
QUANTITY COMMITMENTS IN MULTIUNIT AUCTIONS:
EVIDENCE FROM CREDIT EVENT AUCTIONS

ERIC RICHERT

Abstract. Credit Default Swaps (CDS) are financial derivative products that insure
bond investors against firm-default. Determining the payout of these contracts, however,
is complicated because the outstanding value of the insurance is larger than the debt
outstanding and bond valuations are heterogeneous. CDS payouts are determined in a
two-stage auction. In the first stage dealers commit to either supply or purchase a fixed
quantity at the unknown final price. Then, the excess supply or demand is announced
and a multiunit uniform price auction is held to determine the market clearing price.
Dealers have an incentive to bid strategically; in addition to the standard information
rents in multiunit auctions, the two stage auction features (i) learning across rounds,
(ii) pre-committment of quantities in the first round, and (iii) heterogeneous positions
in CDS contracts. The paper develops and estimates a structural model of bidding
behavior in these auctions and uses it to quantify the role of each of these channels in
the dynamic auction process. I consider counterfactual changes to the auction format,
including a double auction design with step function bidding, which reduces shading in
the auction, increasing the insurance coverage.
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1. Introduction

U.S. firms issue nearly $2 trillion in corporate debt per year. The large institutional
investors who purchase this debt will often hedge against default risk by buying insurance
using Credit Default Swaps (CDS). CDS are derivative contracts which provide insur-
ance against a credit event (eg. bankruptcy, failure-to-pay, restructuring) on some set of
obligations. In addition to hedging default risk, CDS also allow investors to speculate,
ie., investors can bet on firm default. This insurance market has a gross notional volume
outstanding of around $10 trillion and credit events have included Fannie Mae, Lehman,
Greece and GM.
When a credit event occurs, the target payment for CDS contracts is the difference

between the par value on a bond and its post credit event value. The focus of this paper
is in the determination of the post credit event value. When CDS contracts were first
introduced, settlement involved a physical transfer of bonds from buyers of insurance to
sellers, and an insurance payment from sellers to buyers equal to the par value of the
bond. This arrangement, however, is complicated by the fact that the market can have
many more CDS contracts than bonds. Buyers of insurance do not necessarily own the
bond to physically settle. Physical settlement then would result in a short squeeze where
the few investors who own the bond can charge a very high price to investors needing to
source it in order to realize the insurance payout. As a result, the participants in this
market and the International Swaps and Derivatives Association (ISDA) agreed to instead
settle these contracts using a cash payment, the value of which is determined by holding
a two-stage auction for bonds.
The effectiveness of auction-based cash settlement depends on the ability of bidders to

influence the final auction price. Since investors are active in the auction and hold the
underlying contracts, they may have incentives to distort auction prices and therefore
contract payoffs.1 This is a concern because the CDS market is made up of only a few
large players who could be in a position to exert their market power.2 Consistent with the
existence of strategic bidding, bond prices in the auctions are usually a few cents on the
dollar below their secondary market counterparts, see, for example, (Coudert and Gex.
(2010), and Gupta and Sundaram (2012)) and the international accounting standards
board lists the effect of the auction process as an important reason why CDS prices may
not be the best measure of the inherent credit risk.
In this paper I estimate a structural model of bidding in the current environment and

use the model estimates to quantify the distortions arising from information rents in the
1A similar incentive arises in other settings where prices are used both for exchange and in calculating a
benchmark. For example, this is studied in a theoretical model of spot markets for derivatives, by Zhang
(2022).
2Some non-dealer firms have expressed a desire for more direct participation in the auctions Rutledge
(2009). Because the contracts originally specified physical settlement, the transition to a cash settlement
mechanism required the cooperation of the largest participants. A recent lawsuit New Mexico State
Investment Council v. Bank of America et al. case number 1:21-cv-00606 in the U.S. District Court for
the District of New Mexico, alleges that the large dealers used their market power to influence clients
acceptance of the auction process and were heavily involved in its design.
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current auction format. The estimates from my model allow me to quantify the price
distortions without relying on post-auction transaction prices, which only exist for one
third of the auctions, as proxies for bidder values. I then consider alternative auction
formats, which I argue can increase market efficiency. I show that the current design
results in prices that are influenced by dealers’ bond values and insurance positions. This
induces both bias and variance into the contract payouts, thereby reducing the insurance
benefit of the CDS contract.3 Since in most (but not all) auctions, dealers are net holders
of insurance, their strategic bidding behavior leads to a price that is on average 2.2 cents
on the dollar below the fair insurance amount.4 The model estimates suggest that the
current contract achieves 94-96% of the reduction in risk from complete insurance, while
alternative formats (discussed below) can achieve 98-99%. Leveraging the estimates in
Danis and Gamba (2018) for the relationship between the availability of CDS contracts
and firm value and assuming the additional coverage expands value at the same rate, I
find that changing the auction format can lead to an increase in firm value of 0.07-0.11%.
The improvements occur through a reduction in the price bias by 67% and a reduction of
70% in the standard deviation of outcome risk.
At each auction, bonds are bought and sold by large investment banks (Barclays, Gold-

man Sachs, etc.) to determine their value.5 At the auction, bidders pay or receive the
auction price for the bonds they buy/sell, and they pay or receive one minus the auction
price to cash-settle their CDS contracts. The current auction format for settling CDS
contracts involves a nonstandard two-stage design. In a first stage, the auctioneer accepts
initial quantity commitments, i.e. buy and sell commitments that are enforced in the sec-
ond stage. This first stage determines whether there is an excess demand for bonds or an
excess supply. In the second stage the auctioneer uses a multi-unit auction to determine
the price which clears the market.
To fix ideas, let us consider an example of the behavior of a bidder (for instance Barclays)

following a credit event. At the start of the auction suppose that Barclays’ position is $4M
of bonds and $10M of insurance (CDS contracts). Barclays would like to receive a low price
for their bonds in order to maximize their CDS payoff. In the first stage, because they
are a buyer of insurance, they can commit to supply bonds.6 This commitment is costly if
Barclays has a high value for the bond — by making a first stage commitment of $3M in
bonds, Barclays reduces their exposure to the auction price since it lowers their effective
CDS position to $7M.7 This has the benefit for the auctioneer of decreasing bidders’
incentives to shade their bids in the second stage. After the first stage, the auctioneer
3Because the size and direction of the bias in any given credit event depends on the private net insurance
positions of dealers, investors cannot offset the bias by adjusting the amount of insurance purchased.
While investors may adjust their insurance positions to account for the average bias (across credit events),
doing so leaves them bearing additional risk.
4Given the size of the market in an auction such as the one following GM’s default, this would cost sellers
of insurance an additional $1.4B.
5After the auction the bidder can hold the bonds or sell them to their clients in the secondary market.
6If they had instead been a seller of CDS they would have been limited to buying in this stage.
7Barclays is paid one minus the auction price, for all their $10M of CDS contracts, they receive $3M
times the auction price for the bonds sold and so have a final exposure of $7M. This reduction in exposure
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sums the orders across participants and publicly announces whether the second stage is
for excess supply or excess demand and the size of this excess. This announcement reduces
the uncertainty each bidder faces about the degree of competition. If the second stage
game allowed for both supply and demand bids following the initial round, the initial
round quotes would be non-binding and non-informative. However, the single directional
second round means that sometimes a bidder will be unable to undo their initial quote
and this imposes a cost on the first round choice. In addition to their first-stage quantity
commitments, all bidders are required to submit price quotes. The average quote can be
thought of as the common value for the bond. It does not bind bidders in the second
stage, but helps aggregate individual bank signals about the value of the bond.
The cases of excess supply and excess demand after the first stage must be considered

separately. If there is excess demand, only supply bids are allowed. In the example, this
means Barclays is excluded from expressing a desire to buy bonds in the auction.8 This
exclusion has a direct effect, restricting Barclays actions reduces the number of individuals
willing to supply bonds and an indirect effect, the remaining bids shift due to strategic
responses to the new residual supply curve. If instead the first stage results in excess
supply, Barclays will bid below its value in order to (i) extract information rents, and (ii)
increase the amount it is owed on its CDS position (as a buyer of CDS, Barclays wants a
lower auction price to increase the amount of insurance they are owed).
Unlike in standard multiunit auction settings where the econometrician is only interested

in learning a bidder’s private value from their bids, in credit event auctions we need
to identify both bidder private values and their CDS positions. I extend identification
arguments from multi-unit auctions by using restrictions on the shape of the marginal
value curve (ie. bounded and weakly decreasing in quantities) to jointly bound the set of
CDS positions and marginal values for every bidder. It is important to separate these two
components because bidders use their bids not just to express their value for the bonds
but also to influence the payments due on their CDS positions. Recalling the Barclays
example, when a CDS buyer raises its bid, it increases the expected auction price, which
reduces the payments it will receive on its CDS position. This effect increases the incentive
to shade bids for CDS buyers and reduces shading of CDS sellers compared to the shading
due only to private information.
Model estimates allow me to document the size of the distortions due to information

rents and to quantify several different strategic channels. It is important for policy to
quantify the relative strength of various strategic channels as theoretical work focusing
on different channels have proposed different solutions. Chernov et al. (2013) propose
pro-rata rationing; Du and Zhu (2017) propose a double auction; and Peivandi (2015)
suggests a fixed price.9 I perform several tests that suggest the first round price quote

assumes that the post-auction price is not driven by the auction price. Results in Table A.2 show that
this is supported by the data.
8In the first stage, Barclays could not sell bonds because they were a net buyer of CDS, while in the
second stage only demand orders were accepted.
9Chernov et al. (2013) use an environment featuring perfect information and common values for the
defaulted bond to highlight the role of short sale constraints (difficult to short sell the bonds) and
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captures most of the common value element in these auctions. Given this, I focus on
the double auction policy proposal from Du and Zhu (2017) to reduce market power in a
setting with independent private values (IPV).
I evaluate if a counterfactual change to a double auction, where bidders simultaneously

submit supply and demand orders, can reduce the pricing distortions.10 The distortions
from participation constraints have been illustrated in theoretical work on these auctions,
see Du and Zhu (2017). They demonstrate that a move to a double auction would reduce
the price bias. However, their result relies on assumptions that bidders have zero-average
CDS positions and that they have common rates of decreasing marginal values. These
assumptions are rejected by the data. Because dealers’ are estimated to be mostly net
buyers of CDS, the incentives for buyers and sellers to distort their bids no longer cancel
out in the double auction design and so the ranking of the double auction and current
format must be determined empirically. In addition, the impact of the exclusion of some
bidders in my model has an ambiguous impact. For example, with excess supply there may
be some potential suppliers there are excluded. This shifts the supply curve to the left,
exerting upward pressure on the price (as in Du and Zhu (2017)) but also rotates the curve,
making it steeper. The rotation increases the price impact of bidders, thereby reducing
their willingness to demand bonds (especially for holders of insurance). Finally, because I
allow dealers to account for their price impact, learning and first stage position reductions
may benefit the auctioneer in the current format. Relative to the current format, the
double auction structure eliminates the reduction in exposure from position reductions,
increases the uncertainty about opponents’ demands, but increases participation in the
auction by removing constraints on the direction of eligible bids.
To evaluate the effect of hypothetical changes to the auction rules, I compute the equi-

librium strategies of bidders under counterfactual auction scenarios. To compute these
strategies I apply a new computational approach. Direct computation of equilibrium in
multi-unit auction settings has been elusive. This has limited the counterfactuals consid-
ered to exercises that provide an upper bound on the benefits of eliminating bid shading
(e.g. Hortaçsu and McAdams (2010), Kastl (2011)). The main challenge with the equilib-
rium computation is that bidders’ strategy functions are high dimensional and complex.

constraints prohibiting some participants from holding defaulted bonds. One reason for low estimated
values in my model may be the presence of these type of constraints. Rather than have pro-rata rationing
at the margin, they follow Kremer and Nyborg (2004) and propose pro-rata rationing. The idea is to
eliminate under-pricing in the uniform price auction. Peivandi (2015) instead focuses on the problem of
bilateral settlement before the auction and uses a mechanism design approach to show that the optimal
mechanism to control this problem is to use a fixed price which is independent of signals. Finally, Du and
Zhu (2017) focus on the role of the constraints on behavior across rounds and the inefficiencies generated
by the excluded participants. They model behavior in an independent private value setting where the
dealers have no price impact and hold zero average CDS positions and show in that context a double
auction is efficient and would improve performance.
10In settings with imperfect competition the double auction is not fully efficient because bidder’s strate-
gically account for the price impact of their bids. This is true in the models of Kyle (1989),Vives (2011),
and Ausubel et al. (2014).



QUANTITY COMMITMENTS IN MULTIUNIT AUCTIONS 5

This means that both Euler-based approaches (which solve the strategies by taking se-
quences of steps along a path described by a differential equation), and approaches based
on parametrizations of the strategy functions (e.g. Armantier et al. (2008)), cannot be
applied. Instead, my method begins by guessing a data-generating process (DGP) for
equilibrium bids and adjusts the DGP until the distribution of values that rationalizes
those bids given the rules of the game matches the true distribution of values (the known
structural primitive when solving the counterfactual). I describe a criterion function which
measures distance between the implied and target value distributions and show that bid
distributions close to an equilibrium bid distribution result in criterion values close to
zero. In a companion paper Richert (2021) I provide general results and simulations to
study the performance of this approach. This approach does not require imposing para-
metric restrictions on the bid strategy functions, insures that the equilibrium constraints
are satisfied exactly at the solution and in a single execution can solve for the entire set
of counterfactuals consistent with estimates from a set-identified model.
Relative to the current auction format, the double auction design eliminates the effect of

learning and the role of participation constraints, and increases the effective CDS positions
of dealers at the auction. In the counterfactual exercise I show that the double auction
provides an improvement, decreasing the total gap from the competitive price by 67% and
decreasing the standard deviation of auction outcome risk by 70%. To understand the
strategic channels in the current settlement format I perform a decomposition exercise
which allows me to make a partial equilibrium comparison of the roles of (i) the reduction
in asymmetries due to first-round quantity commitments, (ii) the reduction in uncertainty
from learning the excess supply/demand available, (iii) the information learned about
opponents’ values from the endogeneity of the excess supply/demand. Results from the
decomposition suggest that the position reduction from the first stage commitments do
not result in large changes in bids. This is driven by the fact that dealers submit only
part of their position and roughly 60% of bidders make zero commitment in the first
stage. When bidders condition on the quantity announced the distribution of opposing
bids they expect to face are shifted because they learn a total quantity offered and this
quantity is informative about opponents types. The decomposition results show that when
bidders are unable to condition on the additional information they bid less aggressively.
However, if bidders condition on the quantity offered but do not calculate how it affects
the distribution of opposing bids submitted they react by bidding more aggressively.
Section 2 presents details of the CDS auction institution and introduces the data, 3

introduces the model, 4 discusses identification, 5 presents the estimation 6 considers the
results and section 7 examines the counterfactual experiments.

2. Institutions and Data

CDS are financial derivatives which provide insurance against a pre-determined set
of credit events (eg. bankruptcy) occurring on a pre-specified set of bonds.11 These
contracts initially used physical settlement, akin to basing settlement on scrapage value
11For a survey of the literature on CDS markets, contract terms, and pricing, see Augustin et al. (2014).
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in other insurance markets. In physical settlement, the insurance buyer delivers the bond
to the insurance seller and in return receives the par value of the bond. This leaves the
buyer with the full initial value, and the insurer can claim any bond recoveries. However,
in addition to bond owners, CDS contracts may be purchased by speculators that do not
own the underlying bond. These so-called Naked CDS contracts allow speculators to use
CDS to bet on the creditworthiness of the company. The presence of speculators adds
liquidity to the market, but also means that the volume of CDS is often many times the
outstanding volume of bonds, and so physical settlement of all contracts would require
the bonds to be recycled through the market. This could produce a short squeeze in
the bond market, preventing physical settlement from providing fair insurance for naked
buyers (Gupta and Sundaram (2015)). Physical settlement also produces an inefficient
allocation of bonds when some CDS buyers have a higher value than the sellers of holding
the bond through the recovery process.
These issues were anticipated in the lead up to the default of Delphi in 2005, where there

was $25B net notional of CDS contracts written on $2B of bonds. To address the problems
linked with physical settlement, the twelve big dealer-banks decided to settle contracts in
cash at a price determined in an auction for the underlying bonds. A two-stage auction
design was proposed to allow participants to replicate the outcomes of physical settlement.
In the first stage dealers submit physical settlement requests and in the second a uniform
price multi-unit auction is held to clear the market. To replicate physical settlement,
dealers submit requests to buy/sell in a first stage for as many bonds as they would have
transferred physically, resulting in the same set of payments and transfers. Following 2009
these auctions were written into all CDS contracts as the settlement mechanism.12

There were 209 credit events between 2006 and the Fall of 2019. Of these, 84 were
loan credit default swaps (LCDS) and 125 CDS. LCDS are similar to CDS contracts
but have loans rather than bonds as the underlying reference obligation. There were
8 auctions which did not proceed to the second stage, and in 16 cases auctions were
not held, resulting in a sample of 185 auctions.13 I collect data from creditfixings.com,
(administered by Creditex and MARKIT) on all bids made in credit event auctions,
and obtain the lists of eligible bonds from the determinations committee. The covered

12There have been two major changes in this market since the first auctions in 2006: the big bang
and small bang protocol. The main effect of these rules (effective 2009) were to tie the CDS contract
payouts to the auction prices. Credit events can be on bankruptcy, failure-to-pay or restructuring from
the underlying obligations. The big bang protocol hardwired the auction process for bankruptcy and
failure-to-pay, while the small bang did the same for restructuring events.
13In the design of the auctions the ISDA determined a set of situations where an auction is not required
to be held. This occurs if for certain maturity buckets there are no deliverable obligations in the bucket
that is not shared with a shorter-dated bucket or if the determinations committee decides an auction on
that bucket is not warranted due to limited notional volume of transactions within the bucket. In the
first of these cases the price can be set by rounding down to the previous, shorter dated bucket. However,
if at least 300 transactions are triggered after the restructuring credit event determination in the given
maturity bucket and at least five dealers are parties to these transactions an auction must be held. The
auctions which did not proceed to the second stage had no excess supply/demand in the first stage to be
sold in the second stage.
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Table 1. Auction Description

The following table presents summary statistics for the auctions. Price is the final market clearing
price from the auction. IMM is the initial market midpoint calculated using bidders’ first round price
quotes. The NOI is the excess supply or demand from summing over each bidder’s quantity commitments.
Probability to buy takes a value 1 if the auction results in excess supply (accepts demand bids at stage
two).

