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Abstract

Since President Clinton’s 1994 Executive Order 12898, federal agencies have been required to
conduct environmental justice (EJ) analyses of federal rules and regulations. More recently, the
Biden Administration has instituted several major efforts to reform regulatory review and
promote a more equitable distribution of environmental benefits and burdens. This paper seeks to
understand how prior guidelines have been implemented in federal regulatory reviews related to
the Clean Water Act and provide a baseline for future studies of the distributional effects of clean
water regulations. We reviewed 18 regulatory impact assessments relating to the Clean Water Act
conducted since 1992. Only five of these studies conducted a quantitative analysis of
distributional impacts and none of the 18 rules were determined to have disproportionately
adverse effects on low-income or minority communities. Anticipating that future regulatory
review will require more comprehensive distributional analyses, we combine national data on the
location of all regulated point sources of water pollution with demographic characteristics to
develop a baseline assessment of the distribution of water pollution facilities. Overall, we find
that discharge locations tend to be located in areas that are poorer, have a higher White
population share, and have less education. We find that rurality partly explains this pattern. The
top 40% of census block groups in terms of rural population share contain almost all water
pollution discharge locations. We conclude with a discussion of the policy implications of these
analyses and suggestions for future work.
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1. Introduction

Environmental Justice (EJ) has featured prominently in the Biden Administration’s policy
initiatives. Two major efforts, the Justice40 Initiative and the White House’s memo on
Modernizing Regulatory Review, seek to greatly expand the federal government’s role in
promoting equity as it relates to environmental improvements and regulations (White House
2021, EPA 2022a).1 The Justice40 Initiative seeks to direct 40 percent of the overall benefits of
certain environmental federal initiatives to disadvantaged communities. The Modernizing
Regulatory Review memo directs federal agencies to provide concrete suggestions for improving
how regulatory review is performed with an eye on advancing social and racial equity while
promoting regulations that promote traditional goals of economic growth and safeguarding
public health and safety. Both initiatives were announced on President Biden’s first day in office.

A large EJ literature supports the need to provide more equitable environmental policies and
programs (Lee 2002, Mohai et al. 2009). Numerous studies have documented how low-income
populations and communities of color in the U.S. are more likely to face greater exposure to air
pollution (Wang et al. 2022, Tessum et al. 2021, Colmer et al. 2020), extreme heat (Benz and
Burney 2021), flood risks (Tate et al. 2021) and hazardous waste facilities (Bullard et al. 2008).
In the water sector, researchers have found disparities in the affordability and quality of drinking
water (Mueller and Gasteyer 2021, Balazs et al. 2014), access to safe and reliable water
distribution services (Dietz and Meehan 2019), and the enforcement of and compliance with
clean water regulations (Konisky et al. 2021, Mueller and Gasteyer 2021).

In contrast to these other environmental stressors, only a handful of studies have investigated the
distribution of facilities that discharge surface water pollution in the U.S. across social and
demographic characteristics, and these have been at the state or regional scale (Wilson et al 2002,
Son et al. 2021, Liévanos 2017). As a result, there is limited information on how the benefits of
federal regulations that target major sources of water pollution are distributed. Since 1970, the
U.S. has spent more on surface water pollution control programs than on any other
environmental initiative (Keiser and Shapiro 2019). The economic impacts of these investments
remain poorly quantified (Keiser et al. 2019), raising questions about both equity and efficiency
implications of federal water quality policies.

This paper combines a qualitative assessment of how agencies have attempted to assess ex ante
the distributional impacts of proposed Clean Water Act rules and regulations with a quantitative

1 The Justice40 Initiative is part of a broader Executive Order 14008. In addition, the Biden Administration has
promoted several related efforts, including 2021’s Executive Order (EO) 13985 that promotes “Racial Equity and
Underserved Communities Through The Federal Government”, an additional EO in February 2023 on “Further
Advancing Racial Equity and Support for Underserved Communities Through The Federal Government”, and
numerous other EOs on Diversity, Equity, Inclusion, and Accessibility (see for example,
https://www.usaid.gov/equity/executive-orders-deia).
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analysis of the distribution of polluting facilities in federal datasets. We conduct the first analysis
to better understand prior EJ efforts as they relate to federal surface water quality regulations,
which often vary by industry. We conduct the second analysis for two reasons. First, our analysis
highlights particular industries where EJ concerns may be most prevalent, and thus, require more
detailed focus in future industry specific rules. Second, prior EJ analyses performed by the EPA
focus on the distributional consequences of proposed rules, not necessarily distributional
differences in surface water pollution sources. Thus, our analysis complements these prior efforts
to provide a more comprehensive picture related to surface water pollution.

We proceed by first characterizing how the US Environmental Protection Agency (EPA) has
implemented federal guidance under Executive Order 12898 - Federal Actions to Address
Environmental Justice in Minority Populations and Low-Income Populations (1994) - to assess
the EJ impacts of surface water pollution regulations. We searched government databases and
reports from the Office of Internal and Regulatory Affairs (OIRA) for economic analyses
associated with the Clean Water Act, compiling a dataset of 18 economic analyses of major
water quality rules going back to 1992. For each economic analysis in our dataset, we reviewed
how the agency evaluated any potential justice or distributional impacts. Agencies are required to
assess equity and distributional considerations as mandated in Executive Order 12898, even if
rules will have only positive or uniform effects on water quality. In our review, only five studies
attempted to quantify distributional impacts and no rule was determined to have
disproportionately high or adverse effects on low-income or minority communities. Those rules
which did not perform quantitative analysis made their determinations based on the rules scope
and effect. For example, a determination of no distributional effects was justified by including a
statement that the rule was likely to have a limited effect on water quality or lead to general
improvements in water quality that would not disproportionately burden certain communities.

The second step in our analysis assesses the distribution of industrial and municipal point source
polluters across a range of demographic characteristics. Effluent standards for point source
polluters are a cornerstone of the Clean Water Act, and thus a large fraction of economic
analyses of the Act have focused on these emitters. To explore how the potential distribution of
water quality benefits vary with point sources, we compile three main categories of data: 1) the
location and operation status of nearly 700K point source polluters from 1990 to 2022, 2)
socioeconomic information of residents living within close proximity to these polluters, and 3)
information on the type and amount of pollution from these sources. We capture the relationship
between the number of pollution discharge locations and demographic data using pseudo-Lorenz
curves, calculate related Gini coefficients, and employ cross-sectional models to assess
relationships between point source variables and demographic characteristics. Although data
limitations prevent us from examining the economic damages associated with this pollution, our
analysis provides one of the first national pictures of how surface water pollution sources vary
with demographics and socioeconomic characteristics.

2



Our results show that facility outfall locations, or discharge points, tend to be located in areas
where a greater fraction of the population is White, living below the poverty threshold, and
without a college degree. Over time, we find narrowing differences in the distribution of water
pollution outfalls by race, income, and education between census block groups with and without
permitted facilities. We also find that most outfalls are located in rural areas; the top 40% of
census block groups in terms of rural population share contain nearly all outfalls. When we
examine the distribution of outfalls within rural areas, we find less unevenness in the distribution
of outfalls suggesting that rurality may partly explain the overall pattern that we observe across
all facilities.

We find that the presence of outfalls varies across industrial sectors. Pollution outfalls from
industrial sectors such as mining, manufacturing, and wholesale trade are more likely to be
located in areas with higher poverty and lower levels of education. We observe a similar pattern
when we focus on industries within manufacturing that have more toxic discharges. When
conditioning on rurality, we observe similar patterns across industries for poverty and education,
though the distributions are more even. For some industries, we find different results for race.
For example, in rural areas, we find that outfalls from manufacturing and transportation and
communications tend to be concentrated in areas where a greater share of the population is
non-White. In rural areas, we also find that outfalls from facilities with more toxic discharges are
located disproportionately in census block groups with higher non-White population shares.
These findings suggest that when we look across the US as a whole, water pollution outfalls tend
to be located in areas with higher poverty and lower levels of education, but also in areas with a
greater share of the population that is White. However, when we focus more narrowly on the
rural areas of the country where most outfalls are located, the relationships with poverty and
education remain qualitatively similar, but there are some important differences with respect to
the share of the population that is non-White.

Overall, our findings reaffirm the need to consider distributional consequences of water pollution
regulations and highlights particular industries where additional attention may be warranted. We
conclude the study with recommendations to guide future assessments.
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2. EJ Benefits in US EPA Analyses and Context within EJ Literature

2.1. Literature
Executive Order (EO) 12898 - Federal Actions to Address Environmental Justice in Minority
Populations and Low-Income Populations, was signed into law by President Clinton on February
11, 1994 with the following stated purpose:

To the greatest extent practicable and permitted by law . . . each Federal agency shall
make achieving environmental justice part of its mission by identifying and addressing,
as appropriate, disproportionately high and adverse human health or environmental
effects of its programs, policies, and activities on minority populations and low-income
populations in the United States and its territories.

In addition to EO 12898, federal guidance on benefit-cost analysis also permits consideration of
distributional impacts. The Office of Management and Budget’s (OMB's) guidance to Federal
agencies on the development of regulatory analysis known as Circular A-4 (2003) includes the
following guidance for agencies in assessing distributional effects of proposed rules or
regulations:

Where distributive effects are thought to be important, the effects of various regulatory
alternatives should be described quantitatively to the extent possible, including the
magnitude, likelihood, and severity of impacts on particular groups…Your analysis
should also present information on the streams of benefits and costs over time in order to
provide a basis for assessing intertemporal distributional consequences, particularly
where intergenerational effects are concerned.

Together, both 12898 and Circular A-4 affirm the importance of assessing distributional impacts
of regulatory policies. Circular A-4 provides slightly greater methodological detail, noting that a
quantitative analysis should be used where possible and assessments should include information
on the magnitude, likelihood, and severity of impacts over time. Both guidance documents stop
short of prescribing specific methodologies, leaving agencies to make their own determination of
affected populations, appropriate comparison groups, and whether any observed disparities count
as “disproportionately high and adverse”.

Previous scholars have reviewed the implementation of federal guidelines for EJ analysis across
multiple federal agencies. Vajjhala, Van Epps, and Szambelan (2008) found large gaps in the
information required for effective analysis of potentially differential impacts on minority and
low-income populations. A 2002 report by the National Environmental Justice Advisory Council
(NEJAC) found that implementation of EO 12898 varied greatly across agencies with no
consistent framework applied across agencies or regulations (NEJAC, 2020). A USEPA
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Inspector General report released 10 years after the signing of EO 12898 found that the agency
had yet to consistently integrate EJ into its day-to-day operations, had failed to take the critical
initial steps to define the populations covered by EO 12898, and to develop criteria for
determining disproportionate impacts (USEPA 2004).

