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Abstract

We present a framework that can be used to assess the equilibrium impact of regula-
tion on endogenous innovation with heterogeneous firms. We implement this model using
French firm-level panel data where there is a sharp increase in the burden of labor regu-
lations on companies with 50 or more employees. Consistent with the model’s qualitative
predictions, we find a sharp fall in the fraction of innovating firms just to the left of the
regulatory threshold. Furthermore, we find a sharp reduction in the positive innovation
response of firms to exogenous demand shocks just below the regulatory threshold. Using
the structure of our model we quantitatively estimate parameters and find that the reg-
ulation reduces aggregate equilibrium innovation (and growth) by 5.8% which translates
into a consumption equivalent welfare loss of at least 2.3%, approximately doubling the
static losses in the existing literature.
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1 Introduction

There is considerable literature on the economic impacts of regulations, but relatively few

studies on their impact on technological innovation. Most analyses focus on the static costs

(and benefits) of regulation rather than on its dynamic effects. Yet these potential growth

effects are likely to be much more important in the long run. Harberger triangles may be small,

but rectangles can be very large. Many scholars have been concerned that slower growth in

countries with heavy labor regulation, could be due to firms being reluctant to innovate due to

the burden of red tape. For example, the slower growth of Southern European countries and

parts of Latin America have often been blamed on onerous labor laws.1

Identifying the innovation effects of labor regulation is challenging. The OECD,World Bank,

IMF and other agencies have developed various indices of the importance of these regulations,

based on examination of laws and surveys of managers. These indices are then often included

in econometric models and are sometimes found to be significant. Unfortunately, these macro

indices of labor law are correlated with many other unobservable factors that are hard to

convincingly control for.2 To address this issue, we exploit the fact that many regulations are

size contingent and only apply when a firm gets sufficiently large. In particular, the burden

of French labor legislation substantially increases when firms employ 50 or more workers. For

example, such firms must create a works council with a minimum budget of 0.3% of total

payroll, establish a health and safety committee, appoint a union representative and so on (see

Appendix A for more institutional details). Several authors have found that these regulations

have an important effect on the size of firms. Indeed, unlike the US firm size distribution,

for example, in France, there is a clear bulge in the number of firms that are just below this

regulatory threshold.3

Existing models that seek to rationalize these patterns have not usually considered how

this regulation could affect innovation, as technology has been assumed exogenous. But when

firms are choosing whether or not to invest in innovation, regulations are also likely to matter.

Intuitively, firms may invest less in R&D as there is a very high cost of growing if the firm

1See for example, Gust and Marquez (2004); Bentolila and Bertola (1990), Bassanini et al. (2009), Schivardi
and Schmitz (2020).

2Furthermore, it may be that the more innovative countries are less likely to adopt such regulations (e.g.
Saint-Paul, 2002).

3See Garicano et al. (2016); Gourio and Roys (2014); Ceci-Renaud and Chevalier (2011); and Smagghue (2020).
Often, it is hard to see such discontinuities in the size distribution at regulation thresholds (e.g. Hsieh and
Olken, 2014 and Amirapu and Gechter, 2020). A reason for the greater visibility in France is because the laws
are more strictly enforced through large numbers of bureaucratic enforcers and strong trade unions.
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crosses the regulatory threshold. In the first part of the paper we formalize this intuition

using a simple version of the Klette and Kortum (2004) model of growth and firm dynamics,

with discrete time and two-period lived individuals (but potentially infinitely lived firms). Our

model delivers a number of predictions regarding the shape of the equilibrium relationship

between innovation and firm size and the overall firm size distribution. In particular we obtain

the intuitive prediction that the regulatory threshold discourages innovation most strongly for

firms just below the threshold, although it also discourages and shallows the innovation-size

gradient for all firms larger than the threshold. This is because the growth benefits of innovation

are lower due to the implicit regulatory tax.

We use the discontinuous increase in cost at the regulatory threshold to test the theory

in two ways when taking it to our rich panel data on the population of French firms. First,

we investigate non-parametrically how innovation changes with firm size. As expected there

is a sharp fall in the fraction of innovative firms just to the left of the regulatory threshold,

an “innovation valley” that is suggestive of a chilling effect of the regulation on the desire to

grow. Moreover, there is a flattening of the innovation-size relationship to the right of the

threshold, consistent with a greater tax on growth. Although the cross-sectional evidence is

suggestive, there could be many other reasons why firms are heterogeneous near the regulatory

threshold, so we turn to a second and stronger test by exploiting the panel dimension of our

data. Specifically, based on a wide class of models that predict that an increase in market

size should have a positive effect on innovation (e.g. Acemoglu and Linn, 2004), we analyze

the heterogeneous response of firms with different sizes to exogenous demand shocks. We use

a shock based measure based on changes in growth in export product markets (disaggregated

HS6 products by country destination) interacted with a firm’s initial distribution of exports

across these export markets (see Hummels et al., 2014 or Mayer et al., 2016). We first show

that these positive market size shocks significantly raise innovative activity. We then examine

the heterogeneity in firm responsiveness to these demand shocks depending on (lagged) firm

size. We find a sharp reduction in firms’ innovation response to the shock for firms with size

just below the regulatory threshold. Consistent with intuition and our simple model, firms

appear reluctant to take advantage of exogenous market growth through innovating when they

will be subject to a wave of labor regulation.

Having established that the qualitative implications of the model are consistent with the

data, we use the structure of our model (and empirical moments of the data) to quantitatively

estimate the impact of the regulation on aggregate innovation and welfare. Our baseline esti-

mates suggest that the regulation is equivalent to a tax on profit of about 2.6% that reduces
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aggregate innovation by around 5.8% (equivalent to cutting the annual growth rate from 1.7%

to 1.6%) and reduces welfare by at least 2.3% in consumption equivalent terms. This is partly

through misallocation from lowering entry and shifting the size distribution downwards, but

the vast majority of this aggregate impact is through lower innovation per firm once they reach

a certain size. This implies that the existing structural static analyses of the output loss have

significantly underestimated the cost of the regulation.

A caveat to our welfare conclusions arises when we generalize our model to allow firms to

invest in a mixture of radical and incremental innovation. We find that the regulation deters

incremental R&D, but if a firm is going to innovate it will try to “swing for the fence” to avoid

being only slightly to the right of the threshold. Measuring radical innovation by either future

citations or a machine learning approach based on novelty in the patent text, we find that

the negative effects of regulations are confined to incremental patents. Similarly, we find that

regulation biases innovation towards automative labor-saving patents.

Related literature

Our paper relates to several strands of literature. More closely related to our analysis are

papers that look at the effects of labor laws regulations on innovation. In Acharya et al.

(2013a) higher firing costs reduce the risk that firms would use the threat of dismissal to hold

their employees’ innovative investments up. They find evidence in favor of this using macro time

series variation on Employment Protection Law (EPL) for four OECD countries. Acharya et

al. (2013b) also finds positive effects using staggered roll out of employment protection across

US states.4 Griffith and Macartney (2014) use multinational firms patenting activity across

subsidiaries located in different countries with various levels of EPL.5 Using this cross-sectional

identification, they find that radical innovation was negatively affected by EPL, but incremental

innovations were not.6 By contrast, Alesina et al. (2018) find that less regulated countries have

larger high-tech sectors. All of these papers use macro (or at best, state-level) variation whereas

we focus on cross-firm variation. Garcia-Vega et al. (2019) analyze a reform that relaxed a size

contingent labor regulation in Spain and find an increase in innovation. Our empirical results

4This is the same empirical variation used by Autor et al. (2007) who actually found falls in TFP and employment
from EPL. And Bena et al. (2020) finds a positive impact on process innovation using the same design.

5See also Cette et al. (2016) who document a negative effect of EPL on capital intensity, R&D expenditures
and hiring of high skill workers. More generally, Porter and Van der Linde (1995) argue that some regulations,
such as those to protect the environment, can have positive effects on innovation.

6Note that this is the opposite of what we find using our within-country identification. Labor regulation
discourages low-value innovation, but has no impact on high-value innovation.
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are consistent with this, but we go beyond the analysis in this paper by developing a model of

labor regulation and innovation with endogenous firm size distribution, that is matched with

the data to obtain structural parameters, enabling us to perform aggregate counterfactuals.

Second, several structural papers look at the effects of labor regulations on employment

and welfare, in particular Braguinsky et al. (2011) on Portugal, Gourio and Roys (2014) and

Garicano et al. (2016) on France. However, these papers do not allow for endogenous innova-

tion, nor try to quantify the welfare changes arising form such dynamic considerations. More

generally, there is a large literature focusing on how various kinds of distortions can affect

aggregate productivity through the resulting misallocation of resources away from more pro-

ductive firms and towards less productive firms. As Restuccia and Rogerson (2008) and Parente

and Prescott (2000) have argued, these distortions imply that more efficient firms produce too

little and employ too few workers. Hsieh and Klenow (2009) show that the resulting misallo-

cation accounts for a significant fraction of the differences in aggregate productivity between

the US, China and India and Bartelsman et al. (2013) confirm this finding using micro data

from OECD countries.7 Boedo and Mukoyama (2012) and Da-Rocha et al. (2019) have shown

firing costs hinder job reallocation and reduce allocative efficiency and aggregate productivity.

The additional effect of barriers to reallocation when productivity is endogenous is also the

focus of Gabler and Poschke (2013), Da-Rocha et al. (2019), and Bento and Restuccia (2017).8

Mukoyama and Osotimehin (2019) is perhaps the most closely related paper to ours and finds a

negative growth effect of the firing tax equivalent to a 5% labor tax (in the entrant-innovation

model in the US) in a calibrated aggregate model with endogenous innovation. Unlike our

approach, their paper does not have closed form solutions for the policy rules with taxes so has

to rely on simulation methods. We contribute to this part of the literature by introducing an

explicit source of distortion, namely the regulatory firm size threshold that goes beyond just

firing costs, and by looking at how this regulation interacts with exogenous market size shocks

using firm-level micro-econometric analysis.

Third, a body of work looks at the effects of EPL on the adoption of new technologies

(e.g. Manera and Uccioli, 2020), especially information and communication technology. For

7In development economics many scholars have pointed to the “missing middle” , i.e. a preponderance of
very small firms in poorer countries compared to richer countries (see Banerjee and Duflo, 2005, or Jones,
2011). Besley and Burgess (2000) suggest that heavy labor regulation in India is a reason why the formal
manufacturing sector is much smaller in some Indian states compared to others.

8Samaniego (2006) highlights the effects of firing costs in a model with productivity growth. He considers,
however, only exogenous productivity growth and studies how the effects of firing costs differ across industries.
Poschke (2009) is one of the few papers that study the effects of firing costs on aggregate productivity growth.
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example, Bartelsman et al. (2016) argue that risky technologies require frequent adjustments

of the workforce. By increasing the costs of such adjustments, EPL will deter technology

adoption. Similarly Samaniego (2006) finds that EPL slows diffusion and Saint-Paul (2002)

finds a smaller share of the economy in risky sectors when EPL are strong. Our approach is

different as it focuses on technological innovation at the frontier rather than the adoption of

existing technologies. Unlike emerging economies, advanced countries such as the US or France

cannot rely solely on catch-up diffusion for long-run sustainable growth.

Fourth, our paper is related to public finance as we model regulation as an implicit tax,

and a number of papers have examined how personal and business taxes affect innovation (see

Akcigit and Stantcheva, 2020, for a recent survey). Like us, other tax papers use nonlinearities

to identify behavioral parameters (e.g. Saez, 2010; Chetty et al., 2011; Kleven and Waseem,

2013; Kaplow, 2013 and Aghion et al., 2019b) and we contribute to this literature by bringing

labor regulations, innovation and patenting into the picture.9

Fifth, there is an older literature looking at one form of labor regulation - union power

- on innovation.10 These papers found ambiguous theoretical and empirical effects . Finally,

the heterogeneous effects of demand shocks on types of innovation is also a theme in the

literature of the effects of the business cycle on innovation (Schumpeter, 1939; Shleifer, 1986;

Barlevy, 2007). Recent work by Manso et al. (2019) suggests that large positive demand

shocks (booms) generate more R&D, but this tends to ”exploitative” (incremental) rather than

“exploratory” (radical) innovation. We find that the impact of regulation following a demand

shock discourages incremental (but not radical) innovation.

The structure of the paper is as follows. Section 2 develops a simple model of how inno-

vation can be affected by size-contingent regulation. Section 3 confronts the main qualitative

predictions of the model to the data, using both a non-parametric cross-sectional analysis and

a dynamic econometric analysis of the response to exogenous shocks. Section 4 uses the theory

and empirical moments (from both the static and dynamic analysis) to estimate the equilib-

rium effect of regulation on aggregate innovation and welfare. Section 5 presents a number of

theoretical and empirical extensions and robustness tests, most importantly allowing for radical

9This is important as Hopenhayn (2014) has argued that tax-driven reallocation distortions typically have only
second order welfare effects unless there is rank reversal. Changing innovation is potentially a way of generating
larger negative welfare effects that goes beyond static models.

10See Menezes-Filho et al. (1998) for a survey and evidence. The common view is that the risk of ex post hold-up
by unions reduces innovation incentives (Grout, 1984). But if employees need to make sunk investments there
could be hold up by firms (this is the intuition of the Acharya et al., 2013a,b papers).
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and incremental innovation. Section 6 concludes. In Online Appendices, we present institu-

tional details of the labor regulations (A), data details (B), further theoretical results (C) and

additional econometric exercises (D).

2 Theory

In this section, we present our basic theory built around a discrete time version of the Schum-

peterian growth model with firm dynamics by Klette and Kortum (2004) where we introduce

size contingent regulations. This enables us to analytically characterize firms’ innovation deci-

sions depending on their size and the regulation. We next solve for the steady state firm size

distribution incorporating both incumbent growth and entry/exit dynamics. Finally, we put

both elements together to characterize how economy wide innovation changes with the strin-

gency of the regulation. Throughout, we explore what the model implies for the steady state

joint distributions of innovation and employment as well as how firms should respond to the

exogenous demand shocks we will exploit in the empirical section.

2.1 A simplified Klette-Kortum model

We consider a simplified version of the two-period specification of Aghion et al. (2018b). We

show all results are theoretically and empirically robust to the longer lived owner model in the

extension of subsection 5.3. In the first period of her life, a firm owner decides how much to

invest in R&D. In the second period, she chooses labor inputs, produces and realizes profits. At

the end of the period, her offspring inherits the firm at its current size and a new cycle begins

again.11

We assume that individuals have intertemporal log preferences:

U =
∑
t>0

βt log(Ct), (1)

associated with a budget constraint:

wt + (1 + rt)at = at+1 + Ct,

where wt is the wage at time t, Ct is consumption, and at is an asset that yields an interest rate

rt. This immediately gives the Euler equation: β(1 + rt) = 1 + gt. We consider the economy

11We do not consider bequest motives, but the extension to longer living owners which we present in Section
5.3 implicitly encompasses this incentive.
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on a balanced growth path where final output y and consumption grow at a constant rate

which we denote by g, so that the Euler equation can be expressed as β = 1+g
1+r

, where β is the

discount factor and r is the steady-state level of interest rate. There is a continuous measure

L of production workers, and a mass 1 of intermediate firm owners every period. Each period

the final good is produced competitively using a combination of intermediate goods according

to the production function:

ln y =

∫ 1

0

ln(yj)dj,

where yj is the quantity produced of intermediate j. Intermediates are produced monopo-

listically by the firm who innovated last within that product line j, according to the linear

technology yj = Ajlj where Aj is the product-line-specific labor productivity and lj is the labor

employed for production. This implies that the marginal cost of production in j is simply w/Aj.

A firm is defined as a collection of production units (or product lines/varieties) and expands in

product space through successful innovation.

To innovate, an intermediate firm i combines its existing knowledge stock that it accumu-

lated over time (ni, the number of varieties it operates in) with its amount of R&D spending

(Ri) according to the following Cobb-Douglas knowledge production function:

Zi =

(
Ri

ζy

) 1
η

n
1− 1

η

i , (2)

where Zi is the Poisson innovation flow rate, η is a concavity parameter and ζ is a scale

parameter. This generates the R&D cost of innovation: C(zi, ni) = ζniz
η
i y, where zi ≡ Zi/ni

is simply defined as the innovation intensity of the firm.

When a firm is successful in its current R&D investment, it innovates over a randomly

drawn product line j′ ∈ [0, 1]. Then, the productivity in line j′ increases from Aj′ to Aj′γ

and the firm becomes the new monopoly producer in line j′ and thereby increases the number

of its production lines to ni + 1. At the same time, each of its ni current production lines

is subject to the risk of being replaced by new entrants and other incumbents (a creative

destruction probability that we denote x). Thus the number of production units of a firm of

size ni increases to ni + 1 with probability Zi = nizi and decreases to n − 1 with probability

nix. A firm that loses all of its product lines exits the economy.

Because of the Cobb-Douglas aggregator, the final good producer spends the same amount

y on each variety j. As a result, final good production function generates a unit elastic demand
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with respect to each variety: yj = y/pj. Combined with the fact that firms in a single product

line compete a la Bertrand, this implies that a monopolist with marginal cost w/Aj will follow

limit pricing by setting its price equal to the marginal cost of the previous innovator pj =

γw/Aj.12

The resulting equilibrium quantity and profit in product line j are:

yj =
Ajy

γw
and Πj =

(
1− 1

γ

)
y,

and the demand for production workers in each line is given by y/(γw). Firm i’s employment

is then equal to its total manufacturing labor, aggregating over all ni lines where i is active,

Ni. Namely:

li =

∫
j∈Ni

y

wγ
dj =

yni
wγ

=
ni
ωγ

, (3)

where ω = w/y is the output-adjusted wage rate, which is invariant on a steady state growth

path. Importantly for us, a firm’s employment is strictly proportional to its number of lines ni.

2.2 Regulatory threshold and innovation

We model the regulation by assuming that a tax on profit must be incurred by firms with a labor

force that is greater than a given threshold l̄ (50 in our application in France).13 We suppose

that l̄ is sufficiently large that entrants do not incur this tax upon entry. There corresponds a

cutoff number of varieties n̄ = l̄ωγ to the employment threshold l̄, such that if ni > n̄ profit is

taxed at some additional positive marginal rate τ whereas the firm avoids this additional tax

if ni ≤ n̄.14 Because firm owners live only for two periods, they can only expand the number

of varieties of the firm by one extra unit during their lifetime. Hence, all the firms that start

12We implicitly assume a competitive fringe of firms with access to the previous technology in each sector; and
that entering the market involves an ε entry cost. Then, as long as the new innovator sets a price which is
less than the limit price equal to the marginal cost of fringe firms, no fringe firm will pay the entry cost. On
the other hand, if the new innovator sets a price which is higher than the limit price, then she risks losing the
market to a fringe firm.

13See Appendix A.3 for a discussion of alternative ways of modelling the regulation, such as including a fixed
as well as a variable cost.

14Unlike in Aghion et al. (2014) where the innovation cost is modelled as a labor cost, here innovation uses the
final good y as an input. With labor as R&D input, total employment is li = ni

ωγ +ζniz
η
i , and thus varies with

innovation rather than being proportional to ni. We consider this extension in subsection 5.4 where R&D is
labor. Increased R&D will then affect the equilibrium wage.
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out with size ni < n̄− 1 or ni ≥ n̄ act exactly as if the regulatory threshold did not exist. For

firms that start with n = n̄− 1, there is an additional cost to expanding by one extra variety.