N Mean Sd P10 p50 P90
N Dealers 185 11.06 2.54 8 11 14
Price ($.01) 185 43.01 32.46 4.00 35.50 88.50
IMM 185 43.41 32.02 4.75 34.50 88.75
|NOI| ($millions) 185 95.14 167.84 2 37 234
Probability to buy 185 0.632

entities include companies and countries; eligible debt includes corporate and sovereign
bonds, syndicated loans, commercial mortgage backed securities (CMBS) and mortgage
backed securities (MBS).14 Summary statistics are displayed in Table 1. The auctions have
an average of 11 participants, usually the nine global dealers and two largest regional
participants. The price determined in the auction averages 43.41 cents to the dollar.
That is, the auction price for the bond is 43.41 percent of the par value of the bond;
there is, however, substantial variation across auctions. The IMM , which is an average
of price quotes given by dealers at the first stage of the auction, is fairly similar to this
final price. NOI (net open interest) denotes the volume of excess supply or demand for
bonds resulting from the first stage. In total, 355 bidders submit requests to buy in the
first stage of one of the 185 auctions, 535 submit requests to sell, and 1167 submit zero
quantity bids in the first stage. Around 63 percent of the auctions result in excess supply
in the first stage.
From the determination that a credit event has occurred to the final payout, the auction

process is administered jointly by a committee whose members are determined based on
their global notional volumes. These large dealers are obliged to participate in most
auctions: failure to participate could threaten their eligibility to participate in future
auctions. The committee also determines the final set of deliverable obligations for the
auction. In cases where the issuer has debt of multiple maturities or risk levels the
auction may be held separately on different buckets. In these cases bonds eligible for
submission in the shorter maturity or higher security level can also be delivered into the
lower auction. This means that the bonds that can be delivered in a particular auction are
systematically homogeneous. Further, bidders will not submit bonds at random but will
first submit the cheapest-to-deliver bonds. The total volume of bonds at auction is only a
fraction of all eligible bonds. For each eligible bond, I obtain volume and trait information
from Bloomberg and obtain loan information from DealScan. Summary statistics for the
deliverable obligations in each auction are provided in Table 2. For 56 of the auctions, the
14Results are similar if sovereign bonds are excluded from the analysis. These may have different infor-
mation environments, and the participant banks may hold these for different reasons. Sovereign bonds
are only the underlying obligation for 5 auctions in the sample.
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bonds are covered by TRACE and so I also obtain trading data for these bonds around
the auction date.15 On average, 11 bonds are eligible for submission into the auction. The
bond characteristics vary substantially across auctions.

Table 2. Some Other Bond Descriptives

For each auction this table summarizes various features of the set of eligible bonds. In total there are
2,004 eligible bonds across all auctions. FRN % denotes the share of the eligible bonds that are floating
rate notes (coupon payments linked to a benchmark rate, usually LIBOR).

Variable Obs Mean Std. Dev. Min Max
Number of bonds 185 10.80 27.77 1 298
Max maturity (years) 185 10.46 11.94 0 50
Min maturity (years) 185 2.98 4.92 0 50
Max coupon % 185 5.5 4.8 0 29.5
Min coupon % 185 2.7 3.3 0 11.8
Share FRN % 185 33.99 41.8 0 1

The within-auction variation is summarized in Table 3. The table shows summary traits
of the bonds, including volume, duration, convexity and conversion factor. Duration and
convexity measure the exposure of the bond to interest rate risk. Duration has substantial
variability within auction, which is heavily influenced by the fact that the set of eligible
bonds often contains some share of floating rate notes (FRN) and some share of long-
term coupon bonds. Convexity is much more similar within auctions than across. The
volume of individual issues varies substantially within auction. Because the dealers should
anticipate which bonds are cheapest to deliver, they should have common expectations
about the set of bonds in this pool, so the estimated values will represent bidders’ values
for that set of bonds.
CDS contracts are traded over-the-counter and disaggregated trading data are not avail-

able. Prior to 2010 reporting requirements for these transactions were limited. After 2010,
information on all standardized and confirmed CDS transactions involving U.S. entities
was reported to DTCC.16 This data is available to regulators through the DTCC’s Trade
Information Warehouse. Paulos et al. (2019) uses the regulatory filings from the DTCC
from 2014-2017 for the subset of dealers regulated by the Federal Reserve. They show
that dealers are typically net buyers of protection in the auction.17 The positions-data
that are sold to market participants do not contain enough information to reconstruct
dealers net open positions on individual entities. Further, it is unlikely that dealers can
15The Trade Reporting and Compliance Engine is the FINRA database for the mandatory reporting
of over-the-counter transactions in eligible fixed income securities. Broker-dealers have an obligation to
report transactions in eligible securities under an SEC-approved set of rules.
16Paddrik and Tompaidis (2019) use this data to examine the costs that dealers face to act as market
makers.
17This result is in contrast to Eisfeldt et al. (2022), which finds that dealers are net sellers of insurance in
the CDS market overall. The difference suggests that dealers may hold different positions in companies
which are likely to default or may adjust their position in the lead-up to the auction.
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Table 3. Bond Measures

Volume ($B), duration convexity and conversion factor as calculated for each bond in the eligible set that
can be submitted to the auction. Each variable xja for auction j admissible bond a has between variable
xj and within xja − xj + x, where x is the global mean. While the "within" reported minimum eg. for
volume is negative, this does not indicate negative volume of any issuance but refers to the deviation from
each auctions average issuance size and naturally, some of those deviations must be negative. Across 185
auctions there are a total of 1,998 eligible bonds.

Variable Mean Std. Dev. Min Max

volume overall 7.46 82.29 0 3500
between 9.52 0 126.79
within 81.44 -108.15 3380.41

duration overall 4.03 9.71 0.87 103
between 9.77 0.87 103
within 9.50 -31.34 123.62

convexity overall 0.69 1.33 0 10
between 1.33 0 10
within 1.21 -3.62 10.38

reconstruct precise estimates of the other dealers’ positions as they often transact with
each other through inter-dealer brokers to preserve anonymity. Another indication of the
lack of information on others’ positions is that netting does not occur in this market. If an
opponent’s position was precisely known, dealers would likely engage in netting to free up
collateral and reduce exposure to counter-party risk. Following the financial crisis, some
CDS have moved to central clearing but this tends to be index CDS and for more liquid
companies, see for example Slive et al. (2012), and has not affected the single names on
which credit events occurred.18

2.1. Evidence of market power. Figure 1 plots the average transaction prices in the
secondary market (and the auction price on day 0). The V-shaped pricing pattern is
consistent with the findings in existing papers that analyze this difference. Coudert
and Gex. (2010), and Gupta and Sundaram (2012), for example, document a large gap
between a bond’s price on the auction date and secondary market prices around the
auction day, showing that the auction price tends to be below both the pre- and post-
auction trading price.
Although this price gap is consistent with the presence of market power it could also

come from other sources. For example, dealers may take on larger bond positions around
the auction, with clients selling both CDS and bonds to dealers and so the prices around
18Single name CDS has a reference obligation or bond issued by a single issuer. Index CDS are credit
securities on a basket of credit entities.
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Figure 1. Average Secondary Market Bond Prices
The x-axis plots the number of days from the auction. The y-axis plots the average bond price per dollar.

the auction may reflect a larger discount for the additional inventory risk. There could also
be additional risk in the bond price around the auction as auction outcomes may reveal
information about the bond value to bidders. This relationship is highlighted in Table
A.2. While the auction price itself has no explanatory power for post-auction bond prices,
the post-auction prices are correlated with the IMM, suggesting that some information
relevant for the secondary market may be revealed during the first-stage of the auction.19

2.2. Current auction format. The auction begins with a stage where bidders (i) submit
initial quantities that they want to commit to settle at the final auction price and (ii)
price quotes, at a quantity and maximum spread set by the determination committee
depending on the liquidity of the defaulted assets. Following the first stage the auctioneer
adds up all the quantity commitments and announces this along with the average price
quote. They then hold a uniform price multiunit auction to clear the excess supply or
demand. I illustrate the process with an example auction.

2.2.1. Initial Quantity. For an example of the initial quantities see Table 4. Quantities
to buy and sell are summed across dealers to determine the Net Open Interest (NOI). In
the example presented in Table 4 there is a NOI of $47.397M. The auction is therefore in
excess supply. The bidders are required to submit initial quantity submissions that are in
the same direction as their net position in CDS. Therefore a bank that owns more CDS
contracts than it has sold can only submit requests to sell. This direction restriction is
set to replicate the transfers from physical settlement. This particular example auction
had $507M of eligible bonds.

19In addition, the concentration of the quantity of bonds won by the largest winner does not explain the
price gap around the auction date, suggesting the gap may not be due to differences in the expectations
of dealers’ actions through the recovery process.
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Table 4. Initial Round Quantities

This table presents the initial round quantities from the auction for Parker Drilling Co. An offer is a
commitment to supply bonds. A bid is a commitment to buy bonds.

ID Dealer Bid/offer Size ($M)
1 Barclays Bank PLC Offer 10
2 BNP Paribas SA Offer 0
3 Credit Suisse Offer 7.953
4 Deutsche Bank Offer 0
5 Goldman Sachs International Bid 6.53
6 J.P. Morgan Securities LLC. Offer 26.974
7 Merrill Lynch, Pierce, Fenner & Smith Inc. Offer 0
8 Morgan Stanley & Co. LLC Offer 9.0
9 Societe Generale Offer 0

Subtotal Buying Bid 6.53
Subtotal Selling Offer 53.927
Total for Auction (Net Open Interest) Offer 47.397

To understand the incentives of dealers in this stage, consider a dealer that is a net buyer
of insurance. This dealer wants the auction to establish a low price for the bonds, which
will result in a larger payout on their CDS position. However, by supplying additional
units in the first stage, the dealer adjusts their final exposure to the auction price. On
CDS which they own, the dealer receives a cash settlement of (1−pauc) while they receive
pauc for bonds sold at the auction. Finally, the dealer must consider what opponents will
learn from any realization of the NOI.
Figure 2 looks at the impact of the total quantity submitted by opponents in the first

stage and the expected price in the auctions. This highlights the intuitive relationship
that a small quantity to be cleared results in more competitive bidding, leading to a high
price. However, as the quantity that needs to be cleared increases, in the second stage
bidders can shade their bids more, and the expected price falls.

2.2.2. Initial Quotes. The first stage also includes a simultaneous submission of price
quotes. The quotes are used to set a price floor (ceiling) in the auction when bidders
are selling (buying) and are carried forward into the auction as part of the second stage
bid. Prior to the second stage, the average quote is also announced. An example of
the initial quotes in one auction is provided in Figure 3. The price caps serve to set a
limit such that a dealer with a net CDS position larger than the total quantity being
auctioned does not have an incentive to push the price to 100 or zero. To calculate this
cap from the quotes, the auctioneer discards crossing/touching markets (where a buy
price is above a sell price, and takes the ‘best half’: the highest half of the remaining
bids and lowest half of the offers and calculates the average— called the Initial Market
Midpoint (IMM). A pre-determined spread is added to the average if it is an auction to
buy or subtracted if it is to sell to set the cap. These quotes are carried over into the
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Figure 2. Expected Price Quantity Others
Nonparameteric smoothed estimates of the expected price as the NOIi = NOI−(dealer j’s commitment)
varies. Expected price calculated as a fraction of the price cap, and expectations are taken by simulating
residual supply curves which imposes the assumption that bids are conditionally independent in the
second stage given the NOI submission of opponents and the bidders own submission.

Figure 3. Initial Market Midpoint

auction in the direction matching the NOI, at an auction-specific quantity, set in advance
by the auctioneer. Any bids that are off-market are carried over at the IMM. Finally, the
bids are used to determine fines for off-market bids. If an offer to buy is above an offer
to sell, this indicates a trade-able market, and the off-market party will be fined based
on the size of this difference multiplied by the fixed quote size. The maximum spread, as
well as the quantity which is used to determine fines and carry over amounts, is set by
the auctioneer. In almost all cases all bidders bid the maximum spread.
A buyer of CDS may have incentive to manipulate their price quote downwards in order

to decrease the price floor/cap. However, the presence of fines and the fact that outlier
bids do not get included in the average, discourages this type of behavior. It has also
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Figure 4. Demand Function
(a) Bidder Demand (b) Aggregate Demand

been suggested that this may be used as signalling, similar to the LIBOR misquoting that
has already been documented by Bonaldi (2017). Unlike the LIBOR context, where the
individual quotes are revealed, only the average is revealed between rounds, limiting the
signalling benefits. This substantially limits the ability to signal using this quote.

2.2.3. Uniform Price Auction. After the initial submissions, the initial market midpoint,
the size and direction of the open interest (quantity to be bought/sold in the auction) are
announced. The market is then given between 30 minutes and two hours to incorporate
this information. Next, a uniform price auction is held to clear the excess quantity. The
bids submitted in the example auction are plotted in panel A of Figure 4. These bids are
then summed to calculate a demand (or supply) curve and the point where it intersects
the total quantity to be sold determines the clearing price, as shown in panel B of Figure
4.
When bidding in this stage, the dealer chooses a demand curve to submit. Uncertainty

about opponents’ values leads participants to bid strategically. When deciding on the bid,
each bidder considers the distribution of residual supply curves (representing the excess
supply at each given price after accounting for the orders of opposing bidders). Knowledge
of the NOI provides each bidder with information on the location of the aggregate supply
curve and because the NOI results from the initial quotes it also informs them about
the opponents’ signals. Unlike a standard multi-unit auction, the final price is paid for
all bonds acquired in the auction, for the initial quantity commitment and for all CDS
contracts. The CDS positions provide dealers with an additional incentive to shade more
or less by changing the effective number of units on which they pay the final price. In the
current auction design, the first-round submissions allow some bidders to decrease their
exposure to the auction price, which should help reduce the heterogeneity in exposure
across bidders. Finally, the fact that the second round only allows bidding in one direction
may constrain some participants from expressing their demand.
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2.3. Distinguishing Between Common and Independent Private Values. Most
empirical work on auctions requires the economist to make a modelling assumption on
the information structure of the game. For tractability, given the complicated dynamic,
multi-unit setting, this choice is limited to either the independent private values framework
(IPV) or one based on common values (CV). In the CDS context there are factors which
could lead both of these assumptions to be reasonable, and in theoretical work both have
been used (Du and Zhu (2017) and Chernov et al. (2013), respectively). Specifically,
IPV may be reasonable if the first-round price quotes effectively aggregate the common
information held by different dealers and the remaining variation in values was driven
by bidders’ own costs of holding bonds, expectations of their own customer order flows,
their value of liquidity, or their expertise in managing the complicated legal process of
restructuring/liquidation, or their cost of holding bonds through the recovery process.
On the other hand, common values is a reasonable assumption if there is a liquid resale
market where these inventory/management costs are negligible.
In this section I empirically test for the presence of several correlations which are pre-

dicted if common values play an important role in the second stage strategic bidding
decisions but which do not occur under IPV. I first perform the test proposed by Gupta
and Sundaram (2015), which uses the variance of initial round quotes as a proxy for
uncertainty. Due to the Winners Curse, when this uncertainty is high, bid shading in
the second round should increase under common values. I find no significant correlation
between these measures (results can be seen in Table 5). I then focus on the ‘independent’
piece of the assumption and provide evidence in Figure 6 that the bids of two randomly
selected participants in the second stage of the auction are independent, once the initial
market quote is conditioned on. I formally test this relationship using a procedure pro-
posed by Hickman et al. (2021). For each bidder I regress the own bid on the mean bid of
opposing bidders. I find, that the average opposing bid does not predict each bidders own
bid. Results are provided in Table 6. The test also suggests that unobserved auction het-
erogeneity does not play an important role. In addition, Appendix B.2 finds no evidence
that auction outcomes impact post-auction prices for the sub-sample of auctions where
I observe trade-level data from TRACE. Finally, I show that the bidders’ own beliefs
relative to the IMM level have no explanatory power for their second stage bid levels,
suggesting that bidding in the two rounds does not reflect the same information. Results
for this test are presented in Table 7.
Although there is likely to be some aspect of both private and common values in this

setting, the results of these tests do not provide evidence of the Winner’s Curse or of
important within-auction correlation in bidder’s values. This is consistent with bidders
second-round bids, after they condition on the IMM quote being largely driven by idiosyn-
cratic values. In Appendix C I perform a calibration exercise which shows the average
quote can reveal most of the private information about the common component of values.



QUANTITY COMMITMENTS IN MULTIUNIT AUCTIONS 15

Table 5. Gupta and Sundaram Test for the Winner’s Curse

This table reports results from regressing the average slope of a bidder’s stage two bid, against a proxy
for the winners curse. The presence of the winner’s curse suggests steeper stage 2 bids. The regression
also controls for the bidders first stage quantity submission, the auction NOI, the N-steps submitted and
a constant. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.