Clearly there is a perceived disconnect between the mandate to consider EJ impacts in federal
regulatory analysis and the implementation of this guidance in practice. Earlier reviews looked
broadly across multiple agencies, focused on identifying the frequency of key terms such as
“disproportionately high”, “distributional consequences”, and “achieving environmental justice”
but not the actual methodologies or substance of any distributional analysis, and did not include
more recent regulatory impact assessments in their review. Here, we build on these past studies
with an explicit focus on regulations under the Clean Water Act.

2.2. Methods
We investigated rules and regulations associated with the CWA. Agencies are tasked with
promulgating regulations that will implement statutes. Regulations may comprise multiple
individual rules. We compiled all major rules and regulations related to the CWA by searching
public reports, including the Reports to Congress on the Costs and Benefits of Federal
Regulations (1995–2009), Costs of Federal Regulations and Unfunded Mandates on State, Local,
and Tribal Entities (2010–2014), and the Annual Reports to Congress on the Benefits and Costs
of Federal Regulations and Agency Compliance with the Unfunded Mandates Reform Act
(2015–2020). These reports summarize significant regulatory activities for Congress and
therefore should identify and report on any new or modified rule or regulation. We further
supplemented this review through conversations with EPA staff economists. The development of
regulations is governed by a rule-making process, including a notice of proposed rule-making
and a public comment period. Agencies may produce analyses at each stage of the rule-making
process. Here we focused only on final rules (Appendix Table 1) but we included each rule’s
supporting technical, economic, and environmental analysis documents.

For each of the 18 Clean Water rules in our database, we document the approach that EPA took
to assess any potential distributional impacts of the rule or regulation. As noted above, EPA is
required to assess if programs, policies, and activities will have “disproportionately high and
adverse human health or environmental effects” on minority populations and low-income
populations in order to comply with EO 12898. We reviewed each regulatory assessment for text
related to EO 12898 as well as supporting materials or other analyses conducted as part of EPA
assessments of the benefits and costs of water quality regulations.

Appendix Table 1 lists the 18 rules related to the Clean Water Act. For each rule, we examine the
demographic characteristics used by EPA to assess disproportionate impacts, the spatial scale of
the analysis including the selection of affected population and reference populations, the specific
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types of water quality benefits assessed, and the final determination of any EJ impacts. In many
cases, the text of the rule contained little information on the actual analytical procedures used to
determine distributional impacts and required us to look through supporting documentation in
search of methodological details.

2.3. Results
Of the 18 rules in our dataset, no rule was deemed by EPA analysts to have disproportionately
high or adverse human health or environmental effects on minority or low-income populations.
In the majority of assessments, this determination was made because the proposed rule or
regulation would be uniformly applied to all facilities or that regulations would improve
environmental quality for all residents.

For example, the Effluent Limitations Guidelines and New Source Performance Standards for the
Meat and Poultry Products (2004) includes the following brief text regarding environmental
justice impacts under EO 12898:

EPA has determined that this rulemaking will not have a disproportionate effect on
minority or low-income communities because the technology-based effluent limitations
guidelines are uniformly applied nationally irrespective of geographic location. The final
regulation will reduce the negative effects of meat and poultry products industry waste in
our nation’s waters to benefit all of society, including minority and low-income
communities. The cost impacts of the rule should likewise not disproportionately affect
low-income communities given the relatively low economic impacts of the rule.

Five of the rules included a quantitative analysis of distributional impacts (Table 1). In the 2015
Effluent Limitations Guidelines and Standards for Steam Electric Power rule (RIN 2040–AF77),
the EPA evaluated the demographic characteristics of individuals living in proximity to steam
electric facilities, individuals served by public water systems downstream from steam electric
facilities, and populations exposed to steam electric power facility wastewater through
consumption of recreationally caught fish. EPA found disparities between the affected population
and state or national averages and determined that regulatory options that increase pollutant
exposure compared to the baseline may disproportionately affect minority and low-income
communities. However, the estimated changes in exposure between the baseline and regulatory
options were small and EPA determined that these small changes in risk did not meet the criteria
of disproportionately high and adverse effects.

The majority of rules (13 out of 18) included some mention of race and income as the
demographic variables of interest. A few studies also considered indigeneity, national origin,
effects on children, and impacts on subsistence anglers. However, demographics, as well as
affected and comparative populations, were not consistent across analyses and the choices made

6



regarding which variables and populations to include were not entirely transparent. A few rules
compared the demographics of the counties containing affected facilities with state averages.
Other rules used a proximity analysis to estimate downstream populations. In the 2004 Final
Regulations to Establish Requirements for Cooling Water Intake Structures at Phase II Existing
Facilities, EPA calculated the poverty rate and the percentage of the population classified as
non-White for populations living within a 50-mile radius of each of the 543 in-scope facilities
and compared these rates with national averages. A 2014 rule on cooling water intake structures
also used a 50-mile radius from a regulated facility to assess affected individuals, and included
any anglers who live outside of the 50-mile facility buffer but within a 50-mile radius of the river
segments, or river reaches, nearest to the facilities.

For the rules that did assess potential benefits of regulation (or forgone benefits) the most
commonly assessed benefits were impacts on subsistence fishing, cancer risks from exposure to
toxic chemicals, and general health impacts. Beyond subsistence fishing for tribal communities,
the analyses did not mention potential impacts on cultural values, recreational values, or other
non-material benefits of clean water.

In summary, in our review of the implementation of EO 12898 in rules and regulations related to
surface water pollution under the Clean Water Act, we observed inconsistency in the scale and
scope of analysis of distributional impacts. A majority of rules did not conduct a quantitative
analysis of impacts, and no rules were determined to have “disproportionately high and adverse
impacts.” These findings are consistent with other recent publications investigating the
consideration of distributional and equity considerations in federal regulatory review across a
broad range of agencies and policy domains (Robinson et al. 2016, Cecot and Hahn 2022,
Revesz and Yi 2022).

3. Environmental Justice (EJ) Analysis of Point Source Polluters - Methods and Data

As noted above, President Biden has made EJ a priority of his administration. Indeed, proposed
updates to the guidance documentation for analyzing the costs and benefits of regulations known
as Circular A-4, were recently released by the Office of Management and Budget (White House
2023). The revised guidance includes an expanded section on proper procedures for conducting
distributional analyses, including the importance of placing any proposed rules or regulations in
context based on an assessment of baseline distributions of environmental benefits or burdens.
The OMB guidance also states that it is “not sufficient for your analysis to merely state that the
chosen alternative does not make relevant groups worse off; it is important to analyze and
describe the benefits and costs of different regulatory alternatives for different groups.” Given
the limited nature of EJ analyses in prior regulatory reviews under the CWA, we present a
baseline assessment of the distribution of regulated water pollution facilities that could inform
future applications of distributional analyses of clean water rules or regulations.
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3.1. Methods
Our EJ analysis is descriptive in nature. We do not intend to describe causal relationships
between socioeconomic characteristics and pollution. Rather, as an important first step, we seek
to describe how the location of pollution outfalls varies with socioeconomic characteristics and
demographics and leave important questions of causality to future studies.2

Our analysis implements two empirical approaches. First, we construct pseudo-Lorenz curves
that provide a visual representation of the relationship between water pollution sources and
several measures of demographics and socioeconomic characteristics.3 These curves further help
us describe how these relationships have changed over time. We call these pseudo-Lorenz curves
as Lorenz curves traditionally focus on income distributions. However, we find that this
representation enables an easy means to visualize how water pollution sources are distributed
within society. Our primary analyses focus on the number of water pollution outfalls, or
discharge points, from regulated water pollution dischargers. We focus on facilities and their
outfalls given that this information is more consistently reported over space and time than other
measures. In supplementary analyses, we examine how outfalls may (imperfectly) reflect the
quantity and toxicity of pollution. We link each outfall to its census block group given that this is
the finest spatial unit for which we have available demographic information.

To construct our pseudo-Lorenz curves, we first rank the communities (2010 census block
groups) according to a particular socioeconomic variable (i.e., a measure of race, income,
education, etc.). If there is more than one census block group with the same value, we rank those
census block groups with the lowest number of outfalls (or other measure of pollution) first. This
ranking forms the variable for our x-axis. We normalize the x-axis ranking from 0 to 1. Once we
have ranked census block groups, we calculate the cumulative distribution value of outfalls (or
other measure of pollution) from 0 to 1. To form our pseudo-Lorenz curves, we plot the pair of
calculated x and y values for each census block group. Additionally, for each pseudo-Lorenz
curve, we compute the Gini coefficient by calculating the area between the 45-degree line and
the pseudo-Lorenz curve.

3 Lorenz curves or variations of Lorenz curves have been used in the environmental justice literature to depict the
distribution of a given outcome along demographic and socioeconomic lines (Mehta et al. 2014, Mohammed et al.
2021, Sheriff 2023).

2 In a similar vein, except for conditioning on rurality, all of our analyses are unconditional, meaning that we
examine the pure correlation between pollution outfalls and demographic information without controlling for other
factors. We believe this provides important information on the current distribution of outfalls across space, but does
not attempt to explain why the variation in outfalls arises or whether this distribution is unequal when conditioning
on other factors. For example, in the air pollution literature, some studies include factors such as population density,
employment patterns, and land use to explain observed pollution exposure patterns (Mennis 2003, Ash and Boyce
2018). We leave these important questions with respect to surface water pollution to future work.
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In addition to these curves, we estimate complementary cross-sectional models that quantify the
magnitude of the relationship between the presence of outfalls and these demographic and
socioeconomic characteristics by estimating the following equation:

= (1)𝑦
𝑖

α + β𝐷
𝑖

+ ε
𝑖
 

where is an indicator for whether an outfall is present in census block group , is one of the𝑦
𝑖

𝑖 𝐷
𝑖

demographic or socioeconomic characteristics we consider, and is the error term. Inε
𝑖

supplementary analyses, we replace with other measures of water pollution that we discuss𝑦
𝑖

below. To account for potential correlation in our error term within geographic areas, we cluster
standard errors at the county level.

3.2. Data
Our analysis uses three primary sources of data. Two of these sources provide information on the
location and discharge of pollution from point sources in the U.S. The third source provides
information on residents within close proximity to these sources.

Point Source Location and Operating Status
We combine several data sets from US EPA’s Enforcement and Compliance History Online
(ECHO) database and the Integrated Compliance Information System - National Pollution
Discharge Elimination System (ICIS-NPDES) to construct a data set of outfalls active during the
1990 - 2022 period. We use the permit issue dates to pinpoint when a facility first becomes
active.4 If a permit is missing an issue date, we drop that observation. To determine when a
facility becomes inactive, we use the permit termination date if the permit’s status is
“terminated” and the maximum of the termination, retirement, and expiration dates if the
permit’s status is “not needed.” If a permit should have an end date but has missing values for the
termination, retirement, and expiration dates, then we drop that observation. This provides us
with information on 761,905 of 814,130 facilities in the U.S.