The owner of a n-size firm therefore maximizes their expected net present value over its

innovation intensity z ≥ 0:15

max
z≥0

{
nπ(n)y − ζnzηy +

1

1 + r
E [n′π(n′)y′]

}
,

where y′ and n′ denotes period 2’s values for y and ni and r is the interest rate. Dividing

by y/n and using the fact that β = (1 + g)/(1 + r), the above maximization problem can be

re-expressed as:

max
z≥0
{π(n)(1 + β)− ζzη + βz[(n+ 1)π(n+ 1)− nπ(n)] + βx[(n− 1)π(n− 1)− nπ(n)]} ,

where π(n) =
(

1− 1
γ

)
if n < n̄ and π(n) =

(
1− 1

γ

)
(1− τ) if n ≥ n̄.

The intuition behind this equation is straightforward. The first term, π(n)(1+β) represents

the gross flow profits per line today and the second term is the cost of research, ζzη. The third

term, βz[(n+1)π(n+1)−nπ(n)], is the (discounted) incremental profit gain tomorrow multiplied

by the probability the firm innovates and thereby operates one more product line. The final

term, βx[(n−1)π(n−1)−nπ(n)] is the (discounted) incremental profits loss per line tomorrow

if the firm gets replaced in one of its product lines by a rival firm.

Whenever positive, the optimal innovation intensity is therefore given by:

z(n) =



(
β(γ − 1)

γζη

) 1
η−1

if n < n̄− 1(
β(γ − 1)(1− τ n̄)

γζη

) 1
η−1

if n = n̄− 1(
β(γ − 1)(1− τ)

γζη

) 1
η−1

if n ≥ n̄

(4)

Much of the core economics of the paper can be seen in equation (4). Innovation intensity,

z(n), is highest for small firms a long way below the threshold (first row on right hand side of

(4)), second highest for large firms over the threshold (third row) and lowest for middle sized

firms just to the left of the threshold (middle row).

15Since we have shown that innovation per line is the same for firms of a given size, we drop the firm i subscripts
from here onwards for notational simplicity unless needed.
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What we observe in the data is the firm’s total innovation (measured using patents) which

is Z(n) = nz(n). Since employment is directly proportional to the number of product lines,

this implies that the slope of the innovation-size relationship will depend upon whether the

firm lies above or below the regulatory threshold. Typically, the upward sloping relationship

between innovation and firm size should be steeper for small firms than for large firms and

should fall and flatten discontinuously at the threshold. Furthermore, the ratio of the slopes of

the innovation-size relationship for large versus small firms, relates directly to the underlying

parameters of the model, and in particular upon the regulatory tax.16 We will use this fact to

empirically identify the magnitude of the regulatory tax, which we then use in our estimates of

the aggregate impact of the regulation on innovation.

2.3 Regulatory threshold and firm size distribution

We now characterize the steady state distribution of firm size and look at how this distribution

is affected by the regulatory tax. Let µ(n) be the share of firms with n lines. We first have a

steady state condition saying that the number of exiting firms equals the number of entering

firms in steady-state, namely: µ(1)x = ze, where ze is the innovation intensity of entrants,

which is the same as the probability of entry. Since x is the rate of creative destruction for any

line, the number of exiting firms is therefore given by µ(1)x.

For all n > 1, the steady state condition is that outflows from being a size n firm is equal

to the inflows into becoming a size n firm. This can be expressed as:

nµ(n) (z(n) + x) = µ(n− 1)z(n− 1)(n− 1) + µ(n+ 1)x(n+ 1) (5)

We know z(n) for each n from equation (4) but we need to find the two remaining endogenous

objects ze and x. We close the model by considering the following two equations. First, the

definition of µ gives
∑∞

n=1 µ(n) = 1. Second, the rate of creative destruction on each line is equal

to the rate of creative destruction by an entrant plus the weighted sum of the flow probabilities

z(n) of being displaced by an incumbent of size n, namely:

x = ze +
∞∑
n=1

µ(n)nz(n)

16The ratio of the innovation intensity of the first to third row in (4) is (1− τ)1/(1−η). This can be empirically
recovered from the relative slopes of the patents to size relationship before and after the regulatory threshold
(see Section 4).
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2.4 Solving the model

In Appendix C we detail how we solve the model numerically. The unknowns are µ(n) and

z(n) for all values of n as well as x and ze, and the equations are those derived above. To

illustrate the effects, we first show firm-level innovation Z(n) = z(n)n as a function of the

firm’s employment size l = n/(ωγ) in Figure 1. We see that firm-level innovation increases

linearly with firm size until the firm nears the regulatory threshold, at which point there is

a sharp innovation valley. After this, innovation again increases with firm size once the firm

passes the threshold.

Figure 1: Total Innovation by firms of different employment sizes

0

.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100
Employment

Innovation

Notes: This is the total amount of innovation (Z(n)) by firms of different sizes (employment, l = n/(γω)) by aggregating innovation
intensities z(n) across all its product lines (n) according to our baseline theoretical model. The y-axis is the corresponding value of
total innovation Z. We use our baseline calibration values of τ = 0.026, γ = 1.3, η = 1.5, β/ζ = 1.66 and ω = 0.22 for illustrative
purposes (see section 4 for a discussion).

In Figure 2 we plot the equilibrium firm size distribution, i.e. the value of the density µ(n)

for each level of firm employment. Panel (a) uses a linear scale, but because the distribution is

nonlinear we plot it on a log-log scale in Panel (b) where it is broadly log-linear (the well-know

power law as documented by Axtell, 2001 and many others). Note the departure from the

power law around the regulatory threshold. The distribution bulges a bit as firms approach

50 and then discontinuously drops before falling again once firms pass the threshold. Unlike

the innovation-size discontinuity, this “broken power law” in the French size distribution has

been noted before in the literature (e.g. Ceci-Renaud and Chevalier, 2011), but the shape has
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proven difficult to fully rationalize in a model without endogenous innovation.17

Figure 2: Distribution of firm size (µ(n))

(a) Linear scale
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Notes: These figures plot the density of firm employment, µ(n) according to our baseline theoretical model. Panel (a) uses a
linear scale and Panel (b) uses a log-log scale. The calibration values are the same as Figure 1.

Although we took particular values of the parameters for illustrative purposes in Figures

1 and 2, these patterns are the same for any value of the regulatory tax (τ).18 To see how

τ qualitatively impacts the innovation-firm size relationship and the firm size distribution, we

compare our results (solid blue) to an unregulated economy (i.e. τ = 0, dashed red) in Figures

3(a) and 3(b). Four points are worth emphasizing. First, as expected, we observe no innovation

valley when we remove the regulation Figures 3(a). Second, the level of innovation when τ > 0

is lower than when τ = 0 even for large firms to the right of the threshold. This stems from the

fact that the tax reduces innovation intensity even for these firms. Third, the total innovation

gap between the regulated and unregulated economy gets larger as firm size increases because

bigger firms have more product lines and the innovation intensity of each line is lower than

that of small firms. This can be seen from (4), which showed that the slope of the line after

the threshold is flatter than that for small firms with n < n̄ − 1. Fourth, in terms of the size

distribution in Figure 3(b), we see that moving from τ = 0 to τ > 0 increases the share of

firms that are below 50 employees and decreases the fraction of large firms. The regulation also

generates a larger mass of firms just below the threshold as these firms choose not to grow in

order to avoid getting hit by the regulatory tax.

We now put together all the effects of regulation together to compute the overall impact of

17In particular, although a purely static model like Lucas (1978) with regulation can rationalize a discontinuity
at 50 and a downwards shift of the line, there should be no firms of size 50 and no bulge at 48 (firms just fully
shift to avoid the regulation and spike at 49). Garicano et al. (2016) had to introduce ad hoc measurement
error to rationalize the smoother bulge we see in the data around 45-50. This bulge (and the positive mass
at 50) emerges more naturally with our dynamic endogenous innovation model.

18From equation (4), we know that we can take τ to lie anywhere between 0 and 1/n̄ in order to have an interior
solution for z(n̄).
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Figure 3: Innovation and firm size distribution, with and without regulations
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Notes: The blue solid line in this Figure reproduces Figure 1 in Panel (a) and Figure 2(b) in Panel (b). The orange dashed line
is for an unregulated economy with all the same parameters in the regulated economy except τ = 0.

regulation on the economy-wide innovation, Z(τ) =
∑∞

i=1 µ(i)z(i)i + ze. Figure 4 shows the

fall in total innovation in the regulated economy compared to the counterfactual unregulated

economy (where we normalize aggregate innovation at 1). The magnitude of the fall in inno-

vation is clearly increasing in the intensity of the regulatory tax, τ . For example, there is a

reduction in total innovation of 4% if τ = 0.02 instead of zero. This fall in aggregate innovation

comes from three sources. First, for a given firm size, the tax increase has a strong negative

effect on innovation for firms just to the left of the threshold, and a smaller negative effect on

innovation for all firms to the right of the threshold. Second, the tax increase reduces the mass

of large firms, which are also the firms that do more innovation. Third, since lower incumbent

innovation means less exit, this will mean there is less entry in steady state. When we use

our data to quantify the model, we will decompose the fall of aggregate innovation into these

different elements and show that the first element (incumbent innovation) dominates.

2.5 Effect of a demand shock

In the dynamic analysis below, we will examine the impact of market size shocks on innovation.

In the theory, this can be seen as an exogenous idiosyncratic shock on the demand for one given

product j.19 Let us denote this shock by ε̃j which shifts the value of yj for a given product j

to yj(1 + ε̃j). The firm producing j anticipates that a shock will occur in next period but does

not know in which product. As a result, the firm i expects a shock of magnitude εi = ε̃j/ni in

the demand for each of its products.

19A common shock to all firms can be modeled as an increase in y. This will not have a differential effect on
innovation in firms of different size, as all variables in our model are expressed in units of final output.
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Figure 4: Aggregate economy-wide innovation as a function of the intensity of regulation
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Notes: We simulate the amount of aggregate innovation in different economies relative to an unregulated benchmark economy
as the intensity of regulation changes as indicated by the magnitude of the implicit tax (τ). For example, if τ = 2%, aggregate
innovation is about 0.96 relative to the benchmark, i.e. 4% lower. Parameter values are the same in regulated and regulated
economies (as in notes to Figure 1) except we vary the value of τ .

Given the expected demand shock, future expected profit is shifted by (1 + εi). Hence,

holding innovation fixed, there will be a positive impact of εi on firm size in the short run, and

this impact will be smaller for firms just to the left of the threshold as these firms will not want

to cross the threshold and bear the extra regulatory cost.

What is the effect of the impact of the shock on firm-level innovation? Equation (4) is

modified by having the shock factor (1 + εi)
1

η−1 pre-multiplying each term of the equation.

Formally, the value of Z becomes:

Z(n, ε) =

(
βπ(n)

ζη

) 1
η−1

ωγl(n)(1 + ε)
1

η−1

where l(n) = n/(ωγ) is the level of employment without a shock. Hence, a shock ε implies

a change in Z such that:

∆Z(n, ε) ≡ Z(n, ε)− Z(n, 0) =

(
βπ(n)

ζη

) 1
η−1

ωγl(n)
[
(1 + ε)

1
η−1 − 1

]
(6)

The impact of the shock on innovation intensity will be largest for small firms far below the

regulatory threshold. The second biggest effect will be on innovation in large firms well to the

right of the threshold. And the smallest effect of the demand shock will be on firms just below
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the threshold. The overall increase in a firm’s innovation (number of lines multiplied by the

innovation intensity per line) in response to the shock will be greater for large firms as they

have more product lines. However, even controlling for firm size (as we will do in the empirical

work), and so concentrating on the marginal effect of the shock on innovation intensity, the

model predicts that the effect of a market size shock on innovation should be significantly lower

for firms just to the left of the threshold because:

∂2∆Z

∂ε∂l
=

(
βπ(n)

ζη

) 1
η−1 ωγ

η − 1
(1 + ε)

2−η
η−1 ,

which continues to depend upon π(n), the profit per line of a firm of size n.

Finally, the shock will affect the firm size distribution. If the shock is transitory, a shocked

firm will grow larger for a short period of time before the economy will return to the initial

steady state distribution. A permanent idiosyncratic shock will translate into a permanent

change to the overall steady state size distribution. The dynamic empirical design is not well

suited to analyzing the impact on the steady state firm size distribution as the Bartik-style

shock is defined only for incumbents. Hence, we focus on entry effects only in the equilibrium

calibration.

3 Empirics

We have combined multiple administrative datasets on firm employment size, innovation and

trade. This will enable us to examine the predictions from the theory both statically (e.g. cross

sectional distribution of firm innovation by firm size) and dynamically - i.e. how firm innovation

responds heterogeneously across the size distribution to the same market size shock due to the

regulation.

3.1 Data

Our main data comes from the French tax authorities, which consistently collect information

on the balance sheets of all French firms on a yearly basis from 1994 to 2007 (“FICUS” ). We

restrict attention to non-government businesses and take patenting information from Lequien et

al. (2017). This matches the PATSTAT (Spring 2016) database to FICUS using an algorithm,

which matches the name of the assignee - the holder of the IP rights - on the patent front page

to the firm whose name and address is closest to that of the patent holder. The accuracy of

the algorithm is worse for firms that are below 10 employees so we focus on firms with more
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than 10 employees. Since we are interested in the effects of a regulation that affects firms as

they pass the 50 employees threshold, we further restrict attention to firms with between 10

and 100 workers in 1994 (or the first year those firms appear in the data).20 More details about

the data source are given in Appendix B.

Our main sample consists of 182,348 distinct firms and 1.66 million observations. We report

some basic descriptive statistics in Table 1 for all firms in all parts of the market economy in

Panel A (25% are in manufacturing) and for the sub-sample of firms who filed at least patent

between 1994-2007 in Panel B. We can see that on average, firms file 0.009 patents per year

and, conditional on being an innovator, 0.28 per year. As is well known, the distribution of

innovation is highly skewed, with a small number of firms owning a large share of the patents in

our sample. However, since we do not include the largest French firms in our data, the skewness

is less pronounced.

Table 1: Descriptive statistics

Panel A: All firms
Mean p25 p50 p75 p90 p99

Employment 29 12 19 35 56 151
Sales 5,434 958 2,032 4,756 10,632 45,224
Patents 0.0090 0 0 0 0 0
Innovative 0.031 0 0 0 0 1
Manufacturing 0.25 0 0 1 1 1

Panel B: Subset of innovative firms
Mean p25 p50 p75 p90 p99

Employment 52 20 35 62 98 307
Sales 11,795 2,500 5,208 10,492 21,326 115,145
Patents 0.283 0 0 0 1 4
Manufacturing 0.68 0 1 1 1 1

Notes: These are descriptive statistics on our data. Panel A is all firms and Panel B conditions
on firms who filed for at least one patent between 1994 and 2007 (“Innovative” firms). We
restrict to firms who have between 10 to 100 employees in 1994 (or the first year they enter the
sample). There are 182,347 firms and 1,658,762 observations in Panel A and 4,084 firms and
51,192 observations in Panel B.

20We show robustness of the results to changing this bandwidth (see in particular Table D2 in Appendix D).
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3.2 Nonparametric evidence: Static Analysis

Figure 5 shows, for each employment size bin, the fraction of firms within that bin with at least

one patent (see also Panel A of Table 1). We see an almost linear relationship between firm

size and the fraction of innovative firms. That larger firms are more likely to patent is in line

with the analysis in Akcigit and Kerr (2018). The prediction of a linear relationship between

firm size and innovation is consistent with our equation (4).

For firms just below the 50 employee threshold, the share of innovative firms suddenly de-

creases in an innovation valley. This is what the model predicts. It is also noteworthy that the

slope of the innovation-size relationship is flatter for larger firms to the right of the threshold

than for smaller firms below the threshold. This again is consistent with our theoretical predic-

tions. Note that in the theory, the ratio between the slopes of the innovation-size relationship

between a large and a small firm, varies with the tax (τ) and with the concavity of the R&D

cost function (η). We will exploit this variation to help recover the tax parameter later in this

section.21

The innovation outcome measure is taken over the whole sample period from 1994 to 2007,

but the same patterns emerge if we consider alternative definitions of an innovative firm (see

Appendix Figure D2). The predictions over the size distribution also broadly match up to the

data, but since these are relatively well known we relegate discussion to Appendix D.

3.3 Dynamic analysis

3.3.1 Estimation equation

Recall that the theoretical response of innovation to demand shock in the model is given by (6).

As discussed in Section 2.5, the first derivative of ∆Z with respect to the shock will depends

upon the value of l, and this value will depend on whether the firm is close to the threshold,

far below it, or far above it. The second derivative of ∆Z with respect to employment and the

shock will be significantly lower for firms located in the innovation valley.

21A concern with this approach is that the flattening of the innovation-size gradient could occur for non-
regulatory reasons. For example, Akcigit and Kerr (2018) argue that larger firms invest in more ‘internal’
R&D to protect their market share that generates less knowledge than the ‘external’ R&D of smaller firms.
We tackle this issue in two ways. First, we will look at the aggregate innovation losses using the dynamic
moments derived in the next section that analyzes the responsiveness to shocks rather than just the cross
sectional moment looking at levels in Figure 5. Second, we confirmed that the flattening of the gradient in
Figure 5 does not seem to occur in micro-datasets from the UK and US (countries which do not have the
large increase in labor regulations for firms with 50 or more employees).
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Figure 5: Share of innovative firms at different levels of employment

0

.02

.04

.06

.08

.1

10 20 30 40 50 60 70 80 90 100

Employment

Share of Innovative Firms

Notes: Share of innovative firms (i.e. with at least one priority patent) plotted against their employment. All observations are
pooled together. Employment bins have been aggregated so as to include at least 10,000 firms. The sample is based on all firms
with initial employment between 10 and 100 (182,347 firms and 1,658,762 observations, see Panel A of Table 1).

We take this into account in our empirical exploration of the effect of a demand shock and

turn to a parametric investigation of how firms respond to market size shocks by considering

the following regression:

∆̃Yi,t = b1l
?
i,t−2 + b2[∆Si,t−2 × P(log(li,t−2))] + b3[∆Si,t−2 × l?i,t−2]

+φP(log(li,t−2)) + ψs(i,t),t + εi,t (7)

where Yi,t is a measure of innovation (based on patents) that is related to Z in the theory and

li,t a measure of employment. ∆Si,t−2 is an exogenous demand shock to market size that should

trigger an increase of innovation in a wide class of models (and in our own, is related to the

demand shock ε) and ψs(i,t),t is a set of industry-year dummies where s(i, t) denotes the main

sector of activity of firm i at time t.

Our main focus is to see whether there is a discouraging effect of the regulation on innovation.

For this reason, we include l?i,t in the model, a binary variable that takes value 1 if firm i is

close to, but below, the regulatory threshold at time t. Our baseline measure of l?i,t is a dummy

for a firm having employment between 45 and 49 employees. In this specification, in order to

capture the heterogeneous response across the different values of employment predicted by the

model, we use a flexible functional form and include P(log(li,t−2)) a polynomial in log(li,t−2).

Finally, εi,t is an error term. We use a two year lag of the shock since there is likely to be

some delay between the demand shock, the increase in research effort and the filing of a patent

application.
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Finally, for the dependent variable, we need a data equivalent to ∆Z. We proxy Z as the

log of the number of patents, and measure its growth by:22

∆̃Yi,t =

{ Yt−Yt−1

Yt+Yt−1
if Yt + Yt−1 > 0

0 otherwise

The key coefficient capturing the discouragement effect of the threshold in equation (7) is

b3, which we expect to be negative. Larger firms will likely respond more to a given shock, but

this relationship should break down for the firms just to the left of the threshold as firms are

reluctant to cross the threshold in response to an expansion in market size.