Slope of bids
IMM variance 0.000

(0.004)
Constant 0.059

(0.061)

Figure 6. Independence of Bids
Panels A and B present scatter plots of the raw and then the residuals of the quantity weighted average
bid for 2 randomly selected participants in each auction. Under IPV these are uncorrelated. The
correlation coefficient associated with this plot is -0.065 and is not statistically significant. Auctions 43,
198 and 140 are dropped as they include outliers. These are auctions to sell the bonds, and these large
bids are usually participants that sold into the auction putting a stop-gap bid in to ensure that they do
not receive less than that amount for the bonds they sold.

(a) Raw Bids (b) Residualized bids
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Table 6. IPV Regression Test

This table reports results from regressing the average bid for each bidder in stage 2 against the average
bid by opposing bidders, controlling for factors that would explain across auction variation in the bid
level in an IPV setting. A non-zero coefficient on the mean opposing bid would lead us to reject the
null hypothesis of IPV. The specification follows the suggestion of Hickman et al. (2021) and adopts a
cubic polynomial in N and the average opposing bids to control for variation in shading resulting from
optimal bidding in an IPV model. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.

Controls Own Bids
Mean opposing bid 0.929

(0.886)
NOI -0.0133∗∗∗

(0.002)
IMM 0.835∗∗∗

(0.019)
Cubic polynomial in Nj yes
Mean opposing bid x polynomial in Nj yes
Constant 10.927

(30.804)

Table 7. Second-Stage bids

This table reports results from regressing each bidders average stage 2 bid, against a measure of their
initial beliefs about value (before announcement of the IMM). The regression also controls for the
bidders first stage quantity submission, the auction NOI, the N-steps submitted, the max q bid on and
a constant. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.

Variable Mean bid (NOI < 0) Mean bid (NOI > 0)
IMM price 0.929∗∗∗ 0.872∗∗∗

(0.0228) (0.012)
IMMi − IMM -0.643 0.335

(0.444) (0.227)
Controls Yes Yes
N 289 830
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3. Model

3.1. Players and Endowments. The participants in the auction game are a set of
dealers who are eligible to bid in the CDS auctions, Id ⊆ I, the complete set of owners
and sellers of CDS, and owners of the underlying bonds. On the auction date, each dealer,
i is endowed with a CDS position ni. If ni ≥ 0, the dealer is a net buyer of protection
while, if ni ≤ 0, the dealer is a net seller. Since these are derivative contracts, there is
someone on each side of the position and ∑

I ni = 0. Note that this aggregation condition
holds over the entire set of market participants, not only the subset of dealers who bid in
the auction. Participants can also have any initial position in bonds, Bi.
Both the quantities B and n are denominated in hundreds of millions of dollars out-

standing, so a bond payoff if no credit event occurs is 100Bi million. The final auction
price is expressed as cents on the dollar.

3.2. Information. Before making their choices, bidders receive independent draws of
a vector mi = (si, ni) from Fm, where si is a vector of private signals, and ni is the
one-dimensional position in CDS contracts. The vector m is drawn from an absolutely
continuous joint distribution with no holes and no mass points.20 I assume bidders know
the distribution Fm but not the individual draws of their opponents.21 Let yi denote the
initial round quantity commitment of dealer i to purchase or sell bonds at the auction
stage and let vi(q− yi, si) denote the marginal value for the qth unit of a bond purchased
at auction.22 I assume that these functions are bounded, weakly increasing in each com-
ponent of si, and decreasing in q. These bounds occur naturally in this setting, as no
bidder should believe that the bond is worth a negative amount, and no bidder should
believe that they will receive more returns than promised by the bond before the credit
event.
In addition to the vector of private value-relevant private information, bidders receive a

signal of the expected recovery value ηi = R+ξi, and ξi ∼ Fξ. These draws are IID across

20This assumption rules out that the position is a deterministic function of the vector of private infor-
mation. While the bond or CDS positions of a dealer may reflect their private information, it seems
reasonable that they are not perfectly correlated, for example: due to frictions in these markets leading
up to the auction which may prevent some types of adjustment (eg. need to find a counterparty and agree
on a price). The extent of OTC market frictions is well documented, c.f. Duffie et al. (2005),Hugonnier
et al. (2019), Li and Schurhoff (2019) Bao et al. (2011) and Di Maggio et al. (2017).
21This rules out that a bidders own position is informative of their opponents positions. This would be
an important concern if, for example, bond holdings played a role in si and if one bidder owned most of
the outstanding bonds and could therefore infer that their opponents held minor positions. This is not
an important concern in this setting as the bonds owned by dealers usually make up a small share of the
total outstanding, with large volumes of bonds owned by outside investors.
22This is indistinguishable from a model where bidder preferences depend on an initial position of bonds
Bi which is also part of their private information (ie. m = (si, ni, Bi)), as long as the auction does
not cause a change in i’s post-auction value of owning Bi. In this case it would simply produce curves
vi(Bi + q − yi, si) = vi(q − yi, si, Bi). Without data on bond positions, the roles of signals and bonds
in determining the marginal value cannot be separately identified, so I treat v(q, ·) as the structural
primitive and as a consequence simplify notation by writing vi(q − yi, si) throughout.
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bidders and the bidders know the distribution Fη. I assume that this recovery value affects
the bidders marginal value through a simple level shift: R + vi(q, s).23 Both R and ξ are
independent of the private signals and positions. Prior to the first-round bidding, each
bidder also receives orders from clients to submit physical settlement requests on their
behalf. I assume that these orders arrive independently of all dealer’s private information,
and each dealer receives a unique draw (yci ) from the distribution of these shocks Υ.
Finally, all bidders face a dealer-specific cost of submitting a bid in the first round,
cκi ∼ κ, and a (complexity) cost of submitting each step in the second stage of the game,
cι ∼ ι.

3.3. Actions and Timing. The bidders start with a quantity of bonds, a net position
of CDS contracts, some private signal indicating their private benefit from finishing the
auction with q units, and a signal about the expected recovery value η. At the start of
the auction, each dealer receives orders to submit on behalf of their clients for physical
settlement yci .
Given their signals and position, dealers choose an initial round quantity (yi) to commit

to purchase/sell at the auction stage and a price quote that is used to determine the IMM.
In the first stage, bidders choose a quantity commitment yi in the set:

Yi ≡ {yi|yi ∈ [min(ni, 0),max(0,min(Bi, ni))]}.

In keeping with the restrictions on participation from the auction rules, if ni ≤ 0, then
yi ∈ [ni, 0] while if ni ≥ 0, yi ∈ [0, ni]. The choice yi is discrete with the interval of the
minimum deliverable bond denomination. The total quantity submitted by each bidder
is yoi ≡ yi + yci ; the total submissions of other dealers is NOIi ≡

∑
j 6=i y

o
j ; and the total

submission of all dealers is NOI ≡ ∑
i∈Id y

o
i .

After the first stage, bidders learn the open interest, the initial market midpoint Ω =
(NOI, IMM), and they know their own contribution to the NOI, yoi . Both yoi and NOI
influence the expected distribution of opponents’ signals, as this allows the bidder to
deduce that the total submissions of opponents were NOI − yoi . Given this information,
the bidder decides on a set of Ki pairs (bik, qik) to submit as a bid into the second stage
uniform price auction.
In the second stage, bidders choose an action from the restricted set of strategies denoted

by γ(p|mi,Ω, yoi ). This function describes the quantity γ allocated to bidder i at price p.
The strategies γi for each player lie in the set of possible actions Ai, defined similarly to
Kastl (2011):

Ai = {(bi, qi, Ki) : dim(bi) = dim(qi) = Ki ∈ {0, 1, 2, ..K̄}, bik ∈ {0, 0.125, 0.25, ..., 100},
qik ∈ [min(0, NOI),max(0, NOI)], bik ≥ bik+1, qik ≤ qik+1}.

23The choice of an additive R is motivated by the fact that the variance of bidders’ information does not
appear to shift with the level of R as a multiplicative form would predict. Evidence for this is presented
in Section B.3.
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3.4. Initial Market Price Quote. I take the initial round price quote as a reflection
of the value relevant information common to all bidders. This assumption simplifies the
model and is reasonable in this setting because (i) only the average quote is reported
before the second stage, (ii) each bidder has limited ability to manipulate the averages,
and (iii) any attempt to engage in manipulation is likely to result in fines and exclusion
of the quote from the calculation of the average.

Assumption 1. The pIMM is a monotone function of R and after the first round results
are announced aggregates all the information in the individual signals about the common
value.

Assumption 1 is key to allowing us to characterize the equilibrium behavior in the
second-stage bidding game. It plays a helpful role in the empirical analysis by removing
the common information components from valuations and provides an auction-specific
measure of the bidders perceived values to help control for across-auction heterogeneity.24

The bidders problem trades off: by decreasing their initial quote, a bidder will tend to
decrease the IMM, which decreases the expected price floor or ceiling and may signal to
opponents a lower expected resale value for the bond, leading to smaller opposing bids.
However, by lowering their quote, dealers (i) increase the chance that their quote is not
in the average (ii) reduce their bid that will be carried over into the second stage of the
auction and (iii) increase the chance that they receive a fine. I argue that the costs from
the fine disciplines the distortions in the IMM so that although it may be a biased, it is
a monotone function of the common value component R.25

Assumption 1 means that pIMM is a sufficient statistic for the common part of bidders’
values. This means that expectations in the second stage do not depend on the initial
private signal, ξ, that inform bidders’ first round quotes. Although this differs from the
beliefs implied by Bayesian updating, this is likely to produce a similar set of beliefs.
The updating should be similar because the IMM is likely a much less noisy signal than
the η (it aggregates the diffuse information from all participants), and the dropping rule
in the IMM calculation makes the size of the correlation between the own submission
and the IMM difficult for bidders to evaluate. Appendix C shows that for calibrated
parameters, bidders’ expectations following announcement have very low variance. This
is also consistent with the lack of correlation in the data between the first round quote
and second round bid levels, as reported in Table 7.

24A central issue that arises when estimating demand systems is unobserved heterogeneity. We need to
make sure that variation in quantity choices is attributable to variation in prices and not an omitted vari-
able that is correlated with price, e.g. quality. These initial market quotes let us condition on the bidders’
shared beliefs about the value and therefore capture differences from auction specific characteristics like
quality.
25Unlike the quoting game studied by Conley and Decarolis (2016) collusion in these quotes would be
difficult to sustain because the direction that dealers want to manipulate the quote depend on their
private CDS positions. If bidders were colluding we would expect to see a subset of quotes away from
others—which we do not observe.
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3.5. Stage 2: Auction Payouts. In stage 2, bidders submit either a supply curve
or a demand curve as appropriate to clear the open interest announced after the first
stage. Because this submission occurs after learning the NOI, which is a function of
opponents’ choices made given their private information, the players’ expected distribution
of opponents’ signals in this stage will depend on the first stage strategies. In addition,
the distribution of opponents signals that each player expects will differ due to their
knowledge of their own contribution to the NOI, which, recall, is yoi . This distribution
can be written as follows:

Fm|Ω,yoi =
∫

[m,m̄]×[yc,ȳc]×j 6=i
1(NOI − yoi =

∑
j 6=i

yj(mj, η, y
c
j) + ycj)

∏
j 6=i

f(mj)Υ(ycj)dmdyc.

Assume that these beliefs, leave positive mass on every m ∈ [m, m̄], are absolutely contin-
uous and have no holes and no mass points. I will show that these properties are satisfied
such that beliefs are consistent with Bayesian updating given the equilibrium strategies.
Therefore, these strategies and beliefs are a Perfect Bayesian equilibrium.
The bidder chooses the strategy in γi in order to maximize the expected auction profits.

Let the distribution of opponents’ signals given the information in Ω be denoted by L.

ΠA(mi, y
o
i , L,Ω) = maxγ(.|mi,,yoi ,Ωi)

∫
m

∫ q

0
Π(mi, b, q)dH(q, b|Ω,mi, γ(·|m, yoi ,Ω))dL(m|yoi ,Ω)

−
Ki(γ)∑
k=1

cik.

The bidder’s profits in the auction is made up of three components: (i) the cash settle-
ment on their existing CDS positions—paid at the auction clearing price, (ii) the auction
payments—made for the quantity bought in the auction plus the commitment from the
first round, and (iii) the benefit from the bonds bought/sold in the auction. I rewrite this
problem as follows:

max{bk,qk}
Ki
k=1,Ki

Ki∑
k=1

∫ bk

bk+1
[(100− p)(ni)︸ ︷︷ ︸
cash settlement

+ [R + v(qk − yi, si)]qk︸ ︷︷ ︸
Benefit from final bonds

−p (qk − yi)︸ ︷︷ ︸
quantity

]f(p|NOI, pIMM , yoi )dp− cik,

where cik is the cost of submitting each step and defined in section 3.2.
Optimality of the chosen bid implies the set of first order conditions (FOC) for demand

bids in Equation 1.26 Note that when a tie occurs the quantity is split pro-rata. This
gives one equation for each step k with each derived by considering perturbations in the

26This FOC does not account for any bounds on the price. In reality the price in an auction to buy, is
bounded on [0, pIMM +2∗spread] and in an auction to sell on [pIMM −2∗spread, 100]. This may lead to
corner solutions where one dealer purchases all the quantity at the highest possible price or sells all the
quantity at the lowest possible price, simply to influence their CDS payout. Whether this is a concern
in practice depends on the support of (n− y). The corner solution does not occur often in the observed
bidding data and so I ignore this case in the discussion.
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quantity qk at the given price step. In any BNE, for almost every si, every step k in the
Ki step function must satisfy the following equation.27

Pr(bk > P c > bk+1|yoi ,Ω)[R + v(qik − yi, si)− EM−i|mi(P c|bik > P c > bik+1, y
o
i ,Ω)]

Pr(bk = pc ∧ Tie)E[(R + v(q(S, γ(·|S))− yi, si)− bk)
dQc

dqk
|P c = bk ∧ Tie]

Pr(bk+1 = pc ∧ Tie)E[(R + v(q(M,γ(·|M))− yi, si)− bk+1)dQ
c

dqk
|P c = bk ∧ Tie]

= (qk + ni − yi)
∂E[pc; bk ≥ pc ≥ bk+1, y

o
i ,Ω]

∂qk
.

(1)

Simplifying to remove ties and collecting αi = yoi ,Ωi:

Pr(bk > p > bk+1|αi)[R + v(qik, si)− Em−i|αi(P |bik > p > bik+1, αi)]

= (qk + ni − yi)
∂E[P ; bk ≥ p ≥ bk+1|αi]

∂qk
.

(2)

A similar argument can be applied for the case of bids to supply bonds, leading to the
equation:

Pr(bik−1 > p > bik|αi)[−R− v(qik, si) + Em−i|αi(P |bik−1 > p > bik, αi)]

= (qk + ni − yi)
∂E[P ; bik−1 ≥ p ≥ bik|αi]

∂qk
.

(3)

To simplify expressions in the following sections I focus on the case of excess supply. All
the expressions are easily adapted to the case of excess demand.
Equation 1 is very similar to the FOC derived in Kastl (2011) and the FOC for an

oligopolist with uncertain demand as in Klemperer and Meyer (1989), with the important
additions of the price impact from cash settlement and initial quantity commitments. The
LHS of the equation represents the marginal cost of quantity shading: the difference be-
tween the marginal utility and the expected price; while the RHS represents the marginal
benefit of quantity shading from the savings on the inframarginal units. There are two
important differences relative to Kastl (2011): (i) bidders learn about the expected level
of competition and the total supply based on the NOI and so the expectations condition
on this outcome, (ii) the CDS position, less quantity commitments, influences the im-
portance of the price savings from quantity shading. The key difference is that the CDS
position changes the number of units on which the bidder pays the market clearing price.
For buyers of CDS it increases the number of units for which they must pay the price.
This makes the bidder much more sensitive to any price changes that they may cause —

27This result is derived in Kastl (2011) for the standard multiunit auction. Once I apply the conditioning
described above, my model is a special case of this game, where the expected payment term is transformed
to be ESi

[(Qc(S¬i, si) + ni − yi)P c(S¬i, si)] units instead of qik in that setting.
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leading them to shade their bids to buy more aggressively (or making them willing to
supply more at lower prices).28

3.6. First Stage Quantity. The first stage quantity choice involves many strategic con-
siderations. First, it changes the bidders exposure to the auction clearing price. Second,
it changes the total quantity for sale in the auction (altering the distribution of marginal
values to clear the market). Finally, it affects the expected level of competition for i’s
opponents due to its impact on the announced quantity.
The bidder chooses a quantity of bonds from yi ∈ Yi in order to maximize their expected

profits from the auction: maxyi∈YiE[ΠA(mi, yi + yci ,Ω, L)|mi, ηi].

Assumption 2. yci , the set of customer order shocks, is independent of the dealers own
position ni and has full support on the set of possible NOI.

Assumption 3. Each dealer draws a cost κ of submitting a nonzero yi. The sup-
port Supp(κ) includes costs that satisfies the following. ∃ δn > 0 such that ∀ ni ∈
[−δn, δn] there exists an open set of signals s̃i, for which ∀ yi ∈ Yi, ∃ ∆ > 0 such that
maxδ∈{δ||δ|≤|∆|}Π(yi + δ)− Π(yi) ≤ κi ∈ Supp(κ).

This assumption is obviously satisfied if the cost distribution has an unbounded support.
The weaker condition in the assumption is required to guarantee that for some positive
mass of signals (with net CDS positions sufficiently close to zero), it is optimal for them to
choose yi = 0 for any customer order shock that they receive. This assumption guarantees
that there exists a positive mass of dealers who pass through the customer order shocks
they receive directly to the NOI. These shocks then smooth any possible jumps in the
equilibrium distribution of NOI and insure that it has positive mass on its entire domain.
The smooth distribution of NOI means that the maximum of these jumps is zero, and so
the assumption is satisfied with any positive cost of submitting an initial quantity.