We obtain the geographic coordinates for a facility’s outfall(s) from ICIS-NPDES Discharge
Points. We use the coordinates to geolocate each outfall inside a census block group using the
2010 Tiger/Line Block Group shapefile. If an observation is missing outfall coordinates, we
instead use the facility coordinates, which we supplement from ICIS-NPDES Facilities and the
Facility Registry Service (FRS), and assume it has a single outfall at those coordinates. If a
permit is missing both the outfall and facility coordinates, then we drop that observation.
Additionally, we drop facilities outside of the conterminous US and off-shore facilities as we are

4 Specifically, we define the date of first activity as the minimum of the original issue date and issue date.
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not able to locate them inside census block groups. After this process, we are left with
information on 687,788 facilities (863,511 outfalls).5

To determine which industrial division a facility belongs to, we use information on the industrial
codes reported with the permits. We place facilities into 11 broad industrial categories based on
their two-digit Standard Industrial Classification (SIC) codes: (1) Agriculture, Forestry, and
Fishing, (2) Mining, (3) Construction, (4) Manufacturing, (5) Transportation and
Communications Services, (6) Electric, Gas, and Sanitary Services, (7) Wholesale Trade, (8)
Retail Trade, (9) Finance, Insurance, and Real Estate, (10) Services, and (11) Public
Administration (see Appendix Table 2 for descriptions of each industrial division). We place a
facility in one of these categories if any one of its two-digit SIC codes belong to that category.6

Of the 687,788 facilities (863,511 outfalls), we are able to identify the industrial category for
385,613 facilities (551,072 outfalls). Since a sizable portion of facilities in our sample are
missing industrial codes, focusing only on facilities with information on their SIC codes may
lead to sample selection bias if missing values are nonrandom. Therefore, we conduct analyses
on both the full sample and the subsample containing facilities with SIC information.
Additionally, we identify publicly owned treatment works (POTWs) using a facility type
indicator associated with each permit and remove these facilities from the 11 industrial
categories. We examine these facilities separately given their major point of emphasis within the
Clean Water Act. There are 18,168 POTWs with 29,289 outfalls in our sample. Lastly, we
identify major dischargers in the pooled sample and in each industry.7

Effluent Data
In addition to the location, operating status, and industrial division of facilities, we obtain
estimates of flow from ICIS-NPDES Discharge Monitoring Reports (DMRs). DMRs must be
regularly submitted by facilities with permits that require sampling and monitoring, which tend
to be large point sources, standard industrial dischargers, and POTWs.8 The DMRs contain

8 Most large point sources, but not all, are required to submit DMRs. Most standard industrial dischargers (i.e., those
that discharge directly to surface waters), POTWs, and major facilities in the municipal stormwater subprogram
regularly submit DMRs. Some industrial stormwater facilities, such as those regulated under EPA's Multi-Sector
General Permit, regularly submit DMRs. In general, most construction stormwater facilities and non-major
municipal stormwater facilities are not required to submit DMRs. A small percentage of these facilities may have to
submit DMRs due to a violation and subsequent enforcement action. CAFOs submit DMRs quite irregularly (e.g.,

7 US EPA typically designates major sources as POTWs with a total design flow greater than 1 millions of gallons
per day (MGD), industrial sources with a score greater than 80 on the NPDES Permit Rating Worksheet, or sources
designated as “major” by the regulator. Note, the NPDES Permit Rating Worksheet takes into account six factors to
determine the score: toxicity potential, flow, amount of conventional pollutants that would be discharged, public
health impact, characteristics of the receiving stream and potential for violation of water quality standards, and
proximity to coastal waters.

6 Facilities may belong to multiple industrial sectors. Thus, a given facility may belong to more than one of these 11
categories. We place facilities into industrial categories largely along the lines of the SIC divisions. However, we
split the Transportation, Communications, Electric, Gas, and Sanitary Services industrial division into two separate
sub-divisions given the importance of the Electric, Gas, and Sanitary Services as major sources of water pollution.

5 Dropping facilities without start and end dates and geographic coordinates may lead to sample selection bias if
incompleteness of this information is nonrandom.
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outfall-level information on flow and the quantity and concentration of the discharged pollutants.
Of 687,788 facilities, DMRs are available for 68,608. We use these data to determine the amount
of flow, in millions of gallons per day (MGD), discharged from an outfall as an imperfect proxy
for the quantity of pollution recognizing that higher flow does not necessarily correspond to
higher pollution levels. There are several types of measures, called statistical base codes in
ICIS-NPDES, for flow (e.g., 1 day geometric mean, 12 day average, 12 month average, etc.). We
focus on monthly averages as this is one of the most frequently reported types of flow measures.
Facilities calculate monthly averages by taking the average of all flow measurements at each
outfall during a calendar month and include it in their DMRs.9 We take the mean of monthly
average flow at the census block group level. As a separate check on this measure of flow, we
use the volume and percentile of wastewater discharge estimated by the Climate and Economic
Justice Screen Tool.10

Socioeconomic Data
Our socioeconomic and demographic data are from the 1990, 2000, 2010 censuses, and 5-year
American Community Survey (ACS) estimates of 2013 and 2019. Since the census block group
level demographic information from ACS is based on the 2010 census boundary, we normalize
all demographics to 2010 census block groups using the Integrated Public Use Microdata Series
National Historical Geographic Information System project (IPUMS NHGIS).11 In cases where
there are no harmonized data series for our variables of interest, we use crosswalk matrices
between 1990, 2000, and 2010 census boundaries to construct our own harmonized series. The
socioeconomic variables we use are the share of the population that is non-White, the share of
the population that is Black or African American, the share of the population that is Hispanic, the
share of individuals with income lower than the federal poverty line, the share of the population
aged 25 and above without a college degree or higher, and the share of population that is in a
rural area. Given the number of possible variables, we limit our main analysis of pseudo-Lorenz
curves to the share of the population that is non-White, the share of the population below the
poverty line, the share of the population without a college degree or higher, and the share of the
population living in a rural area. This enables us to focus on measures that reflect some racial
differences, income differences, education differences, and urban/rural differences. In the
regression analyses, we further explore differences across additional measures of race and
ethnicity (share Black or African American, share Hispanic).

Matching Point Sources to Demographic and Socioeconomic Data

11 The IPUMS NHGIS website provides additional information (https://www.nhgis.org).

10 We downloaded version 1.0 from the “Downloads” section of the following website:
https://screeningtool.geoplatform.gov/en/#3/33.47/-97.5.

9 The number of measurements required may vary across permits.

after a major storm event). For more information, see section 2 of EPA’s Economic Analysis of the National
Pollution Discharge Elimination System (NPDES) Electronic Reporting Final Rule.
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The availability of demographic and socioeconomic data at the census block group level is
somewhat limited temporally which prevents us from constructing an annual panel data set of
matched outfalls and demographics. For this reason, we match outfalls to demographic and
socioeconomic data as follows: (1) outfalls active during 1990 - 1999 are matched to 1990
census data, (2) outfalls active during 2000 - 2012 are matched to 2000 census data, (3) outfalls
active during 2013 - 2018 are matched to 2013 ACS data, and (4) outfalls active during 2019 -
2022 are matched to 2019 ACS data.12

Additional Sources of Data
The Toxic Release Inventory (TRI) database contains facilities that emit toxic chemicals with
highly adverse health and environmental impacts. To account for potential toxicity-related
differences in the distribution of outfalls along socioeconomic characteristics, we separately
examine water pollution facilities that also appear on the TRI. Additionally, as the presence of an
outfall need not necessarily result in poor water quality, we perform additional analyses using
measures that capture some ambient water quality conditions. Section 303(d) of the CWA
requires states to construct a list of impaired waters which do not meet state-established water
quality standards. We obtain information on the total impaired stream length (km) with any listed
CWA 303(d) impairment from the EPA’s EnviroAtlas database.13 As this information is provided
at the subwatershed level, we aggregate the census block group level socioeconomic variables to
the subwatershed level.14 Then, we construct the pseudo-Lorenz curves by ranking
subwatersheds rather than census block groups.

Data Summary
Figure 1 displays the location of all outfalls used in our analysis. Our data provide broad
coverage of water pollution facilities across the US. Table 2 provides summary statistics from
our most recent time period. In this period, there are over 600K outfalls at active facilities in
approximately half of all census block groups. We have data on the industrial code for
approximately two-thirds of these outfalls. Of these records, construction, manufacturing,
mining, and electric, gas, and sanitary services have the most outfalls. In these summary
statistics, we see that census block groups with facilities across all industries tend to have a lower
non-White population than census block groups without permitted facilities. Compared to census
block groups without permitted facilities, the share without a college degree in census block
groups with permitted facilities is slightly higher for about half of the industries and substantially

14 The subwatershed is identified by the 12 digit hydrologic unit code (HUC 12).

13 EnviroAtlas is an online tool developed by the USEPA that provides geospatial data and other information on the
nation's ecosystems and their services. It allows users to explore and analyze environmental and socio-economic
factors at various scales. We obtained impaired waterway length from the September 2021 version of EnviroAtlas.
For more information about downloading the dataset, please visit the following website:
https://www.epa.gov/enviroatlas/forms/enviroatlas-data-download.

12 Unfortunately, the 2010 and 2020 censuses do not provide poverty and education data at the census block group
level which prevents us from using decades starting with census years to construct our panel. As a result, we rely on
ACS data from 2013 and 2019 and adjust our time periods accordingly.
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higher for the other half. The share below the poverty line is higher in some industries and lower
in others compared to the average for the conterminous US (CONUS). The biggest difference we
see in these summary statistics is the share of the population that is in a rural area. In our data,
census block groups with facilities are more likely to be classified as “rural” relative to CONUS
averages.

4. EJ Analysis of Point Source Polluters - Results

4.1. Pseudo-Lorenz Curves and Gini coefficients
We begin by reporting the pseudo-Lorenz curves for the count of outfalls. Figures 2 and 3
display these results. We present results with the share of the population that is non-White, the
share of the population below the federal poverty line, the share of the population without at least
a college degree, and the share of the population living in rural areas. Each figure displays how
the distribution of outfalls has changed over time, from the 1990-1999 to 2019-2022 time
periods. Gini coefficients are reported in parentheses in the legend, next to the line for the
respective time period. The 45-degree line is a reference point for an equal distribution of
outfalls. The way in which we define our indicator variables is such that any curve to the right of
this 45-degree line suggests that these outfalls are disproportionately located in areas that are
historically underserved or potentially disadvantaged. Similarly, a positive Gini coefficient
indicates that outfalls are disproportionately located in such areas; a larger Gini coefficient
suggests a greater concentration of outfalls in those areas.

