro-rata benchmark, the damage to buyers (sellers) equals the amount of overcharge of the
buyer (seller) commission. In the (fully) elastic seller benchmark, the damage to buyers is none while the damage to
sellers is the amount of overcharge of either buyer or seller commission.

form evidence supporting the model assumptions— and is shown to fit the data well.

Counterfactual simulations highlight that the network effects generated by entry and by user

interactions are nonlinear, that the selection of sellers with higher valuations depletes much of

the indirect network effect on bidders, and that the benefit of additional bidder entry is lower

for higher-valuation sellers. What is termed a “lemons effect” clearly illustrates the role of seller

selection in this two-sided market. The reduction in surplus due to an increase in the listing fee

by one is, for sellers who remain on the platform, less than one as it causes some higher-valuation

sellers (“lemons”) to choose not to enter. Higher-valuation sellers set higher reserve prices, and as

the expected (latent) reserve price affects bidder entry, the number of bidders per listing increases,

which drives up transaction prices for the sellers remaining on the platform. This effect increases

with the degree of seller heterogeneity in the market. Furthermore, pairing the listing fee increase

with a budget-neutral bidder entry subsidy (weakly) increases the expected surplus for all users on

the platform, including for sellers, despite paying more to create a listing on the platform.

Platform revenues can increase significantly when a bidder discount (negative buyer commission)

is combined with higher seller fees. The results furthermore account for compositional effects

beyond those arising from the distribution of seller valuations through the use of a separate set of

model estimates from a sample of higher-end wines. Increasing the flat listing fee rather than the

percentage seller commission results in a platform with relatively more higher-end listings but a

lower profit share from those listings.

The results highlight that the economic principles underlying regulations in traditional markets

do not necessarily apply to two-sided markets and that both sides should be evaluated in tandem.

A competitive auction platform could combine high fees on one side of the market with below-
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marginal cost prices on the other side. Both practices could be considered predatory when evaluated

in isolation, but they prove to be socially optimal in the two-sided market in this paper. In recent

years, competition authorities and courts have also recognized that the regulation of platform

markets requires new empirical models, but the perceived difficulty of quantifying user interactions

has been a bottleneck for the practical application of these ideas. While the empirical results

presented here are based on a specific platform, this paper provides the tools necessary to make

much needed progress in applying antitrust policy to two-sided markets.
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A. Omitted proofs

A. Poisson decomposition property for number of bidders per listing

The proof concerns the statement that when NB potential bidders enter a platform with T

listings with probability p, the distribution of the number of bidders per listing is approximately

Poisson with mean NBp
T . Let M denote the total number of bidders on the platform, distributed

Binomial(NBp,NBp(1 − p)). The limiting distribution of M when the population of potential

bidders NB → ∞ and associated p → 0 s.t. NBp remains constant is Poisson(λ = NBp). Bidders

on the platform sort over T listings, entering each listing with probability q = 1
T . Due to the

stochastic number of bidders on the platform, the probability that m bidders get allocated in

listing t and n enter into other listings also includes the probability that m + n bidders enter the

platform.

(A.1) fNt,N−t(m,n) =
exp(−λ)λ(m+n)

(m+ n)!

(m+ n)!

m!n!
(q)m(1− q)(n)

This joint distribution function can be manipulated to conclude that:

fNt(m) =

∞∑
n=0

exp(−λq)(λq)m

m!

exp(−λ(1− q))(λ(1− q))n

n!
=

exp(−λq)(λq)m

m!

The above is referred to as the decomposition property of the Poisson distribution in Myerson

(1998). Novel here is the stochastic nature of M ; the above shows that M does not need to be

independent of T . The t subscript can be dropped from fNt as the distribution is identical for all

listings t = {1, .., T}.
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B. Additional tables and figures

Table C. 1—: Independent listings: regression analysis

Dependent variable: bidders / listing transaction price reserve price

coef. s.e. coef. s.e. coef. s.e.

Product: any wine
30 days 0.00002 (0.0001) -0.002 (0.009) 0.009 (0.014)
7 days 0.001** (0.0003) 0.004 (0.021) -0.044 (0.039)
2 days 0.001** (0.0004) 0.032 (0.031) -0.011 (0.072)
Product: type (e.g., red)
30 days 0.001 (0.001) 0.012 (0.070) 0.202* (0.121)
7 days 0.007*** (0.002) 0.099 (0.146) -0.393 (0.343)
2 days 0.004 (0.003) 0.041 (0.197) -0.186 (0.494)
Product: region (e.g., Bordeaux)
30 days 0.0003 (0.0003) -0.001 (0.022) 0.044 (0.036)
7 days 0.002*** (0.001) 0.035 (0.051) -0.081 (0.109)
2 days 0.003** (0.001) 0.095 (0.076) -0.034 (0.174)
Product: region x type (e.g., red Bordeaux)
30 days 0.001 (0.001) 0.022 (0.119) 0.090 (0.214)
7 days 0.013*** (0.004) 0.459* (0.258) -0.570 (0.604)
2 days 0.002 (0.005) 0.400 (0.366) -0.786 (0.760)
Product: region x type x vintage (e.g., red Bordeaux 1980s)
30 days -0.002 (0.004) -0.531 (0.401) -0.521 (0.568)
7 days -0.003 (0.009) -0.550 (0.885) -0.445 (1.187)
2 days -0.010 (0.011) -0.300 (1.063) -0.136 (1.307)
Product: subregion x type x vintage (e.g., red Margaux 1980s)
30 days -0.002 (0.002) 0.196 (0.202) -0.179 (0.320)
7 days 0.005 (0.005) 1.083*** (0.388) -0.722 (0.758)
2 days -0.003 (0.006) 0.711 (0.468) -0.977 (0.861)
Observations 3,481 2,228 2,333
Sample all sold lots r > 0
Product fixed effects: ✓ ✓ ✓

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.05; ∗∗∗p<0.01. Results from 54 separate OLS
regressions of how the number of competing listings affects the three outcome variables (columns). Competing
listings defined as offering the same product in the same market, using 6 different product definitions and a market
being all listings ending within a 30 day, 7 day, or 2 day rolling window of the listing.
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Table C. 2—: Suggestive evidence against bidder selection

Panel A
Dependent variable: sale price (conditional on sale)
Various samples and controls

(A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9)

Number of bidders in auction 15.661∗∗∗ 13.216∗∗∗ 13.226∗∗∗ 6.847∗∗∗ 5.952∗∗∗ 5.952∗∗∗ 8.806∗∗∗ 7.882∗∗∗ 7.813∗∗∗

(1.094) (1.094) (1.094) (0.430) (0.422) (0.422) (0.622) (0.647) (0.647)
Total number bidders product/market −0.186∗ −0.097 −0.081 −0.078∗∗ −0.037 −0.033 0.004 −0.037 −0.003

(0.076) (0.140) (0.143) (0.028) (0.051) (0.052) (0.035) (0.071) (0.074)

Product fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Time trend (week): ✓ ✓ ✓
Sample Full Full Full Main Main Main r = 0 r = 0 r = 0
Observations 2,228 2,228 2,228 1,870 1,870 1,870 984 984 984
Adjusted R2 0.084 0.305 0.305 0.119 0.362 0.361 0.178 0.329 0.331

Panel B
Dependent variable: hammer price (unconditional on sale)
Various product/market definitions

(B1) (B2) (B3) (B4) (B5) (B6) (B7)

Number of bidders in auction 10.082*** 10.758*** 10.764*** 10.674*** 10.724*** 10.129*** 8.866***
(0.668) (0.612) (0.619) (0.614) (0.627) (0.692) (0.719)

Total number bidders product/market -0.013 0.031 0.009 0.048 0.014 -0.066 0.334+
(0.074) (0.026) (0.035) (0.050) (0.103) (0.218) (0.202)

Product fixed effects: ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time trend: ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sample r = 0 r = 0 r = 0 r = 0 r = 0 r = 0 r = 0
Observations 988 988 988 988 988 988 988
Adjusted R2 0.363 0.238 0.293 0.268 0.316 0.363 0.344

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.05; ∗∗∗p<0.01. Product/market specifications
in Panel A: All columns: region×type×vintage, 4 weeks. Product/market specifications in Panel B: (B1):
region×type×vintage, 4 weeks, (B2)-(B7) market: 2 day rolling window, (B2) any wine, (B3) type, (B4) region,
(B5) region×type, (B6) region×type×vintage, (B7) subregion×type×vintage. The results in column (B1) are re-
ported in the main text.