Proposition 1. ∀NOI ∈ [NOI,NOI], the probability density function fNOI(NOI) > 0
and is continuous.

Proof. By assumption, the cost of submitting is greater than the largest jump in profits
between two neighbouring choices of y. This implies that there is some positive mass
(some interval in n near n=0) of signals whose optimal first round choice is yi = 0. The
shocks from client orders which are passed through directly to the initial quantity choice
then mean that the density of NOI is continuous, with full support, which then implies
that expected profits are continuous in yi. �

The presence of directly submitted customer order shocks means that from the perspec-
tive of a bidder it is never possible to distinguish which part of the observed open interest
28The existence of equilibrium is discussed in Appendix A.1. The existence of equilibrium in multiunit
uniform price auctions with restricted strategy sets is an open question, however in the standard setting
Kastl (2012) proves the existence of an epsilon equilibrium. That result does not apply to the CDS
setting. I follow Kastl (2011) and impose a fine discrete grid of price levels. This is the case in practice
as bidders can only express their prices to the nearest 1/8th of a cent.
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arose from a particular quantity submission by the bidders and which part from the pure
random shocks. The addition of this pure additive noise means that it is impossible
for the bidder to rule out any vector m from the observed NOI. Updating consistent
with the continuous NOI distribution using Bayes rule then implies that the distribution
of private information F (s0, n0, s1, n1, ..., sN , nN |Ω, yoi ) is an atom-less distribution with
common support and density f. This then satisfies the assumptions made on these beliefs
in Section 3.5, therefore an equilibrium exists with these beliefs. These shocks also mean
that changes in a bidder’s first stage commitment only result in a corresponding mean
shift in the conditional distribution of NOI but never change the feasible set of NOI
that can be reached. The first stage is therefore an incomplete information game, with
continuous payoffs and so there exists an equilibrium.
The initial round quantity submission provides a method for making commitments that

adjust the bidder’s position and desire to strategically bid in the auction by shifting
their exposure to the final auction price. These features are related to those of sequential
markets in Treasury, or electricity market settings as in Allaz and Vila (1993), and Ito and
Reguant (2016). Unlike in these forward markets, the initial round in this game is settled
at the final auction price rather than a separate forward market price. Because of this,
if the second stage game allowed for both supply and demand bids following the initial
round, the initial round quotes would be non-binding and non-informative. However, the
single directional second round means that sometimes a bidder will be unable to adjust
the change in position from their initial quote and this provides a cost for a particular
choice in the first round. I examine the impact of this alternative commitment cost on
market power empirically using the model estimates.

3.7. Role of Directional Constraints. In the current auction format each round limits
the quantities that can be submitted. In the first stage a buyer (seller) of insurance can
submit only orders to sell (buy) bonds. In the second stage if there is excess demand
(supply) only orders to buy (sell) are accepted. As highlighted by Du and Zhu (2017) this
means that some bidders do not have a chance to participate in the auction. However,
when participants have market power, it also impacts their optimal bid by changing their
expected price impact in the auction.
To illustrate this force consider an auction with 2 bidders. Suppose that bidder A has

a high value for the bonds and is a large owner of insurance contracts. The other bidder,
B, has a low value for bonds and zero insurance position. Efficient trade should transfer
bonds from B to A. The left panel of Figure 8 illustrates the willingness to pay of bidder
A, along with the willingness to supply curve of bidder B. In the first stage of the auction,
bidder A can commit to supply bonds while bidder B can neither supply nor demand
bonds. Suppose that in the first stage A commits to supplying yA. The first stage results
in an excess supply of bonds NOI = yA, so the auctioneer only accepts demand orders in
the seconds stage. This means that bidder B is excluded from supplying, and the residual
demand curve faced by A is given by B’s demand (negative supply at very low prices)
which then becomes vertical at the price where B makes no purchases, as illustrated in
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Figure 8. Constraints Example
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the right panel. This puts upward pressure on prices with the new clearing price the point
where vAd crosses the y-axis.
However there is also a second effect from the bidders’ strategic responses. When

there are no constraints, if bidder A shades their demand by requesting a slightly smaller
quantity, the clearing price moves only by a small shift along B’s demand curve. However,
in the presence of constraints, Bidder A faces a residual supply curve which is much steeper
(vertical until the level where vB becomes willing to demand bonds). This means that if A
requests to buy back a slightly smaller quantity than their initial commitment, there would
be a huge drop in prices (from the intercept of vA to the intercept of vB). By shading,
A would obtain a large increase in profits: A finishes the auction with almost exactly the
same bond position and receives a large increase in payments for the cash settlement of
her insurance position at the lower price. Despite the fact that the constraints excluded a
supplier (putting upward pressure on prices), the strategic responses caused the auction
price to fall, due to the large increase in the price impact of dealer A.

4. Identification

I want to identify the joint distribution of marginal value curves and CDS positions,
the distribution of entry costs for each additional step and the distribution of customer
order shocks. I argue that all these distributions are set-identified.29 Although additional
restrictions on the shape of v() can greatly simplify the identification discussion, in this
section I provide intuition for how the data restrict the sets of possible distributions
without the use of functional-form restrictions.
The main identification argument uses a GPV-type approach (Guerre et al. (2000)) to

estimate the bidders’ marginal values for additional units that rationalize each observed
29I do not separately identify the signals and bond position in the function v(). Doing this would require
additional structure on this function. As there is a secondary market for bonds, there are not meaningful
constraints from the bond position: ie. a dealer could sell more bonds than they owned by going to the
market and buying more. This would enter the model as a shift in the value of selling which I estimate and
so the estimated v() should provide sufficient information to understand both factual and counterfactual
bidding.
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bid. Unlike in GPV, or the standard multiunit auction case, where the unobservable
value can be written as a function of observables, the unobservable value in a credit
event auction depends on the level of the CDS position. That is, for any CDS position
there is a unique unobserved value that rationalizes the observed bids. Imposing that
marginal values are monotone decreasing eliminates all the CDS positions which imply
nonmonotonic marginal value curves, leaving us with a joint set of CDS positions and
marginal value functions which may be consistent with the behavior of each bidder.

4.1. Marginal Value and CDS positions. To begin, I show that a curve

ṽ(q) = v(q, si, Bi) + (n− y)
∂E[P ;bk≥p≥bk+1|αi]

∂q

Pr(bk > p > bk+1|αi)
is identified at the subset of quantities where steps are submitted. As in Kastl (2011),
the terms Pr(bk > p > bk+1|αi), Em−i|αi(P |bik > p > bik+1, αi)], and ∂E[P ;bk≥p≥bk+1|αi]

∂qk
are

directly identified from observed bidding data. The common value term, R, is identified
from Assumption 1 and initial quote submission data. Rearranging equation 3, gives the
newly defined curve ṽ(q) as a function of identified objects.

ṽ(q) = v(q, s)− (ni − yi)[
∂E[P ;bk≥p≥bk+1|Ω,yoi ]

∂qk

Pr(bk > p > bk+1|Ω, yoi )
]

= Em−i|Ω,yoi (P |bik > p > bik+1,Ω, yoi )−R + (qk)[
∂E[P ;bk≥p≥bk+1|Ω,yoi ]

∂qk

Pr(bk > p > bk+1|Ω, yoi )
].

Given knowledge of the curve ṽ(q) as well as the ratio of the price impact ∂E[P ;bk≥p≥bk+1|αi]
∂q

to the probability of clearing Pr(bk > p > bk+1|Ω, yoi ), and the monotonicity and bounded-
ness (assumed in the structure of the model) of the v(q, si) allows us to bound the v(q) and
the possible n− y simultaneously. That is: for qk > qk−1 it must be that v(qk−1) ≥ v(qk).
If ∂EP

∂q
is not monotone across the set of qk where the curve ṽ(q) is observed, this provides

an upper and lower bound. Intuitively, n− y must be such that the observed changes in
ṽ can be rationalized with ∂EP

∂q
and a bounded, monotone decreasing function.

As an example, Figure 9 draws in black an observed bid curve defined by the set of
steps. The dashed lines denote the observed ratio of price impact to win probability
multiplied by different factors (n − y). The round dots above the observed bids denote
the ṽ(q), calculated from the observed price impact, probability and expected clearing
price. The triangular dots show the marginal value curve associated with a particular
level of (n − y). That is, the triangles are defined so that the sum of the triangle and
dashed line give the round dots (ṽ(q)). In the left panel the implied marginal value curve
is not monotone decreasing. This allows us to conclude that the (n − y) factor is too
large and cannot be part of the identified set. The right panel illustrates two possible
(n − y). The dashed curves (in indigo and green) illustrate the ratio of price impact to
win probability multiplied by each of these factors respectively. The green triangles show
the implied marginal value curve associated with the green dashed curve and the indigo
triangles the marginal value curve implied by the indigo dashed curve. Because both the
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Figure 9. Bounds from Monotonicity
The black lines denote observed submitted bids. The dashed lines denote the observed ratio of price
impact to win probability multiplied by different factors (n-y). The round dots denote ṽ(q). The
triangular dots show the implied marginal value curve: the sum of the triangle and dashed line give the
round dots (ṽ(q)).In the left panel the (n− y) factor is too large and the implied marginal value curve is
not monotone decreasing. The right panel illustrates two possible marginal (n-y) factors. The dashed
curves (in indigo and green) illustrate the ratio of price impact to win probability multiplied by each
of these factors. The green triangles show the implied marginal value curve associated with the green
dashed curve and the indigo triangles the marginal value curve implied by the indigo dashed curve.

q

p

q

p

green and indigo triangles are monotone decreasing, the associated (n−y) are part of the
identified set.
The bounds on ṽ also help restrict the set of (n−y) that are consistent with the observed

bids. For example if ṽ(qs) ≤ 0, the fact that v(qs) ≥ 0 implies (n − y)∂E
∂q
≤ ṽ(qs) and

for the upper bound, that 100 + (n − y)∂E
∂q
≥ ṽ(qs). This set of restrictions is quite

informative, as n − y is constant across all quantity levels and many bids contain more
than one step, which share the same n− y.
The information content of this identification argument depends on the observed dif-

ferences in the value curve and price impact of shading across quantity levels, which all
share the same (n− y) within a given bidder. Take two quantity levels q1 < q2 at which
bidder i submitted bids.

ṽ(q1)−ṽ(q2) = v(q1, si)−v(q2, si)+(n−y)(∂E[P ; b1 ≥ p ≥ b1+1|αi]
∂q1

−∂E[P ; b2 ≥ p ≥ b2+1|αi]
∂q2

).

The LHS of this equation is observed, as is the term inside the final set of brackets. By
monotonicity of the marginal value curve, the difference v(q1, si)− v(q2, si) ≥ 0 is known.
If the difference in (∂E[P ;b1≥p≥b1+1|αi]

∂q1
− ∂E[P ;b2≥p≥b2+1|αi]

∂q2
) ≥ 0 then this provides an upper

bound for n− y, while if it is negative it provides a lower bound. Lets consider two pairs
of points, with one pair providing an upper and the other pair the lower bound. The true
value is given in the following expression.

(n− y) = ṽ(q1)− ṽ(q2)− (v(q1, si)− v(q2, si))
(∂E[P ;b1≥p≥b1+1|αi]

∂q1
− ∂E[P ;b2≥p≥b2+1|αi]

∂q2
)
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which can be decomposed into the observed (first term: difference in ṽ and the unobserved
but bounded second term: difference in v(q)).

4.2. Entry costs and Client orders. I construct bounds on the distribution of client
orders (yc) by leveraging the constraints that bidders with net long (short) CDS positions
remaining in the auction who submit physical settlement requests to buy (sell). Since yc
are independent of the original position, this allows me to identify the distribution of client
order shocks. To begin, take the bidders with (ni−yi) > 0 (and therefore yi ≥ 0). For these
dealers, yc ≤ yo. This means that the distribution of yo on this subset of bidders gives
a valid upper bound on the client-order shock distribution: Pr(yo ≤ y|(ni − yi) > 0) ≥
Pr(yc < y|(ni − yi) > 0). Similarly, for dealers with (ni − yi) < 0 (and therefore yi ≤ 0),
it must be the case that yc ≥ yo. This means that the distribution of yo on this subset of
bidders is a lower bound for the distribution of customer shocks. Because the yc shocks
are independent of ni, the only selection in calculating the unconditional distribution
comes from the mass of bidders where the sign of ni cannot be inferred. This occurs if
(i) the bidder chooses to submit their entire position ni = yi, (ii) 0 ∈ [(ni − yi), ¯(ni − yi)].
Fortunately this mass is observed and so by adding it to the upper bound from the selected
sample we obtain an upper bound on the distribution of client shocks. Finally, the bounds
on ni + yci = (ni − yi) + yoi together with the distribution of yc provide bounds on the
distribution of n, conditional on each curve v(q, si).
The distribution of costs for submitting an additional step ι can be bounded from

above by calculating the maximum profit difference a bidder could achieve by adding an
additional step, and from below by comparing the true profit to expected profit with one
less step. I do not consider identification of κ as it plays no role in the counterfactuals.
The discussion so far showed that the model primatives are identified conditional on

choosing a non-zero number of steps. However, this leaves a problem of selection on
observables. This, however, can be easily corrected. First note that for every signal draw
there is a positive probability of submitting at least one step, as variation in the auction
reverses the set of bidders most likely to be excluded. Further, at each signal vector mi,
I can calculate the probability of submitting Ki = 1 steps instead of zero by using the
expected differences in profits from including the step. Since the distribution of costs is
already identified, we can compare these profit differences to the costs to calculate the
probability of submitting zero steps at each mi.

5. Estimation

Despite being non-parameterically set identified, a fully nonparametric estimation would
require far more data than are currently available. Therefore, I impose some parametric
restrictions to reduce the dimensionality of the problem. I perform tests supporting many
of these assumptions in Section 6.4. There are several important challenges for estimation
of this model: (i) the model is dynamic, (ii) dealers have both private information and
private positions, and (iii) it is common to submit only a smaller number of steps.
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To begin, assume that the marginal valuation curves of each bidder are linear. That
is, the marginal value can be represented by (i) a signal reflecting the value for the first
unit of bonds acquired in the auction, (ii) a rate at which the marginal benefit from each
additional unit declines.

Assumption 4. The dimension of the private signal is 2 and the form of the marginal
value is linear v(q, s) = s1 − s2q.

This implies that for all bidders who place more than three steps, the linear restriction
is over-identified and therefore these cases can be used for testing. In Section B.7 I show
that the R-square from the linear fit is high and that the addition of a quadratic term
does not result in a large change in either the R-square or model estimates.

Assumption 5. pIMM is a sufficient statistic for the observed (across auction) variation
in bond traits Z and these traits only impact R, not the joint distribution of s1, s2, n.

When estimating the distribution of opposing bids that a bidder expects to face, we
need to condition on Ω, yoi and the observed characteristics of the set of bonds eligible for
submission to the auction. The observed initial market quote picks up a large amount of
the across auction heterogeneity, including differences due to the observable bond traits
and those that are observable to bidders but not the econometrician. I test for whether
bond traits and volumes affect values beyond their role in determining the IMM. Results
are reported in Section B.6. these variables have no explanatory power beyond the IMM
and therefore I treat the IMM as a sufficient statistic for capturing observable differences
in Z. This greatly reduces the dimensionality of the estimation problem and as a result
improves power.
I parameterize the distribution of s1, s2 and n using 4-, 4- and 6-parameter cubic B-

splines, respectively, to describe the quantile functions of the marginal distributions and
impose that the correlation structure is given by a Gaussian Copula.30 I parameterize
the distribution of entry costs as Normal and estimate the mean and standard deviation.
Finally, I specify the customer order shocks distribution as Normal, with mean zero and
estimate the variance.
In the previous section I showed that the model is non-parametrically set identified. I

now provide intuition for why the model that I estimate with these additional restrictions
is point identified. First, for every bidder that submits three or more steps we learn a
unique (n − y), s1, s2. For any combination of (n − y), s1, s2 we also know the difference
in profits from using K = 1, 2, 3, ... steps. By comparing the probability of submitting
K steps when the difference in expected profits are some fixed level, we can identify the
probability of a submission cost exceeding/not exceeding that level. Since the submission
cost distribution goes from [0,∞) and the change in expected profits are weakly positive,
then for any draw of (n− y), s1, s2 the bidder will sometimes submit three or more steps
and so the probability of that vector is known. For each bidder we also observe the yo.
30The Gaussian Copula facilitates the quick generation of correlated random draws for simulated inte-
gration during the estimation.
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As in the previous section we can construct bounds on this distribution using restrictions
on the eligible submissions of the bidder. This does not guarantee a unique σyc . However,
if we assume that the distribution of yi has a compact support then together with the
normality of the errors yc, results from Bertrand et al. (2019) insure identification given
yo.
The estimation contains three distinct steps. In the first, I use techniques developed

in the literature on multi-unit auctions, and use a weighted resampling estimator to
estimate Pr(bk > p > bk+1|Ω, yo), Em−i|Ω,yo(P |bik > p > bik+1,Ω, yo) and ∂E[P ;bk≥p≥bk+1|αi]

∂qk
,

where weights are used to control for selection on observables as well as other behavioral
responses of bidders to these observables. In the second step I estimate functions which
approximate the differences in profits for a given bidder of bidding using 0,1,2, or 3 steps.
In this way I can control for selection.31 Conceptually, this calculation could be made
inside of the final step, however nesting this calculation is not computationally feasible. In
the final step, I combine the estimates of these components, with the restrictions from the
first order conditions, to form a set of moment conditions which allow for the parameters
of the joint distribution of s1, s2 and n and the parameters of the entry costs and customer
order shock distribution to be jointly estimated. The next sections discuss each of these
components in detail.