3.3.2 Market Size Shocks

To construct the innovation shifters ∆Si,t−2, we rely on international trade data to build export

demand shocks following Hummels et al. (2014) and Mayer et al. (2016). In short, we look at

how foreign demand in a given product by destination cell changes over time by measuring the

change in imports from all countries (except France) into that product-country cell. We then

build a product-destination portfolio for each French firm i, and weight the foreign demands

for each product by the relative importance of that product for firm i. More specifically, firm

i’s export demand shock at date t is defined as:

∆Si,t = σi,t0
∑

s,c∈Ω(i,t0)

ωi,s,c,t0∆̃Is,c,t, (8)

where Ω(i, t0) is the set of products and destinations associated with positive export quan-

tities by firm i in the first year t0 in which we observe that firm in the customs data23 and

ωi,s,c,t0 is the relative importance of product s and country destination c for firm i at t0, defined

as firm i’s exports of product s to country c divided by total exports of firm i in that year.

Is,c,t is country c’s demand for product s, defined as the sum of its imports of product s from

all countries except France and σi,t0 is the initial export intensity (export divided by sales) of

firm i. The basic idea behind the shock design is simply that a firm that was exporting, for

example, many cars to China in 2000, would have benefited disproportionately from the boom

22This is essentially the same as in Davis and Haltiwanger (1992) for employment dynamics except that we set
the variable equal to zero when a firm does not patent for two periods. The results are robust to considering
other types of growth rates such as using the Inverse Hyperbolic Sine (see the last three columns of Table D2
in Appendix D).

23French customs data are available from 1994. So we use 1994 as the initial year, except for firms who enter
after 1994 for which we use the initial year they enter the sample.
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in Chinese consumption of cars at the start of the twenty-first century.24

We fix the weights at the firm level taking initial period t0 as the reference. This is done

in order to exclude any variation in the portfolio of products and countries that could be

endogenous. Our shock is therefore similar to a “Bartik”-type shift-share instrument. There

is an important recent literature (e.g. Goldsmith-Pinkham et al., 2020 and Adao et al., 2019)

which discusses inference and estimations with these designs. In particular, the sum of exposure

weights wf,j,s,t0 across (s, j)’s is not 1 (because of σi,t0 , except in the rare case of firms that do

not sale domestically) and varies across-firms. We follow Borusyak et al. (2018) who argue that

in such an “incomplete shift-share” case with panel data, it is important to control for this sum

and allow the coefficient to change with time.25

3.3.3 Testing the main prediction

To estimate equation (7), we need to make some further restrictions in our use of the dataset.

First, note that the market size shock ∆S is only defined for exporting firms, that is, firms that

appear at least once in the customs data from 1994 to 2007. Second, in order to increase the

accuracy of our shock measure, we restrict attention to the manufacturing sector. Not only is

a large fraction of patenting activity located in manufacturing, but these firms are also more

likely to take part in the production of the goods they export (see Mayer et al., 2016). Our

main regression sample is therefore composed of 20,620 firms and 142,474 observations.

Table 2 presents the results from estimating equation (7), i.e. from regressing the growth rate

of firm patents on the lagged market size shock. Column (1) shows that firms facing a positive

24We clean Is,c,t to remove extreme values due to trade disruption because of wars, for example. To do so, we
follow Aghion et al. (2018b) and look at the within product-country standard deviation of ∆̃Is,c,t, winsorizing
values of ∆̃Is,c,t that are above the 90% percentile. This mostly concerns pairs of country-product where
French firms do not export and this impacts less than 0.15% of total observations. We then trim the shock
∆Si,t at the 0.5 level. This procedure has has no material impact on our results (for example, see Table D2,
column 10 in the Appendix).

25We have conducted many more extensive diagnostic tests showing the validity of this source of exogenous
variation to market size. Borusyak et al. (2018) underline two assumptions underlying the validity of a shift-
share instrument: quasi-randomness of shock assignment and a high number of uncorrelated shocks. The first
assumption is likely to hold in our setting due to the inclusion of narrow industry by year dummies in our
regressions. The assumption is essentially that within industry, the expected value of ∆̃I is the same for all
firms conditional on the country-product-level unobservables. The second assumption is warranted by the fact
that we consider a very large number of shocks across many countries and products. In one robustness test,
we follow the recommendations of Borusyak et al. (2018) and check that our main results are robust to using
alternative shocks in which ∆̃I has been residualized on different combinations of year, country, product fixed
effects. Moreover, note that our panel data structure allows us to include a firm fixed effect as an additional
robustness check which further controls for potential correlations between permanent firm characteristics and
future realizations of the shocks. See Aghion et al. (2018a) for more diagnostics.
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Table 2: Main regression results

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Shockt−2 × L?t−2 -5.018** -6.135*** -5.555** -6.560** -3.682** -6.057**
(2.229) (2.195) (2.264) (2.758) (1.778) (2.350)

L?t−2 0.043 0.077 0.069 -0.011 0.081 0.068
(0.104) (0.129) (0.107) (0.185) (0.054) (0.109)

Shockt−2 1.104** -4.476** 7.397 1.418** -5.293** 6.130 -5.547** -3.292** -5.214**
(0.488) (2.034) (6.364) (0.512) (2.483) (6.258) (2.396) (1.250) (2.059)

log(L)t−2 -0.049 -0.017 -0.057 -0.026 -0.111 -0.036 -0.057
(0.038) (0.162) (0.036) (0.162) (0.189) (0.024) (0.034)

Shockt−2 × log(L)t−2 1.723** -6.061 2.025** -5.305 2.123** 1.209*** 1.994***
(0.642) (4.603) (0.816) (4.526) (0.807) (0.441) (0.667)

log(L)2
t−2 -0.005 -0.005

(0.029) (0.029)
Shockt−2 × log(L)2

t−2 1.097 1.175
(0.759) (0.749)

∆log(L)t−2 0.050
(0.225)

Fixed Effects
Sector×Year X X X X X X X X X
Firm X

Number Obs. 142,474 142,474 142,474 142,474 142,474 142,474 142,474 330,063 142,396
Notes: This contains OLS estimates of equation (7) on the manufacturing firms in Panel A of Table 1 who have exported at some point 1994-2007. Dependent
variable is the Davis and Haltiwanger (1992) growth rate in the number of priority patent applications between t − 1 and t. Column 1 only considers the direct
effect of the shock, taken at t − 2, column 2 uses a linear interaction with log(L) taken at t − 2 and column 3 considers a quadratic interaction. Columns 4, 5 and
6 do the same as columns 1, 2 and 3 respectively but also includes an interaction with L?, a dummy variable for having an employment size between 45 and 49
employees at t− 2. Column 7 replicates column 5 but adds firm fixed effects. Column 8 includes non-manufacturing firms and column 9 also controls for the growth
in log(employment) at t − 2. All models include a 2-digit NACE sector interacted with a year fixed effect and a time fixed effect interacted with the initial level of
export intensity. Estimation period: 1998-2007 . Standard errors are clustered at the 2-digit NACE sector level. ∗∗∗, ∗∗ and ∗ indicate p-value below 0.01, 0.05 and
0.1 respectively.

exogenous export shock are significantly more likely to increase their innovative activity. The

coefficient implies that a 10% increase in market size increases patents by about 1.1%. Column

(2) includes a control for the lagged level of log(employment) and also its interaction with the

shock. The interaction coefficient is positive and significant, indicating that there is a general

tendency for larger firms to respond more to the shock than smaller firms. Although it is not of

direct interest, this is what we should expect given our discussion in 2.5. Column (3) generalizes

this specification by adding in a quadratic term in lagged employment and its interaction with

the shock.

Column (4) of Table 2 returns to the simpler specification of column (1) and includes a

dummy for whether the firm’s employment is just below the regulatory threshold in the 45-49

employees range (defined as l?) at t−2, and the interaction of this dummy with the shock. Our

key coefficient is on this interaction term, and it is clearly negative and significant as our model

implies. This is one of our key results: innovation in firms just below the regulatory threshold

is significantly less likely to respond to positive demand opportunities than in firms further

away from the threshold. Our interpretation is that when a firm gets close to the employment

threshold, it faces a large “growth tax” due to the regulatory cost of becoming larger than 50
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Figure 6: Marginal effect of a market size shock on innovation
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Notes: marginal effect of a shock at t− 2 at different level of employment at t, based on the model in column 5 of Table 2.

employees. Consequently, such a firm will be more reluctant to invest in innovation in response

to this new demand opportunity. The firm might even simply cut its innovative activities

altogether to avoid the risk of crossing the threshold. We depict the relationship between

innovation and the shock in Figure 6. The figure plots the implied marginal effect of the

market size shock on innovation (at t− 2) for different firm sizes (at t) using the coefficients in

column (5) of Table 2. We see that innovation in larger firms tends to respond more positively

to the market size shock than in smaller firms, but at the regulatory threshold there is a sharp

fall in the marginal effect of the demand shock, consistent with our model (e.g. see subsection

2.5).

It might be the case that the negative interaction between the threshold and the shock could

be due to some omitted non-linearities. Hence in column (5) we also include lagged employment

and its interaction with the shock (as in column (2)). These do have explanatory power, but our

key interaction coefficient remains significant and negative and we treat this as our preferred

specification. Column (6) adds a quadratic employment term and its interaction following

column (3). Our key interaction remains significant and these additional non-linearities are

insignificant.

3.3.4 Robustness of the dynamic empirical model

We have subjected our results to a large number of robustness tests, many of which are detailed

in Appendix D. Column (7) of Table 2 shows the results from a tough robustness test where we
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include a full set of firm dummies. Given that the regression equation is already specified in first

differences, this amounts to allowing firm-specific time trends. The key interaction between the

market size shock and the threshold dummy remains significant. The data sample underlying

Table 2 is limited to manufacturing firms, so column (8) also adds in non-manufacturing firms.

The relationship remains negative, though with a smaller coefficient. This is likely to be due

to the fact that patents are a much more noisy measure of innovation in non-manufacturing

firms. We also experimented with including manufacturing firms who do not export by using

the industry-level equivalent of our market size shock in equation (8). The coefficient on the

key interaction remained negative and significant in column (6) of Table D2.

Does the number of patents grow more slowly for firms to the left of the threshold who

experience a demand shock simply because their employment grows by less? Column (9) of

Table 2 provides a crude test of this hypothesis by including the growth of employment on the

right hand side of the regression. This variable is endogenous, of course, yet it is interesting to

observe from a purely descriptive viewpoint that the interaction between the market size shock

and the threshold remains significant. This suggests that it is patenting per worker, which

is reacting negatively to the interaction between the shock and the threshold: our effect on

patenting is not simply reflecting differential changes in firm size.

4 The aggregate effects of regulation on Innovation

So far, we have established that many of the qualitative predictions of our simple model are

consistent with the data both from a cross-sectional analysis and a more challenging dynamic

analysis of the response to shocks. In this section, we use the data, the structure of our

theoretical model and some external calibration values to estimate the general equilibrium

effects of the regulation on aggregate innovation and welfare. This clearly requires stronger

assumptions as we are extrapolating well away from the threshold.26 Our baseline approach

uses static moments from the non-parametric analysis covering the whole private sector. But

in an extension we consider using the dynamic estimates from the exporting manufacturing

sub-sample to calibrate the implicit cost of the regulatory tax.

26A very conservative approach would then be to say we calculate aggregate losses for the sub-sector of the
economy with firms under 100 employees (just under 50% of all jobs are in such firms in France). However,
Appendix D shows that our findings are robust to extending the sample to include firms of up to 250, 500 or
even 1,000 employees. Given this, we feel that labelling our estimates as “macro-economic” is reasonable.
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4.1 Quantitative Strategy

We sketch some of the important elements here. The threshold number of product lines, n̄,

can be calculated from the known regulatory employment threshold of 50, i.e. n̄ = 50ωγ (see

equation (3)), so we have six unknown parameters: (η, ω, γ, β, ζ, τ). Since we only need the

ratio β/ζ to calculate the aggregate innovation loss, we only need to quantify five parame-

ters (η, ω, γ, β/ζ, τ). We use the existing literature to obtain two of them (η and γ) and the

remaining three are chosen to match moments from the data as detailed in Table 3.

Table 3: Calibration values and moments

Parameter Value Name Source
From the literature

η 1.5 Concavity of Innovation cost function Dechezlepretre et al. (2016)
γ 1.3 Productivity step size Aghion et al. (2019a)

Using our data
τ 0.026 Regulatory tax Innovation-Firm size relationship (β̂1, β̂2)
β/ζ 1.66 Discount factor/scale parameter Long-term growth of GDP
ω 0.22 Output adjusted wage Changes in the firm size distribution

Concavity of the R&D cost function η In order to calibrate the concavity of the R&D

cost function, η, we draw upon existing work that has estimated the innovation production

function (the relationship between patents and R&D). Acemoglu et al. (2018) use a value of η

= 2 based on Blundell et al. (2002). However, these estimates typically come from very large

US firms (publicly listed companies from Compustat), so may exaggerate η, which is likely to

be lower for the small and medium sized enterprises that are the vast bulk of our sample.27 The

estimates of Dechezlepretre et al. (2016) look at firms of similar sizes to the ones we use here,

suggest a value of η = 1.5, using their Regression Discontinuity Design, which should produce

cleaner causal estimates of the impact of R&D on innovation. This value is also consistent with

some of the estimates in Crépon and Duguet (1997) on French firm panel data.

Regulatory tax τ To quantify the regulatory tax (τ), we estimate empirically the changing

slope of the relationship between innovation and firm size from equation (4). Our theory implies

that the ratio of the innovation-size slope for small firms (before the innovation “valley” ) to large

27Labelling the estimated elasticity between patents and R&D as θ, η =1/θ. Since θ is likely larger for small
firms (e.g. due to financial constraints) or in countries with less developed risk capital markets (e.g. France
vs. the US) this implies a smaller η.
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firms (to the right of the regulatory threshold) should be equal to (1− τ)
1

η−1 . In other words,

for any given value of η, a larger tax will mean a greater flattening of the positive relationship

between innovation and firm size. Figure 5 shows this flattening very clearly and we recover

this through a simple regression of patents on lagged size for firms under 45 employees and

firms firms over 50 employees (to abstract from the innovation valley), allowing the coefficient

on size to be different for these two size groups. Empirically, we average the number of patent

applications filed by a firm over a five-year window for each possible value of employment l

between 10 and 100. Our baseline estimation uses the same mapping between Z and patents as

in Section 3, i.e. we measure Z using the logarithm of the number of patents. We then jointly

estimate two slopes for L ∈ [10; 45] and L ∈ [50; 100]. We respectively denote β̂1 and β̂2 the

OLS estimate of these two slopes. We find β̂1/1000 = 0.1804 with a standard error (σ̂1/1000)

of 0.0105 and β̂2/1000 = 0.1709 with a standard error( σ̂2/1000) of 0.00381. Hence, according

to our model we have:

β̂1

β̂2

= (1− τ)
1

η−1 = 0.947 (9)

Given the calibrated value of η = 1.5 this yields an estimate of τ = 0.0263, a regulatory

tax of 2.6 percent. There are several ways to estimate this slope and we discuss the sensitivity

to the choice of alternative empirical models extensively in Appendix D.4. Alternative models

generate implicit taxes in the range of 1% to 5%, so we are effectively choosing a calibration

value just below the midpoint of this range.

Step size γ The productivity step size γ following innovation is set to 1.3 using based on

estimates in Aghion et al. (2019a). This is derived from various estimates of the average markup,

which in our model is the reward from innovation.

Productivity adjusted wage rate ω A larger ω means a higher cost of labor and therefore

a smaller mass of large firms. Therefore to set the value of ω, we use the empirical firm size

distribution. In particular, we match the fall in the density of employment of smaller vs. larger

firms to the left and right of the innovation valley. In our data there are about three times

as many firms between 40 and 45 employees than between 50 and 55 and the value of ω that

reproduces this gap is 0.22.
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Scale parameter and discount factor β/ζ We calibrate β/ζ in order to match the mea-

sured value of g in the data that we take to be equal to the average growth of GDP in France

over the period 1990-2019 (1.62%). In our model, growth g is defined as follow:

g = exp

(
(ze +

N∑
i=1

µ(i)z(i)i) log(γ)

)
− 1.

This yields a value of β/ζ of 1.66.

4.2 Results

4.2.1 Measuring and Decomposing Innovation Losses: Baseline Estimates

Plugging in these quantitative estimates of the key parameters implies a loss of aggregate

innovation of about 5.8% percent compared to the no regulation benchmark (see the first row

of Table 3). The implied regulatory tax of τ = 0.026, is the key parameter as can be seen from

Figure 4. Since this maps back into growth rates, it means that the steady state growth rate in

France would rise from its current average annual rate of 1.62% to 1.72%, a nontrivial change.

As discussed in the modeling section, the aggregate innovation loss is driven by three major

elements:

1. The decline in the incumbent innovation rate (z(n)) for a given firm size. For any given

size distribution of firms, the regulation reduces innovation rates for firms above the

threshold and just to the left of the threshold.

2. The change in the size distribution µ. Since the regulation pushes the size distribution to

the left and smaller firms do less innovation, this reduces aggregate innovation.

3. The decline in the innovation rate by entrants ze.

Recall that we have denoted Z(τ) =
∑∞

i=1 µ(i)z(i)i + ze total innovation in the economy

when the regulation tax is set to τ and the value of other variables are taken from Table 3.

Analogously to a shift-share decomposition analysis we have:
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Z(τ)−Z(0) =
∑
n>0

(Z(n, τ)− Z(n, 0))µ(n, 0) (10)

+
∑
n>0

(µ(n, τ)− µ(n, 0))Z(n, 0)

+
∑
n>0

(µ(n, τ)− µ(n, 0)) (Z(n, τ)− Z(n, 0))

+ ze(τ)− ze(0),

where µ(n, τ) and Z(n, τ) are the share of firm of size n where the economy has a regulation tax

of τ and their total innovation respectively. The first term in the right hand side of equation

(10) is the innovation intensity (evaluated at the size distribution in the unregulated economy)

and the second term is the effect on size (evaluated at a firm’s innovation intensity rate in the

unregulated economy). The third term is the interaction effect between the first two terms and

the final term is the effect on entrants (since an entrant must innovate by definition to displace

an incumbent).

Dividing equation (10) by Z(0), we can have an approximation of where the 5.8% loss of

aggregate innovation comes from. We find that most (80%) of the effect comes from the change

in the innovation intensity (the first term in the right hand side of the previous equation). The

covariance and entry terms (third and last terms) account for roughly 10% each, while the

change in the size distribution has almost no effect. The virtual absence of any effect of the

size distribution is because the value of the tax is relatively small.

4.2.2 Robustness of the Baseline Aggregate Calculations

We now explore how the 5.8% loss in innovation is affected when we consider variations in the

parameters from Table 3. In Table 4, we consider the effect of changes in η, γ, ω, τ and β/ζ.

With respect to η, we consider the range interval η ∈ [1.3, 2] to reflect the variety of values

found in the literature (see above). With respect to γ, we explore values from 1.2 to 1.5. A

value of 1.5 corresponds to a labor share of 66% in our model.28 Regarding ω, and β/ζ, we

consider a relative change of 15% (upward and downward) .