Table C. 3—: Reduced form evidence predicted network effects

Dependent variable: Number bidders for product in market Number bidders per listing of product

(1) (2) (3) (4) (5) (6) (7) (8)

Number listings product/market 3.025∗∗∗ 2.869∗∗∗ 3.018∗∗∗ 2.992∗∗∗ −0.006 −0.015+ 0.004 0.005
(0.053) (0.072) (0.134) (0.133) (0.005) (0.008) (0.015) (0.015)

Product fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
No-reserve only: ✓ ✓ ✓ ✓
Time trend: ✓ ✓
Observations 1,229 1,229 457 457 3,481 3,481 1,148 1,148
Adjusted R2 0.726 0.810 0.867 0.871 0.0001 0.210 0.112 0.112

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.05; ∗∗∗p<0.01. Results from OLS regressions. A
product is defined as the combination of (region x wine type x vintage decade) corresponding to high-level filters on
the website. All listings are active for at most 31 days, and most of them for 5, 7 or 10. A market is defined as the
month when the auction ends.
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Table C. 4—: Antitrust damages of doubling commission index (cB + 0.1281)

Total damage Incidence on Hammer price Buyer damage Seller damage
(1000s pounds) sellers (%) (% change) (% post-hammer) (% post-hammer)

Benchmark pro-rata 0.0 0.0 12.81 0.0
Benchmark elastic sellers 100.0 -11.36 0.0 12.81

Simulated impacts:
No entry 4.0 80.2 -12.0 2.4 9.6
No seller entry 5.9 75.8 -17.8 4.5 14.2
Full two-sided entry 6.6 64.2 -14.3 8.5 15.3

Notes. Simulations based on homogenized auctions with r > 0 in the main sample. To stay close to antitrust
applications, damages are computed as a share of the counterfactual expected hammer price (expected sale probability
multiplied by the expected hammer (transaction) price conditional on a sale). Buyer and seller damages are computed
in expectations for groups of buyers and sellers, with a buyer being the in expectation winning bidder, including in
unsold listings. Increasing the buyer commission from 0 to 0.1281 brings about the doubling of the commission index,
just as increasing the seller commission from 0.102 to 0.204 as done in table 9 in the main text.
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Figure C.1. : Listing page example
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Figure C.2. : Ullage classification and interpretation

Source: https://www.christies.com/Wine/Ullages 2013.pdf, last accessed December 23, 2021.
Notes. Numbers refer to auction house Christie’s interpretation of the fill levels, which are for Bordeaux-style bottles:
1) Into Neck: level of young wines. Exceptionally good in wines over 10 years old. 2) Bottom Neck: perfectly good
for any age of wine. Outstandingly good for a wine of 20 years in bottle, or longer. 3) Very Top-Shoulder. 4)
Top-Shoulder. Normal for any claret 15 years or older. 5) Upper-Shoulder: slight natural reduction through the
easing of the cork and evaporation through the cork and capsule. Usually no problem. Acceptable for any wine over
20 years old. Exceptional for pre-1950 wines. 6) Mid-Shoulder: probably some weakening of the cork and some risk.
Not abnormal for wines 30/40 years of age. 7) Mid-Low-Shoulder: some risk. 8) Low-Shoulder: risky and usually
only accepted for sale if wine or label exceptionally rare or interesting. For Burgundy-style bottles where the slope
of the shoulder is impractical to describe such levels, whenever appropriate [due to the age of the wine] the level is
measured in centimetres. The condition and drinkability of Burgundy is less affected by ullage than Bordeaux. For
example, a 5 to 7 cm. ullage in a 30 year old Burgundy can be considered normal or good for its age.

https://www.christies.com/Wine/Ullages_2013.pdf
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(a) FV (b) FV0≥vR0
(c) Second-highest bid

(d) Reserve price (e) Hammer price (f) fN,r=0

Figure C.3. : Model fit: high-end sample

Notes. Model predictions and observed values of: (a) FV , and empirical CDF for n = 2, ..., 10 bidders (r = 0 auctions),
(b) FV0 , and empirical CDF (r > 0 auctions), (c) Second-highest bid (r = 0 auctions), (d) Reserve price (prediction
includes estimated quality, r > 0 auctions), (e) Hammer price (prediction includes estimated quality, r > 0 auctions),
and (f) Number of bidders per listing (r = 0 auctions). Simulations of bidder values based on 1000 draws for each
bidder and simulation of seller values based on 5000 draws. Observed values are based on the estimation sample.
The same plots for the main sample are provided in figure (2) in the paper.
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C. Entry equilibrium without large population approximation

This supplementary material provides further intuition behind the entry equilibrium. It also

shows that the large population approximation is merely adopted for computational feasibility and

does not drive the results. For brevity, attention is limited to auctions with r > 0 as they provide

the more interesting case with two-sided entry. As before, r̃ denotes the optimal reserve price

increased with buyer premium, r̃ = (1 + cB)r
∗(v0, c), and the number of listings Tr>0 is known

to potential bidders before entering, and bidders are sorted with equal probability over available

listings. Also, ṽ0 denotes a candidate seller entry threshold and Πb,r>0(c, ṽ0; p) potential bidders’

expected surplus from entering the platform as a function of their entry probability p:

(A.2) Πb,r>0(c, ṽ0; p) =

NB
r>0−1∑
n=0

E[πb(n+ 1, c, v0)|V0 ∈ [vR0 , ṽ0]fNr>0,Tr>0(n; p)− eB − eoB,r>0

It takes the expectation of πb(n, c, v0) ((5) with optimal r as in (4)) over: i) possible seller values

given sellers’ entry threshold and ii) the number of competing bidders given their entry probability.

Bidding in one listing at a time, the entry problem for potential bidders is then equivalent to one

in which they consider entry into a listing, as entry cost eoB,r>0 are associated with each listing.

Components of equation (A.2) are:

E[πb(n+ 1, c, v0)|V0 ∈ [vR0 , ṽ0]] =

∫ ṽ0

vR0

πb(n+ 1, c, v0)fV0|V0∈[vR0 ,ṽ0
](v0)dv0(A.3)

fNr>0,Tr>0(n; p) =

(
NB,r>0 − 1

n

)
(

p

Tr>0
)n(1− p

Tr>0
)N

B,r>0−1−n(A.4)

where fNr>0,Tr>0(n; p) denotes the Binomial probability that n out ofNB,r>0−1 competing potential

bidders arrive in the same listing as the potential bidder who considers entering the platform.