5.1. Stage 1: Resampling. All the terms in the bidder’s FOC are functions of the
three terms: (i) Pr(bk > p > bk+1|Ω, yo) — the probability of being allocated quantity
qk associated with price bid bk, (ii) Em−i|Ω,yo(P |bik > p > bik+1,Ω, yo) —the expected
clearing price conditional on winning qk, and (iii) ∂E[P ;bk≥p≥bk+1|αi]

∂qk
—the price impact of

increasing qk.
In the first stage I therefore construct estimates of

EM−i|mi(P c|bik > P c > bik+1, y
o
i ,Ω)

∂E[P c; bik > P c > bik+1, y
o
i ,Ω]

∂qki
Pr(bk > P c > bk+1|Ω, yoi ).

(4)

Estimation follows directly from Hortaçsu and McAdams (2010) and Kastl (2011). To
handle shifts in bids due to observable differences across auctions, Hortaçsu and McAdams
(2010) propose a conditioning approach weighting by the traits in the resampling process
used to approximate Equation 4. With this approach, weights are used to control for both
selection and behavioral responses to observables Ω, yo. The challenge in this setting is
that Ω includes pIMM , NOI, yi, so that the kernel weights must reflect the similarity of the
information set faced by individual bidders. To do this I use the logic that bidders with
information sets that are similar should expect similar opposing bids. I then resample
from the set of opponents of bidders with similar NOI and similar own requests. The

31For example, when a bidder submits two steps, the FOC provides a set of possible mi, but some points
in that region are very unlikely to bid only 2 steps and others and this must be accounted for in the
aggregation.
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procedure uses kerenel weighting to make it more likely that opponents of a bidder with
a similar information set to bidder i are included in the simulated residual supply curve.
The resampling scheme should put the most weight on an opponent showing up that

looks like the opponents of a bidder with a particular information set. For example,
if bidder 1 in auction 1 and bidder 3 in auction 15 have the same information sets,
they should expect to face opposing bids from the same distribution of opponents’ bids.
To evaluate this in a tractable way, begin by finding the bidder with the most similar
information set to bidder i, in each other auction. For each of these most similar bidders
measure the difference between their information sets, and, using this distance, define
an auction level weight that will be applied to all the opponents of that most similar
bidder, while giving zero weight to resampling the single most similar bidder. In this
way two bidders with the same information set should expect to face the same set of
opponents.This gives a set of weights:

wAj =

(∑ maxl∈AK(αl−αi
bw

)∑
maxl∈AK(αl−αi

bw
)
)/Idj l∗ 6= j

0 l∗ = j.
(5)

Asymptotically, this is consistent because as the size of the bandwidth shrinks, only op-
posing bidders from auctions where the most similar bidder had the same information set
receive positive weight. Note that nothing in the information set is estimated; these com-
ponents are all observed without error. Implementing this in practice requires resampling
from the quantity and price shares, which helps avoid extreme draws. This normalization
has no effect asymptotically, because as the bandwidth shrinks, samples are drawn from
auctions with identical pIMM , NOI.

5.2. Stage 1b: Selection. In estimating the second stage of the model, it is important to
incorporate the bidders who submit less than three steps, despite the fact that the signals
and private position [s1, s2, n] that rationalizes their observed bid cannot be uniquely
pinned down. For bidders that use less than three steps, there are three unknown values
to estimate but less than three observed points. Rather than a unique vector of private
information, therefore, the restrictions from the FOCs give us a set of signals and positions
that could be consistent with the observed bid.
Each bidder decides how many steps to use in their bid function by comparing the

expected profits from including an additional step to the cost of submitting a bid with that
step. Because the differences in expected profits depend on bidders’ private information,
some [s1, s2, n] are more likely to result in submissions with a given number of steps.
The probability that a type [s1, s2, n] submits K steps, can be calculated by comparing
the expected benefit to this type of bidder of including an additional step to the cost
distribution of the individual-specific random cost of submitting an additional step.
To incorporate the bidders who submit less than three steps, I integrate over the set

of possible values consistent with the observed bid (consistent with the FOCs) while re-
weighting each bidder type in the integral to account for the probability that a bidder of
that type would submit Ki steps. Given the practical difficulty of computing expected
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differences in profits from submitting an alternative number of steps for each bidder, I
specify these differences using a restricted functional form:

Π(3, (s1, s2, n− y),Ω, Z)− Π(2, (s1, s2, n− y),Ω, Z) = h3((s1, s2, n− y), Z,Ω, β) + u,

Π(2, (s1, s2, n− y),Ω, Z)− Π(1, (s1, s2, n− y),Ω, Z) = h2((s1, s2, n− y), Z,Ω, β) + u.

For the functional form of hk I use a second order complete polynomial in n, s1, s2, 1(NOI >
0), IMM . The second order complete polynomial should allow for most of the important
interactions between these variables (see discussion in Judd (1998)).
I then compute estimates of these equations by calculating the optimal bids with 1, 2,

and 3 steps for 1000 random draws of possible signal vectors, uniformly sampled between
the bounds of the signals [s1, s̄1]x[s2, s̄2]x[n, n̄], where the bounds are estimated using the
set of bidders who submitted more than three steps in the original data (and hence for
whom the signal vector is perfectly known). I assign each signal vector to an auction
where the auction traits are chosen to be those from a randomly selected auction. Then,
I compute the profit differences on that sample. I truncate the change in expected profits
(the dependent variable) at $500M.32

5.3. Stage 2: Aggregation. In the first stage I obtained consistent estimates of the
coefficients in a linear system that bidders’ bids must satisfy. Depending on the number
of steps submitted this system might be over, exactly, or under-identified. I then solve
the optimal set of parameters using simulated method of moments where simulation is
used to solve the difficult integrations (eg. the integration over the multiple solutions that
satisfy the system of equations in the underidentified case).
Before discussing the moment conditions, I revisit the linear system that is formed

within a bidder by their set of Ki optimality conditions. This gives a system of equations,
where each step satisfies:

s1 − s2q − (ni − yi)[
∂E[P ;bk≥p≥bk+1|Ω,yoi ]

∂qk

Pr(bk > p > bk+1|Ω, yoi )
]

= Em−i|Ω,yoi (P |bik > p > bik+1,Ω, yoi )−R + (qk)[
∂E[P ;bk≥p≥bk+1|Ω,yoi ]

∂qk

Pr(bk > p > bk+1|Ω, yoi )
].

For each bidder I calculate an estimate of the private positions [s1; s2; (n − y)]i. By
collecting the terms above and multiplying [s1; s2; (n− y)]i, and rewriting this in matrix
form gives

Âi[s1; s2; (n− y)]i = d̂i.

For all bidders the objects A, d are measured with error. For bidders with fewer than
three steps, I simulate (n− y) and so all the finite sample errors occur in the dependent
variable. However, when three or more steps are submitted, the term which multiplies

32Truncating allows us to achieve a good fit at levels where the cost shock plays an important role (small
profit differences). The fitted model still implies probabilities of submitting an extra step very close to 1
for truncated bidders.
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(n − y) is a regressor with measurement error. I adopt a minimum distance shrinkage
approach to correct for these errors.33

I then solve the following set of moment conditions simultaneously. Standard errors
are calculated using the bootstrap, where resampling is done at the auction level and a
particular bootstrap draw, is held fixed throughout the first stage resampling estimator,
the selection estimation and the second stage.34

For each of the marginal distributions for levels of α at each decile, where mj denotes
the jth element of mi, xjθ(α) is the inverse of the marginal distribution F (xjn|θ) = α,
andMi is the set of m, yi for which Âm = d̂ giving

E[
∫ ∞

−∞

∫ ∞

−∞
1(mj ≤ xjθ(α))1((m, y0 − yc) ∈Mi)Pr(Ki|∆Π(mi, yi, ), θ)h(yc; θ)fθ(m; θ)dmdyc − α] = 0, (6)

and a moment condition for the covariance
E[

∫ ∞

−∞

∫ ∞

−∞
(m− µm)(m− µm)′1((m, y0 − yc) ∈Mi)Pr(Ki|∆Π(mi, yi), θ)h(yc; θ)fθ(m; θ)dmdyc − θρ] = 0. (7)

To pin down the distribution of yc, I leverage the restrictions on yi that each bidder
can submit. These restrictions together with the observed yo imply a set of possible
submissions Yy. When combined with a yo, each yi ∈ Yy is associated with some yci ,
and it must be the case that when these sets are aggregated across bidders the implied
probability of being below some point ỹ lines up with the probability in the proposed yc
distribution.

E[
∫

1(yc ≤ xyθ(α))1(yo − yc ∈ Yy)h(yc; θ)dyc − h(yc; θ)] = 0

I also leverage the restriction that yi has a compact support which I assume is given by
the minimum and maximum observed holdings in the dataset of Paulos et al. (2019) and
verify that the estimated minimum and maximum yi are inside this support.
Finally, to pin down the parameters of the ci distribution, I use the observed probability

of submitting K steps, along with the observed differences in the profit functions to
construct moments:

E[Φ(∆Π32, µ̂, σ̂)− 1(Ki = 3)] = 0, (8)
E[(1− Φ(∆Π32, µ̂, σ̂))Φ(∆Π21, µ̂, σ̂)− 1(Ki = 2)] = 0, (9)
E[(1− Φ(∆Π21, µ̂, σ̂))Φ(∆Π10, µ̂, σ̂)− 1(Ki = 1)] = 0, (10)

E[(1− Φ(∆Π10, µ̂, σ̂))− 1(Ki = 0)] = 0, (11)
33In this application the problem is further complicated relative to the Empirical Bayes case, because
the errors in this term are correlated with the measurement error in the dependent variable where A∗3 is
multiplied by q. The resulting bias is given by ˆ[s1; s2;n− y] = [s1; s2;n−y]+(ATA)−1AT ε2(−(n−y)−q).
To evaluate this bias, I calculate measurement error (ε2) by bootstrap resampling of the first stage, and
apply a correction by solving that equation. Note that asymptotically this ε2 vanishes and so even without
the correction the estimates are consistent.
34The bias-correction factor for the bidders who submit 3 or more steps is held fixed across replications.
It is estimated using 1000 bootstrap replications of the first stage, and it would be computationally
infeasible to correct this on each sample. Further, the additional uncertainty from this term is likely to
play only a very small role.
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Figure 10. Marginal Distribution: CDS Positions
The left panel plots the estimated distribution of CDS positions (ni). The right panel plots the estimated
distribution of effective intercept. The plots show kernel smoothed densities from 10000 simulated draws
from the distributions implied by the quantile functions with parameters in Table 8.

for three, two, one, and the zero steps respectively, where ∆Πjk denotes Π(j,mi) −
Π(k,mi), integrated over the possible vectors (mi, yi) with parameters θ as in the previous
conditions (eg. Equation 6).
The model is basically a random effects model, with selection and censoring, and where

the explanatory variables contain some measurement error. The simulation is performed
over the integrals which are replaced by sums over S simulated draws.35 Because this
is a multi-dimensional joint distribution, I use importance sampling from the marginal
distributions when integrating.

6. Results

6.1. SMM Estimates. The estimated parameters are presented in Table 8. The distri-
bution of CDS positions is presented in tens of millions of dollars. The signal distribution
is in terms of cents over or under the common value component. Note that the signal
distribution is truncated in a way that is specific to the individual auction and that all
three of the signal intercept, signal slope and bond position, as well as the initial quantity
submission, interact to determine the actual effective intercept of the value curve (for the
value of acquiring an additional unit in the auction). These actual effective intercepts are
plotted in Figure 10 for three different values of the common value, R: 9, 33 and 80.
The distribution of CDS positions (n) implied by the estimation is fairly close to the

distribution reported in Paulos et al. (2019) based on regulatory data on the positions of
roughly half the dealers (those regulated by the Federal Reserve) in a sample of 15 of the
CDS auctions from 2013-2017.
The estimated correlation between s1 and n is negative. This is consistent with the

incentive of bidders to hold too many CDS in order to avoid being constrained during
35In practice, I set S=1000 for the main estimation. Expanding to S=4000 instead should reduce the role
of the simulation error by half. The resulting estimates are similar.
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Table 8. Estimated Parameters

This table presents the coefficients for the spline quantile functions for the three marginal distributions
and correlations are presented in this table. These are the results of estimating equations 6 and 7.
Standard errors in parentheses.

Intercept Slope CDS position IMM-bias Other Parameters
-7.361 0.0173 -18.911 1.341 Entry cost mean 1.416
(1.829) (0.070) (2.439) (0.270) (1.688)
-0.785 0.1094 -12.826 2.895 Entry cost Std 2.953
(1.643) (0.440) (2.018) (0.348) (3.610)
-0.262 2.815 0.804 4.331 Client Shock Std 4.158
(1.574) (0.425) (0.632) (0.250) (1.479)
9.026 2.624 Correlation: s1, s2 -0.197
(1.800) (0.898) (0.215)
20.179 10.826 Correlation: s1, n -0.466
(0.674) (2.243) (0.238)

19.677 Correlation: s2, n 0.565
(1.525) (0.355)

the credit event auction process, as discussed in Du and Zhu (2017). It is also consistent
with bidders with low post-default bond values buying more insurance in CDS markets.

6.2. Expected Surplus. In order to give some context to the estimates I compare the
expected surplus and expected change in price that would result if bidders used truthful
bidding, i.e. if bidders reported directly their implied value functions. This comparison
removes the incentive to bias the price from the CDS contract position as well as from the
competitive effects from information rents. The results integrate over possible draws of
the individual private information using 1000 simulated draws of potential bidders. The
results of this calculation show that, on average, the prices are lowered by a median of 2.07
cents on the dollar, or mean of 2.20 cents on the dollar, as a result of market power in the
auction. These results are similar to the gaps between the auction price and secondary
market prices described in Figure 1. Working with the estimates of my structural model
I can evaluate the shading in a broader sample (not limited to those with trade reporting
requirements to TRACE), and using a more direct measure of bidders’ willingness to pay.

6.3. First-stage behavior. Analytic solutions for the first-stage optimal strategies are
unavailable and numerical solution of these strategies would require calculating the ex-
pected profits in stage 2 for every own submission and set of opponents’ submissions in
round 1 conditional on the vector of private information. Instead of solving these strate-
gies I simply present the pattern of choices observed. I examine the correlations using the
estimated private information together with the raw data on first stage submissions. Even
post-estimation we do not pin down the private information for a particular individual
and so this calculation is done by integrating over the set of possible draws inMi.
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Table 9. First Stage

This table presents the correlation of the private information with the choice of y. Standard errors in
parentheses *** p<0.01, ** p<0.05, * p<0.1. The standard errors in the table do not account for the
estimation error in the right hand side variables.

yi Standard error
n -0.0012 (0.0149)
s1 0.512∗∗∗ (0.231)
s2 -2.836 (1.896)
η −R -57.485∗∗∗ (10.315)
constant 8.151∗∗∗ (1.474)

The regression estimates show that the size of the initial submission is positively corre-
lated with the initial value for bonds but has limited movement with the positions n and
the slopes s2. The expectation of the common value component relative to the opponents
expectations also seems to play a key role: bidders with high signals about this component
submit substantially smaller physical settlement requests (sell fewer bonds).

6.4. Evaluating Assumptions. In setting up the model I made five important assump-
tions. First, I assumed that the dealer was able to jointly optimize the entire set of bids
which they submit. This could be a problem, if many of the steps are submitted on behalf
of customers, reflecting orders that the dealer received and which they decided to pass
through directly as part of their bid in the auction. Appendix D estimates bounds on
the share of bids submitted by dealers and customers, and shows that estimates of the
dealers’ insurance positions are similar when accounting for customer orders.
Second, I assumed that bidders bid competitively. The presence of a post-auction resale

market allows us to test this assumption. In the presence of collusion the values estimated
from a competitive model would fall below the true values. Therefore, if we estimate a
competitive model in the presence of collusion, we would expect to see bidders buying
bonds in the post-auction secondary market at prices above the highest estimated values.
Section B.4 provides evidence that the observed post-auction trades occur at prices close
to the estimated values from the competitive model.
Third, I assumed that bidders truthfully report their initial price quotes. I evaluate this

assumption in Section B.5. First, I compare the expected price change a bidder could
achieve by manipulating their IMM quote with the size of a fine and show that the fine is
much larger than the expected benefit of the small price change. Second, I examine the
correlation between a bidder’s own quote and their quantity submission: if a bidder is
using the quote to manipulate the outcome, these should be positively correlated. Instead,
I find a small negative correlation. Fourth, I assumed that conditioning on the IMM is
sufficient to capture all the relevant across-auction heterogeneity in the bonds. To confirm
that this assumption is reasonable, Section B.6 presents a set of regressions showing that
bond traits have no explanatory power for bids conditional on the IMM and open interest.
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The last important assumption is the linearity of the marginal value curve. To test the
linearity assumption I first show the R-squared from the within-bidder fit for bidders with
more than 3 steps is high, and then show that the estimated positions and value curves
are highly correlated with the estimates from re-estimating the model with the inclusion
of a quadratic term. Results are presented in Section B.7.