In Figure 2, we summarize these curves across all industrial sectors for each indicator. As
described in Section 3.1, we first rank census block groups according to the particular
demographic variable of interest. A normalized ranking from 0 to 1 serves as our x-variable. We
then graph the cumulative distribution value of outfalls of Y on the vertical axis. For example,
Figure 2, Panel b) shows that in the 1990-1999 time period, the first 40 percent of census block
groups ranked in terms of poverty (i.e., the richest 40 percent of census block groups) contain
approximately 20 percent of the total number of outfalls. The figure also shows that the poorest
20 percent of census block groups (moving from 0.8 to 1.0 on the x-axis) contain approximately
30 percent of the total number of outfalls. We find that census block groups with greater numbers
of outfalls tend to be located disproportionately in areas with a higher share of the population
that is White, in areas with a greater share of the population that is below the poverty line, and in
areas with a greater share of the population that does not have at least a college education.
However, the variation in outfalls has smoothed out over time for race, poverty, and education.
The curves for the 2013 - 2018 period (the green line) and the curves for the 2019 - 2022 period
(orange line) are both very close to the 45-degree line. Note, part of this change may be due to
improved data reporting over time. In particular, the 2015 Electronic Reporting Rule drastically
changed state reporting requirements to EPA for certain facilities potentially improving data
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quality.15 Thus, while we continue to discuss changes over time, we emphasize that these changes
may be attributable to changes in data quality rather than changes in the distribution of outfalls.

Outfalls tend to be located disproportionately in areas with a higher rural population share. In
fact, in the first 50 percent of census block groups in terms of rural population share (i.e., the
least rural 50 percent of census block groups), there are zero outfalls which is why the
pseudo-Lorenz curves in Figure 2(d) are horizontal at the lower end of the support. Contrary to
the findings for race, poverty, and education, the tendency for outfalls to be located
disproportionately in rural areas has persisted over time. In all time periods, an overwhelming
number of outfalls are located in the top 40 percent of census block groups in terms of rural
population share. Given this finding, we further examine the distribution of outfalls across race,
poverty, and education among the top 40 percent of census block groups in terms of rural
population share. Figure 3 presents pseudo-Lorenz curves for these three indicators, conditioning
on rurality. One notable finding is that the pseudo-Lorenz curves for the share of the population
that is non-White is closer to the 45-degree line (i.e., the Gini coefficients are closer to 0)
indicating that rurality may partly drive the pattern we observe when including all census block
groups. In fact, during the 2013 - 2018 and 2019 - 2022 periods, the distribution of outfalls is
almost completely even in terms of the share of the population that is non-White. We observe a
similar pattern for the share in poverty and share without a college degree, though the difference
between the Gini coefficients for all census block groups and more rural census block groups is
less stark during earlier periods.

While Figures 2 and 3 provide an overall snapshot of all outfalls, they may mask
industry-specific heterogeneity which may be important as the type, toxicity, and quantity of
discharges varies across industries. For example, there is substantial heterogeneity in the amount
of TRI chemicals discharged across industries with electric, gas, and sanitary services; services,
finance, insurance, and real estate; and manufacturing accounting for most TRI discharges.
Similarly, when examining discharges of CWA priority pollutants, a list of 126 pollutants that are
deemed to be toxic, facilities in manufacturing or electric, gas, and sanitary services are
responsible for most of the discharges. As industrial patterns in the toxicity and amount of
discharge exist, it may also be the case that the relationship between outfalls and demographic
and socioeconomic characteristics is heterogeneous across industries. We also explore
heterogeneity by industry to help inform future rules or regulations that may target potential
industries.

15 Part of this change may be due to improved data reporting over time. In particular, the 2013 - 2018 and 2019 -
2022 time periods coincide with the implementation of the 2015 Electronic Reporting (eReporting) Rule by EPA.
This rule changed state reporting requirements to EPA for non-major facilities. Prior to this rule, states were required
to report only basic facility information about non-major facilities to EPA. Some states did, however, voluntarily
report on non-majors even before the implementation of the rule. Given that the universe of permits overwhelmingly
consists of non-major facilities, the implementation of this rule potentially improves overall data quality.
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In Figures 4 - 7, we display bar graphs depicting Gini coefficients across different industrial
sectors for our four main demographic and socioeconomic variables. Each time period is
represented by the same color as in previous figures. For each time period, the width of the bar
corresponds to the magnitude of the Gini coefficient with positive Gini coefficients appearing to
the right and negative Gini coefficients appearing to the left of 0, which is delineated by a
vertical dashed line. In each bar graph, we order industries by the average size of the Gini
coefficient so that industries most concentrated in areas with a higher share of traditionally
underserved populations appear first. In these figures, we also show the Gini coefficient across
all industries as a useful point of comparison. As a reminder, this category includes outfalls
regardless of whether there is a reported industrial classification.

We first examine how outfalls are distributed across industries by the share of the population that
is non-White (Figure 4). As with Figure 2, we see a similar pattern across most industrial
classifications that outfalls tend to be located in areas with a greater fraction of the population
that is White (i.e., negative Gini coefficients). We focus on (1) construction, (2) electric, gas, and
sanitary services, (3) manufacturing, (4) mining, (5) public wastewater treatment, and (6)
wholesale trade given the large number of these facilities (Table 2). Three of these industrial
categories, mining; public wastewater treatment; and electric, gas, and sanitary services, show a
large number of outfalls in areas with a larger share of the population that is White, even more so
than across all sectors. Contrary to the Gini coefficients computed using all sectors, the
distribution for these industries has remained almost unchanged over time.

Turning to Figure 5, we examine how these outfalls vary by industrial classification and by the
share of the population below the poverty line. Many industries follow a similar pattern that we
see in the average across all sectors. However, mining, wholesale trade, and manufacturing in
particular have more outfalls in areas with higher poverty. Unlike the overall picture, certain
industries such as mining, public wastewater treatment, and wholesale trade have changed
relatively little over the study period. In contrast, industrial divisions such as finance, insurance,
and real estate; construction; public administration; and services exhibit changes over time and
are even slightly concentrated in lower poverty areas during later time periods. A similar story
appears in Figure 6 where we display these results by industrial sector for the share of the
population without a college degree. Similar to the overall picture, outfalls are located
predominantly in areas with a larger share of the population without a college degree. This
appears to largely be driven by outfalls from mining; wholesale trade; agriculture, forestry, and
fishing; manufacturing; public wastewater treatment, and electric, gas, and sanitary services.
This pattern has largely persisted over time for these industrial divisions. These results highlight
these industries as potential focal points for future, or more in-depth, EJ analyses by the EPA and
academic researchers. For the remaining industrial divisions, the distribution of outfalls has
become more evenly distributed over time. Interestingly, for construction, outfalls are slightly
concentrated in more educated areas during the latest two time periods.
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Lastly, we examine how outfalls are distributed by the rural population share. Similar to the
overall results, we find that outfalls are heavily concentrated in areas with a higher rural
population share for all industries and this pattern is highly persistent over time, regardless of
industry (Figure 7). This prompts us to consider the distribution of outfalls across race, poverty,
and education within more rural areas. In Appendix Figures 1 - 3, we present bar graphs with
Gini coefficients for the distribution of outfalls across dimensions of race, poverty, and education
in the top 40 percent of census block groups in terms of rural population share. Generally, even
among rural census block groups, outfalls tend to be located in areas that are predominantly
White, though the Gini coefficients are much smaller in magnitude indicating a relatively more
even distribution (Appendix Figure 1). For manufacturing and transportation and
communications, however, the Gini coefficients are positive but small indicating that outfalls
from those industrial divisions somewhat tend to be located in areas with a higher share of the
population that is non-White. For poverty and education, the overall industrial patterns largely
hold though the Gini coefficients are somewhat smaller (Appendix Figures 2 and 3). For three of
the industries, construction; finance, insurance, and real estate; and public administration,
outfalls are slightly concentrated in areas with lower poverty and a lower share of the population
without a college degree. Interestingly, for mining and agriculture, forestry, and fishing, the Gini
coefficients for the share in poverty are larger when conditioning on rurality. These results
underscore the need for analyses that separately examine different industries; the distribution of
outfalls across demographics and socioeconomics is heterogeneous.

As we demonstrate, there are some differences in locational patterns across industries. This is
important as certain industries tend to discharge more toxic pollutants with greater potential harm
to the surrounding community. The literature identifies two major industrial groups within the
manufacturing industrial division as having a higher potential for harm: (1) Chemicals and Allied
Products and (2) Petroleum Refining and Related Industries (Liévanos et al. 2017). In Appendix
Figures 4 and 5, we present pseudo-Lorenz curves for the distribution of outfalls from these two
industries for our four main demographic and socioeconomic variables. In general, the patterns
are similar to what we observe for all industries. The results only diverge for the distribution of
outfalls from Chemicals and Allied Products along racial lines; the pseudo-Lorenz curves are
very close to the 45-degree line indicating a relatively even distribution. Once we condition on
the top 40 percent of census block groups in terms of rural population share, however, outfalls
from this industry are located disproportionally in areas with a higher share of the population that
is non-White (Appendix Figure 6). For Petroleum Refining and Related Industries, however, we
find that outfalls are more evenly distributed across racial lines once we condition on rurality
(Appendix Figure 7). Again, this highlights the importance of performing industry-specific
analyses as ignoring these differences may mask potential EJ concerns.
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We turn next to other measures of the presence of pollution. In Figure 8, we display bar graphs
depicting Gini coefficients for monthly average flow, outfalls at facilities deemed “Major” by the
USEPA, the number of permitted dischargers that also appear on the TRI, and the total length of
impaired waterways within a HUC12 region.16 Panel (a) presents the results for the non-White
population share, panel (b) for the share below the poverty line, and panel (c) for the share
without a college degree. When using monthly average flow as our measure of pollution, the
results appear similar to the number of outfalls, with more equal distribution related to poverty.
The results for “Major” facilities are largely consistent with the overall number of outfalls.
Outfalls from facilities that appear on the TRI, however, are less prevalent in areas with a greater
share of the population that is White compared to outfalls overall. In terms of poverty and
education, consistent with the overall number of outfalls, outfalls from facilities that appear on
the TRI are more concentrated in areas with higher poverty and lower education though this
pattern is more persistent over time for this measure of pollution. Lastly, we examine the total
length of impaired waterways within a subwatershed. Here, we find a departure from the prior
results. This measurement of impaired waterways appears very evenly distributed across these
demographic variables. One possibility is that richer and more educated areas are able to direct
attention and funding towards listing polluted areas as a first step towards remediation. However,
we advise caution in relying too heavily on these impairment results as they reflect state
processes that do not necessarily capture the ambient status of all waterways.17

When we examine these other measures of the presence of pollution within the top 40% of
census block groups in terms of rural population share, some of the patterns in terms of race,
poverty, and education change (Appendix Figure 8). The distribution of monthly average flow in
terms of race, poverty, and education is more even within more rural census block groups
compared to all census block groups. The distribution of outfalls from major facilities is more
even in terms of race, poverty, and education though the Gini coefficients for race are now
positive but small. Departing from previous results, the distribution of outfalls from facilities on
the TRI, is more concentrated in areas with a larger non-White population share. This is
consistent with our findings for outfalls from Chemicals and Allied Products. With respect to
poverty and education, outfalls from facilities on the TRI within the most rural census block
groups are more evenly distributed compared to all census block groups. Lastly, even within
rural census block groups, impaired waterways are evenly distributed. Again, we interpret the
impairment results with caution.