πb(n+1, c, v0) is strictly decreasing in n (Lemma 3). Hence, the bidder entry problem is equivalent

to the Levin and Smith (1994) entry model, which assumes that expected bidder surplus decreases

in n. The equilibrium bidder entry probability solves zero profit condition:

(A.5) p∗Tr>0(Tr>0, f, ṽ0) ≡ argp∈(0,1)Π
Tr>0

b (c, ṽ0; p) = 0

In this equilibrium the number of (competing) bidders per listing follows a Binomial distribution

with mean (NB,r>0 − 1)p
∗Tr>0

Tr>0
and variance (NB,r>0 − 1)p

∗Tr>0

Tr>0
(1 − p∗Tr>0

Tr>0
). Furthermore, a no-

trade entry equilibrium at p = 0 that trivially solves (A.5) always exists, and it is excluded from
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the analysis based on the empirical observation that bidders currently play the positive trade

equilibrium.

A key property is that p∗Tr>0

Tr>0
is independent of Tr>0 conditional on ṽ0. Bidders only derive positive

surplus from the listing that they are matched to, and in the presented auction platform model Tr>0

itself does not affect E[πb(n+ 1, c, v0)|V0 ∈ [vR0 , ṽ0]]. The zero profit condition therefore guarantees

that in equilibrium a change in Tr>0 causes p∗Tr>0 to adjust to keep fNr>0,Tr>0(.) constant.

D. Two-sided entry model: Extension to selective entry

This section extends the model to one where bidders enter after knowing their valuation as in the

models of Samuelson (1985) and Menezes and Monteiro (2000). Results are presented for the case

with positive reserve prices, which generates the two-sidedness that is of main interest in this paper.

By standard reasoning, the selective entry model results in an equilibrium where bidders enter if

and only if their valuation exceeds the equilibrium threshold v∗. The distribution of valuations for

bidders on the platform is denoted by ∀v ∈ [v∗, v̄] :

(B.1) FV |V≥v∗(v) =
FV (v)− FV (v

∗)

1− FV (v∗)

The auction stage equilibria remain the same as in the random entry model presented in the main

text, as actions are taken after bidders learn their valuation in both cases. Listing-level expected

surpluses are different from those in equations (5)-(7). The listing-level expected surplus for a

bidder with valuation vi in a listing with n− 1 competing bidders, fee structure c, when the seller

has a private value of v0, and conditional on vi ≥ r̃:

(B.2) πb(vi, n, f, v0, v
∗) = FV |V≥v∗(vi)

n−1Ev∗ [vi −max(Vn−1, r̃)|Vn−1 ≤ vi, vi ≥ r̃]

πb(vi, n, f, v0, v
∗) conditions on vi ≥ r̃ because it takes the seller value v0 as known at this point. The

first part indicates the probability that n−1 competing bidders in the listing draw a lower value than

vi —the probability of winning— and the second part consists of the expected surplus conditional

on winning. The latter is computed with the distribution of valuations among bidders who enter the

platform, indicated with the v∗ superscript on the expectation. The expected listing-level surplus

for sellers is the same as in the random entry model, except that the expected transaction price is

computed using FV |V≥v∗(v):

(B.3) πs(n, f, v0, v
∗) ≡

(
Ev∗ [max(Vn−1:n, r̃)|Vn:n ≥ r̃](1− cS)− v0

)
[1− F v∗

V(n:n)
(r̃)]
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where F v∗
V(n:n)

denotes the distribution of the highest out of n values drawn from FV |V≥v∗ . It is

straightforward to see that, as in the random entry model, πb(vi, n, f, v0, v
∗) decreases in n and in

v0 and πs(n, f, v0, v
∗) increases in n and decreases in v0.

The next steps are to show how the equilibrium bidder entry threshold is best-responds to a can-

didate seller entry threshold ṽ0 and how the seller entry threshold is set in equilibrium. The bidder

entry equilibrium is characterized as the threshold value that solves the marginal bidder’s zero profit

condition when other bidders also enter if and only if their valuation exceeds that threshold. Let ṽ

denote a candidate bidder entry threshold. Moreover, Πb,r>0(vi, f, ṽ0; ṽ) denotes potential bidders’

expected surplus from entering the platform if they have valuation vi and competing bidders adopt

threshold ṽ. As in the random entry model, it builds on the listing-level expected bidder surplus

and takes expectations over: 1) seller valuations V0 given ṽ0, and 2) the number of competing

bidders:

Πb,r>0(vi, f, ṽ0; ṽ) =(B.4)

NB
r>0−1∑
n=0

E[πb(vi, n+ 1, f, v0, ṽ)|V0 ∈ [vR0 , ṽ0]]fNB
r>0,Tr>0

(n; ṽ)dn− eB − eoB,r>0

Without imposing a large population approximation, fNB
r>0,Tr>0

(n; ṽ) is Binomial, and it also de-

pends on the total number of potential bidders in the population NB
r>0 and the observed number

of listings Tr>0:

(B.5) fNB
r>0,Tr>0

(n; ṽ) =

(
NB

r>0 − 1

n

)(
1

Tr>0

)
(1− FV (ṽ))

n(
1

Tr>0
FV (ṽ))

NB
r>0−1−n

where 1
Tr>0

(1 − FV (ṽ) is equal to the probability that a potential bidder enters (i.e. draws a

valuation above ṽ) the platform and is sorted to the same listing as bidder i (with uniform sorting,

this happens with probability 1
Tr>0

). The following Lemma describes the bidder entry equilibrium.

Lemma 4. A unique entry equilibrium bidder entry threshold solves the marginal bidder’s zero

profit condition:

(B.6) v∗(f, ṽ0) ≡ argṽ∈[v,v̄]{Πb,r>0(ṽ, f, ṽ0; ṽ) = 0}

The result relies on the facts that: 1) bidders have a unique best-response for any ṽ because

Πb,r>0(vi, f, ṽ0; ṽ) is strictly increasing in their own vi, and 2) Πb,r>0(vi, f, ṽ0; ṽ) is strictly increasing

in ṽ because the number of competing bidders is stochastically decreasing in ṽ, so the best-response
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function v∗(v̄) is downward-sloping in ṽ and satisfies a single-crossing property. As such there is a

unique symmetric equilibrium threshold v∗, which is a fixed point as defined in (B.6) that makes

the marginal bidder indifferent between entering and staying out.

The result holds for any realization of Tr>0 given v̄0. As in the baseline model, whether also

a unique seller entry equilibrium exists depends on how the expected surplus of sellers is affected

by v∗(f, v̄). We know that v∗ decreases in v̄ as it generates stochastically higher reserve prices on

the platform, and Menezes and Monteiro (2000) show that the expected seller revenue decreases

in v∗. Expected seller surplus therefore decreases in competing sellers entry threshold, which

is —as explained in the discussion of the equilibrium results in the main text— in the baseline

model guaranteed by Lemma 2. In what follows, fNB
r>0,Tr>0

(n; v∗(ṽ0)) describes the equilibrium

distribution of the number of bidders per listing when sellers adopt entry threshold ṽ0.