28In a wide class of models the ratio of price to marginal cost (the markup) is equal to the output elasticity with
respect to a variable factor of production divided by the variables factor’s share of revenue (e.g. De Loecker et
al., 2020; Hall, 1988). Since labor is the only factor in our model, the markup is simply the reciprocal of the
labor share. Aghion et al. (2019a) use a a US labor share of GDP of 77% to obtain γ = 1.3. The French labor
share after 1995 is more like 65% (see e.g. Cette et al., 2019), suggesting γ = 1.5. These values encompass
most of the other estimates of the aggregate markup using other methods.

27



Table 4: Sensitivity analysis

Robustness Loss in total innovation
Panel A: Baseline (full sample) 5.79%

1. γ = 1.2 5.77%
2. γ = 1.50 5.82%
3. η = 2 2.89%
4. η = 1.3 9.23%
5. ω = 0.19 5.74%
6. ω = 0.25 5.81%
7. β/ζ = 1.40 5.79%
8. β/ζ = 1.90 5.78%
9. τ
Percentile 75th (τ = 0.046) 10.53%
Percentile 25th (τ = 0.006) 1.28%

Panel B: Sub-sample of Exporting manufacturing firms

10. Static estimation (τ = 0.062) 14.69%
11. Using dynamic model (τ = 0.060) 14.20%

Notes: baseline uses parameter values: (η = 1.5, γ = 1.3, τ = 0.026, β/ζ = 1.66 and ω = 0.22), see Table 3. In the
robustness where γ, η, ω or β/ζ are changed, we keep τ as in the baseline. Line 9 reports the 25th and 75th percentile
for the loss of innovation in a sample computed from 100,000 independent draws of τ from two normal distribution. The
corresponding value of τ and β/ζ are computed as an average for each percentile. Lines 10-11 report the loss in total
innovation when the sample is restricted to exporting manufacturing firms and Line 11 assumes a value of τ as computed
using the alternative calibration presented in Section 4.2.3.

Given that τ has been calculated using estimates of the slopes of the cross-sectional innovation-

size relationship, we use our estimates of β1 and β2 to derive confidence intervals for τ . Specifi-

cally, we draw 100,000 values of β1 and β2 from two independent normal distribution N (β̂1, σ̂1)

and N (β̂2, σ̂2), where β̂i and σ̂i respectively designate the point estimates and corresponding

standard errors. For each of these 100,000 draws, we compute a value for τ and infer the loss

in total innovation by running the model.

The results from this exercise can be found in Panel A of Table 4. As we would expect, the

most important parameter is the regulatory tax, τ . From the values of β1 and β2, the loss is

10.5% for the 75th percentile of the distribution and 1.3% for at the 25th percentile (the median

is the same as the baseline: 5.8%). Interestingly, η also matters: as the parameter moves from

1.3 to 2, the aggregate innovation losses falls from 9.2% to 2.9%. This is because changing η

determines the elasticity of innovation with respect to R&D: as η increases, the impact of R&D

on innovation decreases. Since the impact of the tax comes from reducing the incentive to do

R&D to grow, if R&D has little effect on growth there will be little impact of the tax. Hence,

increasing η makes total innovation less sensitive to changes in τ .
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By contrast, the loss in total innovation is only modestly affected by changes in γ, ω and

β/ζ. This is because the tax elasticity of z ( dz
d(1−τ)

1−τ
z
) only depends upon η, not on ω, γ or β/ζ.

From equation (4), we see that the elasticity of innovation with respect to the regulatory tax

is 1
η−1

for large firms. Hence, changing the values of ω, γ and β/ζ only affects total innovation

loss through their effects on the firm size distribution and on entry, which we know from the

previous subsection plays a relatively minor quantitative role.29

4.2.3 Alternative calibration using the dynamic econometric analysis to estimate
the implicit regulatory tax

Given the importance of the implicit tax for the overall impact of the regulation, we also

considered estimating τ using the dynamic moments from the responsiveness to shocks rather

than the static moments of the innovation-size relationship. An advantage of this approach

is that it uses a better identified estimate using exogenous variation. A disadvantage is that

whereas the static moment is across the whole economy, this dynamic moment is solely from

the sub-sample of manufacturing firms who export (where we could construct the exogenous

shifter). Re-estimating the regulatory tax using the static method from our baseline in row

1 of Table 4 in Panel B (row 10) shows that the implied τ = 0.062 in this sub-sample which

is associated with a 14.7% fall in innovation. This is much larger than in the whole economy

because trading manufacturing firms have a much higher level of innovation, so the cost of the

regulation will be much more important.

Recall that after a shock ε, firm innovation will be:

∆Z(n, ε) =

(
βπ(n)

ζη

) 1
η−1

ωγl(n)
(

(1 + ε)
1

η−1 − 1
)
,

This implies that we can calculate the cross partial of the demand shock for firms of size

n < n̄ as:
∂2∆Z(n, ε)

∂ε∂l
= (1 + ε)

2−η
η−1

1

η − 1

Similarly the cross partial for for firms of size n ≥ n̄ is:

∂2∆Z(n, ε)

∂ε∂l
= (1 + ε)

2−η
η−1

1

η − 1
(1− τ)

1
η−1

29For example, as already noted a higher ω reduces the relative numbers of large firms. Since there are more
firms just to the left of the regulatory threshold (whose innovation is most affected by the regulation), this
makes the marginal impact of the tax slightly larger.
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We estimate the value of ∂2∆Z(n,ε)
∂ε∂l

using the procedure in Section 3.3. Specifically, we

estimate:

∆Z(n, ε)i,t =c1li,t−2 + c2[1
(
li,t−2 ≥ l̄) ∗ li,t−2

]
+ c31

(
li,t−2 ≥ l̄

)
(11)

+ c4[li,t−2 ∗∆Si,t−2] + c5[1
(
li,t−2 ≥ l̄) ∗ li,t−2 ∗∆Si,t−2

]
+ c6∆Si,t−2 + εi,t.

where 1(li,t−2 ≥ l̄) is an indicator function for employment being larger than the threshold

value 50.

As in our baseline dynamic estimation in Section 3.3, we measure Zi,t with log(patents),

approximate the change by ∆̃Yi,t and use employment and the shock at t− 2. Details are given

in Appendix D.4. Finally, we assume that ∆S is equal to the demand shock ε.30 We then have:

c =
c5 + c4

c4

=
E
[
(1 + ε)

2−η
η−1 |l ≥ l̄

]
(1− τ)

1
η−1

E
[
(1 + ε)

2−η
η−1 |l < l̄ − 1

] (12)

where E is the expectations operator and is estimated using the unweighted mean from

firm-year observation in the data.

We can recover τ using equation (12). Note that equation (12) is similar in form to (9) as

both equations indicate how the responsiveness of large firms relative to small firms falls when

the cost of regulation is higher. The expectations terms on the right hand side of equation (12)

are simply adjusting the ratio to reflect the possibility that the average demand shocks hitting

large firms could be different than those hitting smaller firms.

We retrieve c from c4 and c5 through an OLS estimation of equation (11). We add sector-

year fixed effects and remove observations corresponding to firms that have a value of li,t−2

between 45 and 49 (as we did in the static version). We replace the expectations by their

empirical counterparts and use the value of η from Table 3. This yields a value of τ = 0.060

shown in row 11 of Table 4. This is extremely close to the static estimation of τ on the same

sample shown in the previous row (0.062). Again, this implies a large decline of innovation

in this sub-sector, but confirms a very similar estimate whether we use a static or dynamic

moment.

30We also considered an alternative approach using the fact that the theoretical elasticity of a demand shock
to employment is 1. Consequently, the coefficient of a regression of ∆l on ∆S, gives the link between ε and
∆S. In practice, this made no material difference to our estimate of τ .
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4.3 Welfare

Innovation increases growth which is a benefit to welfare, but it must also be paid for by

diverting current consumption into R&D investments. In Schumpeterian growth models, the

impact of a reduction in innovation on welfare is theoretically ambiguous. Although positive

knowledge externalities generate the traditional underinvestment in R&D, the business stealing

effect can generate too much investment. Which dominates in our setting? Using the utility

of the representative agent in equation (1), Ct is determined by the final good market clearing

condition which states that each unit of final good that is produced should be used either for

consumption Ct or R&D. Recall that to produce an innovation intensity of Z = nz, a firm

must spend ζnzη units of final good. We therefore have the following identity:

Yt = Ct +
∑
i≥1

ζµ(i)iz(i)ηYt,

i.e. we take away R&D expenditures (there are µ(i) firms of size i) from the final good Yt, and

the residual is consumed. Denoting aggregate R&D R ≡
∑

i≥1 ζµ(i)iz(i)η and plugging this

into the utility function yields:

U =
∑
t>0

βt log(Y0(1 + g)t(1−R)),

which can be rewritten:

U =
log(Y0)

1− β
+

log(1 + g)β

(1− β)2
+

log(1−R)

1− β

Since growth is g =
(
ze +

∑
i≥1 iz(i)µ(i)

)
log(γ) and using the definition of R, we can

compute total utility for any value of Y0 using vectors z and µ and the value of ze.

We define g(τ), R(τ) and Y0(τ) the values of g, R and Y0 in an economy with a regulation

level equal to τ . Let ∆U ≡ U(τ)− U(0), so

∆U = log

(
1 + g(τ)

1 + g(0)

)
β

(1− β)2
+ log

(
1−R(τ)

1−R(0)

)
1

1− β
+ log

(
Y0(τ)

Y0(0)

)
1

1− β
, (13)

denotes the difference in utility between an economy with regulation τ and an economy

without regulation at the steady-state. The corresponding difference in terms of consumption

equivalent is given by exp ((1− β)∆U). Initial production Y0 is equal to initial quality times the

amount of labor used in production. In our baseline model, the whole labor force is employed
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in production with and without the regulation, as R&D does not require labor.31 Hence,

abstracting from initial quality, the effect of the regulation on welfare is governed by the first

two terms in the above equation.

The first term is negative since g(τ) < g(0) due to lower innovation, hence a welfare loss

from introducing the regulation. The second term is positive (R(τ) < R(0)): the corresponding

welfare gain stems from the fact that spending less on R&D leaves more output for consumption.

The third term, although complex to quantify without stronger assumptions, can clearly be

signed as negative as it is the static (non-innovation related) welfare loss that has been the

focus of previous work. Hence if the sum of the first two ‘dynamic’ terms are negative, this will

be a lower bound to the welfare loss from regulation.

With our parameter values from Table 3 and a standard value of β = 0.96, we can compute

the difference in welfare in terms of the consumption equivalent. In our baseline regulated

economy, welfare is 2.3% lower than in the unregulated economy. This must be added to the

static efficiency losses which Garicano et al. (2016) estimated to be between 1.3% to 3.4%.

Hence the dynamic losses from lower innovation approximately double the conventional static

losses.

Table D4 in Appendix D.4 shows the welfare losses under the various alternative assumptions

on the calibration values.32

4.4 Summary on the Aggregate innovation effects of regulation

The effects of regulation on aggregate innovation appear non-trivial. The losses are around 5.8%

in our baseline estimates and even more in traded manufacturing. Four-fifths of the losses come

from a lower amount of innovation across all affected firms, with the residual fifth accounted

for by lower entry and a leftwards shift of the firm size distribution. Our baseline results find

a (lower bound) fall in welfare of 2.3% from these dynamic losses, approximately doubling the

conventional static losses. This conclusion is consistent with the important findings of Konig

et al. (2022) who also emphasise that losses from skewing innovation incentives may be much

greater than the conventional static misallocation losses.

31This is no longer true if labor is used in production and in R&D (see section 5.4). Then the tax regulation
will affect Y0 even controlling for initial quality as it will affect the fraction of labor used in production.

32Measuring welfare requires a separate estimation of β and ζ. The measure of welfare is obviously sensitive
to the choice of β. Specifically, the welfare loss will increase as β is closer to 1 as agent gives more weight
to future consumption and therefore care more about growth. When β = 0.94, welfare losses are 1.4% while
when β = 0.98, welfare loss is 4.8% (see Table D4 in Appendix D.4).
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5 The Nature of Innovation and Other Extensions

Our baseline model focuses on the impact of regulation on the rate of innovation. But there are

various ways in which regulations may affect the nature of innovation. In subsection Section

5.1, we consider an extension of our model which allows firms to invest simultaneously in two

types of innovation: incremental or radical. After developing the theory we implement this

empirically using two proxies for how radical a patent is: (i) a traditional future citations

measure and (ii) a more novel machine learning algorithm based on the full text of the patent.

Secondly, we also use textual patent analysis to measure automation as one response to the

regulation may be to invest in labor saving innovations. Finally, we extend our analysis to

allow for longer-lived owners and to consider R&D as scientists.

5.1 Radical versus incremental innovation

Although regulation seems to discourage overall innovation, it may also alter the type of inno-

vation. A firm just below the threshold has a reduced incentive to innovate, but it might be

that if she does innovate she will “swing for the fence” by investing in radical innovation. Minor,

incremental innovations that just push the firm over the threshold will be strongly discouraged

by the regulation. We now formalize this intuition and then test whether it has any relevance

in the data.

5.1.1 Theory

In our baseline model, firms could only increase their number of product lines by one line in

each period. In this extension, we assume that firms can now choose between: (i) Investing in

an incremental innovation which augments the firm’s size by one additional product line and

(ii) Investing in more radical innovation which is more costly but augments the firm’s size by

k > 1 product lines. We now have four cases depending on the value for n:

1. n < n̄− k in which case the firm is never taxed in period 2.

2. n < n̄ and n ≥ n̄ − k in which case the firm is taxed in period 2 only if it successfully

innovated with a radical innovation.

3. n = n̄− 1 in which case the firm is taxed in period 2 if it innovates, regardless of the type

of innovation.
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4. n ≥ n̄ in which case the firm is taxed in period 1 and 2 (except if the firm is at n̄+ 1 but

this will not affect the firm’s decision)

The firm therefore chooses z and u so as to maximize:

nπ(n) + βnz(n) ((n+ 1)π(n+ 1)− nπ(n)) + βnu(n) ((n+ k)π(n+ k)− nπ(n))

+βnx ((n− 1)π(n− 1)− nπ(n))− nζ (z(n) + u(n))η − nαu(n)η, (14)

where α denotes the additional cost of radical innovation. In Appendix C, we solve formally

for u and z and in particular derive the ratio of radical over total innovation that will be use

to calibrate this model.

The steady-state firm size distribution is computed in exactly the same way as in the baseline

model, except that the flow equation needs to be adjusted to account for radical innovation:

nµ(n) (u(n) + z(n) + x) = µ(n−1)z(n−1)(n−1)+µ(n+1)x(n+1)+µ(n−k)(n−k)u(n−k),

with u(n− k) implicitly set to 0 if n < k.

5.1.2 Calibration and Solving the model

The calibration in the model extension with two types of innovation can be done in a very

similar way as in the baseline. For the additional parameters, we draw on the seminal work of

Akcigit and Kerr (2018). Taking the first order condition implies:

u(n) =

(
β

αη
[(n+ k)π(n+ k)− (n+ 1)π(n+ 1)]

) 1
η−1

and

z(n) =

(
β

ζη
[(n+ 1)π(n+ 1)− nπ(n)]

) 1
η−1

−
(
β

αη
[(n+ k)π(n+ k)− (n+ 1)π(n+ 1)]

) 1
η−1

In this model, the ratio of total innovation u(n) + z(n) of small firms (producing less than

n̄−k goods) over large firms is still equal to (see Table C1) (1− τ)
1

η−1 . The calibration strategy

to estimate τ remains identical in this model, and its value will be the same.

Additionally for small firms , the share of radical innovation over total innovation u(n)/(z(n)+

u(n)) is equal to ζ
α

(k− 1). In the data this ratio depends on our definition of a radical innova-

tion. Our baseline approach is to proxy for radical innovation by selecting the top 10% patents

in each technology in terms of future citations. This is consistent with Akcigit and Kerr (2018)

34



who estimate the probability of “major advance” to be equal to 10.3%.33. We continue to target

the gap in the size distribution for ω and the long-run growth rate for β/ζ. In theory, we could

estimate k using estimates of the differential step size of a radical vs incremental innovation

(in our setting: γ and γk). Drawing again on Akcigit and Kerr (2018) finding that “External

innovations that open up a new technology cluster are estimated to have more than twice the

potency of internal innovations.” suggests a value of k of around 4 (3.6 = (1 + log2/logγ)): a

successful radical innovation corresponds to a jump of 4 lines.

We solve the model numerically using these calibration values and plot the new firm size

distribution compared to the unregulated economy (τ = 0) in Figure C1 (Appendix C.2). This

is qualitatively similar to the model without radical innovation.

In Figure 7(a) we look at how the levels of incremental and radical innovation varies with

firm employment size and also plot the share of radical innovation over total innovation in

Figure 7(b). This figure suggests that the discouraging effect of regulation is substantial for

incremental innovation, but close to zero for radical innovations.

Figure 7: Innovation for incremental and radical innovations
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Notes: Left-hand side panel plots total incremental innovation z(n)n (blue solid line) and total radical innovation u(n)n (orange
dashed line) for firms of n lines against employment in the extension where firms can choose between two types of innovations.
Right-hand side panel plots the ratio of radical over total innovation u(n)/(z(n) + u(n)). Parameters are chosen following the
calibration strategy described in Section 5.1, see Table C2 in Appendix C.2.

5.1.3 Evidence I: Citations

We first repeat the static analysis in Figure 8 using the quality of patents as the measure of

innovation output. Measuring quality using the number of future citations. For each patent

within a technology class by cohort-year we determine whether the patent was in the top 10%

33This is also consistent with Acemoglu et al. (2020) who also find a value between 7.8% and 13.9% (see their
Table 6)
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Figure 8: Share of innovative firms at each employment level and quality of innovation
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Notes: Share of firms with at least one priority patent in the top 10% most cited (dashed line) and the share of firms with at least
one priority patent among the bottom 90% most cited in the year (solid line). All observations are pooled together. Employment
bins have been aggregated so as to include at least 10,000 firms. The sample is based on all firms with initial employment between
10 and 100 (82,347 firms and 1,658,762 observations, see Panel A of Table 1).

most cited patents or in the bottom 90% (using future cites through to 2016). The two curves

in Figure 8 correspond to the fractions of firms in each employment size bin respectively with

patents in the top 10% cited and with patents in the bottom 90% cited. We clearly see that the

drop in patenting just below the regulatory threshold is barely visible for radical innovations.

This is consistent with the idea that the regulation discourages low-value innovation but not

higher value innovation.34 It is also clear from the figure that the innovation-size relationship

is steeper for incremental innovation than for high-value innovation. This is consistent with

smaller firms accounting for a higher share of more radical innovation (e.g. Akcigit and Kerr,

2018, on US data and Manso et al., 2019).