6.5. Decomposition. In this section I perform a decomposition to understand the role
of the various strategic channels that produce the observed bidding behavior. To do this,
I present a partial equilibrium exercise which eliminates various strategic impacts, and
allows each individual bidder to re-optimize their bids. The exercise is not informative
about the equilibrium responses but helps illustrate the forces at play under the DGP.
The dynamics in the current two-stage format result in three main features. The first

is learning based on the NOI after the first round. Learning from the NOI can be
decomposed into two different parts: learning about the total supply that is offered, and
learning about opponents’ private information, resulting from the fact that the NOI is
constructed from the set of endogenous quantity commitments of the participants. The
second is the second round quantity constraints, alternatively, if the second stage were
a double auction, in the relevant price range some bidders might like to submit bids
supplying the good and some submit bids to demand it. The current format, however,
restricts bidders’ possible expressions to either supply or demand (depending on theNOI).
This results in the exclusion of some bidders who are unable to express their preferences.
The third feature is the position-reduction effect. The exclusion of these bidders has a
secondary impact by changing the price impact, and hence the desired shading of the
remaining bidders. In the current format when a bidder commits to yi in the first round,
it effectively reduces the number of insurance contracts they own which are settled at the
final price. This position reduction reduces the asymmetry across bidders.
I consider three separate experiments to capture these effects. In the first, I ask how

each bidder i would change their response to the existing bid distribution if they were
unable to condition their expectations about the residual supply curve they face in the
auction on the realized open interest. This means i has no information about the total
quantity of bonds available to them, nor are they able to refine their expectations about
the competing bids they will face. To calculate the bidders’ unconditional expectations,
I simulate residual supply curves where both opposing bids and excess supply or demand
from the first stage are drawn randomly. In the second experiment I eliminate uncertainty
about the total offered quantity. In this exercise I calculate how bidder i would respond
if they knew the quantity being sold but were unable to condition on this when forming
expectations about the set of competing bids they are likely to face. This comparison
illustrates the role of aggregate uncertainty.36 In the final exercise I examine the effect of

36This does not capture the pure effect of learning that arises due to the endogeneity of the quantity
for sale. The relevant expectation for that comparison would need to account for how opposing bidders
respond to the quantity level, assuming it was not informative about the signals but only available
capacity. Therefore, the magnitude of this effect cannot be calculated using a decomposition within a
partial equilibrium setup but requires full solution of a new equilibrium.
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position reductions by replacing (n − y) by n (set y = 0) and recalculating the bidder’s
optimal bid.
Unfortunately this decomposition does not allow us to analyze the role of participation

constraints because these operate with a key interaction with the first stage commitments.
For example, without the constraint on bidding in stage 2 the first stage would simply
be cheap talk. Relaxing these constraints would therefore lead to different first stage
choices, which cannot be captured in the decomposition exercise.37 In equilibrium the
game without constraints in the second stage would be identical to the double auction.
The results of these exercises are presented in Table 10 for changes in the price level of

the bid made for 10 percent of the total quantity offered. Results for 50 percent and 90
percent are similar in all cases except the experiment eliminating the NOI announcement,
where the changes are smaller (-1.077 and 0.157, units respectively) suggesting submitted
bid curves are less steep when bidders are unable to condition their expectations.
The results of the decomposition suggest that the announcement of the open interest

has a pro-competitive effect. When bidders cannot condition their expectations of the
residual supply curves on the NOI, they are much more uncertain about the location of
these curves. Without announcement, bidders have no information about the levels of
their opponents signals or the size of the aggregate mismatch between supply and demand.
When subjected to this uncertainty, the decomposition results suggest that bidders tend
to increase their bid shading. When instead bidders are able to condition on the total
excess supply but cannot predict how this affects the set of opposing bids that will be
submitted, the bidders respond with less bid shading. The key difference between this
case and the previous exercise is that bidders face less uncertainty on the location of the
residual supply curve. The decomposition does not allow us to separate the part of the
response due to learning about opponents from anticipating their strategic responses to
variation in the quantity level.
Finally, without any position reduction bids are slightly higher. The effect is somewhat

small, with a change of only 0.106 cents per dollar. However, the position reduction effect
is only relevant for the subset of bidders that submit non-zero first stage requests (43
percent in the data). The median change across bidders is 0, while the 5th percentile
is -1.225 and the 95th is 2.104. The positive mean change reflects the larger upward
adjustment by the biggest net sellers.

37If you calculate only the change in bids at the second stage, holding fixed the distribution of open
interests and opposing bids this only allows the constrained bidders to adjust their response. However,
in equilibrium the other bidders would respond to this adjustment and open interests would no longer
play a role in second stage bidding.
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Table 10. Decompositions

This table presents the average difference (New-Original) in the bidders price bid for 10 percent of the
total quantity offered in the baseline auction when bidders re-optimize eliminating each of the channels,
holding fixed the distribution of opposing bids.

New-Original bids Mean
No NOI announcement -1.925
Direct Quantity Effect 0.671
Position Reduction -0.106

7. Counterfactual

The first counterfactual I consider is a change from the current two-stage auction to
a double auction format, proposed by Du and Zhu (2017). A major challenge for the
CDS auction mechanism is that the final clearing price establishes both the CDS cash
settlement amounts, and serves as a price for the exchange of bonds. Because dealers tend
to be net owners of CDS, the cash settlement feature provides dealers with a coordinated
incentive when strategically forming their bids. As a second counterfactual I maintain the
double auction design but experiment with restrictions on participation based on bidders’
contract positions.38

An important property in establishing the theoretical result that the double auction
performs better than the current format, is the requirement that the CDS positions of
the dealers are net zero (Du and Zhu (2017)). The estimation results (and the raw data
explored in Paulos et al. (2019)) suggest that at the time of the auction, dealers are net
buyers of CDS. This introduces an important price bias, as it means that there will be more
shading on the demand side of the market than the supply side — which will tend to push
prices down. In the model of Du and Zhu (2017) with continuous supply/demand curves
the bias is related to ∑( 1

(Id−1))ni. As you increase the average ni this term increases,
increasing the downward bias on auction prices. In the rest of the section I examine the
auction outcomes when extending the model to allow for step-function bidding, nonzero
average positions and private draws for the slope of the marginal value curve.
The computation of equilibrium in multiunit auction models with step-function bidding

has so far been an intractable problem. The challenge arises as equilibrium bid strategies
map high-dimensional values v(q) into high-dimensional sets of Ki price-quantity pairs.
Furthermore, these strategies may be highly nonlinear and little is known about their
properties. This makes standard methods for numerical computation of these functions
infeasible. I develop a method to compute the equilibrium in these settings. In Richert
(2021) I provide a set of simulations to demonstrate the performance of the method.

38Further improvements may be possible if the auctioneer can use regulation to require the CDS position
to be reported truthfully, for example via a central counterparty, rather than relying on the mechanism
to illicit reports of this quantity from the dealers. I do not consider any counterfactual changes of this
form, as such a mechanism would no longer be solving the same problem.
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Section 7.1 describes the method. Section 7.2 provides details of the implementation.
Results are presented in Section 7.3.

7.1. Counterfactual Solution Method. I propose to numerically solve for the equi-
librium distribution of bids taking as given the distribution of values estimated from the
data and the set of equations characterizing equilibrium behavior. To numerically solve
for this distribution, I search for the set of bid-distributions for which the distribution
of types (eg. private values) that rationalizes these bids in a Bayes-Nash equilibrium
matches the known primitive distribution of types. The search proceeds in four steps:
(i) guess a bid distribution, (ii) use the model equilibrium constraints to map the bids
to values, (iii) check: is the implied distribution of values the same as the known value
distribution, (iv) if not: update the guess of the bid distribution and repeat steps (i)-(iii).
This novel procedure can be formalized as the solution to a problem that is very similar
(and in some cases equivalent) to indirect inference, Gourieroux et al. (1993).
The solution method does not solve directly for the equilibrium but for a set which

must contain the equilibrium. Despite this loss of information, the method has several
advantages. By introducing an auxiliary model, high-dimensional value distributions can
be compared on a lower dimensional set of traits, with the auxiliary model possibly
misspecified as in indirect inference. In addition, the auxiliary model can be defined so
that the criterion is continuous in bid distribution space, ensuring that all bid distributions
similar to the true one result in criterion values close to zero. This property is useful
since the application uses simulation which may introduce small differences from the true
distribution. The requirements are similar to those for obtaining a uniformly consistent
estimate of the value distribution from bidding data. However, the auxiliary model can be
chosen to smooth over potential discontinuities caused by (i) jumps or undefined values
of D(b(q)) which may occur at b(q) with zero probability in equilibrium, (ii) any mass
points in the distribution of v.39

Let the system of equilibrium equations (given by the FOC from the auction model) be
given by D(b(q), GB,γ) = [s1, s2, n]. I solve for the set Γ ≡ {γ|Q(γ) = 0} where γ denotes
a parameterization of the bid distribution GB, Q is a criterion function which measures
the distance between the parameters of the auxiliary model α which obtain the best fit
for the true value distribution and those which obtain the best fit for the distribution of
values implied by D at parameters γ. Let the auxiliary model be given by:

argminαs|
∫
K(αs − a

h
)dFl(a)− Ll,s|

for each element αs ∈ α, where Ll,s is the sth grid point in Ll = (0.01, 0.02, ...0.99) and
l ∈ {s1, s2, n}. K is some kernel function, h a fixed bandwidth, Fl denotes the marginal
distribution of the lth dimension of private information. α0 solves this problem where F
are equal to F0, while α(γ) denotes the solution when F are given by the distribution of

39Such mass points may be a problem in the general model but are ruled out by the empirical assumption
that v is a linear function of a two dimensional signal together with the assumptions on the signal
distributions.
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D(b(q), GB,γ) = [s1, s2, n]. The criterion function to compare the two sets of solutions is:

Q(γ) =
∑
s

(αs(γ)− α0s)2

.

Proposition 2. Any equilibrium of the model is contained in Γ

Proof. Suppose that γ l describes an equilibrium distribution of actions for the true signal
distribution F0. By construction, F0(v̂) = F (v̂) and so α0 = α. This means Q(γ) = 0
and γ l ∈ Γ. �

If the game has multiple equilibrium parameterized by γ1 6= γ2 respectively, we would
find v̂ = D(u,γ1) = D(u,γ2). Not all the points in the solution set are neccessarily
equilibria of the model. However, when predictions are not precise enough, the size of the
solution set can be shrunk by expanding the richness of the auxiliary model, (e.g. adding
measures restricting the correlations of s1, s2, n). This should shrink the set of γ ∈ Γ but
will not eliminate equilibria.
Beyond the space chosen for parameterization, the proposed solution differs in two

ways from approaches which parameterize strategies such as Galerkin methods or the
method of Armantier et al. (2008): (i) the equilibrium conditions bind exactly and errors
appear in the fit of the auxiliary model, and (ii) distance is measured in the implied
distribution of values rather than in violations of first order conditions. Armantier et al.
(2008) solve for the optimal constrained strategy to respond to the expected constrained
behavior of opponents, whereas my approach adjusts the constrained response towards
the unconstrained best response to the constrained behavior of opponents. This makes
the results easier to interpret: at a potential solution, the values one would estimate
from the simulated bidding data cannot be distinguished from the true values. In cases
when strategies are quite restricted this sometimes leads my solution to provide a much
better approximation of the bid distribution. By parameterizing the bid distribution,
the final problem has a separable structure which allows the entire set of counterfactuals
consistent with a set identified model to be computed in a single run of the algorithm, a
fact I leverage in Appendix F.

7.2. Solution Details. In this section I discuss the choice of parametrization and crite-
rion function in the counterfactual double auction game. These details are not required
to understand the results presented in Section 7.3 and can therefore be skipped if the
reader so chooses.
In this setting, a “bid distribution” is the joint distribution of prices, quantities, and

steps: GB,Q|K(bi1, . . . , biki , qi1, . . . , qiki |ki)πK(ki), where πK is the distribution of steps. For
this exercise I restrict the strategy space to K̄ = 8.40 The bid distribution is described
using sixteen parameters. Given this parametrization of the bid distribution, for any value
of γ, I can simulate the distribution of residual supply curves. Then I can back out the

40Results are robust to alternative choices of K̄.
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implied private value distributions using the system of first order conditions (equation 3
derived in Section 3).
I parameterize the bid distribution by describing the distribution of quantity levels and

price increments. I use a simulated set of 1000 bidders. For each bidder, I draw Ki incre-
ment pairs, where Ki is sampled uniformly on the support [0, 1, 2, 3, ..., 8]. For each bidder
I then draw a set of (ek, fk), which describe the price change and quantity level from a
baseline at each of the Ki steps. With these in hand we have bk = ∑k

k′=1 ek−k′ + γ̄p and
qk = ∑k

k′=1 fk+γ̄q, where γ̄p and γ̄q are parameters that determine price and quantity level
shifts that apply to all bidders. I allow the (ek, qk, qk−1) to be correlated. I parametrize
the marginal distributions of e1 and f1 using 4-parameter cubic B-splines, GE1(·;γe) and
GF1(·;γq), characterized by parameter vectors γe1 and γf1 while the marginal distribu-
tion of GFk(·;γf ) for k ∈ (2, ..K̄) as a beta distribution with parameter vector γf and
GEk(·;γe) as a beta distribution with parameter vector γefor k ∈ (2, ..K̄). I model the
correlation structure as a Gaussian copula C[·, ·;γc], where γc2 is a 2×2 correlation matrix
with elements ρeq and γc3 is a 3× 3 correlation matrix ρq, ρeq, and the third correlation
is restricted to be ρq, ρeq which gives conditional independence between ek and qk−1 given
qk:

GE,Q|K(e1, . . . , e5, f1, . . . , f5|Ki) =C
[
GE1(e1;γe), GF1(f1;γf );γc2

]
×

Ki∏
k=2
C3

[
GEk(ek;γe), GFk(fk;γq), GFk−1(fk−1;γq);γc3

]
.

Finally, to account for the fact that the probability ofKi steps is not uniform, for each sim-
ulated bidder I calculate a weight that reflects the probability of appearing with Ki-steps.
To specify this I assume that the probability of putting each additional step is Poisson,
with parameter γn. For notational convenience I collect all the relevant parameters into
a single vector γ = [γ̄q, γ̄p,γe,γe1 ,γf1 ,γf ,γc2 ,γc3 , γn].
For the criterion function I match the distance between the CDFs of the marginal

distributions at a grid of points Ll for l ∈ {s1, s2, n} defined by F−1
l (α) = Ll for

α = (0.01, 0.02, 0.03, ..., 0.99) and fit the element-wise squared distance between the off-
diagonal elements in the matrices of estimated correlations. I base the calculation of these
bid distributions off the set of bidders who submit three or more steps. For each bidder I
calculate the selection probabilities by fitting a function hp(s1, s2, n,K) using the observed
probabilities of s1, s2, n under K = 3, 4, .., K̄ and then extrapolating this for K = 1, 2.41
Finally, the system of FOC directly may be ill-conditioned for some simulated bids under
some parameters of the bid distribution, resulting in large jumps of the criterion func-
tion.42 To improve this, I integrate over a grid of CDS positions n and at each grid point

41I also attempted this using h to fit the change in marginal benefit which can then be combined with
the estimated marginal cost distribution to calculate the probability of submitting at least three steps.
However the high slope of the CDF of marginal costs means that this method is quite sensitive to small
changes in the parameters and this makes the criterion function difficult to optimize.
42The poor numerical properties come from the value of the third column of the matrix A which for some
bid distributions can be close to zero, or constant.
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solve the best s1, s2 and assigning a relative likelihood to each n by assuming the errors
at each of the grid points are normally distributed.43 Note that as the grid gets fine, in n
and the assumed error variance in the normal density, playing a role akin to a bandwidth
in a kernel, goes to zero this is equivalent to the direct solution procedure. The smooth-
ing steps helps to provide good numerical performance of the search and optimization
procedures.
I perform the search following procedure 1 in Chen et al. (2018) which constructs

confidence sets for an identified set using an adaptive sequential monte-carlo routine on
the criterion function.44 The SMC algorithm takes a large set of draws from a sequence of
tempered distributions which begins with the prior, slowly adds in information from the
criterion function evaluations, and ends with the quasi-posterior. The algorithm discards
draws which are relatively unlikely and duplicates those which are, then mutates the
draws via a MCMC step to generate new draws. The algorithm is adaptive, with tuning
parameters (ie. variance of the proposal distributions in the MCMC step) adjusted along
the way.45

7.3. Results. Two benchmarks provide a useful baseline for comparison to the counter-
factual results. First, the counterfactual of truthful bidding in these auctions. This would
be the result if there were no information rents and no strategic bid shading. Second, the
outcome under the current non-standard auction rules.46

When computing the counterfactual equilibrium I fix the common value quote at its
median 32.375. I expect similar shading across different levels of this conditioning variable.
To predict the amount of shading in the current format at this level, I predict the gap
from the IMM to the auction price. Across auctions the IMM is on average 0.3993 cents
above the final auction price and the size of this gap is independent of the IMM level.
This implies that for R = 32.375, auction prices in the current format are 31.98 while
under truthful bidding they are 32.375 + (2.2− 0.3993) = 34.18.