The seller entry equilibrium is characterized by the v∗0 that solves the zero profit entry condition

for the marginal seller. Let Πs(c, v0;λ
∗
r>0(c, ṽ0), ṽ0) denote expected surplus for a seller with valu-

ation v0 > vR0 when NS − 1 competing sellers enter the platform if and only if their valuation is

less than threshold ṽ0. It involves: 1) their listing-level expected surplus, 2) an expectation over

the number of bidders per listing given ṽ0 and bidders’ equilibrium best-response to this threshold

captured with the equilibrium distribution of the number of bidders per listing, and 3) an expec-

tation over the realized number of listings Tr>0 when NS potential sellers adopt entry threshold

ṽ0:

Πs(c, v0; fNB
r>0,Tr>0

(n; v∗(ṽ0)), ṽ0) =(B.7)

NS∑
Tr>0=1

NB∑
n=0

πs(n, f, v0, v
∗(ṽ0))fNB

r>0,Tr>0
(n; v∗(ṽ0))− eS − eoS

Lemma 5. A unique equilibrium seller entry threshold solves the marginal seller’s zero profit con-

dition:

v∗0(c) ≡ argṽ0s.t.FV0
(ṽ0)∈(0,1){Πs(c, ṽ0; fNB

r>0,Tr>0
(n; v∗(ṽ0)), ṽ0) = 0}(B.8)

The proof requires three parts. First, sellers have a unique best-response for any competing ṽ0,

because Πs(c, ṽ0; fNB
r>0,Tr>0

(n; v∗(ṽ0)), ṽ0) strictly decreases in their own v0. Second, given that

Πs(c, ṽ0; fNB
r>0,Tr>0

(n; v∗(ṽ0)), ṽ0) strictly decreases in competing sellers’ ṽ0 because v
∗(ṽ0) decreases

in ṽ0 and πs(n, f, v0, v
∗(ṽ0)) decreases in v∗ (see e.g. Menezes and Monteiro (2000)), and because

entry of competing sellers does not affect seller surplus in other ways, the best-response function
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is strictly decreasing in competing sellers entry threshold. Third, symmetry then delivers a unique

equilibrium threshold, v∗0(c), which is the fixed point in seller value space solving (B.8) i.e., making

the marginal seller indifferent between entering and staying out.

Compared to the random entry model presented in the main text, the seller best-response function

v∗0(ṽ0) is less steep as the least attractive bidders refrain from entering when ṽ0 increases.

E. Additional details estimation algorithm

This section provides details about the estimation of structural parameters not included in the

main text. This regards especially êoB,r>0, êoB,r=0, êoS , and p̂0,r>0, as well as details about the

iteration algorithm.

The estimated entry cost (opportunity cost of time) solve the relevant zero profit conditions, given

estimated parameters (θ̂b, θ̂s, v̂
R
0 , p̂0,r>0) and given the entry equilibrium at those parameters. As

estimating θ̂s itself requires at least one iteration of solving for the entry equilibrium given initial

parameters θ̂0s , the estimation algorithm proceeds as follows. First, based on v̂R0 and υ̂Tr>0 , estimate

θ̂0s by maximum concentrated likelihood as described in the main text. Then, solve for initial entry

cost estimates (êo,0B,r>0 and êo,0S ) as detailed below. After obtaining these initial values, for each

iteration k = 1, . . . :

• solve for the unique v∗k0 (θ̂k−1
s , êo,k−1

S ) that pins down the marginal seller (equation (14)),

• estimate θ̂ks (v
∗k
0 ) by maximum concentrated likelihood (equation (31)),

• and solve for the êo,kS = eo∗S (v∗k0 ) that satisfies the zero profit entry condition (equation (19)),

until convergence of the entry probability (using a tolerance level of 1e − 3), omitting from the

notation above any parameters that remain fixed throughout. The results in the main body of

the paper are based on just one iteration, which also corresponds to the iteration with the lowest

function value (highest likelihood) across iterations, and the results are similar when iterating until

convergence.

For êo,0B,r>0 and êoB,r=0, the initial estimator is the same as the final estimator although êo,0B,r>0 is

based on the updated θ̂s. They are estimated as the value of the entry cost that sets respectively

the numerically approximated values of Πb,r>0(.) and Πb,r=0(.) equal to 0 as dictated by the two

zero profit entry conditions for potential bidders. This clearly depends on the relevant distribution

of the number of bidders per listing, and hence on λ̂∗
r>0, p̂0,r=0, and λ̂∗

r=0. In auctions with no
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reserve price, the mean observed N is a consistent estimator of λ∗
r=0:

(B.9) λ̂∗
r=0 =

1

|Tr=0|
∑

t∈Tr=0

nt

Note that λ̂∗
r=0 and λ̂∗

r=0 are only obtained to estimate entry cost and they are not treated as

structural parameters. We now turn to the estimation of λ̂∗
r>0.

In positive reserve prices a difficulty is that only the actual number of bidders A is observed,

which might be less than the number of bidders in the listing N . In the BW data the reserve

price is partially secret, but in that case the platform provides some information about it (“reserve

not met”, “reserve almost met”, or “” if the standing price exceeds the reserve). If the reserve

price were observed (and the only reason for bidders not submitting a bid), a consistent estimate

of λ∗
r>0 equals the value that maximizes the likelihood of the homogenized second-highest bids

bt and number of actual bidders at in positive reserve auctions given estimated bidder valuation

parameters and homogenized reserve prices rt. In particular, the joint density of (bt, at) if the

number of potential bidders nt would be known, with r̃t = rt(1 + cB), ∀t ∈ Tr>0:

h(bt, at|nt, rt, zt, θ̂b) = {FV (r̃t; θ̂b)
nt}I{at = 0}(B.10)

{ntFV (r̃t; θ̂b)
nt−1[1− FV (r̃t; θ̂b)]}I{at = 1}

{
(

nt

nt − at

)
FV (r̃t; θ̂b)

nt−at [1− FV (r̃t; θ̂b)]
at

at(at − 1)FV (b̃t; θ̂b)
at−2[1− FV (b̃t; θ̂b)]FV (b̃t; θ̂b)}I{at ≥ 2}

Note that h(bt, at|nt, rt, θ̂b) = 0 when nt = 0. The first line covers the probability that all nt bidders

draw a valuation below the reserve price, the second line the probability that one out of nt draw a

valuation exceeding r̃ while the others don’t, and the final two lines capture the probability that

at out of nt draw a valuation exceeding the reserve and that the second-highest out of them draws

a conditional value equal to b̃t = bt(1 + cB). Without observing nt, a feasible specification takes

the expectation over realizations of random variable N ∼ generalized Pois(λ∗
r>0, p0,r>0).

79 Using

the more flexible two-parameter Poisson distribution allows for an unspecified reason for observing

no bids, in addition to all values being below the reserve price or no bidders entering the auction.