Next, we repeat our preferred dynamic specification of column (5) of Table 2, but now

distinguish patents of different value using their future citations. Table 5 does this for patents

in the top 10%, 15% and 25% of the citation distribution in the first three columns and the

patents in the complementary sets in the last three columns (i.e. the bottom 75%, 85% and 90%

of the citation distribution). We clearly see that the negative effect of regulation on innovation

is only statistically and economically significant for low quality patents in columns (4), (5) and

(6). There are no such significant effects for patents in the top decile or quartile of the patent

34As for Figure 5, Figure 8 considers the innovation outcome over the whole period of observations. Variants
around this can be found in Figure D3 in the Online Appendix D.
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quality distribution (the coefficient on the interaction is even positive in column (2)).35

Table 5: Regression results for different levels of the quality of innovation

Quality Top 10% Top 15% Top 25% Bottom 75% Bottom 85% Bottom 90%
(1) (2) (3) (4) (5) (6)

Shockt−2 × L?t−2 -0.210 0.961 -0.828 -4.745 -6.014** -6.158**
(0.846) (0.843) (0.938) (2.801) (2.689) (2.549)

L?t−2 -0.043 -0.019 -0.046 0.162 0.093 0.070
(0.040) (0.068) (0.075) (0.124) (0.104) (0.109)

Shockt−2 -1.499 -2.198 -5.568** -1.809 -3.901 -3.739
(1.083) (1.536) (2.118) (2.929) (2.520) (2.321)

log(L)t−2 0.017 -0.010 -0.041 -0.018 -0.044 -0.060*
(0.015) (0.024) (0.031) (0.023) (0.034) (0.034)

Shockt−2 × log(L)t−2 0.508 0.715 1.786** 0.913 1.535* 1.495*
(0.338) (0.475) (0.673) (1.026) (0.861) (0.803)

Fixed Effects
Sector×Year X X X X X X

Number Obs. 142,474 142,474 142,474 142,474 142,474 142,474
Notes: estimation results of the same model as in column 5 of Table 2. The dependent variable is the Davis and Haltiwanger (1992)
growth rate in the number of priority patent applications between t − 1 and t, restricting to the top 10% most cited in the year (column
1), the top 15% most cited in the year (column 2), the top 25% most cited in the year (column 3), the bottom 85% most cited in the year
(column 4), the bottom 75% most cited in the year (column 5) and the bottom 90% most cited in the year (column 6). All models include a
2-digit NACE sector interacted with a year fixed effect and a time fixed effect interacted with the initial level of export intensity. Estimation
period: 1998-2007 . Standard errors are clustered at the 2-digit NACE sector level. ∗∗∗, ∗∗ and ∗ indicate p-value below 0.01, 0.05 and 0.1
respectively.

To visualize these results, we plot the marginal effect of the demand shock on innovation

by the level of firm employment in Figure 9. The dotted blue line is the marginal effect of the

shock on patents in the bottom 90% of the quality distribution based on column (6) of Table

5. Overall, the impact of the shock is positive and larger for bigger firms. However, when

we approach the regulatory threshold at 50, this relationship breaks down and the marginal

effect of the shock falls precipitously (and actually becomes negative). The red line plots the

marginal effect of the demand shock on high quality patents in the top decile of the citation

distribution from column (1) of Table 5. This line is also positive for almost all firms and rises

with firm size. By contrast, with low-value patents, there is no evidence of any sharp downturn

just below the regulatory threshold.36

In short, there seems to be evidence that the chilling effect of regulation on innovation is not

an issue for radical innovation and is instead confined to incremental patents, which is broadly

35We show the diminishing effect of the shock around the threshold for many other quantiles of the patent value
distribution in five percentile intervals in Figure D4. This shows a clearly declining pattern.

36The stronger relationship between demand growth and incremental (rather than radical) innovation is con-
sistent with the earlier cross-sectional Figure 8 and also Manso et al. (2019).
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Figure 9: Total marginal effect of a shock
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Notes: marginal effect of a shock at different level of employment, based on the model in column 1 and 6 of Table 5. Marginal
effect is calculated on top 10% and bottom 90% most cited patents.

consistent with the generalization of the model we developed for two types of R&D.

5.1.4 Evidence II: Patent text measures of novelty

We construct an alternative measure of radical innovation that is made to reflect the level of

novelty of a patent using the text describing the patent (in the abstract and main body). We

follow Kelly et al. (2018) who build an index of novelty by looking at how much the text of

a given patent differs from the current state of knowledge in the technological classes using

machine learning text-to-data techniques. This measure has been shown to capture features

missed by citation-based indicators (see Bergeaud et al., 2017 for a review). For example, using

many detailed industry case studies, the novelty measure has been shown to better reflect

breakthrough technologies than citations (or other originality measures).

To implement this method we exploit the work of Google Patent (GP) who recently released

a quantitative description of every patent that they describe as “embeddings” (see Srebrovic,

2019 for details). GP embeddings use artificial intelligence analysis of text to summarize the

most important features of the patent text into a vector of 64 numbers bounded between -1

and 1. We can then calculate the “distance” between any pair of patents by simply taking the

dot product between the two vectors. Full details are provided in Appendix D.5, but the basic

idea is that we calculate novelty by computing the distance between a patent and a reference

point from past patents in the same technological field. A more novel patent will use words
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that are further away from the current state of the art as indexed by the typical descriptions

of patents.

We replicate all the analyses of the previous subsection on citations using this new measure

in Appendix D and find broadly similar results. Note that this is not because the two measures

are almost identical: the correlation between the two measures (cites vs. novelty) is only 0.1.

First, in Figure D5, we show that the cross-sectional patterns show no innovation valley or a

falling the innovation-size gradient at 50 employees for novel patents (in fact the gradient, if

anything, is steeper after 50), whereas the usual patterns emerge for non-novel patents. Second,

we replicate Table 5 and split patents between the top 10% , 15% and 25% and bottom 90% ,

85% and 75% based on their novelty score. Table D6 shows that the least novel (bottom 90%)

patents have a significantly lower response rate to the exogenous demand shock whereas there

is a small and insignificant response of the top 10% most novel.

5.1.5 Calculation of aggregate effects in the two types of innovation model

The finding that the main effects of regulations are on incremental innovation would seem to

imply some reduction in the magnitude of the losses. A reduced form approach is given in

Appendix D.5 containing firm-level employment growth regressions (Table D5) that show how

although both types of innovations have a significant and positive effect on firm growth, the

effect of a radical innovation is two to three times larger than that of an incremental innovation.

Since most patents are incremental, this implies that innovation might only fall by about 4.5%

instead of the baseline 5.8%.

A more rigorous approach is in Appendix C.2 that re-calibrates all parameters to the new

model. The new losses in welfare and total innovation are in Figure C2 and are indeed lower

than those in the baseline model. The differences are less pronounced that what the reduced

form approach would predict (loss of 5.5% in total innovation and 2.1% for welfare) which is

mainly because the full model takes into account that although radical innovation creates more

growth, it also uses more resources.

5.1.6 Summary on radical versus incremental innovation

Broadly, both citation and novelty based measures of radical patents are consistent with the

extension to the model to allow for endogenous types of R&D. In both the theory and the data,

the main effect of the regulation is to discourage only incremental innovation. This reduces the
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negative impact of the regulation to some degree, but far from eliminates it as even incremental

innovations have social value.

5.2 Labor-Saving Technology

There are many ways in which firms can respond to the regulation other than by reducing the

pace of innovation. In addition to cutting back employment growth, Garicano et al. (2016)

document how firms approaching the threshold also increase over time, capital investment,

outsourcing and the skill mix. These might mitigate some of the costs, but will not eliminate

the regulatory tax, as these are imperfect substitutes for job growth. Yet another strategy may

be to develop labor saving automation technologies, that will enable the firm to increase output

with less labor inputs.

To address the challenge of determining the degree to which a patent is about automation

we again use textual analysis. In particular, we draw on Mann and Püttmann (2018) who used

a supervised machine learning technique to classify automation and non-automation patents.

Since their work was on the USPTO which is only a subsample of our data, we train an

algorithm based on their classification using the GP embedding vector discussed in the previous

subsection and then extrapolate this predicted measure of automation for all our sample. With

this measure in hand, we again replicate all the analyses of the previous subsections. Consistent

with our expectations, we find that the regulation only affected non-automation patenting (full

results are presented in Appendix D.5). For example, Table D7 shows that faced with a positive

demand shock, firms were significantly less likely to innovate in non-automation patents (bottom

quartile), but were more likely to respond with automation patents (top quartile). Finally, we

draw on a measure of process innovation developed by Arora et al. (2020), which are more

likely to be labor saving. This generates similar qualitative results to automation patents.

5.3 Longer lived owners

In our baseline model, although firms can live forever we simplified the analytical problem by

assuming the owners of firms only live for two periods. We now show that the qualitative

and quantitative predictions of the model carry over to a more complex environment where

owners live longer. Appendix C.3 gives the details, but our strategy is to consider extending the

lifetime of the owner by one extra period, solve for the new equilibrium, examine the qualitative

predictions and then re-calibrate the quantitative model to look at aggregate innovation and
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welfare. Finally, we show that these findings extend naturally when adding an arbitrary number

of additional time periods.37

Consider extending our baseline model to allow the firm owner to live for three periods

instead of the two period baseline. In the first period, the owner inherits a firm of size n1. She

then chooses her level of innovation Z1(n1) = n1z1(n1) and enters period 2 with a size n2 (which

can be either equal to n1, n1 + 1 or n1 − 1). She chooses the level of innovation for period 2,

Z2(n2) = nz2(n2). Finally, the owner collects profits, exits and ownership passes on to a new

agent. Because the firm’s owner only produces for two periods, we refer to this model as “the

two period model” while the baseline model is denoted the “one period model”.

It is thus possible to solve for equilibrium innovation given the number of lines in each

period. Compared to the baseline case, the regulation will not only impact firms with a size

n̄ − 1 but also firms with a size n̄ − 2 in period 1. Figure 10(a) plots the value of z1+z2
2

,

the average value of innovation per period, along with the value of z in the baseline model

against employment. The main differences between the two is that in the extended model, the

innovation valley is wider and extends to firms with an employment corresponding to n = n̄−2.

The fall in innovation at 49 employees is also less deep because the cost of the regulation is

smoothed over two periods instead of one.

Figure 10: Innovation and firm size distribution: Comparing baseline model with longer-lived
owner model
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Notes: The left-hand side panel plots total innovation per line (compared to firm employment) in our baseline model (blue solid
line) compared to a model with two production periods (orange dashed line). In the latter case the average innovation over the
two periods is plotted. The right-hand side panel plots the corresponding size distribution. Parameters are chosen following the
calibration strategy described in Section 5.3, see Table C3 in Appendix C.3.

To solve for the size distribution, we look for solution where the distribution of firms in

37In the working paper version, we show that qualitatively similar results are also found when considering
another approach to modelling infinitely lived owners (Aghion et al., 2021). Unfortunately, this model does
not lend itself to quantitative calibration in any straightforward manner.
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their period 2 is the same as the distribution of firms in their first period. The flow equation

that determines the equilibrium size distribution is the same as in the baseline case. Figure

10(b) plots this distribution against the value of employment in the baseline case and in the

two period model.

In the baseline model, the calibration of τ , which governed the aggregate innovation loss

followed directly from the comparison of the slopes of the innovation - firm size cross-sectional

relationship in large vs. small firms. In our extended multi-period model, the calibration is

slightly more involved and all parameters need to be estimated simultaneously. The resulting

parameter values are presented in Table C3 and are very similar to those in the baseline model

in Table 3.

The loss in total innovation and total welfare are shown in Figures 11(a) and 11(b) along

with the corresponding loss in the baseline model. The figures show that the loss in total

innovation and welfare remains very similar in the new multi-period model compared to the

baseline, especially since the value of the implicit regulatory tax remains at 2.6%.

Figure 11: Aggregate Innovation and Welfare in a model with two period lived owners
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Notes: Th left-hand side panel plots total innovation loss against the value of the regulation threshold τ in our baseline model
(blue solid line) and in a model with two production periods (orange dashed line). The right-hand side panel plots the loss in
consumption equivalent welfare. Parameters are chosen following the calibration strategy described in Appendix Section C.3, except
for τ , see Table C3 in Appendix C.3.

The model can be naturally extended to adding more periods to the firm owner’s life through

induction and Appendix C.3 shows how the results carry over.

In summary, adding extra periods to a firm owner’s life extends the “shadow” of the regu-

lation further down the firm size distribution: the innovation valley becomes wider and flatter.

A model calibration shows very similar aggregate innovation and welfare losses to our base-

line case, however, suggesting that our simpler, more analytically tractable approach does not

mislead us. Moreover, the theoretical findings on the shape of the innovation-size relationship

generalize to having many more periods. Hence, we think our simple approach delivers losses in
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the right order of magnitude and would not be changed from moving to more complex dynamic

models.

5.4 R&D as Scientists: Endogenizing Equilibrium Wages

In the baseline model, R&D is a “lab equipment” model where the equipment is bought on the

world market, labor supply is fixed and the labor force is all employed as production workers.

This means the labor share, ω, is constant and unaffected by the regulation. In this extension,

we consider the case where R&D uses scientists as an input, which means that the labor share

can change with regulation. Full details are in Appendix C.4, but we sketch the main results

here.

Workers can choose to supply labor to the R&D sector or to the production sector. In this

case the total employment of firm i is given by:

li =
ni
ωγ

+ ζniz
η
i ≡ L(ni, zi),

where ζ is now a labor cost. Therefore li depends directly upon current innovation, instead

of only through past innovation as reflected in its size ( ni
ωγ
). The employment threshold l̄ no

longer corresponds to a single number of products, but rather to a set of pairs (z, n) such that:

z =
1

ζn

(
l̄ − n

γω

) 1
η

,

whenever n ≤ n̄.

As employment directly depends upon the level of z, so does the profit per line which is

now equal to:

π(n, z) =
γ − 1

γ

(
1− 1

[
L(n, z) ≥ l̄

]
τ
)

The firm’s problem is otherwise the same, but again the model needs to be solved numer-

ically. Appendix C.4 shows that the qualitative effects again go through in terms of the size

distribution and the firm innovation-size relationships. However, an important additional result

is that the regulation reduces the equilibrium wage: the greater the tax, the greater the fall in

the wage. This will mitigate the shift to the left in the size distribution.

6 Conclusion

In this paper, we have developed a framework to analyze the impact of regulation on innova-

tion. We applied this to France, where strong labor regulations affect firms who employ 50 or
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more workers. We showed both theoretically and empirically that the prospect of these reg-

ulatory costs discourages firms just below the threshold from innovating, where innovation is

measured by the volume of patent applications. This relationship emerges both when looking

non-parametrically at patent density around the threshold and in a parametric exercise where

we examine the heterogeneous response of firms to exogenous market size shocks (from export

markets). On average, firms innovate more when they experience a positive shock, but this

relationship significantly weakens when a firm is just below the regulatory threshold. We then

use moments from our data and the literature to calibrate the structural parameters in the

model. For example, using estimates of the R&D cost function, we can back out the magnitude

of the regulatory tax from the ratio between the slopes of the innovation-size relationship for

large firms compared to small firms. Our baseline estimates imply an aggregate innovation

(and therefore growth) loss of about 5.8% and a lower bound on the loss of welfare of about

2.3%.

This suggests larger welfare losses than existing analyses that take technology as exogenous.

A caveat to this conclusion is that when we use information on citations we find that the labor

regulation deters incremental innovation, but has little effect on more radical innovation. This

is consistent with a generalization of the model which allows for simultaneous investment in

two types of R&D, and slightly mitigates the welfare loss of the regulation.

The analysis in this paper can be extended in several directions. First, our focus in this

paper was on the long-run steady state, but it is perhaps equally important to analyze the

transitional dynamics triggered by policy changes, and to factor in adjustment costs. Second,

the framework can be applied to many other countries and regulatory settings. Third, our

analysis remained focused on the costs of the labor regulation. However, such a regulation may

also bring benefits in the form of better insurance and deeper involvement of employees in the

management of the firm, which in turn fosters trust between employers and employees. Future

work should take such benefits into account to see if they are sufficient to overcome the costs

we have identified here.
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ONLINE APPENDICES
NOT INTENDED FOR PUBLICATION

A More Details of some Size-Related Regulations in France

The size-related regulations are defined in four groups of laws. The Code du Travail (labor

laws), Code du Commerce (commercial law), Code de la Sécurité Social (social security) and

in the Code General des Impots (fiscal law). The main bite of the labor (and some accounting)

regulations comes when the firm reaches 50 employees. But there are also some other size-

related thresholds at other levels. The main other ones comes at 10-11 employees. For this

reason we generally trim the analysis below 10 employees to mitigate any bias induced in

estimation from these other thresholds. For more details on French regulation see inter alia

Abowd and Kramarz (2003) and Kramarz and Michaud (2010), or, more administratively and

exhaustively, Moins (2010).

A.1 Main Labor Regulations

The unified and official way of counting employees has been defined since 200438 in the Code du

Travail,39 articles L.1111-2 and 3. Exceptions to the 2004 definition are noted in parentheses

in our detailed descriptions of all the regulations below. Employment is taken over a reference

period which from 2004 was the calendar year (January 1st to December 31st). There are

precise rules over how to fractionally count part-year workers, part-time workers, trainees,

workers on sick leave, etc. (Moins, 2010). For example, say a firm employs 10 full-time workers

every day but in the middle of the year all 10 workers quit and are immediately replaced by

a different 10 workers. Although in the year as a whole 20 workers have been employed by

the firm the standard regulations would mean the firm was counted as 10 employee firm. In

this case, this would be identical to the concept used in our main FICUS data. Garicano et

38Before that date, the concept of firm size was different across labor regulations.
39The text is available at the legifrance website
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al. (2016) extensively document that the discontinuity in the firm size distribution at 50 can

be seen across a variety of firm datasets with different definitions of employment. There is

of course more measurement error in some datasets than others due to differences in how the

employment concept matches the regulatory definitions.

One concern is that there is under-reporting of employment in FICUS in order to avoid

the regulation. As Garicano et al. (2016) discuss, there is a lot of scrutiny of the employment

numbers by unions, government and other agents as well as significant fines for non-compliance.

They also show that alternative sources such as the DADS social security datasets, also exhibit

systematic changes in the size distribution around the threshold. Note that What is crucial

for identification is not the exact position of the excess mass of firms at precisely 49 employees

(which is subject to measurement error and possible misreporting), but rather that the size

distribution shifts around the region of the regulatory threshold, which it does robustly across

a wide variety of datasets and employment size concepts.

Recall that the employment measure in the FICUS data is average headcount number of

employees taken on the last day of each quarter in the fiscal year (usually but not always ending

on December 31st). All of these regulations strictly apply to the firm level, which is where we

have the FICUS data. Some case law has built up, however, which means that a few of them

are also applied to the group level.

From 200 employees:

• Obligation to appoint nurses (Code du Travail, article R.4623-51)

• Provision of a place to meet for union representatives (Code du Travail, article R.2142-8)

From 50 employees:

• Monthly reporting of the detail of all labor contracts to the administration (Code du

Travail, article D.1221-28)

• Obligation to establish a staff committee (“comité d’entreprise” ) with business meeting

at least every two months and with minimum budget = 0.3% of total payroll (Code du

Travail, article L.2322-1-28, threshold exceeded for 12 months during the last three years)
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• Obligation to establish a committee on health, safety and working conditions (CHSC)

(Code du Travail, article L.4611-1, threshold exceeded for 12 months during the last

three years)

• Appointing a shop steward if demanded by workers (Code du Travail, article L.2143-3,

threshold exceeded for 12 consecutive months during the last three years)

• Obligation to establish a profit sharing scheme (Code du Travail, article L.3322-2, thresh-

old exceeded for six months during the accounting year within one year after the year end

to reach an agreement)

• Obligation to do a formal “Professional assessment” for each worker older than 45 (Code

du Travail, article L.6321-1)

• Higher duties in case of an accident occurring in the workplace (Code de la Sécurité

sociale and Code du Travail, article L.1226-10)

• Obligation to use a complex redundancy plan with oversight, approval and monitoring

from Ministry of Labor in case of a collective redundancy for 9 or more employees (Code

du Travail, articles L.1235-10 to L.1235-12; threshold based on total employment at the

date of the redundancy)

From 25 employees:

• Duty to supply a refectory if requested by at least 25 employees (Code du Travail, article

L.4228-22)

• Electoral colleges for electing representatives. Increased number of delegates from 25

employees (Code du Travail, article L.2314-9, L.2324-11)

From 20 employees:

• Formal house rules (Code du Travail, articles L.1311-2)

• Contribution to the National Fund for Housing Assistance;
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• Increase in the contribution rate for continuing vocational training of 1.05% to 1.60%

(Code du Travail, articles L.6331-2 and L.6331-9)

• Compensatory rest of 50% for mandatory overtime beyond 41 hours per week

From 11 employees:

• Obligation to conduct the election of staff representatives (threshold exceeded for 12

consecutive months over the last three years) (Code du Travail, articles L.2312-1)

From 10 employees:

• Monthly payment of social security contributions, instead of a quarterly payment (ac-

cording to the actual last day of previous quarter);

• Obligation for payment of transport subsidies (Article R.2531-7 and 8 of the General

Code local authorities, Code general des collectivités territoriales);

• Increase the contribution rate for continuing vocational training of 0.55% to 1.05% (thresh-

old exceeded on average 12 months).