43The points n are now simply n as there is no first round submission so y = 0.
44I previously performed the search on a massive grid then used a neural net to approximate the criterion
function and propose subsequent points to evaluate. I then used the best 1 percent of points as starting
values for an adaptive mesh search. I plugged the solution from the adaptive mesh search into a gradient
based sequential quadratic programming solver and collected the best solution vectors from this set. This
procedure gave similar results.
45For chosen tuning parameters I choose two blocks of parameters and follow the choices of Chen et al.
(2018), except I increase B to 40. Results in this example are similar with B=20.
46It is not possible to solve the equilibrium of the current auction format and so I compare outcomes to
the data. In the fully non-parametric case, the outcome in the data would be equivalent to the model
equilibrium predictions. The main parametric restriction is the linear form of values; to show that this
does not drive results I calculate the optimal bid for each bidder who submitted three or more steps
(allowing me to pin down their s1, s2, (n − y)) imposing this linear form on values. I then compare the
calculated optimal bid to their observed bid. The resulting bids are very similar: in 95 percent of cases
the change in the expected clearing price conditional on the bid being made is less than 1e-10 and so it
seems unlikely that this is what drives the results.
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Table 11. Change in Auction Format

Data Double Auction
Truthful

NOI > 0 NOI < 0 All Bidding BL Position Limits
Mean Price 30.87 35.06 31.98 34.18 [33.44,33.47] [32.51,32.71]
Std Price - - 3.37 - 1.23 [1.11,1.15]

The main policy counterfactual is a change to a double auction format. The results of
this exercise suggest that the double auction could increase the price in the auctions to
between 33.44 and 33.47 from 31.98 today and could decrease the standard deviation of
prices around the expected outcome to 1.23 cents from 3.37 cents in the current format.
Consistent with these results, the average slopes of the residual supply curves in the
double auction are 58% below those in the data, reducing the price impact of individual
bidders.
The counterfactual change to a double auction reduces the risk faced by investors in

two ways. First, it directly reduces the auction outcome risk. Outcome risk is generated
by the fact that the bias in any given auction is unpredictable and can be measured using
V ar(pauc − E[pauc|R]). The current auction format has a standard deviation in these
outcomes of 5.56 cents/dollar (or 3.37 when outliers are ommitted). The counterfactual
double auction reduces this substantially, to 1.23 cents/dollar. The second source of risk
is the risk generated by the price bias. Plots illustrating the role of this bias are provided
in Appendix E. Because the bias is a fixed cents/dollar rather than a percentage of the
final recovery price, and because the recovery amount is not known before the credit event
occurs, investors cannot simply adjust their holdings to offset the role of the pricing bias.
If investors adjusted their positions to account for the expected level of recoveries, they
would be underpaid when recoveries are low and overpaid when high. Given the large bias
in the current auction format this leads to an additional risk to investors with a standard
deviation of 1.17 cents/dollar, which is reduced under the counterfactual auction format
to 0.39 cents/dollar.
A major challenge for the CDS auction mechanism is that the final clearing price jointly

determines (i) the CDS cash settlement amounts, and (ii) the price for bonds exchanged.
Because dealers tend to hold net positions on the same side of the market, the cash settle-
ment feature provides them with a coordinated incentive to manipulate their bids. As a
second counterfactual I consider a change where a fixed limit is set such that bidders with
either buy or sell side insurance positions above the limit are not allowed to participate
in the auction. This means some participants are again unable to express a desire to pur-
chase or sell bonds, but these excluded participants are those with the largest incentives
to manipulate the prices. This counterfactual performs worse than the baseline double
auction. Despite the participants with the largest positions being excluded, bidders are
still net holders of insurance and the average holdings of participants are similar to those
in the current format. Relative to the double auction, participants now face reduced
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competition, increasing the price impact of each participant, resulting in a larger bias in
prices and increased uncertainty relative to the simple double auction.
To evaluate the efficiency of the auction I compare the expected surplus of bidders under

the current and double auction designs to the surplus they would obtain if the bonds were
assigned under the truthful bidding benchmark. The current design achieves only 15%
of the possible surplus. The double auction improves on this substantially achieving 22%
of the possible surplus. However, both the current and double auction designs achieve
fairly inefficient allocations, as in both cases the allocations are heavily influenced by
the positions of participants in CDS contracts which are irrelevant under the efficient
benchmark.
The extra risk in these contracts has real economic impacts, and represents an important

loss of welfare from a contract with full insurance. The reduced ability for investors to
insure themselves could increase the costs of holding bonds, and could reduce the gains
to firms of having CDS written on their debt. To understand the welfare impact, I first
calculate the percentage of the total risk that could be insured under the current contracts.
I then make the same calculation using the insurance provided when the current auction
is replaced with a double auction. The results suggest the current contract insures 94-
96% of the risk well the double auction would provide 98-99% coverage. To benchmark
these gains to the real outcomes from these contracts, I use the estimate from Danis and
Gamba (2018) which suggests that the current CDS contracts cause an increase in firm
value of 2.9% when they are introduced on a firm. Notably, they find the presence of
these contracts on being written on a firm increases the firms investment and leverage.47
This would suggest that the replacing the current auction rules with a double auction
would increase the firm value by 2.97-3.01% instead of 2.9%, or an additional increase in
firm value of 0.07-0.11% representing a huge missed gain.48

In appendix F I evaluate the sensitivity of these results to changes in the CDS or bond
positions of dealers in response to the change in auction format. To do this I define bounds
on the changes in the joint distribution and recompute the set of counterfactual outcomes
consistent with these bounds. Even allowing for these changes, the double auction should
not perform substantially worse than the current auction format.

8. Conclusion

In this paper I develop and estimate a structural model describing bidding behavior
in credit event auctions. The current auctions have two stages with bidders providing
initial quantity commitments to buy or sell fixed quantities of bonds and then clearing
the excess supply or demand using a uniform price auction. To model these auctions,
I extend models of bidding in multiunit auctions to handle the initial positions. I then
47This estimate may be best thought of as an upper bound, some earlier work including Ashcraft and
Santos (2009) fail to find evidence of an impact from CDS on bond markets though other recent work
including Bilan and Gündüz (2022) also finds evidence of a positive link.
48Because the default probability of the firm is unknown I compute the risk reduction implied by a grid
of default probabilities from 2% to 90% and report the maximum and minimum.
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show how bidding data can be used to identify both the private values and CDS positions
of dealers without placing parametric restrictions on the shape of dealers marginal value
functions. Given this, I estimate the private information from bidding behavior in CDS
auctions and use the estimates to perform a decomposition exercise of the importance of
a set of strategic channels. Then I apply a novel computational tool which I develop in
Richert (2021) to directly solve for the counterfactual equilibrium in multiunit auction
games to study the outcome of a change to a uniform price auction format.
I find that the current design results in substantial market power for dealers, and as a

result holders of CDS contracts are exposed to additional risk. This risk is large, with
current contracts providing only 94-96% of the coverage from complete insurance. By
changing the auction mechanism to a double auction, I find the risk induced by price bias
could be reduced by 67% and the risk from the variance in auction outcomes is reduced
by 70%. This increases the effective insurance provided by CDS contracts to 98-99% of
complete insurance. Given the important role of CDS markets, this increased ability to
hedge risk could have substantial advantages for firms. A rough calculation using the
gains of CDS for firms estimated in Danis and Gamba (2018) suggests a possible gain of
0.07-0.11% in firm value from this change in auction rules.
The size of bid shading in credit event auctions is large and the prices are substantially

below the dealers willingness to pay for bonds. These effects mean that when a credit event
occurs the sellers of insurance are responsible for making payments of hundreds of millions
beyond what they would owe under fair insurance and the amount of payments owed varies
substantially due to the information rents extracted by large dealer-banks. These frictions
reduce the insurance provided by these contracts and expose holders to additional risk.
The size of this additional risk, has important implications for the functioning of the CDS
market. A benchmark calculation suggests that the auction design means we are missing
out on important increases in firm value for the large firms covered by these insurance
contracts, leading to a substantial cost for the real economy.
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Appendix A. Additional Proofs

A.1. Equilibrium Existence. To understand the role of the restricted strategy sets it is
useful to compare the results to the unrestricted case from Wilson (1979) in the IPV case.
Using calculus of variations gives v(q, s) = b − (q + n − y)Hq(b,q|sΩ)

Hb(b,q|sΩ) , where H represents
the probability that the residual supply is less than or equal to the quantity q at price
b. Using this together with Proposition 4 from Kastl (2012) implies that as K goes to
infinity, any restricted equilibrium approaches this solution and these empirical FOC are
valid for inference conditional on an equilibrium existing.49 Although the existence of an
equilibrium in the uniform price auction with restricted strategy sets is an open question,
in the standard setting Kastl (2012) proves the existence of an epsilon equilibrium. This
argument cannot be applied to the credit event auction setting, because the proof makes
use of the separability between the benefit of winning and the price paid, to argue that
if a bidder is unrestricted in number of steps they will not bid above their value. This
separability property does not apply in credit event auctions, as a bidder may be better
off bidding above their value in order to impact the clearing price of their existing CDS
position. To guarantee that an equilibrium exists, in the uniform price multiunit auction
game, I follow the suggestion of Kastl (2011) and impose that there exists a fine discrete
grid of price levels. This is the case in practice, as bidders can only express their prices
to the nearest 1/8th of a cent. In this case, Kastl (2011) argues that the FOC for the
quantity choice are still valid, and an equilibrium is guaranteed to exist (at least in mixed
strategies) as it is a finite game.

Appendix B. Additional Tables

B.1. Additional Summary Statistics. Table A.1 presents some additional statistics
describing the bidding behavior of different auction participants. The sample is loosely
divided into participants that are involved regularly (the 9-10 global dealers) and the less
frequent regional participants whose participation varies with the frequency of defaults
in a location. The table shows that there is considerable variation within participant in
the direction of their initial quantity commitments, suggesting that while the dealers are
most often holders of insurance, they are net sellers in some cases. It also appears to be
quite common that bidders submit only 1 step in the second stage. These bidders do not
actively bid in the second stage as 1 step is carried-over from the initial price quotes.
Figure A.1 plots the maximum and minimum quantity of bonds purchased at an auction

by each bidder. By construction, the total bought and sold must sum to zero in every
auction. Auctions where a big quantity of bonds was bought/sold are more likely to
appear in this figure. Most bidders appear to both buy and sell in the auctions. The
purchase of a large quantity by a single bidder appears slightly more common that the
sale of a large quantity by a single bidder. In Panel B of the figure, there is no obvious

49The proposition requires randomness in the quantity being sold which is announced in this game. How-
ever, the carried over amounts from the first stage price quotes effectively lead to a random (predetermined
and non-strategically linked) residual quantity at any price level.
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Table A.1. Auction Description

The following table presents summary statistics for participation of the bidders. Each number is a count
of the number of auctions in which the bidder participated, submitted a positive or negative first round
quantity commitment or used each number of steps in their second stage bids.

Bidder Participated yi>0 yi<0 1 step 2 steps 3 steps 4 steps 5+ steps
1 1 1 0 0 0 0 1 0
2 123 40 25 36 28 19 8 24
3 175 51 28 57 25 8 12 56
4 4 2 1 1 2 1 0 0
5 135 42 18 81 17 8 8 17
6 169 35 29 68 21 13 8 51
7 171 43 23 64 42 18 8 27
8 12 8 0 9 1 0 1 0
9 179 47 25 38 46 17 17 50
10 47 10 17 35 6 1 0 4
11 1 1 0 1 0 0 0 0
12 183 55 24 51 40 26 11 47
13 4 3 0 1 2 1 0 0
14 68 15 13 35 15 6 1 8
15 2 1 1 2 0 0 0 0
16 5 3 1 5 0 0 0 0
17 1 0 0 0 0 0 0 0
18 180 46 36 53 29 25 14 50
19 78 15 19 50 7 2 2 14
20 102 22 13 50 22 6 7 12
21 96 19 11 83 4 0 1 6
22 1 0 1 0 0 0 0 1
23 180 43 42 72 31 16 13 40
24 2 1 0 2 0 0 0 0
25 128 32 27 67 22 7 4 24

time trend which may have been a concern if some of the dealers were known to have
poor financial health during some periods of the sample.50

Figure A.2 shows the price realized in auctions depending on which type of credit
event caused the auction. Even across types of credit events, there is a large amount
of heterogeneity in the remaining value of the firms. However in regressions, there is no
evidence that the type of event is correlated with the gaps between the pre-auction price,
auction price, and post-auction resale prices.

B.2. Post-Auction Price Impact. For the 56 auctions where I observe trade-level data
from TRACE, I check if the auction price has any predictive power for post-auction prices
50In a similar way that healthy banks bidding for failed banks might themselves be constrained, c.f.
Granja et al. (2017)
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Figure A.1. Purchases
Panel A of the figure plots the max and minimum quantity of bonds purchased at an auction by each
bidder. Panel B plots the purchased quantity of each dealer over time.

Figure A.2. Event Types: Prices
The figure plots the price realized in auctions depending on which type of credit event caused the
auction. Even across types of credit events, there is a large amount of heterogeneity in the remaining
value of the firms.

after conditioning on the information available to bidders when submitting their round-
two bids. Results of this exercise are presented in Table A.2. I do not find any evidence
of a correlation with bond prices 1, 5, or 30 days after the auction.

B.3. Multiplicative Form. If the common value component of the bond entered mul-
tiplicatively with bidders’ own private values in the model then the dispersion of private
information would be increasing in the level of R. This would mean that for auctions with
small R the dispersion in private values matters little, while in auctions with a big R
this plays a central role. If this was true we would expect to see the level of information
rents, and the gap with the pre-auction price information growing in R. Figure A.3 plots
the auction price against the IMM price in each auction. Since there is no evidence for a
difference in price gaps across the levels of R, I adopt the additive specification.
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Table A.2. Post-Auction Prices

This table presents results from a regression predicting the post-auction price using the IMM price
and the auction price. Results suggest that the final price is independent of the auction price. This is
consistent with no information being revealed about the common value of the bond in that price. The
price after each number of days is calculated as a volume weighted average and the sample is the set of
auctions for which bond prices are available in TRACE. Prices are cleaned following Dick-Nielsen (2009).
The securities missing price information include MBS, CMBS, and syndicated loans. Similar results are
obtained when additional controls for bidding behavior are included. Standard errors in parentheses ***
p<0.01, ** p<0.05, * p<0.1.

Variable Price after 30 Days Price after 5 Days Price after 1 Day
IMM price 1.739∗∗∗ 1.513∗∗∗ 0.525∗

(0.624) (0.493) (0.302)
Auction price -0.771 -0.477 0.477

(0.592) (0.467) (0.286)
constant yes yes yes
N 56 56 56

Figure A.3. Auction price vs NOI
The figure plots the price realized in auctions against the IMM quoted.

B.4. Collusion Test. Although the setting features repeated interaction of a small set
of participants, it would likely to be difficult to sustain collusion as (i) violation would be
difficult to detect (ii) there are usually one or two regional players in each auction who do
not frequently participate. Detection is difficult in this setting because bidders may receive
orders which they place on behalf of their customers. This means that when deviating
from the prescribed collusive behavior, bidders could simply claim to be placing the bid
on behalf of a customer. Since this cannot be verified by the other participants this makes
detection and deciding when to punish more complicated, making collusion more difficult
to sustain. In addition to this, the set of bidders that wants to push the price up and the
set that wants to collude to push the price down (ie. the sets of individuals that all benefit
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from working together), varies across auctions. Finally, if prices were pushed substantially
in one direction bidders with large insurance positions on the opposite side of the market
would have a strong incentive to deviate from the agreement. These challenges, together
with the reduced form evidence, suggest that collusion in the second stage bidding game
would be quite difficult.
The resale opportunity present in the bond market allows for an additional test of the

null hypothesis of no collusion. In a model of collusion we would expect bidding behavior
similar to that described in Laksa et al. (2018). If the data was generated by collusive
bidding, then bidders’ implied values that rationalize observed bids in a competitive
bidding model would be well bellow the true values. If we then saw bidders willing to buy
bonds immediately after the auction at higher resale prices this might suggest a violation
of the competitive bidding model. In the data, the median value implied is 0.96 cents
below the IMM at the expected clearing quantity, however the 65th percentile is the IMM
and the 78th is the average markup for the clearing price. At the 90th percentile the value
is 5 cents above the IMM and at the 99th it is 45 cents above the IMM. These results
seem to be broadly consistent with the observed post-auction behavior and not suggestive
of collusion.

B.5. IMM manipulation. The average change in price that dealers can expect by ma-
nipulating their IMM quote is 0.02 cents. This is small as if you quote a number that
is different from others your quote is dropped and since only half of the quotes are used
and the average is rounded to the nearest 1/8th of a cent increment after averaging, it is
difficult to influence this calculation with a unilateral deviation. At the 95th percentile of
expected benefits when integrating over the estimated distribution of possible n and using
the distribution of clearing prices in the data, this gives an increase of 4,198 dollars of
surplus. The mean cost from quoting off-market is 24,000 so a bidder that is optimizing
should be more worried about that effect and quote their best guess of initial price.
Given the incentives to profit from the insurance positions, first-stage quotes should

be negatively correlated with the bidders’ insurance positions, ie. a bidder who is a net
buyer of CDS should quote lower prices in the first round. Table A.5 presents results
from regressing the level of individual price quotes on an indicator which takes the value
1 if the nonparameterically estimated lower bound is greater than zero (column 1) and
upper bound is greater than zero (column 2). I use the nonparameteric estimate as these
are available for all bidders rather than only those submitting at least 3 steps. While
the coefficient has a negative sign, it is not statistically significant in either specification.
Table A.4 presents an alternative specification, comparing bidders who commit to sell
bonds (and so must be buyers of insurance according to the auction rules). Again the
coefficient is negative but not statistically significantly different from zero.

B.6. Sufficiency of IMM. Given the strong relationships documented between out-
comes and the IMM price, I proposed that the IMM should be considered a sufficient
statistic for the auction level heterogeneiety. In this section I show that while there is
some evidence that bond traits influence the IMM amounts, there is no evidence that they
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Table A.3. Position and price quotes

The following table presents results from regressing the level of individual price quotes on an indicator
which takes the value 1 if the nonparameterically estimated lower bound is greater than zero (column
1) and upper bound is greater than zero (column 2). I use the nonparameteric estimate as these are
available for all bidders rather than only those submitting at least 3 steps. In all cases I control for the
baseline expected recovery value using the final IMM. Standard errors in parentheses *** p<0.01, **
p<0.05, * p<0.1.