79The generalized Poisson distribution has PDF:

fNr>0
(k;λr>0, p0,r>0) = (1− p0,r>0)

exp(−λr)λk
r

k!
+ p0,r>0I{k = 0}

which reduces to a standard Poisson distribution for p0,r>0 = 0.
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This feasible specification is the basis of the likelihood function that (λ̂∗
r>0, p̂0,r>0) maximizes:

g(bt, at|rt, zt, θ̂b;λ∗
r>0, p0,r>0) =(B.11)

∞∑
k=at

h(bt, at|nt = k, rt, zt, θ̂b)fNr>0|Nr>0≥A(k;λ
∗
r>0, p0,r>0)

L(λ∗
r>0, p0,r>0; {bt, at, rt, zt}t∈Tr>0) =

∑
t∈Tr>0

ln(g(bt, at|rt, zt, θ̂b;λ∗
r>0, p0,r>0))(B.12)

(λ̂∗
r>0, p̂0,r>0) = argmaxL(λ∗

r>0, p0,r>0; {bt, at, rt, zt}t∈Tr>0)(B.13)

The estimator does not require interpretation of losing bids. While the resulting estimator does

capture the censoring of bidders to some extent, it does not address potential intra-auction dynamics

to the extent that some other estimators do.80 Specifically, the estimated θ̂b are based on the

assumption that the second-highest bid equates to the second-highest out of N = A values in

no-reserve auctions. It is worth emphasizing that the effect of this abstraction is minimized in

the presented model with endogenous two-sided entry, relative to a model without entry. To see

why, consider a scenario where the true λ∗
r>0 would be larger than estimated due to some bidders

entering after the standing price exceeds their valuation. In that scenario, the true FV would be

stochastically dominated by the estimated distribution as the hammer price is really the second-

highest out of more draws from FV than what is captured in the analysis. The true êB,r>0 in

that case would also have to be lower than estimated, as the per-bidder expected surplus from

entering the platform is lower. Hence, without changing the fee structure but with endogenous

entry, simulating entry decisions of lower-value potential bidders facing lower entry cost would

result in the exact same outcomes. That is to say, the abstraction from intra-auction dynamics

is therefore internally consistent. Nonetheless, the direction of the effect of the abstraction when

changing fees cannot be signed ex-ante due to nonlinearities in the system. Given that the effects

of overestimating bidder values and overestimating the bidder entry cost, relative to the scenario

with intra-auction dyanamics, offset each other at least partially, this abstraction is considered not

to be of first order importance in the model with two-sided entry.81

80Hickman, Hubbard, and Paarsch (2017) (for the case of non-binding reserve prices) and Bodoh-Creed, Boehnke, and
Hickman (2021) (for binding reserve prices) provide more comprehensive models to account for intra-auction dynamics in
ascending auctions. My empirical setting is in between these cases, with the platform revealing some information about the
secret reserve price, and the algorithm proposed by Platt (2017) based on a Poisson arrival process would apply if p0,r>0 = 0.

81This assertion is supported by results from a robustness analysis based on the filtering described in Platt (2017). Specifically,
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The above describes how initial values êo,0B,r=0 and êo,0B,r>0 are estimated. The initial value êS
o,0

is estimated as follows. υ̂Tr>0 is the sample maximum of a noisy first stage estimator and likely

overestimates the true v∗0.
82 This is confirmed numerically. Starting from a relatively high êS

o,0 =

max(êo,0B,r>0, ê
o
B,r=0) —which will be an overestimate if bidders need to spend more time inspecting

a listing and bidding on it than that sellers require to create it—, and implementing the NPL

algorithm, both êS
k and v∗k0 converge downwards. The final estimate êS

o is lower than its starting

value. One benefit of the NPL algorithm to estimate θ̂S is that the initial values do not have to

be close to the truth nor consistent estimates of their population counterparts (Aguirregabiria and

Mira (2002)), as the equilibrium conditions of the game improve the estimates throughout until it

converges at the (unique) equilibrium.

After convergence of FV0|V0≥vR0
(v∗0; θ̂S), ê

o
B,r>0 is also updated as the value that solves the zero

profit condition for NB
r>0 at the equilibrium solution. Note finally that θ̂b, v̂

R
0 , p̂0,r>0, ˆλ∗

r>0, λ̂
∗
r=0,

and êB,r=0 are never updated in the estimation algorithm.

F. Numerical approximation of the entry equilibrium

Solving for the entry equilibrium involves hard-to-compute (triple) integrals. This section details

the numerical approximations relied on for computational feasibility. The equilibrium is computed

for homogenized auctions based on conditional value distributions. The notation also does not make

explicit that these distributions are in fact the estimated conditional value distributions. Shorthand

notation r̃ = (1 + cB)r
∗(v0, c) is used and sample size n is omitted from order statistics. The goal

is to approximate for a given fee structure and set of parameter estimates the entry equilibrium

{λ∗
r>0(c, v

∗
0), λ

∗
r=0(c), v

∗
0(c)} as respectively defined in (11), (12), and (14) in the main text. This

requires computing the expected surplus from entering the platform for bidders and sellers as a

function of λ and ṽ0, and then solving for the equilibrium values that satisfy the zero profit entry

conditions.

To compute Πb,r>0(c, ṽ0;λr>0) we need to obtain πb(n, c, v0) defined in (5) in expectation over v0

and n, minus entry cost:

the model is re-estimated assuming that all potential bidders in both r > 0 and r = 0 auctions arrive at a Poisson rate (non-
generalized, hence with pr>0 = 0), observe the standing price, and place a bid that is equal to their valuation when the standing
price is below it. While this obviously results in a higher implied λ∗

r>0 and λ∗
r=0 and lower entry costs and bidder values, the

main counterfactual of increasing cL by one pound gives similar results.
82υ̂Tr>0

is certainly ≥ v∗0 when the population NS → ∞ and no trimming is applied, in which case the maximum v̂0t = v∗0 .
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Πb,r>0,Tr>0(c, ṽ0;λ) =

max(n)−1∑
n=0

[∫ ṽ0

vR0

πb(n+ 1, c, v0)
fV0|V0≥vR0

(v0)

FV0|V0≥vR0
(ṽ0)

dv0

]
×(B.14)

fNr>0(n;λr>0)− eB − eoB,r>0

πb(n, c, v0) =
1

n

∫ v̄

r̃
vn −max(r̃,

∫ vn

v
vn−1dFVn−1|Vn=vn(vn−1))dFVn(vn)(B.15)

FVn(vn) =

∫ vn

v
nFV (x)

n−1fV (x)dx(B.16)

FVn−1|Vn=vn(vn−1) =

∫ vn

v

(n− 1)FV (y)
n−2fV (y)

FV (vn)n−1
dy(B.17)

and fNr>0(n;λr>0) defined in (2). This is then sufficient to compute λ∗
r>0 for any value of ṽ0:

λ∗
r>0(ṽ0) ≡ argλ {Πb,r>0(c, ṽ0;λ) = 0}(B.18)

As Πb,r>0(c, ṽ0;λ) strictly decreases in λ, λ∗
r>0 solves a threshold-crossing condition that is nested

in the fixed point problem that defines v∗0(c). Moreover, the triple integral makes Πb(.) costly to

compute for any candidate ṽ0. For auctions with a zero reserve price, λ∗
r=0 is similarly computed

as a threshold-crossing problem based on Πb,r=0:

Πb,r=0(f, λr=0) =

max(n)−1∑
n=0

πb(n+ 1, c, 0)fN,r=0(n;λr=0)− eB − eoB,r=0(B.19)

with πb(n+ 1, c, 0) defined in (7).

Computing Πs(c, ṽ0;λr>0) relies on πs(n, c, v0) defined in (6) in expectation over the number of
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bidders, minus entry cost:

Πs(c, v0;λ
∗(ṽ0)) =

NB
r>0∑

n=0

πs(n, c, v0)fNr>0(n, λ
∗
r>0(ṽ0))− eS − eoS(B.20)

πs(n, c, v0) = (max(r,
1

1 + cB

∫ v̄

v
vn−1dFVn−1|Vn≥r̃(vn−1))×(B.21)

(1− cS)− v0)[1− FV(n)
(r̃)]

FVn−1|Vn≥r̃(vn−1) =

∫ v̄

r̃
FVn−1|Vn=x(vn−1)dFVn(x)(B.22)

This is then sufficient to compute v∗0(c) for any fee structure and given potential bidders’ best-

response characterized by λ∗
r>0(c, ṽ0):

v∗0 ≡ argṽ0 {Πs(c, ṽ0;λ
∗
r>0(ṽ0)) = 0}(B.23)

Given high computational cost of implementing these functions literally, estimates relies on nu-

merical approximations. The following pseudo-code is implemented to compute the entry equilib-

rium, where object names in bold facilitate easy replication with access to the computer code.

