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1 Introduction

Enrollment in tertiary education increased by a factor of 3.4 in OECD countries since 1970

(UNESCO Statistics, 2021)1 and further expansion figures prominently in political agendas.

For example, the European Union’s goal for 2030 is that “The share of 25-34 year-olds with

tertiary educational attainment should be at least 45%” (Council of the EU, 2021). We inves-

tigate the consequences of such historical and planned expansion processes on the selection

of college students in terms of intelligence and disadvantage from low socioeconomic status

or poor non-cognitive skills. In our stochastic, general equilibrium Roy (1951) model, these

traits determine the graduation probability, and their correlation is crucial to understand

how technological progress and higher education policy alter incentives to pursue tertiary

education. The model is used to study how actual policies shaped the evolution of stu-

dents’ sorting into college in terms of their intelligence and disadvantage, and to simulate

counterfactual policies.

We estimate the model using UK data that span four decades (1960-2004) of expan-

sion: the share of 17-30 year-olds in higher education rose from 5% in 1960 to 43% in 2007

(Chowdry et al., 2013),2 an increase observed previously in the US (Goldin and Katz, 2008)

and subsequently in other OECD countries (Schofer and Meyer, 2005; Meyer and Schofer,

2007). The UK experience offers an ideal case study. We illustrate its nature and conse-

quences, drawing lessons to judge the ambitious target currently set in Europe and elsewhere.

The UK expansion originates in the Robbins (1963) Report, which claimed the existence

of large “reserves of untapped ability [that] may be greatest in the poorer sections of the

community” (p. 53, the added italics explain our emphasis on intelligence and disadvantage)

and thus recommended that “all young persons qualified by ability and attainment to pursue

a full-time course in higher education should have the opportunity to do so.” (p. 49).

According to the Report, “fears that expansion would lead to a lowering of the average

ability of students in higher education [were] unfounded.” (p. 53). These claims have not

been adequately investigated for lack of data sets containing cognitive ability measures. An

upside of our data is that we observe measures of general cognitive ability (g factor), in

addition to predetermined individual measures of disadvantage.

1This factor was about 1.9 in the US, 3.7 in France and in Japan, 3.9 in Italy, and 4.5 in the UK. Enroll-
ment is to any tertiary education program, of students who have successfully completed secondary education.

2Similar evidence can be found in Blackburn and Jarman (1993), Boliver (2011), Blanden and Machin
(2004), Walker and Zhu (2008), Riddell et al. (2013), Major and Machin (2018) and Blundell et al. (2022).
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We find that: (i) graduates’ average intelligence declined by about 13% of a SD between

the 1960s and the 1990s; non-graduates’ average intelligence also declined, indicating that

students who attained a college degree in the 1990s (and who would have not in the 1960s)

were more intelligent than the average high school graduate of the 1960s, yet less intelligent

than the average college graduate of the same period;3 (ii) the reason is a non-meritocratic

increase in the number of graduates, achieved by reducing non-tuition costs and by lowering

qualification barriers at entry; (iii) the wage gap between college graduates and non-graduates

declined progressively across cohorts;4 like the increase in the supply of graduates, this

pattern may mimic with a lag the college premium decline of the 1970s in the US, which

was only later followed by an increase (e.g., Katz and Murphy, 1992, Fortin, 2006, Goldin

and Katz, 2008 and Autor et al., 2020); (iv) although “untapped ability” did exist, the

policy that prevailed was unfit to draw this ability into universities and ended up favoring

primarily low-intelligence students from advantaged families;5 (v) meritocratic policies based

on the selection of intelligent students from any socioeconomic background (possibly with a

subsidy to the study effort of more disadvantaged students) could have achieved the Robbins

Report’s progressive goals. In our model, such policies would have been more efficient and

more egalitarian than the one that was actually implemented.

Although we eschew the difficult question of which social welfare function should be

used to determine the decision to expand university access (a question that we postpone to

future research), we claim that a lower average intelligence of college graduates can hardly be

3Walker and Zhu (2008) and Blundell et al. (2022) consider this hypothesis in their analysis of the
evolution of the wage gap between college and high school graduates over years. They cannot test it because
their data source (the UK LFS) does not contain an ability measure. Carneiro and Lee (2011) study the
increase in college enrollment in the US in 1960-2000 and present evidence consistent with the possibility
that the expansion drew into college marginal students of lower quality than average college students.

4Bianchi (2020) studies a large expansion of access to STEM majors enacted in Italy in the early 1960s
and finds a similar impact on STEM graduates’ wages. Our finding is instead in contrast with the weakly
increasing wage gap over cohorts between college and high-school graduates in the UK reported by Blundell
et al. (2022) in Figure 4 of their Online Appendix, which is puzzling given that we use the same methodology
and Labour Force Survey (LFS) data to construct cohort wage ratios net of age effects. Our Online Appendix
to Section 4.4 shows that the reason is the different group to which we compare college graduates: all
individuals without a college degree instead of high-school graduates only. Section 3.2 explains why this is
the appropriate comparison group to answer our research question.

5These results agree with Blanden and Machin (2004), Machin (2007), Sutton Trust (2018), Boliver
(2013) and Major and Machin (2018), who show that the expansion of UK higher education since the 1960s
predominantly benefited children from high-income families. They also agree with Campbell et al. (2019) and
Cooper and Liu (2019), who find evidence of mismatch between ability and educational attainment in the UK
and other OECD countries, respectively. We leave in the background other consequences of higher education
expansion such as over-education (Freeman, 1976), i.e., the mismatch between educational attainment and
occupation. Cervantes and Cooper (2022) study both margins of mismatch in OECD countries.
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characterized as a desirable outcome. In our model the reason is that a higher intelligence is

associated (ceteris paribus) with a lower study effort cost, which implies a social welfare gain

from a more intelligent graduate workforce relative to a less intelligent one of the same size.