17 While EPA guidelines contain a list of information that must be considered, the specific framework for assessing
water quality widely differs across states (National Research Council 2001). Thus, a given waterbody may be
deemed impaired by one state but not impaired by another due to differences in their assessment framework.

16 We follow the procedures in one EPA document to convert demographic information from block groups to each
HUC12
(https://www.epa.gov/system/files/documents/2022-03/demographics-indicator-reference-sheet-20220306.pdf).
Since we do not have information on which year’s impaired status was used in the EnviroAtlas database, we only
construct the pseudo-Lorenz curve with 2019 demographic information.

17



We also investigated the distribution of Wastewater Discharge as collected by USEPA and
compiled in the Climate and Economic Justice Screen Tool database. One would expect that the
number of outfalls would roughly correspond to the amount of wastewater discharge within the
same census block group. Appendix Figure 9 plots a pseudo-Lorenz curve for the number of
outfalls for all facilities ranked by the percentile of wastewater discharge. Here, we see that
wastewater discharge corresponds nearly one to one with the number of outfalls.18

4.2 Regression Results
We complement the analysis in Section 4.1 with regression results that examine how facility
outfalls are correlated with socioeconomic characteristics. We examine the association between
outfalls and the share of the population below the poverty line as well as the share of the
population without a college degree or higher. We split out our variable that captures one
measure of race (share non-White) to examine the correlations between the number of outfalls
and more specific measures of race and ethnicity such as share Black and share Hispanic. We
also add the rural population share to further examine how water pollution outfalls are distributed
across the country.

Figure 9 summarizes our results across each of these six variables from regressions using all four
time periods. These plots display coefficient estimates (blue dots) and 95% confidence intervals
for each industrial classification for each particular variable of interest. No other controls are
included in this specification, which allows us to examine the cross-sectional variation in outfalls
across the entire U.S. Consistent with the pseudo-Lorenz curves, we find that outfalls are
concentrated in areas of the country with a higher share of the population that is White, below
the poverty line, and without a college education. We also find that outfalls are less likely to be
in areas with a higher share of the population that is Black or Hispanic. When we examine the
variable for rural population share, we find a strong association with the presence of outfalls
across all industries. The results are similar when we include state fixed effects (Appendix Figure
10), which suggests these associations hold within states as well as across states.

As with the pseudo-Lorenz curves, we examine correlations with other potential indicators of the
quantity and toxicity from these outfalls. Appendix Figures 11 and 12 show results for outfalls at
major facilities and the monthly average flow at outfalls, respectively. The results for outfalls at
major facilities are qualitatively similar as those using the number of outfalls, though there is
arguably less variation across demographics. The magnitude of the differences is also much
smaller. The results for monthly average flow are also qualitatively similar to the total number of
outfalls, though flow is very strongly correlated with rural population share and lower education
levels.

18 Note, it may be the case that discharge data is not always available or completely reported to the federal
government.
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5. Discussion

Our analysis contributes to an understanding of the EJ implications of federal regulatory policy.
Decades of individual studies and meta-analyses have demonstrated statistically significant
relationships between race and many types of environmental hazards (Ringquist 2005, Mohai
and Saha 2007). However, the majority of these studies focus on air pollution and hazardous
waste disposal, with relatively few studies focusing on the distribution of point-source water
pollution.

We aimed to address this gap through a two-pronged approach. First, we conducted a qualitative
assessment of the implementation of EO 12898 in Clean Water Act rules and associated
economic analyses by EPA. Second, we used data on the locations of permitted point-source
facilities to evaluate the distribution of outfalls across different demographic variables of interest.
Our goal was to describe the content and quality of current EJ analyses in clean water rules,
evaluate alternative approaches to assess disparities in the location of water pollution sources,
and inform future analyses of EJ in proposed rules or regulations designed to protect or restore
water quality.

In the review of existing water quality rules, we come to similar conclusions as previous
assessments of the implementation of EO 12898 in federal regulatory review. Geltman and
Jovanovic (2016) and Banzhaf (2011) have strongly suggested the need for more rigorous
analysis. After reviewing all rules since 1992, we found that EPA never determined a clean water
regulation to have disproportionately high and adverse impacts on low-income or minority
communities. While these findings could be correct, a lack of quantitative analysis within these
reviews may leave one skeptical about the lack of EJ concerns. Further, the fact that a rule may
not lead to adverse changes on low-income or minority communities does not necessarily imply
that current EJ concerns are not important. In this regard, we also observed that EPA did not
include publicly available data on baseline pollution exposure in their analyses. For example, in
the rule evaluating the 2003 Effluent Limitation Guidelines and Standards for Concentrated
Animal Feeding Operations, EPA determined the rule would have no disproportionate effect on
minority or low-income communities. In this case, EPA could have cited research on the
distribution of CAFOs, which have been shown to be disproportionately located in minority
communities and low-income communities (Wilson et al. 2004, Son et al. 2021). However, no
further analysis or research was conducted based on the justification that the rule would “benefit
all of society.”19

In our assessment of the baseline distribution of water polluting facilities in the U.S., we found
that water pollution sources are more likely to be located in areas with a larger share of the

19 Guidance on best practices for conducting distributional analyses of regulations is beyond the scope of this paper.
However, we point readers to Ando et al. (2023), Lienke et al. (2021), and Banzhaf et al. (2019) as resources for best
practices in assessing equity and distributional impacts of federal policies.
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population that is White, below the poverty line, and without a college education. Overall, this
pattern holds for most industries though the extent of the disproportionate siting is
heterogeneous. In later time periods, we observe more even distributions across these
characteristics and across most industries. We also found that block groups with the greatest
number of outfalls are more likely to be rural. Within the most rural census block groups,
however, the demographic and socioeconomic patterns are a bit more mixed. For the share of the
population that is non-White, depending on industry and toxicity, the distribution remains the
same, becomes more evenly distributed, or even slightly concentrated in areas with higher
non-White population shares. Of note, facilities discharging more toxic pollutants tend to be
located in rural areas with higher non-White population shares. In general, the concentration of
outfalls in areas with higher poverty and lower education is slightly lower within rural areas,
regardless of industry or toxicity of discharges. Overall, our results suggest that rurality partly
drives the observed patterns for the other demographic and socioeconomic variables. However,
we reiterate that our analysis does not address causal reasons for the location of these outfalls,
but rather documents how they vary across space and socioeconomic characteristics.

We present a few takeaways from our assessment of the baseline distribution of polluting
facilities that may be helpful for future EJ analyses. We found disparities across educational
attainment, with greater numbers of pollution outfalls in census block groups with lower levels
of education. EO 12898 only requires analysts to assess impacts on “minority and low-income
populations in the US.” Our analysis suggests that education may be an important factor to
consider in future distributional assessments, especially as education attainment may be related
to awareness of environmental hazards (Meyer 2015). Additionally, the heterogeneity we
observed across industries highlights the importance of performing industry-specific EJ analyses;
our findings revealed greater EJ concerns for certain industries such as mining, public
wastewater treatment, and manufacturing.

Relatedly, not all outfalls pose equal risks to adjacent populations and examining outfalls with
more harmful discharges in combination with those with relatively benign discharges may mask
EJ concerns. Our analysis focusing on facilities with more toxic discharges is an imperfect
exercise as it uses a facility’s industrial codes and appearance on the TRI to capture the toxicity
of discharges; a more refined approach that uses the type, quantity, and concentration of the
discharged pollutants could provide a more accurate picture of the distribution of water pollution
(see Liévanos et al. 2017 for an example of an approach that accounts for toxicity). To this end,
recent agency investments such as the U.S. EPA’s Risk-Screening Environmental Indicators
(RSEI) database and the P2 EJ Facility Mapping Tool could increase the ease of future EJ
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analyses and the identification of toxic discharges.20 Future work using more finely defined
industrial categories focusing on specific pollutants may also improve our understanding of the
distribution of water polluting facilities. Lastly, improved data collection on polluting facilities
would greatly facilitate EJ analyses. The data sets we use are missing industrial codes for a
substantial fraction of facilities which could alter our industry-specific conclusions.

Limitations and Caveats
We acknowledge several limitations to our analysis that may affect the interpretation of our
findings. A challenge in conducting distributional assessments is enumerating the affected
population and associated baseline group. In our analysis we assumed the impacted population
was all households within a census block group containing a permitted facility. Some census
block groups with high concentrations of polluting facilities may not have demographic data
associated with them because they are in unpopulated industrial areas. These census block
groups may be located adjacent to populated block groups, but in our analysis would not be
identified as impacted by the number of facilities or outfalls in adjacent spatial units. An
alternative would be to assess the affected population based on a proximity analysis (e.g. Mohai
et al. 2009 assessed demographic characteristics within 1 mile of polluting facilities). A further
limitation is that pollution outfalls do not necessarily represent pollution exposure. The
movement of water pollutants through surface water and groundwater is complex and requires
more data-intensive hydrologic modeling in order to link outfalls with concentrations, transport
of pollutants downstream, and exposure of communities to pollution via direct or indirect
consumption or water contact recreation.

We also acknowledge that in some cases the siting of water treatment facilities may indicate
environmental improvement, not degradation, if the alternative was release of untreated pollution
into adjacent waterways. Lastly, the context in which permits are issued matters for the overall
interpretation of the distribution of water pollution sources. For example, a permit issued for
construction activities may signify local development whereas a permit issued for chemical
manufacturing may suggest more harmful polluting activities.

Inconsistent methodologies across distributional analyses also make it difficult to compare our
results with previous studies. We know that selection of affected communities, reference
population, spatial unit of analysis, assumptions about exposure and health impacts, and the
ability to control for other contributing factors have been found to impact the conclusions of past
EJ studies (Anderton et al. 1996, Mohai et al. 2009). As others have noted (Keeler et al. 2012,

20 The U.S. EPA’s Risk-Screening Environmental Indicators (RSEI) database links potential chemical releases from
facilities on the Toxic Release Inventory to surface water “flowlines” up to 300 kilometers downstream from a
facility. The RSEI method also attempts to link pollution to exposure via pathways of drinking water and
recreational and subsidence fish consumption (US EPA 2023). The P2 EJ Facility Mapping Tool that allows users to
identify industrial facilities located in or adjacent to communities with EJ concerns, including facilities included in
the Toxic Release Inventory (TRI) and Resource Conservation and Recovery Act (RCRA).
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Keiser, Kling, and Shapiro 2019) water quality-related benefits remain difficult to quantify and
monetize, making it challenging to assess net benefits of proposed rules or regulations. Welfare
impacts of exposure to water pollution can be moderated or exacerbated by infrastructure,
adoption of avoidance behaviors, preexisting health conditions, and baseline exposure to other
contaminants among other factors.