• Initiating probability vectors for the simulation of bidder and seller values with importance

sampling. Simulate 250 values from Unif(0, 1) and collect in vector v probs (making sure

that 1e−4 and 1 − 1e−4 are lower bounds on extremum probabilities). Initiate a finer grid

v probs fine by sampling 25000 values from Unif(0, 1) with identical minimum extremum

values. Simulate 500 values from Unif(0, 1) and collect in vector v0 probs fine (making

sure that 1e−4 and 1− 1e−4 are lower bounds on extremum probabilities). Sample a coarser

grid for seller values by drawing without replacement 48 values from v0 probs fine and add

the extremum values, call this vector v0 probs. Set max(n) = 15 (pick a sensible number

based on estimated λ’s). Never change these values.

• Importance sampling of Vn:n and Vn−1:n|Vn:n. Set v̄ = F−
V 1(1 − 1e−9; θ̂b) and v = 0. Code

the distributions in (B.16) and (B.17). For each n = 1, .., 15, simulate 250 values from the

two distributions. For the highest valuation, solve for F−1
Vn:n

(v probs; θ̂b), separately for each

n, resulting in matrix h mat of dimension [250× 15]. For the second-highest valuation, solve

for F−1
Vn−1:n|Vn:n=vn

(v probs; θ̂b), where for each entry j in v probs vn equals the jth entry

in h mat from the relevant n column. Doing this separately for each n > 1 results in matrix

sh mat of dimension [250× 15] with the first column made up of zeros.
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• Linear interpolation of h mat and sh mat on finer grid using v probs fine, separately for

each n column. This results in two matrices of dimension [25000 × 15], h mat fine and

sh mat fine.

• Calculating optimal reserve price for grid of v0’s. Importance sampling of V0: solve for

F−1
V0

(v0 probs; θ̂s) and store in vector v0 vec of dimension [50 × 1]. Given also θ̂b, com-

pute optimal r∗(v0 vec) and store in vector r vec.

• Compute listing-level bidder and seller surplus for v0-n combinations. Initiate matrices of

v0 mat, n mat, and r mat with values of v0 in the first dimension and n in the second

dimension (so n mat and r mat are constant in the first dimension and v0 mat is constant

in the second dimension). These three matrices are of dimension [50×15]. For each entry, use

the pre-calculated matrices h mat fine and sh mat fine to approximate listing-level surplus

with monte carlo simulations, separately for bidders in auctions with positive and no reserve

prices (the latter being a vector) and for sellers in auctions with a positive and with no reserve

prices (both being matrices). For example, consider a (v0, 2) combination with v0idx being

the index of v0 in the 2nd column of v0 mat. πb(2, c, v0) is approximated as the mean of the

second column of h mat fine including only all values exceeding r mat(v0idx, 2)× (1+ cB),

minus the mean of the same entries in sh mat fine or minus r mat(v0idx, 2)×(1+cB) if that

is higher, and multiplied by the sale probability (1− FV (log((1 + cB)r mat(v0idx, 2)); θ̂b)
2),

all divided by two.

• Linear interpolation of listing-level surplus on v0 probs fine. This results in listing-level

surplus matrices of dimensions [25000 × 15] for bidders in positive reserve price auctions

(pib posr mat), for sellers in positive reserve price auctions (pis posr mat), and for sellers

in no reserve price auctions (pis nor mat). For bidders in auctions with no reserve price

(pib nor vec) we obtain a vector of dimension [1 × 15] as their listing-level surplus is inde-

pendent of the seller’s value. Also pre-calculate a vector of probabilities that V0 = v0 using

F−1
V0|V0≥vR0

(v0 probs) and interpolate on the finer v0 grid, resulting in pdf v0 mat.

• Repeat the five previous steps only once for each new θ̂s or fee structure. With the pre-

calculated listing-level surplus matrices as functions of v0 and n, the computation of v∗0 as a

fixed point problem with a nested threshold-crossing problem to find λ∗
r>0 for each candidate

ṽ0 is fast and straightforward.

• Coding equation (B.20) with nested in it equation (B.18). Make sure that for every candi-

date ṽ0, the entries of pdf v0 mat that function as weights of the listing-level bidder surplus
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(the
f
V0|V0≥vR0

(v0)

F
V0|V0≥vR0

(ṽ0)
in (B.14)) sum to one. The λ∗(ṽ0) in (B.18) is obtained as the root of

(Πb(c, ṽ0;λ))
2. Matlab’s fzero function is used with tolerance levels for the function and

parameter of 1e−6, which delivers stable results. Then (B.20) is passed to a nonlinear solver

to find the fixed point, again using fzero root finding with the same tolerance levels.

Contraction mapping. Relevant for the NPL-like estimation method, the following argumenta-

tion shows that v∗0 is characterized by a contraction mapping. Let Πs(v
j
0, v

−j
0 ) denote the expected

surplus for seller with valuation vj0 when entering the platform and setting a reserve price, with com-

peting sellers’ entry threshold only affecting Πs through its effect on the equilibrium mean number

of bidders λ∗
r>0(v

−j
0 ). The fee structure and other exogenous inputs are omitted from notation. Let

v′0(v
−j
0 ) denote the seller’s best-response to threshold v−j

0 ; to enter i.f.f v0 ≤ v′0(v
−j
0 ). A necessary

and sufficient condition for v∗0 being characterized by a contraction mapping is that there are no

other values of v−j
0 ̸= v∗0 that deliver zero surplus for the marginal seller so that v′0(v

−j
0 ) = v−j

0 . We

need to consider three cases:

• Case of v−j
0 > v∗0: λ∗(v−j

0 ) < λ∗
r>0(v

∗
0) which means that Πs(v

∗
0, v

−j
0 ) < 0. Since Πs is

decreasing in the seller’s vj0, the resulting v′0(v
−j
0 ) < v−j

0 < v∗0. We conclude that Πs(v
−j
0 , v−j

0 )

is not an equilibrium.

• Case of v−j
0 < v∗0: λ

∗(v−j
0 ) > λ∗

r>0(v
∗
0) which means that Πs(v

∗
0, v

−j
0 ) > 0. With Πs decreasing

in the seller’s vj0, the resulting v′0(v
−j
0 ) > v−j

0 > v∗0. Also in this case, Πs(v
−j
0 , v−j

0 ) is not an

equilibrium.

• The final case is the unique fixed point in seller cost space, where v−j
0 = v∗0. By definition of

v∗0, Πs(v
∗
0, v

−j
0 ) = 0 so that v′0(v

−j
0 ) = v−j

0 = v∗0.

This proves that (B.23) is a contraction mapping.