Note that, in additions to these regulations, some of the payroll taxes are related to the

number of employees in the firm.

A.2 Accounting rules

The additional requirements depending on the number of employees of entreprises, but also

limits on turnover and total assets are as follows (commercial laws, Code du Commerce, arti-

cles L.223-35 and fiscal regulations, Code général des Impôts, article 208-III-3):

From 50 employees:

• Loss of the possibility of a simplified presentation of Schedule 2 to the accounts (also if

the balance sheet total exceeds 2 million or if the CA exceeds 4 million);
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• Requirement for LLCs, the CNS, limited partnerships and legal persons of private law to

designate an auditor (also if the balance sheet total exceeds 1.55 million euros or if the

CA is more than 3.1 million euros, applicable rules of the current year).

From 10 employees:

• Loss of the possibility of a simplified balance sheet and income statement (also if the CA

exceeds 534 000 euro or if the balance sheet total exceeds 267 000 euro, applicable rule

in case of exceeding the threshold for two consecutive years).

A.3 Alternative ways of modelling the regulation

We have modelled the regulation as a variable tax on profits. We consider three possible

extensions: (i) modelling the regulation having a fixed cost component; (ii) modelling the

regulation as a labor tax rather than a profit tax; (iii) including capital inputs

Modelling the regulation as having a fixed cost component. Introducing a fixed

cost component in our modelling of the regulation, generates new empirical implications. For

example, the fixed component would still generate a hump in the size distribution below 50 and

a subsequent sharp drop in the density of firm size to the right of 50. It would not, however,

generate a permanent downward shift in the slope of the firm density by size distribution.

Intuitively, the fraction of very large firms would be essentially unchanged, as such firms could

spread the fixed cost over a very large number of units. The data, by contrast, shows this

downward shift very clearly (see Figure D1). This is consistent with a strong role for the

variable cost. Garicano et al. (2016) structurally estimate the magnitude of the fixed cost of

the regulation using employment data and find it to be very small (less than the wage of a

single worker), with just about all the regulatory cost loaded on the variable component.

Overall, adding a fixed cost would not generate markedly different slopes of the size-

innovation relationship for large versus small firms.

Modelling the regulation as a labor tax rather than a profit tax. Modelling the

regulation as a marginal tax on the labor input instead of a tax on profits, does not affect our
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main theoretical predictions, even though it somewhat complicates the model. Indeed, when

the regulation is modelled as a labor tax, firms’ marginal costs of production will depend upon

the labor regulation they face, which in turn depends upon the firm’s size. Limit pricing then

implies that the equilibrium profit on each line will depend upon both, the labor tax of the

current leader and the labor tax of the fringe firm on that line. Overall, moving from our

baseline model to the model with labor tax amounts to introducing an extra state variable,

namely the share of firms above the regulatory threshold which itself is endogenous. While

assessing the magnitude of the effects, requires solving this more complicated variant of our

baseline model,40 nonetheless the logic remains the same as in our baseline model: namely, just

below the threshold, firms will anticipate that if they successfully innovate then they will move

beyond the threshold and therefore be subject to the labor tax. An innovating firm does not

know the labor tax of the fringe firm they will face on the corresponding line, yet they reason

in expected terms and clearly the expected profit goes down when they themselves become

subject to the labor tax. Hence we still predict an innovation valley just below the threshold.

Similarly, the expected profit from innovating for firms above the threshold, is reduced when

the regulatory labor tax is introduced, to an extent which increases with the size of the firm,

i.e. with its level of employment. Hence, introducing the labor tax above the threshold should

again reduce the slope of the size-innovation curve above the threshold.

Including capital inputs. The current model has only labor as a productive input. Adding

capital (or other inputs) would not make any fundamental difference to our current set-up

because the regulation is a profit tax, so increase size is isomorphic to getting a larger (absolute)

profit, since there is only one producer per line and this monopolist earns a fixed markup per

line. However, if we instead followed approach (ii) and modelled the regulation as an implicit

tax on labor, then the regulation does have different effects on other inputs that are not taxed.

In particular, there would be an incentive to substitute into non-labor factors of production in

order to mitigate the regulatory cost. In our data, firms who are approaching the 50 threshold

so tend to increase capital investments, so that they can grow without necessarily adding more

40In Appendix C.5 we compute the equilibrium innovation rate z(n) where both the share of lines S in which
the current producer is a “large” firm beyond the threshold and the threshold number of lines n beyond which
an n - line firm is considered to be “large”, are constant over time. We show that the expression for z(n) is
similar to that in the baseline model, except that it now also depends on S which is endogenous.
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employees. Similarly, they increase employee hours, add more skilled workers, etc.

If these margins of adjustment were perfect substitutes for raw labor this would completely

unravel the effects of the regulation. However, since these factors are generally not perfect

substitutes, there will be some cost to such strategies. To what extent this reduces the overall

cost of the regulation and its impact on welfare is an empirical question, which will hinge on the

elasticity of substitutability. The degree of substitutability is partly due to other regulations –

for example, there are strict rules in France on the number of hours a worker can work per week

which limits the increasing hours margin. But it is partly also constrained by the technology

of production.

Appendix D and subsection 6.4 of Garicano et al. (2016) introduced capital in the context

of a CES production function with regulations modelled as a labor tax with fixed and variable

components (so combining points (i) and (ii) above). For an elasticity of substitution of one

(Cobb-Douglas) the output loss barely changed from the baseline case of no substitution (the

implied variable tax fell from 3.1% to 3%). Since most econometric estimates of the capital-

labor substitution elasticity are less than unity, even this 0.1 percentage point change is likely

to be an overestimate. This is in the context of a static model, but since the magnitudes are

so small, it is unlikely that it would be so much larger in our dynamic model.
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B Data Appendix

B.1 Patent data

Our first database is PATSTAT Spring 2016’s version which contains detailed information

about patent applications from every patent office in the world. Among the very rich set of

information available, one can retrieve the date of application, the technological class, the name

of the patent holder (the assignee, the entity which owns the intellectual property rights) and

the complete list of forward and backward citations.

We use a crosswalk built by Lequien et al. (2017) that associates each patent whose assignee

is located in France with the official identifying number (or SIREN ), which enables us to use

most administrative firm level datasets. This matching use supervised learning based on a

training sample of manually matched patents from the French patent office (INPI). It has the

advantage over other matching protocols as it is specific to French firms to exploits additional

information such as the location of innovative establishments (see Lequien et al., 2017 or Aghion

et al., 2018a for more details).41

Because we stop our patent analysis in 2007, we are not affected by the truncation bias

toward the end of the sample (see Hall et al., 2005) and we consider that our patent information

are complete. In order to be as close to the time of the innovation as possible, we follow the

literature and consider the filing year and not the granting year in our study. We use citations

through to the last year (2016). When calculating a firm’s quantile in the patent citation

distribution, we do this based on a technology class (32 codes) by cohort-year.

Finally, we consider every patent owned by a French firm, regardless of the patent office

that granted the patent rights, but we restrict to priority patents which correspond to the

earliest patents which relate to the same invention. Therefore, if a firm successively fills the

same patent in different patent offices, only the first application of this family will be counted.

41If the firm shares a patent with another firm, then we only allocate a corresponding share of this patent to
the firm.
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B.2 Firm-level administrative data

Our second data source provides us with accounting data for French firms from the DGFiP-

INSEE, this data source is called FICUS. The data are drawn from compulsory reporting of

firms and income statements to fiscal authorities in France. Since every firm needs to report

every year to the tax authorities, the coverage of the data is all French firms from 1994 to

2007 with no limiting threshold in terms of firm size or sales. This dataset provides us with

information on the turnover, employment, value-added, the four-digit NACE sector the firm

belongs to. This corresponds to around 35 million observations.

The manufacturing sector is defined as category C of the first level of the NAF (Nomenclature

d’Activités Frana̧ise), the first two digits of which are common to both NACE (Statistical

Classification of Economic Activities in the European Community) and ISIC (International

Standard Industrial Classification of All Economic Activities). INSEE provides each firm with

a detailed principal activity code (APE) with a top-down approach: it identifies the 1-digit

section with the largest value added. Among this section, it identifies the 2-digit division with

the largest value-added share, and so on until the most detailed 5-digit APE code (INSEE,

2016). It is therefore possible that another 5-digit code shows a larger value-added share than

the APE identified, but one can be sure that the manufacturing firms identified produce a larger

value-added in the manufacturing section than in any other 1-digit section, which is precisely

what we rely on to select the sample of most of our regressions. The 2-digit NAF sector, which

we rely intensively on for our fixed effects, then represents the most important activity among

the main section of the firm. Employment each year is measured on average within the year

and may therefore be a non-integer number.

B.3 Trade data

Customs data for French firms. Detailed data on French exports by product and country

of destination for each French firm are provided by French Customs. These are the same data

as in Mayer et al. (2014) but extended to the whole 1994-2012 period. Every firm must report

its exports by destination country and by very detailed product (at a level finer than HS6).

However administrative simplifications for intra-EU trade have been implemented since the

Single Market, so that when a firm annually exports inside the EU less than a given threshold,
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these intra-EU flows are not reported and therefore not in our dataset. The threshold stood at

250 000 francs in 1993, and has been periodically reevaluated (650 000 francs in 2001, 100 000

euros in 2002, 150 000 euros in 2006). Furthermore flows outside the EU both lower than 1

000 euros in value and 1 000 kg in weight are also excluded until 2009, but this exclusion was

deleted in 2010.

Country-product bilateral trade flows. CEPII’s database BACI, based on the UN database

COMTRADE, provides bilateral trade flows in value and quantity for each pair of countries from

1995 to 2015 at the HS6 product level, which covers more than 5,000 products. To convert HS

products into ISIC industries we use a United Nations correspondence table (when 1 HS code

corresponds to 2 ISIC codes, we split the HS flow in half into each ISIC code).
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C Theoretical Appendix

In this Theory Appendix we first present numerical solutions for our baseline (one innovation

type) model and then more details of the two types of innovation (radical and incremental)

model. Next, we detail the multi-period lived owner model and finally the extension to R&D

as scientists (rather than lab-equipment).

C.1 Numerical Solutions for the Baseline model

We solve the model numerically. To do so, we need to discretize the problem. That is, we need

to move from a model with a continuum of products of size 1 to a model with a finite number

of products K and a finite number of firms N .

The final good aggregator is adjusted as follows:

ln y =

∫ 1

0

ln yjdj becomes ln y =
1

K

K∑
j=1

ln yj

Unite price of a given intermediate good j is unchanged, but the demand:

yj =
y

pj
becomes yj =

y

pjK

And as a result:

πj =

(
1− 1

γ

)
y becomes πj =

(
1− 1

γ

)
y

K

Finally, firm i’s employment Li is still equal to n/(ωγ) where:

ω =
wK

y
.

The firm’s maximization problem is still:

nπ(n) + βnz [(n+ 1)π(n+ 1)− nπ(n)] + βnx [(n− 1)π(n− 1)− nπ(n)]− ζzηn y
K

where the R&D cost function in our finite line model
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C(z, n) = ζnzηy has become C(z, n) =
ζ

K
nzηy

With these changes in mind, equation (4) still applies and we can numerically solve the

model in steady state. We proceed as follows:

1. There is a finite number N of firms and K of product lines, with K > N

2. µ(n) denotes the number of firms producing in exactly n product lines and z(i) denotes

its innovation intensity per line (which is taken from equation (4) in the model).

3. All firms produce at least one product, as a result, we must have µ(n) = 0 for all n ≥

K −N . For all i larger than 1

We therefore have K −N + 1 unknowns: µ(n) for 1 ≤ n < K −N (K −N − 1 unknowns),

x and ze. The corresponding K −N + 1 independent equations are given by:

• The law of motion for µ:

µ(n) =
(n− 1)µ(n− 1)z(n− 1) + µ(n+ 1)(n+ 1)x

n(x+ z(n))
,

for all n ≥ 2 and n < K −N , recalling that µ(K −N) = 0

• The definition of µ:
K−N−1∑
n=1

µ(n) = N

• The definition of x

x = ze +
K−N−1∑
n=1

z(n)nµ(n)/K

• The steady-state equation for the number of firms in the economy

µ(1)x = zeK
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C.2 Radical vs. Incremental innovation

This details the summarized discussion in the main text in subsection 5.1 where we allow firms

to choose to invest in radical vs. incremental innovation.

Innovation equation. we solve for u(n) and z(n) by taking the first order condition from

equation (14), where z is the output-adjusted effort invested in incremental R&D and u is the

output-adjusted effort invested in radical R&D. This yields the following two equations:

u(n) =

(
β

αη
[(n+ k)π(n+ k)− (n+ 1)π(n+ 1)]

) 1
η−1

and

z(n) =

(
β

ζη
[(n+ 1)π(n+ 1)− nπ(n)]

) 1
η−1

−
(
β

αη
[(n+ k)π(n+ k)− (n+ 1)π(n+ 1)]

) 1
η−1

With these two expressions, we can solve for the equilibrium size distribution and for the

share of radical innovations over incremental innovations for each firm size. See Figures 7(a)

and 7(b).

The equilibrium size distribution is depicted in Figure C1, first on a linear scale and then

on a logarithmic scale. The size distribution is qualitatively similar to the baseline case.

Figure C1: Firm size distribution with two types of innovation
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Notes: These figures plot the value of µ(n) as a function of employment L = n/(γω). Left-hand side panel uses a linear scale and
right-hand side panel a log-log scale. Extension with two types of innovation with k = 4 (see Section 5.1)

A special case when η = 2. To give the intuition of what is happening in the model with two

types of innovation, we first solve formally for u and z in equation (14) in the simple case where
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we take the overall cost of R&D to be quadratic and equal to ζ(u+ z)2n/2 + αu2n/2. Thanks

to the quadratic cost assumption, the first-order conditions can be conveniently summarized

by the linear system:

ζ ζ

ζ α + ζ

z
u

 = β

(n+ 1)π(n+ 1)− nπ(n)

(n+ k)π(n+ k)− nπ(n)


As long as α and ζ are not equal to 0, this linear system solves into:

z
u

 =
β

ζα

ζ + α −ζ

−ζ ζ

(n+ 1)π(n+ 1)− nπ(n)

(n+ k)π(n+ k)− nπ(n)


Hence, we can see that the values of z and u will be impacted by the threshold as long as

n+ k ≥ n̄ and n < n̄, which means that the regulation has a larger range of effects, but at the

same time has a positive effect on u just before the threshold.

The solutions in the general case are presented in Table C1, where we have defined π ≡ γ−1
γ
β

Figure C2: Total innovation and welfare with two types of innovation

(a) Total innovation
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(b) Welfare
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Notes: These figures plot total innovation loss and total welfare loss in consumption equivalent against the value of τ . Parameter
values can be found in Table C2.

Aggregate Effects on Innovation and Welfare. As discussed above and in the main

text (see Section 5.1) we can calibrate the general model using moments in our data and

the literature. The parameter values are in Table C2 and the relationship between aggregate

innovation, welfare and the regulation are in Figure C2. The aggregate losses are smaller than

in the baseline model: 5.5% lower innovation and 2.1% lower welfare in the new two types of

innovation model, compared to 5.8% and 2.3% in the baseline model. The lower losses are
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Table C1: Solution in the Extended Model with two types of innovation (radical and incremen-
tal)

u(n) z(n)

n < n̄− k
(
π
αη

(k − 1)
) 1
η−1

(
π
ζη

) 1
η−1 − u(n)

n̄− k ≤ n < n̄− 1
(
π
αη

((k − 1)− τ(k + n))
) 1
η−1

(
π
ζη

) 1
η−1 − u(n)

n = n̄− 1
(
π
αη

((k − 1) + τ(n̄− k))
) 1
η−1

(
π
ζη

(1− nτ
) 1
η−1 − u(n)

n ≥ n̄
(
π
αη

(1− τ)(k − 1)
) 1
η−1

(
π(1−τ)
ζη

) 1
η−1 − u(n)

u(n) + z(n) u(n)
z(n)+u(n)

n < n̄− k
(
π
ζη

) 1
η−1 (

ζ
α

(k − 1)
) 1
η−1

n̄− k ≤ n < n̄− 1
(
π
ζη

) 1
η−1

(
ζ
α

(k − 1)
(

1− τ(k+n)
k−1

)) 1
η−1

n = n̄− 1
(
π
ζη

(1− nτ
) 1
η−1

(
ζ
α

(k − 1)
(

1− τ(n̄−k)
k−1

)
1

1−τn̄

) 1
η−1

n ≥ n̄
(
π(1−τ)
ζη

) 1
η−1 (

ζ
α

(k − 1)
) 1
η−1

Table C2: Calibrated parameter values in a model with two types of innovation

Parameter Value
γ 1.3
η 1.5
ω 0.28
β/ζ 1.34
k 4
α 6.92
τ 0.0263

Notes: Calibration strategy is
described in Section 5.1.

because radical innovation which creates greater social welfare is not discouraged. However,

since the bulk of innovation is incremental, the aggregate losses are only modestly impacted.
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C.3 Longer lived owners

In our baseline model, although firms can live forever we simplified the analytical problem by

assuming the owners of firms only live for two periods. In this subsection, we show that the

qualitative and quantitative predictions of the model carry over to a more complex environment

where owners live longer.

C.3.1 Adding one extra period to the life of the owner

We first show how to extend our model by allowing firm owner to live for three periods instead

of the two period baseline. In the first period, the owner inherits a firm of size n1. She then

chooses her level of innovation Z1(n1) = n1z1(n1) and enters period 2 with a size n2 (which

can be either equal to n1, n1 + 1 or n1 − 1). She chooses the level of innovation for period 2,

Z2(n2) = nz2(n2). In period 3, the owner collects profits, exits and ownership passes on to a

new agent. Because the firm’s owner only produces for two periods, we refer to this model as

“the two period model” while the baseline model is denoted the “one period model”.

We solve backwards: in period 2, the situation is the same as in the one period model and

we know that for any size n, the innovation per line is:

z2(n) =

(
βπ

ηζ

) 1
η−1

×


1 if n < n̄− 1

(1− n̄τ)
1

η−1 if n = n̄− 1

(1− τ)
1

η−1 if n ≥ n̄

where π =
γ − 1

γ

In period 1, the firm maximizes the value function:

V1(n) = max
z1>0

{
nπ(n)y − nzη1ζy +

1

1 + r
Ez1 [V2(n′)]

}
,

where V2(n) is the value of being of size n in period 2.

V2(n) = max
z2>0

{
nπ(n)y − nzη2ζy +

1

1 + r
Ez2 [π(n′)y′]

}
.