Variable IMM Submission IMM Submission
Auction IMM 0.9927∗∗∗ 0.9929∗∗∗

(0.0014) (0.0014)
CDS buyer -0.1346 -0.1202

(0.094) (0.1151)
Constant Yes Yes

Table A.4. Position and price quotes

The following table presents results from regressing the level of individual price quotes-IMM on an
indicator which takes the value 1 if the noi submission is positive. Standard errors in parentheses ***
p<0.01, ** p<0.05, * p<0.1.

Variable IMM Submission
CDS buyer -0.1296

(0.235)
Constant Yes

influence residual bids beyond this point. Therefore, conditioning on the IMM should be
sufficient to capture the auction specific differences in bonds.
Finally, I check the relationship of the traits of the deliverable bonds to the auction

outcomes. I check this relationship both at the bidder-level, regressing the residualized
bids on the bond traits in Table A.5 and at the auction level in Table A.6. This shows that
the bond traits have some power in explaining the IMM quote that a bidder provides but
no power to explain their residualized bid after conditioning on the IMM. The regression
at the auction level finds no statistically significant effect of the bond traits. Given these
results, I do not include bond traits in the main estimation. These results indicate that
once I condition on the initial market price they have no explanatory power.
Section C discusses in detail the incentives involved in the IMM submission decision

and considers a calibration exercise to examine the information revealed through the
IMM announcement.

B.7. Linearity Test. I test the linearity assumption in two ways. First, by using the
overidentifying restriction from the subsample of bidders that submit 3 or more bids. In
that sample, the median R squared is 0.98 and the mean 0.87. As a second test I estimate
the model with a quadratic specification for marginal values. The median change in the
estimated CDS position is 0.015 million and even at the 75th percentile the change is
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Table A.5. Bond Traits: Bidder Level

Residualized bids from nonparameteric regression on IMM and NOI. Bonds useful in determining IMM
submissison but not in bids conditional on IMM common signal and NOI. Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1.

Variable IMM Submission Residualized bid
Duration -4.888∗∗ -0.0177

(2.437) (0.0318)
Conversion 5.284 -0.003

(3.394) (0.003)
Convexity 0.531∗∗ 0.059

(0.266) (0.065)
Volume 0.0002 0.011

(0.0031) (0.0325)
Auction NOI Yes No
Constant Yes Yes
N 1965 1965

only 1.5 million. The estimated positions under the two sets of CDS positions n are also
strongly positively correlated. Because of this, I maintain the linear restriction for the
primary specification.

Appendix C. Stage 1 Price Quotes

The bidders choice of first stage price quotes is a complex strategic decision. These
quotes serve many roles in the auction (i) the quoted price is carried over as a bid for a
fixed quantity (usually 2 million dollars) of bonds in the second stage (ii) the quotes are
aggregated by taking an average excluding the outliers which is announced to all partici-
pants between rounds (iii) the average plus 2 times the spread determines a price cap or
floor which stands for bids submitted in the second stage auction (iv) the quotes deter-
mine a set of fines for bidders who submit off-market quotes (those that differ substantially
from the average).
These many roles mean that bidders’ may have incentives to strategically report their

quotes from a number of different sources and their strategies are likely to be complex.
The data contain some information that indicates the importance of the different channels.
The carried over bids are sometimes relevant for clearing the auction, for example most
auctions have carried over amounts of 2 million and an average of 11 participants implying
22 million of carried over bids. 74 auctions have a total excess supply/demand less than
22 million and so these bids may play an important role in the final price determination.
The price cap binds for only 3 percent of the bids made in the second stage auctions, but
in 16 percent of the auctions it plays an important role in determining the price. Fines
are given 169 times in the data and have an average level of 32000 dollars.
Assumption 1, imposes that once bidders know the IMM their own private information

on the common value component of bond values is no longer relevant (ie. the bidders
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Table A.6. Bond Traits: Auction Level

Auction price vs imm influence of bond traits. Standard errors in parentheses *** p<0.01, ** p<0.05, *
p<0.1.

(1) (2)
VARIABLES br_auc_pauc br_auc_imm

duration -0.643 -6.901
(1.495) (8.161)

conversion 0.692 3.751
(1.985) (10.85)

convexity 0.0538 0.587
(0.166) (0.910)

volume 3.25e-06 0.000154
(1.82e-05) (9.91e-05)

br_auc_noi -0.00718*** -0.0389***
(0.00242) (0.0129)

br_auc_imm 1.004***
(0.0571)

imm2 -5.19e-05
(0.000568)

Constant 0.599 50.05***
(1.643) (6.775)

Observations 178 178
R-squared 0.971 0.068

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

mostly agree on the common component of the recovery value). This assumption is
critical for the tractability of the empirical exercise. Although bidders may have many
reasons to manipulate their price quote their chosen quote is likely to be correlated with
their own signal, which influences their expectations about what opposing quotes they
will face. If bidders make reports that are correlated with their own signal, the IMM will
aggregate the signals from across many bidders. For bidders trying to learn about the
mean the IMM which combines information from many draws is likely to be much more
informative than the individual bidders’ single information. In addition, the complex
formulas for the calculation of the IMM make it difficult for a bidder to calculate the role
of their own quote in establishing the final value, reducing the value of relying both on
their quote and the announced IMM.
To get a better understanding of the updating process I perform a simulation exercise

to understand what bidders learn with parameters calibrated to match the quotes in the
data. I impose that each bidder learns a signal about the true common value, and also
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has draws some private benefit from misreporting their value either up or down. This
private benefit draw is a reduced form way to capture the complex benefits that a bidder
may receive from manipulating the price quote. For example the benefit may come from
the change in profitability from the bidders carried over bids, or the change in expected
profits from their influence on the price cap or floor.
For each bidder I calculate their expected impact on the IMM from submitting different

price quotes along a grid of possible submissions ranging from 10 cents on the dollar below
the true value to 10 cents on the dollar above the true value. In calculating the expected
impact I assume that bidders expect to face quotes drawn from the empirical distribution
of quotes submitted into auctions with similar post-auction prices to the common value
signal R+ η that the bidder received. I then calculate for each simulated information set,
the quote on the grid that maximizes the bidders’ expected surplus given by the private
marginal benefit of manipulation multiplied by the price impact of their quote less any
fines. I will assume that the distribution of private signals and private benefits are both
normal and the private benefit is independent of the private signal about the common
value for bonds.
Given this structure there are three critical parameters which are unknown, that will

determine the amount of information revealed by the IMM announcement. First, the
precision of the initial signals about this component, which is governed by the parameter
ση. Second, the mean and variance of the distribution of private benefits from manipula-
tion. I set a coarse grid in these three parameters and for each grid point solve the choice
of initial quotes as described above for 100 randomly drawn private benefits and initial
signals. I then compare the distribution of the implied optimal quotes to the distribution
of quotes submitted in the data and choose the parameters which minimize the difference
between these two distributions. This gives the key inputs to the updating process: a
signal variance, a quote variance and a correlation between the signal a bidder receives
and their submitted quote.
Given these parameters I can simulate signals η. For each signal I can calculate the

optimal submission for that bidder and after repeating for each bidder at a simulated
auction, can obtain a resulting IMM. Using this I can calculate the expectations of each
bidder E[R|η] and E[R|η, pIMM ] assuming they update according to bayes rule and know
all relevant distributions, and that the underlying distribution of R is exactly equal to
the post-auction resale price distribution in the data.
Two quantities play an important role in the outcomes. The variance across bidders

(within-auction) of E[R|η, pIMM ] which indicates the remaining role of the signals η and
the ratio of this variance to E[R|η] which indicates how much the bidders learned. The
participating bidders appear to have a fairly precise knowledge of the common value
component with initial expectations having an expected variance of 0.6 cents. Once the
IMM is announced this disagreement drops dramatically and bidders almost completely
agree with each other. The remaining variance under the calibrated parameters is 0.002
cents, which is roughly .3 percent of the variance in initial expectations. In experimenting
with the parameter values it appears that even under quite small correlations between
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quotes and initial signals the IMM quoting mechanism results in expectations that are far
less variable across participants. The small variance in the expectation across different
initial signals after learning the initial market quote suggests that heterogeneity in bidders’
expectations of the common value post announcement are not likely to play an important
role.
While collusion in stage 2 bids may be difficult to sustain it is possible that bidders

instead collude on their first stage quotes. However, even under collusion it seems likely
that the optimal quote level depends on the initial signals received by bidders and so the
level chosen is likely to be highly informative to bidders of opponents signals, reducing
their reliance on their own initial signal. For example, when a bidder has a high η, they
are willing to buy bonds at higher prices. Making a low quote would decrease the price cap
making it more likely that they are constrained, allowing them to purchase fewer bonds
at the attractive price. They would therefore want to bargain for a slightly higher quote
and the final IMM would reflect this information weighted against the other collusive
participants. Therefore it seems likely that even under a collusive regime, the IMM level
would substantially reduce the reliance of bidders on their initial signals of the common
value. Any bias due to collusion in these first stage quotes is captured in estimation by
the function R(IMM), which is parameterized as a cubic B-spline.

Appendix D. Customer Orders

The model presented in Section 3 treats all submitted bids as if they were made by
the dealer. That is, the dealers are assumed to have some value for acquiring the bonds,
which may be driven by the ability to sell the bond to a client post-auction, but the
dealer makes the strategic decision about the set of steps to submit in a bid. The same
assumption is made in the long literature on the estimation of Treasury Auctions, where
small clients place orders with dealers that are not directly observed. In this section, I
calculate conservative bounds on dealer and customer participation rates. I then consider
a selection model that suggests that client orders are not driving the results.
There is indirect evidence that clients do sometimes dictate orders to their dealer. For

example, we sometimes observe bids for different quantities at the same price, or bids
for more quantity than the total available supply. The first of these occurs in roughly
15 percent of bids and the second occurs for roughly 10 percent of dealers. While the
first may be due to bidders’ internal accounting practices, reporting different steps to
account for different bonds offered the second is difficult to rationalize within a dealer.
These suggest lower bounds on the rate of customer participation but may not positively
identify all customer orders.
To estimate a conservative lower bound on dealer participation, I use the insurance

positions of dealers reported in Paulos et al. (2019) and assume that dealers have positions
drawn from this distribution and zero value for every bond they purchase. I then lay out
a grid of possible entry/bid formation costs running from zero up to 50 million dollars
and calculate the set of positions that would find participation in the auction profitable
for the only gain of increasing insurance profits. This provides a lower bound for the
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probability that a dealer wants to participate on their own behalf of 14 percent. With
the same set of entry costs, an upper bound, from assuming values of 100 for every bond
purchased, implies a participation rate of 62 percent. Note, even in the data, over 40
percent of the dealers do not submit additional second stage bids and so a participation
rate of 62 percent actually exceeds the rate observed in the data set.
To understand the effect of the possible incorrect attribution of bids to dealers on the

structural estimates I consider a selection model. First, I assume that customers submit
only orders using a single step. This may be because they are smaller, less sophisticated
or less accustomed to the auction process. This is consistent with evidence in Treasury
auctions Kastl (2011), Hortaçsu and McAdams (2010). I then leverage the fact that
the customer order will be observed whenever the dealer is bidding for the full quantity
on offer and the customer makes a bid for any positive quantity at a price lower than
the minimum price from the dealers’ own bid. This allows me to obtain an estimate
of the likelihood that a given step in the data would be positively identified as having
been made by a customer. This can be combined with an estimate of the probability
that such a bid was made at all, to obtain an estimate of the probability that any step
was submitted by a customer. Once this probability is known for every step, then when
estimating the values, I can draw many possible assignments: where an assignment is a
list of the steps k from a given dealer that were submitted by the dealer and the steps
k′ submitted by customers. For each assignment I can re-estimate the implied marginal
values and insurance positions. To describe the effect, I re-estimate the nonparameteric
bounds on insurance positions, as this should be the part of estimation most affected by
the assumption. The results are plotted in Figure A.4. The estimated bounds look quite
similar to the original bounds, and so I conclude that the selection effect from customer
orders is not likely playing an important role in the model estimates.

Appendix E. Risk Calculation

The following figures illustrate the risk induced by the fact that there is a constant
level of expected bias while recovery values are uncertain before the auction. Results are
shown for the level of bias under the current auction format and under the counterfactual
double auction design.

Appendix F. Counterfactual Robustness to Changes in Positions

In the results so far I have assumed that the joint distribution of s1, s2, n was a primitive
and would remain fixed in the counterfactuals. This assumption seems reasonable given
the CDS and bond positions are taken on prior to the default event occuring.51 There-
fore, they are likely to be much more reflective of market-making and trading activities
by the dealers, their costs of holding bonds and CDS, and their perceptions about the
probabilities of default than the expected auction outcomes. However, we may be worried
51There is also a limited amount of trading (and limited liquidity) that takes place in the lead up (and
during) the auction. For the trace-eligible sub-sample of auctions the median trade volume on the auction
day is $6.5M of bonds.

59



Figure A.4. Nonparameteric Bounds: With Customers
The figure plots the nonparameteric estimates of the distribution of insurance positions for bidders
that submitted three or more steps as part of their bid curve. The second set of curves compares the
distribution estimated when we explicitly account for the probability that some of the dealers’ steps
may have been submitted to them by a client.

Figure A.5. Bias-induced Risk

(A) Average Adjustment (B) Bias across Recovery Values (C) Realized Bias

for example that a reduction in the expected surplus at the auction from holding CDS
leads dealers to hold a smaller initial position. In this section I discuss the most plausible
ways that the joint distribution might be affected by the change in incentives to hold
various positions in the counterfactual auction formats. I then develop a set of changes
to the value distribution that are plausible and use this to compute a set of bounds for
counterfactual equilibria for any joint distribution in the set.
There are two possible changes that one may worry could occur that would affect the

joint distribution. The first, are changes to the CDS position caused by shifts in the
benefit of holding a particular CDS position for a given marginal value curve and given
pre-auction benefit of holding CDS. The second, are changes to the bonds bought/sold
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Figure A.6. Bias-induced Risk Counterfactual

(A) Average Adjustment (B) Bias across Recovery Values (C) Realized Bias

before the auction which could shift bidders along the marginal value curve (ie. lead to
bidding behavior according to v(q) = s1 − s2∆Bi − s2q).
First consider changes in the CDS position. These changes may play an important

role through the constraints they impose on a bidders’ set of feasible actions. For exam-
ple, these constraints may prohibit a bidder from obtaining their desired final position
in bonds. This incentive is discussed at length in Du and Zhu (2017) and they show
that under the current auction format the desire to be unconstrained leads bidders with
intermediate levels of pre-auction benefit from holding CDS on both the buy and sell side
to hold slightly larger positions. The lack of constraints in the double auction should
eliminate this expansion. In the double auction, bidders also no longer have the option of
a physical settlement round. Given the concentration of buyers/sellers I still expect the
double auction to achieve a downward bias in general on the price, which could provide an
incentive for buyers to increase their positions and sellers to decrease their positions (such
that n, rather than n − y is subject to the price bias). These shifts in the distribution
will increase price biases in the CDS auctions and so the baseline results may overstate
the possible improvement. Because it is likely that most of the position is determined by
factors unrelated to the auction, I consider as a reasonable set of bounds, perturbations
that allow for an increase of up to +10 percent of each CDS buying bidders existing CDS
position and a decrease of 10 percent on the positions of seller dealers.
Given the expected price pressures from cash settlement, bidders expect the bonds

traded in the auction to do so at a discount to the market price of bonds in both the
current and double auction format. In the baseline change to a double auction there
is a slight reduction in the level of the discount for bonds purchased in the auction.
This would suggest that bonds purchased in the auction are relatively less attractive and
may lead high value bidders to purchase additional bonds before the auction date. This
change in positions is expected to lead to less aggressive bidding and lower prices, so the
main double auction results may only be an upper bound on the possible set. The bond
market is quite illiquid and especially so following default (as documented in Feldhütter
et al. (2016)) and so large adjustments of positions will generally be extremely costly.
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Therefore I examine robustness of the results to a shift in the intercept distribution that
is consistent with a shift along the value curve equivalent to a maximum purchase of $1
Million of bonds by high (above median) value bidders prior to the auction.
The results of this exercise suggest the final price after adjustments in position will be in

the interval 33.34-33.97 and the standard deviation of outcomes relative to the expected
price is 0.55-1.23. This means that once the position changes are accounted for, the double
auction continues to improve on the current format.

62


	1. Introduction
	2. Institutions and Data
	2.1. Evidence of market power
	2.2. Current auction format
	2.3. Distinguishing Between Common and Independent Private Values

	3. Model
	3.1. Players and Endowments
	3.2. Information
	3.3. Actions and Timing
	3.4. Initial Market Price Quote
	3.5. Stage 2: Auction Payouts
	3.6. First Stage Quantity
	3.7. Role of Directional Constraints

	4. Identification
	4.1. Marginal Value and CDS positions
	4.2. Entry costs and Client orders

	5. Estimation
	5.1. Stage 1: Resampling
	5.2. Stage 1b: Selection
	5.3. Stage 2: Aggregation

	6. Results
	6.1. SMM Estimates
	6.2. Expected Surplus
	6.3. First-stage behavior
	6.4. Evaluating Assumptions
	6.5. Decomposition

	7. Counterfactual
	7.1. Counterfactual Solution Method
	7.2. Solution Details
	7.3. Results

	8. Conclusion
	References
	Appendix A. Additional Proofs
	A.1. Equilibrium Existence

	Appendix B. Additional Tables
	B.1. Additional Summary Statistics
	B.2. Post-Auction Price Impact
	B.3. Multiplicative Form
	B.4. Collusion Test
	B.5. IMM manipulation
	B.6. Sufficiency of IMM
	B.7. Linearity Test

	Appendix C. Stage 1 Price Quotes
	Appendix D. Customer Orders
	Appendix E. Risk Calculation
	Appendix F. Counterfactual Robustness to Changes in Positions