G. Reserve price approximation

Reserve prices are defined as the maximum of the increased minimum bid amount and the secret

reserve price. The increased minimum bid amount is recovered as the standing bid when the

number of bidders is zero. The secret reserve price is approximated as the average between the

highest standing price for which the reserve price is not met and the lowest for which it is met. If

all bids would be recorded in real time, this approximation would be accurate up to half a bidding

increment due to the proxy bidding system. To relieve traffic pressure on the site, bids are tracked on

30-minute intervals. A limitation of this approach is that the reserve price approximation could be
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more than half a bidding increment off if the bids are not placed at regular intervals. To compromise

between too many data requests and accuracy, a separate dataset is collected that accesses all open

listings at 30-second intervals but only for the duration of two weeks. This high-frequency dataset

is used to verify the reserve price approximation in the paper.

The presented estimation method requires that the estimated distribution of reserve prices is

consistent for its population counterpart. Equality of the distribution of approximated reserve

prices in the main sample and the distribution of (approximated) reserve prices in the smaller high

frequency sample is tested with a two sample nonparametric Kolmogorov-Smirnov test. To account

for different listing compositions the empirical reserve price distributions are right-truncated at the

90th percentile of the high frequency reserve price sample. The null hypothesis is that the two right

truncated reserve price distributions are the same.

In particular, letting FF
R and FR

R respectively denote the empirical distribution of right truncated

approximated reserve prices in the high frequency (F) and regular (R) samples, the Kolmogorov-

Smirnov test statistic is defined as:

(B.24) Df,r = sup
x

|FF
R (x)− FR

R (x)|,

with supx the supremum function over x values and f and r respectively denoting the relevant

number of observations in the high frequency and regular samples, which are 330 in the high-

frequency sample and 1, 079 in the regular sample. With Df,r = 0.072, the null cannot be rejected

at the 5 percent level (Df,r > 1.36
√
(f+r

fr ), the p-value = 0.1441).

The associated empirical distributions are plotted in panel (a) of figure C.4. As the approximation

only delivers a lower bound on secret reserve prices in auctions that do not lead to a sale, omitting

such lots generates a slightly different approximation of the reserve price distribution (plotted in

panel (b) of figure C.4). The two-sample Kolmogorov-Smirnov test is therefore repeated when

excluding unsold lots from the regular sample. With Df,r = 0.059, also in this sample the null that

the two distributions are equal cannot be rejected at any reasonable level (the p-value = 0.4456).

This second test is based on a lower number of observations (r = 596).
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(a) regular sample: all
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(b) regular sample: sold
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Figure C.4. : Empirical distributions underlying the presented Kolmogorov-Smirnov tests
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Table C. 5—: Results from homogenization step (main sample), with alterantive specifications

Log(Hammerprice) Hammerprice

(1) (2) (3) (4) (5) (6)

Number bottles −0.355∗∗∗ −0.654∗∗∗ −0.601∗∗∗ −0.388∗∗∗ −0.349∗∗∗ −11.459∗∗∗

(0.056) (0.135) (0.108) (0.052) (0.057) (2.664)
Number bottles, squared 0.015∗∗∗ 0.048∗∗ 0.040∗∗∗ 0.017∗∗∗ 0.015∗∗∗ 0.547∗∗

(0.004) (0.015) (0.012) (0.003) (0.004) (0.169)
Case of 6 bottles 0.458∗∗∗ 0.804∗∗∗ 0.756∗∗∗ 0.562∗∗∗ 0.431∗∗∗ 11.517+

(0.126) (0.214) (0.171) (0.118) (0.128) (6.017)

Case of 12 bottles 0.763∗∗∗ −0.683 −0.105 0.933∗∗∗ 0.508∗ 28.724∗∗

(0.230) (1.033) (0.823) (0.216) (0.226) (11.028)

Special format bottles 0.073 0.253∗ 0.286∗∗ 0.098 0.001 −0.869

(0.069) (0.127) (0.102) (0.065) (0.069) (3.329)
One bottle 0.218∗∗ −0.096 0.049 0.234∗∗ 0.322∗∗∗ 20.739∗∗∗

(0.080) (0.145) (0.115) (0.075) (0.078) (3.831)

Stored in temperature-controlled warehouse 0.252 0.156 −0.590 0.119 −0.019 14.775
(0.207) (0.631) (0.504) (0.194) (0.082) (9.906)

Description relates to En Primeur 0.186∗∗∗ 0.092 0.018 0.147∗∗ 0.182∗∗∗ 8.091∗∗∗

(0.049) (0.075) (0.060) (0.046) (0.048) (2.363)
Description relates to expert opinion 0.171∗∗∗ 0.146∗ 0.086 0.189∗∗∗ 0.243∗∗∗ 3.164

(0.041) (0.071) (0.057) (0.039) (0.040) (1.981)
Number of words in description 0.011∗∗∗ 0.008∗ 0.004 0.007∗∗∗ 0.014∗∗∗ 0.432∗∗∗

(0.002) (0.004) (0.003) (0.002) (0.002) (0.109)

Description relates to shipping 0.00005 −0.066 −0.001 0.001 0.004 −0.764
(0.039) (0.062) (0.049) (0.036) (0.038) (1.860)

Buyer can only collect the wine −0.001 −0.370∗ 0.001 0.195+ 6.934

(0.109) (0.175) (0.141) (0.103) (5.224)
Returns are accepted −0.184 −1.506∗∗ −0.183 0.043 −3.070

(0.144) (0.472) (0.380) (0.135) (6.886)

Insurance included in delivery quote 0.138∗∗ 0.099 0.060 0.079∗ 7.804∗∗∗

(0.042) (0.066) (0.053) (0.040) (2.013)

Buyer can collect the wine 0.071 −0.155+ −0.137∗ 0.112∗ 6.135∗∗

(0.049) (0.079) (0.063) (0.046) (2.348)
Sellers ships to the UK 0.091∗ 0.332∗∗∗ 0.207∗∗∗ 0.052 6.674∗∗

(0.044) (0.073) (0.058) (0.042) (2.130)
Payment by bank 0.262∗∗ 0.023 −0.043 0.209∗ 10.685∗

(0.088) (0.144) (0.114) (0.083) (4.227)

Payment via PayPall −0.111∗ −0.252∗∗ −0.179∗∗ −0.071 −4.130+

(0.047) (0.080) (0.064) (0.044) (2.245)

Payment by cheque 0.037 −0.005 0.025 0.043 −0.755

(0.050) (0.086) (0.068) (0.047) (2.395)
Payment in cash 0.059 −0.272+ −0.206+ −0.006 2.646

(0.112) (0.157) (0.125) (0.105) (5.382)

Shipped with Royal Mail −0.028 −0.188∗ −0.142∗ −0.020 −0.253
(0.050) (0.080) (0.064) (0.047) (2.415)

Shipped with ParcelForce −0.179∗∗∗ −0.174∗∗ −0.152∗∗ −0.228∗∗∗ −7.172∗∗

(0.048) (0.067) (0.053) (0.045) (2.284)
Mentions fast shipping 0.402∗∗∗ 0.685∗∗∗ 0.460∗∗∗ 0.250∗∗∗ 21.253∗∗∗

(0.069) (0.102) (0.082) (0.065) (3.286)
Estimated Alcohol Duty −0.021∗ −0.022 0.021 −0.021∗ −0.895∗

(0.009) (0.046) (0.037) (0.008) (0.427)

Estimated VAT 0.010+ 0.018 −0.006 0.012∗ 0.161
(0.006) (0.030) (0.024) (0.006) (0.290)

Shipping cost 0.008+ 0.015∗ 0.020∗∗∗ 0.013∗∗ 0.185

(0.004) (0.007) (0.006) (0.004) (0.203)
Seller has ratings −0.0004 −0.017 0.040 −0.030 0.410