We denote vi(n) ≡ Vi(n)/(ny) for i = 1, 2. Then, using the Euler equation we have:

v2(n) = π(n)(1 + β) + βz2(π(n+ 1)− π(n)) + βx(π(n− 1)− π(n))− zη2ζ
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and finally:

z1 =

(
β

(n+ 1)v2(n+ 1)− nv2(n)

ζη

) 1
η−1

It is thus possible to solve for equilibrium innovation given the number of lines in each

period. Compared to the baseline case, the regulation will not only impact firms with a size

n̄− 1 but also firms with a size n̄− 2 in period 1.42

Figure 10(a) plots the value of z1+z2
2

, the average value of innovation per period, along with

the value of z in the baseline model against employment. The main differences between the

two is that in the two period model, the innovation valley is wider and extends to firms with

an employment corresponding to n = n̄− 2. The fall in innovation at 49 employees is also less

deep because the cost of the regulation is smoothed over two periods instead of one.

Size distribution. To solve for the size distribution, we look for solution where the distribu-

tion of firms in their period 2 is the same as the distribution of firms in their first period. We

denote the share of firms of size n as µ(n) and we have at the steady-state:

µ(n)

2
(z1(n) + z2(n))n =

µ(n− 1)

2
(z1(n− 1) + z2(n− 1)) (n− 1) + (n+ 1)x

µ(n+ 1)

2
(C1)

Hence if we define z = z1+z2
2

, the flow equation that determines the equilibrium size distri-

bution is the same as in the baseline case. Figure 10(b) plots this distribution against the value

of employment in the baseline case and in the two period model.

Calibration. In the baseline model, the calibration of τ , which governed the aggregate in-

novation loss followed directly from the comparison of the slopes of the innovation - firm size

cross-sectional relationship in large vs. small firms. In our extended multi-period model, the

calibration is slightly more involved and all parameters need to be estimated simultaneously.

42In principle, the regulation can also impact firms with a size n̄ in period 1 as they can reach a size n̄−1 in the
next period. However, we make the assumption that once the firm has crossed the threshold, the regulation
continues to be enforced during the lifespan of the firm’s owner, even if the firm becomes smaller than 50 (i.e.
the regulations are “grandfathered”. This simplifying assumption seems reasonable given that the nature of
the regulation imposes many important adjustment costs that are hard to reverse.
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To illustrate why, we write the average innovation observed for a given size n, taken as the

mean of the level of innovation for firms in their first and second period, respectively for large

and small firms and consider the ratio.

R =
z1(n ≥ n̄) + z2(n ≥ n̄)

z1(n < n̄− 2) + z2(n < n̄− 2)

For small firms, z1 is equal to:

(
βπ

ζη
(1 + β(1− x)) +

(
βπ

ζη

) η
η−1 η − 1

η
β

) 1
η−1

+

(
βπ

ζη

) 1
η−1

For large firms, z1 + z2 is equal to:

(
βπ(1− τ)

ζη
(1 + β(1− x)) +

(
βπ(1− τ)

ζη

) η
η−1 η − 1

η
β

) 1
η−1

+

(
βπ(1− τ)

ζη

) 1
η−1

Hence:

R = (1− τ)
1

η−1 (1−A) ,

where A > 0 is a function of model parameters and endogenous variable x which is small

for small values of τ .43 A > 0 also implies that the value of τ required to ensure that the ratio

of slopes match the data will be smaller than in the baseline model.

We use the same calibration strategy as our baseline approach. We set η and γ to the

same values in Table 3 and set β to 0.96. We then use three moments from the data: R, the

long-term growth and the gap in the size distribution around the threshold to estimate the

three remaining parameters τ , ω and ζ.

The resulting parameter values are presented in Table C3. They are very similar to those

in the baseline model in Table 3, with the exception of the innovation cost ζ, which we discuss

43Formally:

A =

(
(1 + β(1− x)) +

(
βπ
ζη

) 1
η−1 η−1

η β

) 1
η−1

−
(

(1 + β(1− x)) +
(
βπ
ζη

) 1
η−1 η−1

η β(1− τ)
1

η−1

) 1
η−1

(
(1 + β(1− x)) +

(
βπ
ζη

) 1
η−1 η−1

η β

) 1
η−1

+ 1
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below. Most importantly, the key parameter τ is essentially unchanged, because we find A very

close to 0.

Table C3: Calibrated parameter values in a model with two periods

Parameter Value
γ 1.3
η 1.5
ω 0.22
β/ζ 1.09
τ 0.0262

Notes: Calibration strategy is
described in Section 5.3.

Aggregate Innovation and Welfare. Once the value of µ and z are obtained using equation

(C1), we can compute aggregate innovation and welfare. The formulae are the same as in the

baseline model, but the value of innovation per line z is replaced by the average innovation

over the two periods of production (z1 + z2)/2. The loss in total innovation and total welfare

are shown in Figures 11(a) and 11(b) along with the corresponding loss in the baseline model.

The figures show that the loss in total innovation and welfare remains extremely similar in the

new multi-period model compared to the baseline, essentially since the value of the implicit

regulatory tax remains close to 2.6%.

Figure 11(a) does show that the losses are slightly lower in the new model. This is because

the calibration strategy must match the same empirical value of French growth of 1.62% (and

hence total innovation). Because firms in the two period model will do more innovation on

average each period, to be consistent with the empirical growth moment, the innovation cost

parameter, ζ is estimated to be larger. Since ζ is held constant in the counterfactual unregulated

economy, this means that overall innovation is reduced (slightly) less by any given regulatory

tax.44

C.3.2 Adding more periods to the multi-period model

The model can be naturally extended to adding more periods to the firm owner’s life through

induction. Consider a case where a firm owner live for k + 1 periods (k periods of innovation

44Note however, that the level of welfare for each value of τ is lower in the 2 period model than in the baseline
model.
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Figure C3: Innovation per line when adding more periods
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Notes: Innovation per line in the baseline model and in models with 2, 3 and 4 production periods.

and one period where they simply collect profit). Then the value of innovation intensity in the

last period zk is the same as the value of z in the baseline model. The value of zk−1 comes from

the difference between the value function in period k as in the two period model. Then using

the value of zk−1 yields a value of vk−1 which gives a value of zk−2 and so on.

Formally, once we have solved for a J period model, extending to a model with J+1 periods

can be done easily in the following way. If V (n, p, J) and z(n, p, J) respectively denote the value

and innovation intensity of a firm with n lines in its period p in a model with J periods, then

we have:

∀n > 0,∀p < J : V (n, p+ 1, J + 1) = V (n, p, J) and z(n, p+ 1, J + 1) = z(n, p, J).

Hence, to move to a model with one more period, all we need is to solve for the first period

which we do as in the two period model. Intuitively, as we extend the number of periods, the

innovation valley widens and its depth reduces. This is illustrated in Figure C3 where we have

reported the average value of innovation against size in the case of a 2, 3 and 4 period models,

along with the baseline one period model.

Regarding the size distribution, we can use the same strategy as in the two period model

by considering:

z =
z1 + . . .+ zk

k
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Generally speaking we have a sequence:

z(n, k−p−1, k)η−1 =
βπ

ζη
+β

(
z(n, k − p, k)η−1(1− x) + z(n, k − p, k)η

η − 1

η

)
∀p ∈ [[1, k−1]]

and

z(n, k, k)η−1 =
βπ

ζη

Importantly, if β is small enough, then extending the number of periods does not change

the results materially from our baseline model.

C.3.3 Summary on extension to multi-period lived owners

We have shown that adding an extra period to a firm owner’s life extends the “shadow” of

the regulation further down the firm size distribution. As we might expect, the innovation

valley becomes wider and flatter. A model calibration shows very similar aggregate innovation

and welfare losses to our baseline case, however, suggesting that our simpler, more analytically

tractable approach does not mislead us. Moreover, the theoretical findings on the shape of

the innovation-size relationship generalize to having many more periods. Hence, our simple

approach delivers losses in the right order of magnitude and is materially unchanged from

moving to more complex dynamic models.45

C.4 R&D as scientific labor

This section solves the model outlaid in Section 5.4. In this extension, R&D is performed by

scientists, hence the workforce is now split between production and innovation workers. For

each firm i, employment li is therefore given by:

li =
ni
ωγ

+ ζniz
η
i . (C2)

45In the working paper version, we show that qualitatively similar results are also found when considering
another approach to modelling infinitely lived owners (Aghion et al., 2021).
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Aggregating over all firms, we get:

L =

∫
i

lidi =
1

ωγ
+ ζ

∫
i

niz
η
i di =

1

ωγ
+ ζ

∑
n>0

µ(n)nzη(n)

Since L is fixed and exogenous, and since the right hand side terms of the above equation

varies with the tax τ , then ω also varies with τ . More precisely, the equilibrium wage ω decreases

with τ , since regulation costs decreases aggregate innovation (the second term of the right-hand

side of the equation).

Given that employment is now a function of both the number of products n and the intensity

of innovation z, we denote it by L(n, z). The cutoff threshold l̄ = 50 is now defined by the set

of points in the space (n, z) such that:

z =
1

ζn

(
l̄ − n

γω

)
(C3)

Figures C4 shows the equilibrium relationship between the number of products, employment

and innovation intensity (which indirectly relates to the number of R&D workers). It is no longer

possible to use the number of products as a measure of the size of the firms and we need to

define profit per unit of final output is now equal to:

π(n, z) =
γ − 1

γ

(
1− 1

[
L(n, z) ≥ l̄

]
τ
)
.

Hence, the firm’s maximization problem remains the same as before but with the two state

variables n and z, that is:

max
n≥0,z≥0

{
nπ(n, z)y − ζnzηy +

1

1 + r
E [n′π(n′, z′)y′]

}
.

Solving this maximization problem for every value of n gives a function Z(n) = nz(n) which

we plot in Figure C5 against employment L(n). We see that the innovation-employment cross-

section relationship is qualitatively unchanged. In Figure C5, we also plot the corresponding

relationship between firm’s employment and its share of R&D workers.
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Figure C4: Localization of employment threshold l̄

(a) 3D plot (b) 2D projection
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Notes: These Figures plot the relationship between employment L, innovation intensity z and number of products n. The left-hand
side panel shows the 3D plot corresponding to the surface defined by equation (C2), where the z-axis corresponds to L. The curve
in red corresponds to the intersection of the surface (n, z, L) with the surface L = l̄. The right-hand side panel presents the set of
pairs (z, n) which corresponds to an employment level of l̄ according to equation (C3).

Figure C5: Innovation-Employment cross-section with scientists l̄
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Notes: This is the total amount of innovation (Z(n), left-hand side panel) and share of R&D workers in total employment
(ζnzη(n)/L(n)), right-hand side panel) by firms of different sizes (employment, L = n/(ωγ) + ζnzη) according to our theoretical
model extension presented in Section 5.4. We use arbitrary parameter values for illustrative purposes.
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C.5 Modeling regulation as a tax on labor

In this extension, we let the regulation take the form of a marginal tax on the labor input so

that the wage w becomes w(1 + τ) if the firm crosses the threshold. Then, given that on each

product line firms compete a la Bertrand, the incumbent producer i(j) on a line j will set its

price equal to the marginal cost of its competitor i′(j), namely:

pj =
γ

Aj
w(1 + τi′(j)) or pj =

γ

Aj
w,

depending on whether the competitor who was also the previous producer on the line, i′(j),

was larger or smaller than the threshold size. This yields:

yj =
Ajy

γw(1 + τ)
or yj =

Ajy

γw

The markup m(j) on line j, defined as the unit price over unit cost depends on whether or

not firm i(j) is taxed and on whether the previous producer i′(j) would be taxed, namely:

m(j) =
γ(1 + τi′(j))

1 + τi((j))
.

Such a line generates a profit per unit of final good which depends on the both, the labor

tax τi(j) of the current producer and the labor tax of the previous producer τi′(j), i.e. on both,

the size of the current producer i(j)τi′(j)and the size of the previous producer i′(j) on line j:

π(j) = 1−
1 + τi(j)

γ(1 + τi′(j))

Next, the equilibrium number of workers on a line also depends on the size of the fringe firm

on that line. A line with a small fringe firm requires y/(γw) workers whereas a line with a large

fringe firm only requires y/(γw(1+τ)) workers. Let us restrict attention to an equilibrium where

S, the share of lines operated by a large firm, is constant. By the law of large numbers S also

corresponds to the probability for an innovating firm, of facing a large firm as its competitive

fringe on the corresponding line. It follows that total employment by a firm of size n is then

equal to:
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l(n) = n
y

γw

(
S

1 + τ
+ 1− S

)
.

This in turn implies that the threshold number of lines beyond which a firm is considered to

be a large firm eligible to the regulatory labor tax, n̄, is no longer constant but depends upon

S. Namely:

n̄ =
l̄γw(

S
1+τ

+ 1− S
)

Moving back to the R&D investment stage, for a given S at the steady state, a firm of size

n will choose its innovation intensity z to maximize:

Π(n, S) + βnz(n) (Π(n+ 1, S)− Π(n, S))− βnx (Π(n− 1, S)− Π(n, S))− nzηζ,

where Π(n, S) = n
(

1− 1+τ1(n≥n̄)
γ

(
S

1+τ
+ (1− S)

))
In equilibrium, S is constant and equal to the share of products lines operated by large

firms, namely:

S =
∑
i>n̄

µ(i)i

where n̄ itself depends upon S (see the above expression) and where µ follows a law of motion

as in the baseline model. At the moment, we consider S, and therefore n̄, to be constant and

taken as given by the firm. This yields the following innovation-size cross relationship:

z(n, S) =



(
β

ζη

(
1− B

γ

)) 1
η−1

if n < n̄− 1(
β

ζη

(
1− B(1 + τ n̄)

γ

)) 1
η−1

if n = n̄− 1(
β

ζη

(
1− B(1 + τ)

γ

)) 1
η−1

if n ≥ n̄

(C4)

where B = S
1+τ

+ (1− S) = 1− τ
1+τ

S < 1

Hence the equilibrium n −→ z(n, S) function looks similar to the equilibrium innovation-size

relationship z(n) in our baseline model with regulatory profit tax (see equation (4)).
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D Additional Empirical Results

D.1 Size distribution of French firms

Figure D1 reports the size distribution of firms from FICUS in a log-log scale. In order to

replicate results from Garicano et al. (2016), we use the year 2000, although choosing another

year results in very similar relationship. The relationship is consistent with the well-know power

law documented namely by Axtell (2001), but with two discontinuities: one at 50 employees

and the other one at 10 employees, corresponding to size dependent regulation thresholds (see

Appendix A).

Figure D1: Distribution of size for the manufacturing sector
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Notes: The data relate to the year 2000 for all firms.

D.2 Robustness of the cross-sectional innovation-size relationship

As noted in the main text the relationship between firm innovation and size are robust to a wide

variety of alternative definitions. The baseline method in Figure 5 defines as innovative firm as

one who has produced at least open patent over the sample period. In Figure D2 we consider

using a narrower window around the year employment is measured. Panel A uses between
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patents in t, exactly the same year as employment as measured. Panel B uses patents filed

two years before and two years after the employment measure (a five year window) and Panel

C between four years before and after (a nine year window). Panel D measures innovation as

log(1+patents count) in the same year as employment. Although the measures are somewhat

noisier than using the whole period (which smooths things out), the same basic pattern of an

innovation valley and a fall in the gradient after the regulatory threshold are apparent.

Figure D3 repeats these four definitions for the Figures comparing incremental and radical

patents as measured by future citations (analogous to Figure 9).

D.3 Robustness of the dynamic effects of the market size shock on

innovation

In the main text we noted the robustness of the decline in the impact of demand shocks to the

left of the threshold and reported some of our tests. Here, we detail some more of these.

First, it is possible that the changing relationship between innovation and the market size

shock around the threshold is driven by some kind of complex non-linearities in the innovation-

employment relationship, and our quadratic controls are insufficient. To investigate this issue,

we allow interactions between the demand shock and different size bins of firms in Table D1. Of

all the 14 different size bins, only the interaction of the shock with the size bin just below the

threshold (45-49 employees) is significantly different from zero and large in absolute magnitude.

Second, our results are robust to the particular way in which we define the upper and lower

size cutoffs for our sample. Appendix Table D2 reproduces the baseline specification in column

(1). Column (2) uses employment at t-2 instead of the initial year to define the sample, column

(3) relaxes the upper threshold to include firms of up to 500 employees (instead of 100 employees

in the baseline) and column (4) includes all firms below 100 employees (instead of dropping the

firms with between zero and 9 workers). Column (5) restricts the sample to firms exporting in

1994 (instead of the restriction that a firm has to export in at least one year over the period

1994-2007). Column (6) includes all the non-exporting firms (see below for more details). The

last three columns use three different definitions of the dependent variable instead of our basic

measure ∆̃Y : the log-difference in column (7), the difference in the Inverse Hyperbolic Sine in

column (8) and the change in patents normalized on pre-sample patents in column (9). Our
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results are robust to all these tests.

Finally, one might be concerned that the quantiles of the citation distribution reported

in Table 5 are arbitrary. Figure D4 reports the coefficient and confidence intervals on the

key interaction term in our preferred specification for every quantile from the top 10th to the

bottom 70th percentile in 5% intervals. As discussed in the text, it is clear that the negative

effect of the regulation is only apparent for the less cited patents. There is no significant effect

in a quantitative or statistical sense for patents in the top quartile of the citations distribution.

The negative effect is driven by those in the bottom two-thirds of the citation distribution (with

a monotonic decline of the effect for those between the 25th and 35th percentiles.

Extending to non-exporting firms. In column (6) of Table D2, we have extended the

sample to all firms, while our baseline results restrict to exporting manufacturing firms. To do

so, we need to calculate a demand shock for these firms that do not export. One natural way

to do so would be to calculate the average demand shock at the sectoral level from firms that

do export. However, our model includes sector-year fixed effects and even if the demand shock

can be aggregated at a smaller sectoral level, most of the variance would be captured by these

fixed effects.

To gain statistical power, we proceed as follows. We recalculate the same quantity as in

equation (8) but at the sectoral level:

∆Sk,t =
∑

s,c∈Ω(k,1994)

ωk,s,c,1994∆̃Is,c,t, (C5)

for each 5-digit sector k and year t. We use weights at the sector level taken during the year

1994 and covering all pairs of product-countries that firms in sector k exported to in 1994.

Contrary to the baseline shock at the firm level ∆Si,t, we do not weight by the level of export

intensity. Instead, we construct a weighted shock that used both ∆Sk,t and ∆Si,t with weights

depending on the level of export intensity of the firms:

∆S
(k)
i,t = σi,t0

∑
s,c∈Ω(i,t0)

ωi,s,c,t0∆̃Is,c,t + (1− σi,t0)∆Sk,t.