Our analysis offers limited insight into how changes in water pollution will affect other types of
valued benefits, including recreation, cultural resources, non-use benefits or other aspects of
human wellbeing. Water quality-related benefits, including the destruction of culturally-valued
species, loss of access to ceremonial springs, mercury contamination of fish, and polluted
beaches and swimming places can have a particular significance for EJ communities (EJCW
2005), but were beyond the scope of this analysis. We also focus solely on water pollution
sources. This may miss important cumulative impacts of exposure to other types of pollution and
other stressors that communities face. Indeed, EPA notes that cumulative impacts are an
important area for future focus (EPA 2022b).

Future Directions
Our retrospective analysis of the implementation of EO 12898 suggests that more work is needed
to come to a shared definition of what constitutes a “disproportionately high and adverse human
health or environmental effect” as it relates to water quality. Consistency across methodologies
and their application will allow for more systematic assessment of impacts of proposed water
quality rules or regulations. Agency analysis aside, there is also no agreed-upon methodology in
the academic literature to assess disproportionality of environmental benefits and burdens. The
draft updated Circular A-4 guidance from OMB calls for increased investment in distributional
analysis but stops short of prescribing a standardized approach. Access to publicly available data
on the location of polluting facilities and outfalls opens opportunities for analysis that could
greatly improve on past assessments of water quality rules and regulations. Here, we demonstrate
how analysts can use these data, along with sociodemographic information, and other
environmental variables to assess potential distributional effects of changes that affect permitted
facilities. Future analyses could assess the sensitivity of assumptions about the appropriate
spatial unit to determine affected population, focus on specific industries or regulated
contaminants, assess compliance records of regulated facilities, or link outfall data with toxicity
information to understand relative levels of harm from water pollution. Any or all of these
approaches would represent progress relative to past implementation of environmental justice
analyses in clean water rules.
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Figures and Tables
Table 1. Summary of Quantitative CWA Environmental Justice Assessments (1992-2019).

Rule Demographic
Characteristics
Evaluated

Spatial Scale of Analysis Benefits
Assessed

Determination

National Emission Standards for Hazardous
Air Pollutants for Source Category: Pulp and
Paper Production; Effluent Limitations
Guidelines, Pretreatment Standards, and New
Source Performance Standards: Pulp, Paper,
and Paperboard Category (1998)

Race, income,
indigeneity

EPA analyzed subsistence anglers fishing in the
vicinity of bleached kraft mills from the
consumption of dioxin-contaminated fish. EPA
also examined county-level race and income
data to assess whether bleached kraft mills have
a disproportionate effect on minority and
low-income populations.

Subsistence
fishing, cancer
risks. price
increases due to
increased
compliance
costs

EPA expects the final rule to reduce
substantially the cancer risks to tribal
populations.

Effluent Limitations Guidelines and New
Source Performance Standards for the Metal
Products and Machinery Point Source
Category (2003)

Race, national
origin, income
level,
indigeneity

EPA assessed counties traversed by water
receiving discharges from 32 sample MP&M
facilities and compared them to state averages.

Subsistence
fishing, cancer
risks, systemic
health risk

EPA expects that the rule will neither
promote nor discourage environmental
justice.

National Pollutant Discharge Elimination
System—Final Regulations to Establish
Requirements for Cooling Water Intake
Structures at Phase II Existing Facilities (2004)

Race, income EPA analyzed demographics of communities
within 50 miles radius of affected facilities
compared to national averages.

Subsistence
fishing

All populations, including minority and
low-income populations, would benefit
from improved environmental conditions
as a result of this rule.

National Pollutant Discharge Elimination
System—Final Regulations To Establish
Requirements for Cooling Water Intake
Structures at Existing Facilities and Amend
Requirements at Phase I Facilities (2014)

Race, income EPA defined the benefit population as (1) all
individuals who live within a 50-mile radius of
the facilities and (2) any additional anglers who
live outside of the 50-mile facility buffer but
within a 50-mile radius of the river segments,
or river reaches, nearest to the facilities. EPA
compared this to the general state population.

Subsistence
fishing

EPA expects that this final rule will help
to preserve the health of aquatic
ecosystems near regulated facilities, EPA
expects that all populations, including
minority and low-income populations,
will benefit from improved
environmental conditions.

Effluent Limitations Guidelines and Standards
for the Steam Electric Power Generating Point
Source Category (2015)

Race, income EPA assessed affected communities within 50
miles of steam electric power plants and
compared them to state averages.

Subsistence
fishing, cancer
risks, IQ
decrements,
systemic health
risks

EPA’s analysis finds very small changes
in exposure between the baseline and
regulatory options, amounting to very
small changes in risk for this population.

Notes: This table provides a summary of the five quantitative EJ analyses of the water pollution rules in our data set (1992-2019). It does not include the 13 water
pollution rules which did not contain quantitative EJ analyses.
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Table 2. Number of Outfalls by Industrial Classifications and Corresponding
Demographics (2019-2022).

Industry
No. of
Outfalls

No. of
CBGs Non-White Non-College Poverty

Rural
Population

Agriculture, Forestry,
Fishing 9,403 3,963 11% 78% 12% 83%

Construction 91,375 20,490 20% 71% 14% 34%

Electric, Gas, Sanitary
Services 45,640 17,115 17% 75% 14% 57%

Finance, Insurance, Real
Estate 12,799 5,304 17% 72% 12% 49%

Manufacturing 90,311 26,377 22% 77% 15% 43%

Mining 64,841 9,747 15% 79% 14% 73%

Public Administration 12,949 6,059 19% 72% 14% 38%

Retail Trade 3,891 2,602 22% 76% 15% 44%

Wholesale Trade 20,902 8,906 24% 79% 17% 39%

Services 13,232 7,814 17% 72% 13% 54%

Transportation and
Communications 31,012 11,155 25% 75% 16% 30%

POTWs 26,417 16,370 15% 77% 14% 63%

All Industries - with
industrial code 422,772 70,487 20% 74% 14% 44%

All Industries 632,609 97,643 21% 72% 14% 37%

All CBGs (CONUS
Average) 632,609 216,330 27% 70% 15% 23%

Notes: This table provides summary statistics of the total number of outfalls and the distribution of outfalls by
industrial classification for the 2019-2022 period. The table also shows corresponding census block group
demographic information for all census block groups and by industrial classification. “All Industries - with industrial
code” summarizes these statistics for outfalls that correspond to facilities with at least one industrial code. “All
Industries” summarizes these statistics for all outfalls, regardless of the availability of the industrial code. “All
CBGs” summarizes these statistics for all census block groups in the conterminous US (CONUS) for comparison
purposes.
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Figure 1. Map of Outfalls from Active Facilities (1990 - 2022).

Notes: This map depicts outfalls from facilities active at any point during the 1990-2022 period.
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Figure 2. Pseudo-Lorenz Curves for the Count of All Outfalls by Race, Poverty, Education,
and Rurality.

(a) Share Non-White (b) Share Poverty

(c) Share Non-College (d) Rural Population Share

Notes: This figure displays pseudo-Lorenz curves for the count of all outfalls across all industrial sectors by the
share of the population non-White (Figure 2a), share of the population below the poverty line (Figure 2b), the share
of the population without a college education or higher (Figure 2c), and the share of the population living in rural
areas (Figure 2d). The 45-degree line represents equal distribution. Each figure shows how these counts change over
time from the 1990-1999 period (blue line) to the 2019-2022 period (orange line). Gini coefficients for each period
are in parentheses in the legend.

32



Figure 3. Pseudo-Lorenz Curves for the Count of All Outfalls by Race, Poverty, Education
for the Top 40% of Census Block Groups in Terms of Rural Population Share.

(a) Share Non-White (b) Share Poverty

(c) Share Non-College
Notes: This figure displays pseudo-Lorenz curves for the count of all outfalls across all industrial sectors by the
share of the population non-White (Figure 3a), share of the population below the poverty line (Figure 3b), and the
share of the population without a college education or higher (Figure 3c). The 45-degree line represents equal
distribution. Each figure shows how these counts change over time from the 1990-1999 period (blue line) to the
2019-2022 period (orange line). Gini coefficients for each period are in parentheses in the legend. We restrict the
sample to the top 40% of census block groups in terms of rural population share.
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Figure 4. Gini Coefficients for Distribution of Outfalls by Share Non-White and by
Industry.

Notes: This graph presents Gini coefficients by industry for the share of the population that is non-White. The
category “All” depicts Gini coefficients across all facilities, regardless of the availability of the industrial code. Blue
bars are for the 1990 - 1999 period, red bars are for the 2000 - 2012 period, green bars are for the 2013 - 2018
period, and orange bars are for the 2019 - 2022 period.
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Figure 5. Gini Coefficients for Distribution of Outfalls by Poverty and by Industry.

Notes: This graph presents Gini coefficients by industry for the share of the population below the poverty line. The
category “All” depicts Gini coefficients across all facilities, regardless of the availability of the industrial code. Blue
bars are for the 1990 - 1999 period, red bars are for the 2000 - 2012 period, green bars are for the 2013 - 2018
period, and orange bars are for the 2019 - 2022 period.
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Figure 6. Gini Coefficients for Distribution of Outfalls by Education and by Industry.

Notes: This graph presents Gini coefficients by industry for the share of the population without a college degree or
higher. The category “All” depicts Gini coefficients across all facilities, regardless of the availability of the industrial
code. Blue bars are for the 1990 - 1999 period, red bars are for the 2000 - 2012 period, green bars are for the 2013 -
2018 period, and orange bars are for the 2019 - 2022 period.
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Figure 7. Gini Coefficients for Distribution of Outfalls by Rural Population Share and by
Industry.

Notes: This graph presents Gini coefficients by industry for the rural population share. The category “All” depicts
Gini coefficients across all facilities, regardless of the availability of the industrial code. Blue bars are for the 1990 -
1999 period, red bars are for the 2000 - 2012 period, green bars are for the 2013 - 2018 period, and orange bars are
for the 2019 - 2022 period.
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Figure 8. Gini Coefficients for Other Measures of Pollution.