(0.046) (0.071) (0.056) (0.043) (2.217)

Number of seller ratings −0.058∗∗ −0.082∗∗ −0.060∗∗ −0.034∗ −3.006∗∗∗

(0.018) (0.027) (0.022) (0.017) (0.863)

Number of seller ratings, squared 0.003∗∗∗ 0.003∗∗ 0.002∗ 0.001+ 0.136∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.036)
Constant 2.915∗∗∗ 3.742∗∗∗ 2.474∗∗∗ 2.852∗∗∗ 3.162∗∗∗ 11.584

(0.262) (0.457) (0.373) (0.246) (0.231) (12.549)

Sample: n > 1 n > 1, r = 0 n > 1, r = 0 n>1 n>1 n>1
Wine type fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Region fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Ullage fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Time trend: ✓ ✓ ✓ ✓ ✓ ✓
N (A) dummies: ✓ ✓
Observations 1,998 967 967 1,998 1,998 1,998
R2 0.510 0.462 0.666 0.573 0.475 0.444

Adjusted R2 0.490 0.419 0.634 0.554 0.459 0.422

Note: + p¡0.1; * p¡0.05; ** p¡0.01; *** p¡0.001

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.05; ∗∗∗p<0.01. Results from OLS regressions. The
dependent variable is the (log) of the hammer price normalized by the number of bottles in the auction.



78

Table C. 6—: Results from homogenization step (high-end sample), with alternative specifications

Log(Hammerprice) Hammerprice

(1) (2) (3) (4) (5) (6)

Number bottles −0.221∗∗∗ −0.699∗∗ −0.822∗∗ −0.220∗∗∗ −0.217∗∗∗ −18.134∗

(0.026) (0.235) (0.248) (0.027) (0.023) (7.702)
Number bottles, squared 0.005∗∗∗ 0.039∗ 0.048∗ 0.005∗∗∗ 0.004∗∗∗ 0.439

(0.001) (0.018) (0.019) (0.001) (0.001) (0.268)
Case of 6 bottles −0.244∗∗ 0.052 0.199 −0.239∗∗ −0.257∗∗ −25.836

(0.088) (0.363) (0.385) (0.090) (0.083) (25.918)

Case of 12 bottles 0.069 −0.111 −0.208 0.064 0.002 14.543
(0.131) (0.489) (0.492) (0.133) (0.118) (38.300)

Special format bottles 0.161+ 0.725∗∗ 0.727∗∗ 0.172+ 0.118 23.656

(0.091) (0.250) (0.253) (0.092) (0.086) (26.511)
One bottle 0.502∗∗∗ −0.100 −0.238 0.506∗∗∗ 0.523∗∗∗ 144.599∗∗∗

(0.083) (0.298) (0.318) (0.084) (0.078) (24.227)

Stored in temperature-controlled warehouse −0.153 −1.218+ −1.961∗ −0.168 −0.167∗ −30.804
(0.175) (0.724) (0.789) (0.181) (0.071) (51.246)

Description relates to En Primeur −0.052 −0.211∗ −0.214+ −0.056 −0.029 −12.369

(0.052) (0.105) (0.111) (0.054) (0.049) (15.262)
Description relates to expert opinion −0.032 −0.450∗∗ −0.470∗∗ −0.037 0.022 −32.795∗

(0.053) (0.147) (0.151) (0.055) (0.047) (15.604)
Number of words in description 0.003 0.015∗∗∗ 0.014∗∗ 0.003 0.003 1.481+

(0.003) (0.004) (0.004) (0.003) (0.003) (0.865)

Description relates to shipping −0.014 −0.058 −0.072 −0.024 −0.022 0.376
(0.045) (0.088) (0.089) (0.046) (0.042) (13.298)

Buyer can only collect the wine −0.253∗ −0.963∗ −0.934∗ −0.252∗ −57.578

(0.124) (0.392) (0.397) (0.128) (36.369)
Returns are accepted −0.002 −0.007 −5.409

(0.104) (0.108) (30.537)

Insurance included in delivery quote −0.005 −0.108 −0.116 −0.002 −11.669
(0.049) (0.091) (0.092) (0.050) (14.311)

Buyer can collect the wine −0.105+ −0.132 −0.195+ −0.123∗ −26.498

(0.058) (0.100) (0.101) (0.060) (16.976)
Sellers ships to the UK −0.035 −0.146 −0.111 −0.028 −0.617

(0.054) (0.117) (0.123) (0.056) (15.904)
Payment by bank −0.102 0.081 0.080 −0.120 −42.227

(0.117) (0.215) (0.219) (0.119) (34.167)

Payment via PayPall −0.111+ −0.007 −0.067 −0.124∗ −28.008+

(0.057) (0.133) (0.139) (0.058) (16.604)

Payment by cheque 0.012 0.115 0.086 0.001 −6.385

(0.058) (0.153) (0.157) (0.060) (17.003)
Payment in cash 0.176 0.194 0.202 0.180 −12.800

(0.133) (0.360) (0.361) (0.136) (38.855)

Shipped with Royal Mail 0.118+ 0.436∗∗ 0.412∗∗ 0.108 31.478
(0.068) (0.145) (0.149) (0.069) (19.822)

Shipped with ParcelForce −0.210∗∗ −0.244 −0.301 −0.207∗ −56.560∗

(0.079) (0.180) (0.186) (0.080) (23.101)
Mentions fast shipping −0.123 −0.238 −0.182 −0.115 −42.361

(0.097) (0.201) (0.215) (0.101) (28.363)

Estimated Alcohol Duty −0.003 0.045 0.075∗ −0.003 −0.236
(0.007) (0.029) (0.032) (0.007) (2.122)

Estimated VAT −0.002 −0.0004 0.0001 −0.002 0.119

(0.002) (0.005) (0.005) (0.002) (0.665)
Shipping cost 0.005+ −0.008 −0.010 0.005 0.635

(0.003) (0.007) (0.008) (0.003) (0.819)
Seller has ratings 0.019 0.097 0.092 0.027 10.090

(0.048) (0.092) (0.097) (0.049) (13.980)

Number of seller ratings −0.049 −0.258∗∗ −0.205∗ −0.047 −3.930
(0.032) (0.093) (0.098) (0.033) (9.344)

Number of seller ratings, squared 0.002+ 0.011∗∗ 0.009∗ 0.002 0.261

(0.001) (0.004) (0.004) (0.001) (0.393)
Constant 5.618∗∗∗ 7.444∗∗∗ 8.616∗∗∗ 5.710∗∗∗ 5.234∗∗∗ 332.830∗∗

(0.396) (0.919) (1.084) (0.410) (0.355) (115.940)

Sample: n > 1 n > 1, r = 0 n > 1, r = 0 n>1 n>1 n>1
Wine type fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Region fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Ullage fixed effects: ✓ ✓ ✓ ✓ ✓ ✓
Time trend: ✓ ✓ ✓ ✓ ✓ ✓
N dummies: ✓ ✓
Observations 370 151 151 370 370 370
R2 0.935 0.920 0.930 0.936 0.928 0.749

Adjusted R2 0.921 0.872 0.876 0.920 0.918 0.696

Note: + p¡0.1; * p¡0.05; ** p¡0.01; *** p¡0.001

Notes. Standard errors in parenthesis, +p<0.1; ∗p<0.05; ∗∗p<0.05; ∗∗∗p<0.01. Results from OLS regressions. The
dependent variable is the (log) of the hammer price normalized by the number of bottles in the auction.