Hence, a non-exporting firms will have a shock equal to the sectoral component while an
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exporting firms will have a shock equal to a weighted average of the two components. Besides,

the larger its export intensity, the closer this new shock is to the baseline one. As shown in

column (6) of Table D2, our results are robust to using this shock which allows us to include

much more observations (about 925,000 instead of 142,000).
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Figure D2: Innovative firms at each employment level - robustness
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Notes: These Figures replicate Figure 5 using different definitions of the what counts as an innovative firm, based on the timing
of patents. Alternatives A, B, C and D define an innovative firm as a firm having filed a priority patent application between t− 2
and t+ 2 (A), at t (B), between t− 4 and t (C). Alternative D uses the logarithm of 1 plus the number of patent application at t.
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Figure D3: Innovative firms at each employment level and quality of innovation- robustness

(a) Alternative A

0

.01

.02

.03

10 20 30 40 50 60 70 80 90 100

Employment

Bottom 90%
Top 10%

Share of Innovative Firms

(b) Alternative B

0

.005

.01

.015

10 20 30 40 50 60 70 80 90 100

Employment

Bottom 90%
Top 10%

Share of Innovative Firms

(c) Alternative C

0

.01

.02

.03

10 20 30 40 50 60 70 80 90 100

Employment

Bottom 90%
Top 10%

Share of Innovative Firms

(d) Alternative D

0

.005

.01

.015

10 20 30 40 50 60 70 80 90 100

Employment

Bottom 90%
Top 10%

Share of Innovative Firms

Notes: These Figures replicate 8 using different definitions of the what counts as an innovative firm, based on the timing of
patents. Alternatives A, B, C and D define an innovative firm as a firm having filed a priority patent application between t− 2 and
t+ 2 (A), at t (B), between t− 4 and t (C). Alternative D uses the logarithm of 1 plus the number of patent application at t. The
solid line considers the bottom 90% most cited patent and the dashed line the top 10% most cited.
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Figure D4: Response to the Demand shock of patents of different quality
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Marginal effect of the shock interacted with L*

Notes: 95% confidence intervals around the estimated coefficient δ in equation (7). Each line corresponds to a separate estimation,
where the dependent variable has been redefined by restricting to patents among the x% more cited in the year, with x equal to 10,
15 etc... up to 70. Note that the 65th percentile threshold correspond to 0-citation patent and we include all patents for quality
percentiles above 65. The estimated model is the same as in column 5 of Table 2.
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D.4 Details (and robustness) of the estimates of τ , the regulatory tax

parameter for the Aggregate Innovation Loss

In this section we give more details regarding the calculation of the aggregate innovation losses

and test robustness to our main exercise in Section 4.

D.4.1 Static estimation of τ

Our theoretical model predicts a relationship between Z and employment l = n/(γω). Specifi-

cally, equation (4) shows that:

Z ∝ l if l < (n̄− 1)/(γω) and Z ∝ l(1− τ)
1

η−1 if l ≥ n̄/(γω)

To map this into our data, we need to make an assumption on how Z relates to the number

of patents filed by a firm. Our baseline estimates assume that Z ∝ logP , where P is the

(smoothed) number of patent applications filed by the firm. We can therefore directly estimate

τ from the innovation-size slopes for large firmsvs. small firms.

In this subsection, we present some robustness tests around the baseline estimates. We

report these in Table D3. Column (1) reports the baseline value and corresponding total

innovation and welfare loss compared to an economy with τ = 0.46 Column (2) does the same

46To compute these loss, we have kept all other parameters the same. The only other parameters directly affected

OA-35



as column (1) but includes firms with up to 250 employees (instead of 150 in the baseline). It is

clear that restricting the upper threshold to 100 employees does not exaggerate the impact of

the regulation (if anything, it underestimates it). Column (3) does the same as column (1) but

includes an intercept, assuming that Z = a logP + b for some parameters a and b. Columns (4)

and (5) respectively assume that Z is proportional to the number of patents or to the share of

firms with at least one patent at this level of employment. Finally, columns (6) and (7) assume

that the relationship between Z and P also depends on the sector and year. We thus perform

an estimation without binning the data and include an additive sector and year fixed effect

(column (6)), and a multiplicative sector-year fixed effect (column (7)).

Although the exact magnitude of the implicit tax varies across the table, it is always non-

trivial and our baseline estimate is just below the midpoint of the range of estimates of τ .

Table D3: Alternative estimation of τ

(1) (2) (3) (4) (5) (6) (7)
Observations Employment binned Firm level

τ 2.6% 3.7% 1.3% 1.2% 5.0% 3.8% 4.0%

Total Innovation loss (%) 5.79 8.30 2.79 2.57 10.94 8.49 8.87
Welfare loss (% of C equivalent) 2.27 3.25 1.15 1.06 4.45 3.46 3.62

Notes: This Table presents alternative OLS estimates of parameter τ based on the innovation-employment relationship
of equation (4). Columns(1)-(5) bin observations at the employment level (one observation per level of employment)
τ is computed as the ratio of two slope, respectively for firms between 10 and 45 employees and for firms between 50
and 100 (except column (2) which extends this to 250). The left-hand side variable is the log of the total number of
patents computed as a five year average before t to which we add 1 for columns (1), (2) and (3). Column (4) uses
the number of patents in level (as opposed to log) and column (5) the average of a dummy variable equal to 1 if the
number of patents in the past five years is non-zero (which is equivalent to the share of firms with at least one patent
at a specific level of employment). Columns (6) and (7) use the panel of firm-year (1,737,476 observations) to estimate
the coefficient on the 2 year lag of employment on the log of the number of patents at t + 1. Column (6) includes
a 2-digit sector fixed effect and year fixed effects and column (7) includes sector-year fixed effects. Each estimation
includes dummies for each employment level between 46 and 49.

D.4.2 Dynamic estimation of τ

We also estimate τ using a dynamic specification as presented in equation (11). Coefficients

c5 and c4 are estimated by OLS using the exact same sample of firms as the one in column

(5) of Table 2 (i.e. manufacturing exporting firms). The dependent variable, as in the baseline

estimations, is the growth rate of the number of patents filed during the year, using the modified

by changed in the slope estimates is β/ζ. However, we know that this parameter plays little aggregate role.
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Table D4: Sensitivity analysis for welfare

Robustness Loss in total welfare
Baseline (full sample) 2.27%

1. γ = 1.2 0.82%
2. γ = 1.50 7.31%
3. η = 2 3.44%
4. η = 1.3 1.00%
5. ω = 0.19 2.25%
6. ω = 0.25 2.29%
7. β/ζ = 1.40 1.49%
8. β/ζ = 1.90 2.73%
9. β = 0.94 1.41%
10. β = 0.98 4.85%
11. τ
Percentile 75th (τ = 0.046) 4.11%
Percentile 25th (τ = 0.006) 0.50%

Exporting manufacturing firms
12. Static estimation (τ = 0.062) 5.93%
13. Using dynamic model (τ = 0.060) 5.74%

Notes: baseline uses parameter values: (η = 1.5, γ = 1.3, τ = 0.026, β/ζ = 1.66 and
ω = 0.22), see Table 3. In the robustness where γ, η, ω or β/ζ are changed, we keep τ as in
the baseline. Results in line 11 report the 25th and 75th percentile for the loss of innovation in
a sample computed from 100,000 independent draws of τ from two normal distribution. The
corresponding value of τ and β/ζ are computed as an average for each percentile. Results
in rows 12-13 show the result when restricting to exporting manufacturing firms and the
corresponding estimation of τ , either using the static baseline approach or the dynamic model
described in Section 4.2.3. Loss in welfare is given in consumption equivalent and does not
include initial quality (see section 4.3).

∆̃ operator (see Section 3.3). Observations with employment between 46 and 49 are removed

from the sample (as we did with the static model as behavioral responses are different for these

firms). The sample has 131,633 observations. Finally, the model includes sector by year fixed

effects.

Once the estimated coefficients ĉ5 and ĉ4 are retrieved, we estimate equation (12) by taking

the unweighted average of the shock ε and a value of η set to 1.5. As our baseline, we chose to

match ε to ∆S. As an alternative, we have estimated the link between ε and ∆S by looking at

the response of employment to a demand shock. In practice this does not impact the value of

τ which is estimated to be about 0.062 (see main text for discussion).
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D.5 Measuring different types of innovation

Our baseline approach simply uses patent counts. In the extensions of C.2, we take several

approaches to examining the different types of innovation. In order to measure how “radical”

a patent is, we use two alternative methods: citations and text-based measures of novelty.

Then we also consider measures of how “labor saving” the patent is by looking at measures of

automation and process innovation.

Citations. The first method uses the now classical approach of considering future citations.

For every patent in a technology class by year of application cell, we calculate all the citations

to that patent by all granted patents that were filed in 2016 or earlier. Since the last year

we use in our analysis sample is 2007, this gives us a minimum of 10 future years of citation

information. We then calculate which quantile of the citations distribution a given patent lies

in. A patent which was in the top decile of citations, for example, would be counted as radical

for the purposes of column (1) of Table 5.

We validated the use of this measure by presenting employment growth regressions. We

regressed the change in the firm’s log(employment) on a distributed lag of patent counts with

sector by time dummies. Table D5 shows a representative example where we use patents from

t−1 to t−3. To deal with zeros we add one to the patents before taking logs. Column (1) counts

only “radical” patents in the top 10% of the technology-class-year cohort citation distribution

and column (2) has incremental patents in the bottom 90%. The coefficients of all patents are

positive and individually and jointly significant, indicating that patenting is associated with

faster firm growth as we would expect. And consistent with our priors, the coefficients on the

radical patents are much larger than incremental patents. Summing the coefficients to show

the long-run effects in the base of the column we see that the radical patents have about 2.5

(=0.1402/0.0565) times the impact on employment growth compared to incremental patents.

The base of the columns shows that in the long-run a doubling of incremental patents increases

employment growth by 5.7% compared to 15% for radical patents.

More ambitiously, we can use these estimates to perform a back of the envelope calculation to

see how much lower the loss of growth would be if we took into account that the regulation only

affects incremental innovation. For example, using the approach of Table D5 radical innovations

(the top 10% of the citations distribution) have 2.5 times the effect of incremental patents, so
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Table D5: Regression results for different levels of the novelty of innovation

Top 10% Bottom 90%

log(Pf,t−1) 0.0598*** 0.0187***
(0.01524) (0.00536)

log(Pf,t−2) 0.0466*** 0.0223***
(0.01472) (0.00556)

log(Pf,t−3) 0.0338* 0.0154*
(0.01742) (0.00762)

Sum of coefficients 0.1402*** 0.0565***
(0.0210) (0.0110)

Obs 196,284 196,284
R2 0.0081 0.0093
Notes: The dependent variable is the change in the firm’s

log(employment). The left hand side is ln(1+patent count) be-
tween t− 1 and t− 3. Column (1) restricting to the top 10% most
highly cited patents in a technology-class year and column (2) has
the other 90% . Both models include a 2-digit NACE sector inter-
acted with year fixed effects. Standard errors are clustered at the
firm level. ∗∗∗, ∗∗ and ∗ indicate p-value below 0.01, 0.05 and 0.1
respectively.

an innovation index should give a weight of 5/7 to radical innovation and 2/7 to incremental

innovation (instead of implicitly equal weights using the patent count). If the overall fall in

patenting is 5.8% as estimated in Table 4 and this comes entirely from incremental innovation,

we need to scale down the growth effect by 18/23 reflecting the lower impact of incremental

innovation. This would imply a fall of 4.5% in growth (compared to the unregulated economy)

compared to 5.8% in our baseline estimates. So the extension to different types of innovation

does reduce the magnitude of the loss, but not by an enormous amount. Different assumptions

will obviously change these exact magnitudes, but are unlikely (in our view) to overturn our

main findings.

Google Patent Embedding. Our second, alternative measure of radical innovation involves

a text-based analysis of novelty which is more involved and draws on some recent work by

Google. In 2019, Google Patent released an embedding representation of each publication

available in their public dataset (hereafter, “GP embedding”). As detailed in Srebrovic (2019),

embeddings are a set of techniques in natural language processing that map a text to a vec-

tor of real numbers. By leveraging methods such as neural networks, this mapping allow to

significantly reduce the dimensionality of a text input.

The GP embedding is a vector of 64 dimensions that have been constructed in order to
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predict a patent’s CPC (Cooperative Patent Code) from its text (including all metadata, ab-

stract and body of the patent description). Each element of the vector is a continuous variable

ranging between -1 and +1. It therefore summarize the text content of a vector in a simple

algebraic representation which has the advantage of allowing to calculate the distance between

two patents by taking the dot product between the two corresponding embeddings.

Formally, for each patent p, we let E(p) denote its embedding representation. We then

define the distance between a patent p and a patent q as:

d(p, q) = E(p).E(q)

Measure of novelty using text. Using this distance measure, we can construct a novelty

measure to capture radical innovation. The concept of novelty of a patent captures the extent

to which a patent is significantly different from previous innovations in the same field. Typical

measures of novelty look at the diversity of technological classes in the set of citing patents, or

in the set of cited patents. These measures, sometimes called “originality” are limited by the

fact that the average patent does not receive many citations.

Recently, the innovation literature has devoted much attention to using the text content of

patent documents to refine some existing measures. For example, Kelly et al. (2018) shows how

using the description of the innovation included in a patent publication can be used to build

measures of similarity and novelty.

Here, we adapt their methodology. More precisely, we define novelty for each patent as the

distance between its embedding and a reference point. This reference point is computed by

calculating the unweighted average of all USPTO patents filed in the past 5 years and within

the same technological class (we use 3-digit CPC classification, that is around 130 different

categories). Formally, we define novelty NOV (p) for each patent p as:

NOV (p) = E(p)
1

N(k, t)

∑
q∈P(k,t)

E(q) =
1

N(k, t)

∑
q∈P(k,t)

d(p, q),

where k is the technological class of patent p,47 P(k, t) is the set of USPTO patent filed

47In the case where a patent has more than one CPC code, we consider patents from all the CPC codes in which
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between t− 5 and t− 1 and belonging to technological class k and N(p, t) is its cardinal.

The static cross-section relationship between size and innovation when restricting attention

to very novel patents (top 10%) and other patents respectively are shown in Figure 5(a). This

graph is analogous to Figure 8. Likewise, results from regressions similar to that performed in

Table 5 but using thresholds based on the value of novelty, are shown in Table D6.

Automation. Patents that protect automation technologies have been the subject of a large

body of work recently (see e.g. Dechezlepretre et al., 2020; Webb, 2019; Mann and Püttmann,

2018 for reviews). These papers typically use at the description (or abstract) of the patents to

identify the occurrence of words that are usually associated with labor-saving technologies.

To build our automation measure, we use the work of Mann and Püttmann (2018) who look

at the wording of USPTO patents and build a classifier to distinguish between automation and

non-automation technologies. To apply their work to our set of patents, we once again leverage

the GP embedding. Specifically, we regress the binary variable from Mann and Püttmann

(2018) (1 if patent is classified as automation and 0 otherwise) on each of the 64 coordinates

of the patent’s embedding. We then use the estimated coefficients to predict the probability of

being an automation patent for every patent owned by a French firm. Formally, we define our

score of automation A(p) for each patent p as:

A(p) =
64∑
i=1

β̂iE(p)i,

where β̂i is the estimated coefficients from a model restricted to USPTO patents:

Yq =
64∑
i=1

βiE(q)i + νt + εq,

for a patent q published during year t. In this model, Yq is equal to 1 if the patent has been

classified as an automation patent and ε is an error term.

The underlying idea is that a linear combination of the embedding coordinates capture the

feature included in the text that predict that a patent protects a labor-saving technology.

case k represents the set of technological classes. In other words, we use a weighted average.
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We show the cross-section relationship between size and innovation result in Figure 5(b)

and the dynamic regression in Table D7.

As an alternative to the automation measure, we also used a measure of the extent to

which a patent protects a process innovation (as opposed to a product innovation) using the

classification of Arora et al. (2020). This uses the percentages of product or process related

words in either the claims or the description of the patent publication document. It is likely

the process innovations are more labor saving than product innovations, so the impact of

regulation such fall more heavily on the product innovations. As with Mann and Püttmann

(2018), this measure is only computed on USPTO patents, we leverage GP again, using the same

methodology as the one described above to predict a corresponding value for our set of patents

owned by French firms. We obtain broadly similar results. For example, splitting patents at

the median level of “process”, there are only signficant negative effects of the threshold on below

median levels of process innovation, i.e. for product innovation.

Table D6: Regression results for different levels of the novelty of innovation

Novelty Top 10% Top 15% Top 25% Bottom 75% Bottom 85% Bottom 90%
(1) (2) (3) (4) (5) (6)

Shockt−2 × L?t−2 -1.143 -1.276 -1.680* -5.133** -5.586*** -5.639**
(0.820) (1.056) (0.909) (2.119) (1.838) (2.025)

L?t−2 0.061* 0.071 0.094 0.055 0036 0.053
(0.032) (0.055) (0.103) (0.113) (0.096) (0.101)

Shockt−2 -2.874 -3.996* -4.532** -2.035 -2.229 -3.423
(1.739) (1.991) (1.833) (2.047) (2.192) (2.294)

log(L)t−2 0.000 0.001 -0.027 -0.027 -0.050 -0.053
(0.015) (0.020) (0.026) (0.032) (0.034) (0.034)

Shockt−2 × log(L)t−2 0.998* 1.412** 1.573** 0.924 0.992 1.362*
(0.557) (0.660) (0.601) (0.679) (0.723) (0.749)

Fixed Effects
Sector×Year X X X X X X

Number Obs. 142,474 142,474 142,474 142,474 142,474 142,474
Notes: estimation results of the same model as in column 5 of Table 2. The dependent variable is the Davis and Haltiwanger (1992) growth
rate in the number of priority patent applications between t− 1 and t, restricting to the top 10% most novel (column (1)), the top 15% most
novel, the top 25% most novel (column (3)), the bottom 85% most novel (column (4)), the bottom 75% most novel (column (5)) and the
bottom 90% most novel (column (6)). Definition of novelty is presented in Section 5.1.4. All models include a 2-digit NACE sector interacted
with a year fixed effect and a time fixed effect interacted with the initial level of export intensity. Estimation period is 1998-2007. Standard
errors are clustered at the 2-digit NACE sector level. ∗∗∗, ∗∗ and ∗ indicate p-value below 0.01, 0.05 and 0.1 respectively.
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Table D7: Regression results for different levels of the automation

Auomation Top 10% Top 15% Top 25% Bottom 75% Bottom 85% Bottom 90%
(1) (2) (3) (4) (5) (6)

Shockt−2 × L?t−2 0.041 -0.349 1.008 -5.993** -5.604** -6.041**
(0.396) (0.416) (0.739) (2.826) (2.649) (2.449)

L?t−2 0.045 0.013 -0.005 0.045 0.051 0.046
(0.032) (0.039) (0.062) (0.115) (0.110) (0.109)

Shockt−2 -0.007 -1.342** -0.003 -4.461* -4.372* -5.204**
(0.705) (0.640) (1.383) (2.239) (2.177) (2.088)

log(L)t−2 0.005 0.013* 0.013 -0.059 -0.058 -0.056
(0.004) (0.007) (0.011) (0.039) (0.040) (0.041)

Shockt−2 × log(L)t−2 -0.053 0.415* 0.082 1.681** 1.733** 2.038***
(0.240) (0.201) (0.456) (0.754) (0.736) (0.683)

Fixed Effects
Sector×Year X X X X X X

Number Obs. 142,474 142,474 142,474 142,474 142,474 142,474
Notes: estimation results of the same model as in column (5) of Table 2. The dependent variable is the Davis and Haltiwanger (1992)
growth rate in the number of priority patent applications between t−1 and t, restricting to the top 10% patents that score highest in terms of
predictive automation measure (column 1) and respectively top 15%, top 25%, bottom 25%, bottom 85% and bottom 90% patents. Definition
of automation is presented in Section 5.2. All models include a 2-digit NACE sector interacted with year fixed effects. Estimation period:
1997-2007. Standard errors are clustered at the 2-digit NACE sector level. ∗∗∗, ∗∗ and ∗ indicate p-value below 0.01, 0.05 and 0.1 respectively.

Figure D5: Innovative firms at each employment level - novelty and automation

(a) Novelty
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Notes: These Figures replicate Figure 8 but split patents between top 10% and bottom 90% according to their level of novelty
(left panel) or their predicted level of automation (right panel).
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