(a) Share Non-White

(b) Share Poverty

(c) Share Non-College
Notes: This figure displays bar graphs depicting Gini coefficients using the following measures: (1) monthly average
flow, (2) outfalls at facilities deemed “Major” by USEPA, (3) the number of facilities on the TRI with a water
pollution discharge permit, and (4) the total impaired waterway length. For each measure of pollution, we examine
the distribution across the share of the population non-White (Figure 8a), the share of the population below the
poverty line (Figure 8b), and the share of the population without a college education or higher (Figure 8c).
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Figure 9. Cross-Sectional Results Between Presence of Outfalls and Demographics.

Notes: This figure displays results from cross-sectional regressions of an indicator for the presence of outfalls in a
census block group versus a given measure of demographics. The outcome variable for the category “All” is an
indicator for the presence of an outfall in a census block group, regardless of industrial classification. This category
includes facilities with and without SIC information. For the remaining categories, we use industry-specific
indicators for the presence of an outfall in a census block group as the outcome variable. Coefficient estimates are
shown in blue dots and 95% confidence intervals are shown by the corresponding lines. Standard errors are clustered
at the county level. Results are grouped by demographic variable and by industrial classification. The sample
includes all four time periods.
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Appendix

Appendix Table 1. List of Regulatory Impact Assessments (RIAs) in Data Set.

Date Title ID #

1992 Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic
Pollutants; States’ Compliance

40 CFR Part 131

1993 Oil and Gas Extraction Point Source Category; Offshore Subcategory Effluent
Limitations Guidelines and New Source Performance Standards

RIN 2040-AA12

1995 Water Quality Standards for Surface Waters of the Sacramento River, San Joaquin
River, and San Francisco Bay and Delta of the State of California

60 FR 4664

1998 National Emission Standards for Hazardous Air Pollutants for Source Category: Pulp
and Paper Production; Effluent Limitations Guidelines, Pretreatment Standards, and
New Source Performance Standards: Pulp, Paper, and Paperboard Category

RIN 2040–AB53

1999 National Pollutant Discharge Elimination System—Regulations for Revision of the
Water Pollution Control Program Addressing Storm Water Discharges

RIN 2040–AC82

2003 Effluent Limitations Guidelines and New Source Performance Standards for the
Metal Products and Machinery Point Source Category

RIN 2040-AB79

2003 National Pollutant Discharge Elimination System Permit Regulation and Effluent
Limitation Guidelines and Standards for Concentrated Animal Feeding Operations
(CAFOs)

RIN 2040–AD19

2004 Effluent Limitations Guidelines and New Source Performance Standards for the Meat
and Poultry Products Point Source Category

RIN 2040–AD56

2004 National Pollutant Discharge Elimination System—Final Regulations to Establish
Requirements for Cooling Water Intake Structures at Phase II Existing Facilities

RIN 2040–AD62

2006 Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure Plan
Requirements— Amendments

RIN 2050–AG23

2009 Construction and Development Effluent Guidelines RIN 2040-AE91

2009 Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC)
Rule— Amendments

RIN 2050–AG16

2010 Water Quality Standards for the State of Florida’s Lakes and Flowing Waters RIN 2040–AF11

2011 Oil Pollution Prevention; Spill Prevention, Control, and Countermeasure (SPCC)
Rule— Amendments for Milk and Milk Product Containers

RIN 2050–AG50

2014 National Pollutant Discharge Elimination System—Final Regulations To Establish
Requirements for Cooling Water Intake Structures at Existing Facilities and Amend
Requirements at Phase I Facilities

RIN 2040–AE95

2015 Effluent Limitations Guidelines and Standards for the Steam Electric Power
Generating Point Source Category

RIN 2040–AF77

2015 Clean Water Rule: Definition of ‘Waters of the United States’’ RIN 2040–AF30

2019 Definition of "Waters of the United States" - Recodification of Preexisting Rule RIN 2040-AF74
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Appendix Table 2. Definitions of Industrial Divisions in Data Set.

Industrial Division Major Group (Two Digit SIC Code)

A: Agriculture,
Forestry, and Fishing

01: Agricultural Production Crops
02: Agriculture Production Livestock and Animal Specialties
07: Agricultural Services
08: Forestry
09: Fishing, Hunting, and Trapping

B: Mining

10: Metal Mining
12: Coal Mining
13: Oil and Gas Extraction
14: Mining and Quarrying of Nonmetallic Minerals, Except Fuels

C: Construction

15: Building Construction General Contractors and Operative Builders
16: Heavy Construction other than Building Construction Contractors
17: Construction Special Trade Contractors

D: Manufacturing

20: Food and Kindred Products
21: Tobacco Products
22: Textile Mill Products
23: Apparel and other Finished Products Made from Fabrics and Similar Materials
24: Lumber and Wood Products, Except Furniture
25: Furniture and Fixtures
26: Paper and Allied Products
27: Printing, Publishing, and Allied Industries
28: Chemicals and Allied Products
29: Petroleum Refining and Related Industries
30: Rubber and Miscellaneous Plastics Products
31: Leather and Leather Products
32: Stone, Clay, Glass, and Concrete Products
33: Primary Metal Industries
34: Fabricated Metal Products, Except Machinery and Transportation Equipment
35: Industrial and Commercial Machinery and Computer Equipment

36:
Electronic and Other Electrical Equipment and Components, Except Computer
Equipment

37: Transportation Equipment

38:
Measuring, Analyzing, and Controlling Instruments; Photographic, Medical and
Optical Goods; Watches and Clocks

39: Miscellaneous Manufacturing Industries

E1: Transportation and
Communications

40: Railroad Transportation
41: Local and Suburban Transit and Interurban Highway Passenger Transportation
42: Motor Freight Transportation and Warehousing
43: United States Postal Service
44: Water Transportation
45: Transportation by Air
46: Pipelines, Except Natural Gas
47: Transportation Services
48: Communications
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E2: Electric, Gas, and
Sanitary Services 49: Electric, Gas, and Sanitary Services

F: Wholesale Trade
50: Wholesale Trade-durable Goods
51: Wholesale Trade-non-durable Goods

G: Retail Trade

52: Building Materials, Hardware, Garden Supply, and Mobile Home Dealers
53: General Merchandise Stores
54: Food Stores
55: Automotive Dealers and Gasoline Service Stations
56: Apparel and Accessory Stores
57: Home Furniture, Furnishings, and Equipment Stores
58: Eating and Drinking Places
59: Miscellaneous Retail

H: Finance, Insurance,
and Real Estate

60: Depository Institutions
61: Non-depository Credit Institutions
62: Security and Commodity Brokers, Dealers, Exchanges, and Services
63: Insurance Carriers
64: Insurance Agents, Brokers, and Service
65: Real Estate
67: Holding and Other Investment Offices

I: Services

70: Hotels, Rooming Houses, Camps, and Other Lodging Places
72: Personal Services
73: Business Services
75: Automotive Repair, Services, and Parking
76: Miscellaneous Repair Services
78: Motion Pictures
79: Amusement and Recreation Services
80: Health Services
81: Legal Services
82: Educational Services
83: Social Services
84: Museums, Art Galleries, and Botanical and Zoological Gardens
86: Membership Organizations
87: Engineering, Accounting, Research, Management, and Related Services
88: Private Households
89: Miscellaneous Services

J: Public
Administration

91: Executive, Legislative, and General Government, Except Finance
92: Justice, Public Order, and Safety
93: Public Finance, Taxation, and Monetary Policy
94: Administration of Human Resource Programs
95: Administration of Environmental Quality and Housing Programs
96: Administration of Economic Programs
97: National Security and International Affairs
99: Nonclassifiable Establishments

Notes: This table presents the names of the major groups, identified by the two-digit SIC code, within each
industrial division. We split industrial Division E (Transportation, Communications, Electric, Gas, and Sanitary
Services) into two: (1) E1: Transportation and Communications and (2) E2: Electric, Gas, and Sanitary Services. For
additional information on these industries, please refer to https://www.osha.gov/data/sic-manual.
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Appendix Figure 1. Gini Coefficients for Distribution of Outfalls by Industry and by Race
for the Top 40% of Census Block Groups in Terms of Rural Population Share.

Notes: This graph presents Gini coefficients by industry for the share of the population that is non-White. The
category “All” depicts Gini coefficients across all facilities, regardless of the availability of the industrial code. Blue
bars are for the 1990 - 1999 period, red bars are for the 2000 - 2012 period, green bars are for the 2013 - 2018
period, and orange bars are for the 2019 - 2022 period. We restrict the sample to the top 40% of census block groups
in terms of rural population share.
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Appendix Figure 2. Gini Coefficients for Distribution of Outfalls by Industry and by
Poverty for the Top 40% of Census Block Groups in Terms of Rural Population Share.

Notes: This graph presents Gini coefficients by industry for the share of the population that is below the poverty
line. The category “All” depicts Gini coefficients across all facilities, regardless of the availability of the industrial
code. Blue bars are for the 1990 - 1999 period, red bars are for the 2000 - 2012 period, green bars are for the 2013 -
2018 period, and orange bars are for the 2019 - 2022 period. We restrict the sample to the top 40% of census block
groups in terms of rural population share.
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Appendix Figure 3. Gini Coefficients for Distribution of Outfalls by Industry and by
Education for the Top 40% of Census Block Groups in Terms of Rural Population Share.

Notes: This graph presents Gini coefficients by industry for the share of the population without a college degree or
higher. The category “All” depicts Gini coefficients across all facilities, regardless of the availability of the industrial
code. Blue bars are for the 1990 - 1999 period, red bars are for the 2000 - 2012 period, green bars are for the 2013 -
2018 period, and orange bars are for the 2019 - 2022 period. We restrict the sample to the top 40% of census block
groups in terms of rural population share.
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Appendix Figure 4. Pseudo-Lorenz Curves for the Count of All Outfalls by Race, Poverty,
Education for Facilities in Chemicals and Allied Products.

(a) Share Non-White (b) Share Poverty

(c) Share Non-College (d) Rural Population Share
Notes: This figure displays pseudo-Lorenz curves for the count of all outfalls from Chemicals and Allied Products
(SIC 28) by the share of the population non-White (App. Figure 4a), share of the population below the poverty line
(App. Figure 4b), the share of the population without a college education or higher (App. Figure 4c), and the share
of the population living in rural areas (App. Figure 4d). The 45-degree line represents equal distribution. Each figure
shows how these counts change over time from the 1990-1999 period (blue line) to the 2019-2022 period (orange
line). Gini coefficients for each period are in parentheses in the legend.
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Appendix Figure 5. Pseudo-Lorenz Curves for the Count of All Outfalls by Race, Poverty,
Education for Facilities in Petroleum Refining and Related Industries.

(a) Share Non-White (b) Share Poverty

(c) Share Non-College (d) Rural Population Share
Notes: This figure displays pseudo-Lorenz curves for the count of all outfalls from Petroleum Refining and Related
Industries (SIC 29) by the share of the population non-White (App. Figure 5a), share of the population below the
poverty line (App. Figure 5b), the share of the population without a college education or higher (App. Figure 5c),
and the share of the population living in rural areas (App. Figure 5d). The 45-degree line represents equal
distribution. Each figure shows how these counts change over time from the 1990-1999 period (blue line) to the
2019-2022 period (orange line). Gini coefficients for each period are in parentheses in the legend.
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Appendix Figure 6. Pseudo-Lorenz Curves for the Count of All Outfalls by Race, Poverty,
Education for Facilities in Chemicals and Allied Products for the Top 40% of Census Block

Groups in Terms of Rural Population Share.

(a) Share Non-White (b) Share Poverty

(c) Share Non-College
Notes: This figure displays pseudo-Lorenz curves for the count of outfalls from Chemicals and Allied Products (SIC
28) by the share of the population non-White (App. Figure 6a), share of the population below the poverty line (App.
Figure 6b), and the share of the population without a college education or higher (App. Figure 6c). The 45-degree
line represents equal distribution. Each figure shows how these counts change over time from the 1990-1999 period
(blue line) to the 2019-2022 period (orange line). Gini coefficients for each period are in parentheses in the legend.
We restrict the sample to the top 40% of census block groups in terms of rural population share.
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Appendix Figure 7. Pseudo-Lorenz Curves for the Count of All Outfalls by Race, Poverty,
Education for Facilities in Petroleum Refining and Related Industries for the Top 40% of

Census Block Groups in Terms of Rural Population Share.

(a) Share Non-White (b) Share Poverty

(c) Share Non-College
Notes: This figure displays pseudo-Lorenz curves for the count of outfalls from Petroleum Refining and Related
Industries (SIC 29) by the share of the population non-White (App. Figure 7a), share of the population below the
poverty line (App. Figure 7b), and the share of the population without a college education or higher (App. Figure
7c). The 45-degree line represents equal distribution. Each figure shows how these counts change over time from the
1990-1999 period (blue line) to the 2019-2022 period (orange line). Gini coefficients for each period are in
parentheses in the legend. We restrict the sample to the top 40% of census block groups in terms of rural population
share.
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Appendix Figure 8. Gini Coefficients for Other Measures of Pollution for the Top 40% of
Census Block Groups in Terms of Rural Population Share.

(a) Share Non-White

(b) Share Poverty

(c) Share Non-College
Notes: This figure displays bar graphs depicting Gini coefficients using the following measures: (1) monthly average
flow, (2) outfalls at facilities deemed “Major” by USEPA, (3) the number of facilities on the TRI with a water
pollution discharge permit, and (4) the total impaired waterway length. For each measure of pollution, we examine
the distribution across the share of the population non-White (App. Figure 8a), the share of the population below the
poverty line (App. Figure 8b), and the share of the population without a college education or higher (App. Figure
8c). We restrict the sample to the top 40% of census block groups in terms of rural population share.
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Appendix Figure 9. Pseudo-Lorenz Curves and Wastewater Discharge.

Notes: This figure displays a pseudo-Lorenz curve for the count of all outfalls by the share of wastewater discharge
for the 2019 - 2022 period (orange line). The 45-degree line represents equal distribution. The Gini coefficient is in
parentheses in the legend.
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Appendix Figure 10. Cross-Sectional Results Between Presence of Outfalls and
Demographics and State Fixed Effects.

Notes: This figure displays results from cross-sectional regressions of an indicator for the presence of outfalls in a
census block group versus a given measure of demographics and state fixed effects. The outcome variable for the
category “All” is an indicator for the presence of an outfall in a census block group regardless of industrial
classification. This category includes facilities with and without SIC information. For the remaining categories, we
use industry-specific indicators for the presence of an outfall in a census block group as the outcome variable.
Coefficient estimates are shown in blue dots and 95% confidence intervals are shown by the corresponding lines.
Standard errors are clustered at the county level. Results are grouped by demographic variable and by industrial
classification. The sample includes all four time periods.
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Appendix Figure 11. Cross-Sectional Results Between Presence of Outfalls from Major
Dischargers and Demographics.

Notes: This figure displays results from cross-sectional regressions of an indicator of an outfall at major water
pollution dischargers in a census block group versus a given measure of demographics. The outcome variable for the
category “All” is an indicator for the presence of an outfall at a major facility in a census block group regardless of
industrial classification. This category includes major facilities with and without SIC information. For the remaining
categories, we use industry-specific indicators for the presence of an outfall at a major facility in a census block
group as the outcome variable. Coefficient estimates are shown in blue dots and 95% confidence intervals are shown
by the corresponding lines. Standard errors are clustered at the county level. Results are grouped by demographic
variable and by industrial classification. The sample includes all four time periods. There are no major dischargers in
the retail trade industrial division.
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Appendix Figure 12. Cross-Sectional Results Between Mean Monthly Average Flow and
Demographics.

Notes: This figure displays results from cross-sectional regressions of the mean of monthly average flow at outfalls
versus a given measure of demographics. The outcome variable for the category “All” is the mean of monthly
average flow from outfalls in a census block group regardless of industrial classification. This category includes
major facilities with and without SIC information. For the remaining categories, we use the mean of monthly
average flow from industry-specific outfalls in a census block group as the outcome variable. Coefficient estimates
are shown in blue dots and 95% confidence intervals are shown by the corresponding lines. Standard errors are
clustered at the county level. Results are grouped by demographic variable and by industrial classification. The
sample includes all four time periods.
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Appendix Table 3. Number of Outfalls by Industrial Classifications and Corresponding
Demographics (1990 - 1999).

Industry
No. of
Outfalls

No. of
CBGs Non-White Non-College Poverty

Rural
Population

Agriculture, Forestry,
Fishing 1,754 776 8% 87% 15% 86%

Construction 743 460 13% 84% 16% 55%

Electric, Gas, Sanitary
Services 15,247 7,662 11% 85% 14% 66%

Finance, Insurance, Real
Estate 3,465 2,253 6% 86% 13% 79%

Manufacturing 22,793 8,253 14% 88% 16% 53%

Mining 12,448 2,923 8% 89% 17% 80%

Public Administration 2,528 1,247 13% 84% 14% 59%

Retail Trade 1,022 839 10% 85% 12% 57%

Wholesale Trade 3,817 2,092 16% 88% 17% 47%

Services 5,132 3,514 8% 85% 14% 78%

Transportation and
Communications 3,779 1,873 18% 87% 16% 42%

POTWs 17,666 11,102 11% 86% 15% 62%

All Industries - w/ SIC
code 90,394 30,352 12% 86% 15% 61%

All Industries 92,761 32,957 12% 86% 14% 59%

All CBGs (CONUS
Average) 92,761 216,330 18% 80% 13% 28%

Notes: This table provides summary statistics of the total number of outfalls and the distribution of outfalls by
industrial classification for the 1990 - 1999 period. The table also shows corresponding census block group
demographic information for all census block groups and by industrial classification. “All Industries - with industrial
code” summarizes these statistics for outfalls that correspond to facilities with at least one industrial code. “All
Industries” summarizes these statistics for all outfalls, regardless of the availability of the industrial code. “All
CBGs” summarizes these statistics for all census block groups in the conterminous US (CONUS) for comparison
purposes.
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Appendix Table 4. Number of Outfalls by Industrial Classifications and Corresponding
Demographics (2000 - 2012).

Industry
No. of
Outfalls

No. of
CBGs Non-White Non-College Poverty

Rural
Population

Agriculture, Forestry,
Fishing 9,210 3,665 11% 85% 13% 84%

Construction 47,263 12,844 13% 77% 13% 42%

Electric, Gas, Sanitary
Services 38,125 16,274 13% 81% 12% 60%

Finance, Insurance, Real
Estate 7,785 4,092 11% 80% 11% 61%

Manufacturing 55,881 20,005 17% 83% 14% 49%

Mining 42,304 7,451 12% 85% 14% 75%

Public Administration 10,158 4,889 14% 78% 12% 42%

Retail Trade 4,183 3,245 16% 82% 13% 44%

Wholesale Trade 11,257 6,034 18% 84% 15% 46%

Services 13,079 8,069 13% 78% 12% 58%

Transportation and
Communications 13,784 6,714 18% 81% 14% 38%

POTWs 26,857 16,419 12% 82% 13% 60%

All Industries - w/ SIC
code 279,886 59,633 15% 80% 13% 48%

All Industries 338,288 72,952 16% 79% 12% 43%

All CBGs (CONUS
Average) 338,288 216,330 22% 75% 13% 23%

Notes: This table provides summary statistics of the total number of outfalls and the distribution of outfalls by
industrial classification for the 2000 - 2012 period. The table also shows corresponding census block group
demographic information for all census block groups and by industrial classification. “All Industries - with industrial
code” summarizes these statistics for outfalls that correspond to facilities with at least one industrial code. “All
Industries” summarizes these statistics for all outfalls, regardless of the availability of the industrial code. “All
CBGs” summarizes these statistics for all census block groups in the conterminous US (CONUS) for comparison
purposes.
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Appendix Table 5. Number of Outfalls by Industrial Classifications and Corresponding
Demographics (2013 - 2018).

Industry
No. of
Outfalls

No. of
CBGs Non-White Non-College Poverty

Rural
Population

Agriculture, Forestry,
Fishing 10,806 4,166 12% 82% 14% 82%

Construction 89,534 21,192 18% 74% 16% 35%

Electric, Gas, Sanitary
Services 47,015 17,966 16% 78% 15% 55%

Finance, Insurance, Real
Estate 10,340 4,983 15% 75% 13% 50%

Manufacturing 87,741 26,982 21% 80% 17% 41%

Mining 76,632 10,098 14% 81% 15% 70%

Public Administration 12,185 5,934 18% 75% 15% 35%

Retail Trade 4,845 3,427 20% 79% 17% 41%

Wholesale Trade 19,291 9,340 23% 82% 19% 38%

Services 14,400 8,595 16% 75% 14% 51%

Transportation and
Communications 26,483 11,285 24% 78% 18% 30%

POTWs 27,512 16,777 14% 80% 16% 58%

All Industries - w/ SIC
code 426,784 72,015 19% 77% 16% 41%

All Industries 631,160 96,629 20% 75% 16% 35%

All CBGs (CONUS
Average) 631,160 216,330 25% 73% 16% 21%

Notes: This table provides summary statistics of the total number of outfalls and the distribution of outfalls by
industrial classification for the 2013-2018 period. The table also shows corresponding census block group
demographic information for all census block groups and by industrial classification. “All Industries - with industrial
code” summarizes these statistics for outfalls that correspond to facilities with at least one industrial code. “All
Industries” summarizes these statistics for all outfalls, regardless of the availability of the industrial code. “All
CBGs” summarizes these statistics for all census block groups in the conterminous US (CONUS) for comparison
purposes.

57