Other reasons may be considered in a richer model. For example, universities have a double

role in society: providing higher education but also supporting basic research at an advanced

level in all fields, a task that is facilitated by higher cognitive ability. Thus, the consequences

of a decline in the average intelligence of graduates are going to be far reaching, particularly

if there is reluctance to allow the tertiary education institutions of higher quality to be more

selective in their acceptance. The Robbins Report clearly mentions the lack of a depressing

effect on graduates’ average ability as a condition that justifies an expansion.6

Our conceptual framework is a general equilibrium model that extends the partial equi-

librium setting of Katz and Murphy (1992) and Autor et al. (2020) to an active labor supply

side that makes human capital investment decisions. The labor demand side has the stan-

dard features: competitive firms produce output by combining graduate and non-graduate

workers, thus affecting the wage gap. Skill-biased technical change increases the productivity

of graduate workers and activates a force that increases the demand for college graduates

independently of any change in higher education policy.

The labor supply side is more novel. In our model, obtaining a college degree is the

outcome of two factors. One is simply the intelligence of the individual. The other is the

combination of non-cognitive traits like individual characteristics pertaining to family back-

ground (e.g., parents’ education, their presence in the household, and their employment

status at the time a respondent was young) and personality (e.g., Neuroticism or Conscien-

tiousness). For brevity, we refer to this variable as disadvantage. In the model, intelligence

and disadvantage affect the cost of study effort that a student must exert to attain a college

degree, thereby altering an individual’s graduation probability. The government can shape

the parameters that link intelligence and disadvantage to the cost of study effort, thus ex-

panding university access in different ways. To clarify the exposition, at the cost of some

simplification, we adopt the following labels for three paradigmatic government interventions:

a Meritocratic expansion (ME) policy favors more intelligent students; a Progressive expan-

sion (PE) policy favors students with a more disadvantaged background; an Indiscriminate

6Surprisingly, such a concern is absent in Council of the EU (2021), which sets the goal of at least 45%
of graduates in the EU by 2030. It is not even clear how this specific threshold has been chosen.
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expansion (IE) policy enlarges university access independently of intelligence and disadvan-

tage. The combination of intelligence and disadvantage with the effort cost parameters as

shaped by policy generates isoprobability curves in the corresponding space (i.e., alternative

combinations of intelligence and disadvantage such that the graduation probability is con-

stant). These curves mark the boundary between higher and lower graduation probability

regions, a stochastic generalization of the classical Roy (1951) model. A higher education

policy is a way to change the position and slope of these curves.

Given a policy, the evolution of the characteristics of students selected into college de-

pends on the correlation between intelligence and disadvantage in the society where the policy

is implemented. The reforms advocated by the Robbins Report were motivated by the belief

that the UK was a stratified society where access to a university was facilitated more by an

advantaged background than by high intelligence. In this society, if the correlation between

intelligence and disadvantage is positive, even an indiscriminate or progressive expansion pol-

icy may increase the fraction of college graduates without reducing their average intelligence,

as the Report claimed. Our evidence suggests that the UK society was indeed stratified, but

was characterized by a negative correlation between intelligence and disadvantage – a find-

ing with different possible explanations that we discuss below and that we take as given.

The key lesson that we learn from the UK experience is that, in such contexts, only a shift

towards meritocratic policies aimed at increasing the graduation probability more strongly

for more intelligent students (possibly with a twist in favor of those sufficiently intelligent

but disadvantaged) could achieve the desiderata of the Robbins Report.

Our analysis has of course some limitations. Three of them must be highlighted upfront

so that the reader can calibrate expectations. The first one relates to the interaction between

intelligence and the educational process. To maintain tractability, we assume that higher

intelligence reduces the effort cost of acquiring a college degree, and this is the reason why

it is desirable, ceteris paribus, that the intelligence of college attendants is higher. However,

we abstract from other implications of higher intelligence, like in particular the possibility

of a direct effect on productivity for a given education level. Likewise, we abstract from

the possible consumption value of a college education. The second one is that we aggregate

the other socioeconomic and personality determinants of educational attainment in a single

factor that captures a student’s non-cognitive disadvantage. This way, we can contrast

traditional disadvantage factors in attaining a college degree with the role of intelligence,
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which is the novel contribution of our analysis. The third one is that, again for tractability,

the educational policies modeled in this paper are parameterized in an abstract manner,

although hypothetical and historical examples are provided.

The rest of the paper proceeds as follows. Section 2 presents the theoretical model.

Section 3 describes the data, in particular our measures of intelligence and disadvantage.

Section 4 illustrates the key facts. Section 5 estimates the model and uses it in counterfactual

quantitative analysis. Section 6 concludes.

2 Model

We adopt a Becker-style human capital model in which education increases productivity.

An innovation is the introduction of a study effort cost that depends on intelligence and on

socioeconomic and psychological disadvantage, in a way that is affected by policy.

2.1 Workers

There is a unit mass population of economic agents who are fully employed at equilibrium.

Each individual is characterized by a given pair (θ, η) ∈ Θ × H ⊂ R+ × R+.7 Θ denotes

intelligence and its support Θ is ordered by the order on the real numbers; H summarizes

non-cognitive disadvantage, i.e., a set of socioeconomic factors and personality traits that

increase study effort cost, and its support H is similarly ordered.8 The two variables are

assumed to be publicly observable, and their joint distribution is denoted by µ ∈ ∆(Θ×H).

Each individual is also characterized by an endogenous human capital level k ∈ K,

where K is an ordered set of human capital levels. Given our focus on higher education, we

consider only two levels, and so K = {0, 1} (≡ {school, college}), where school denotes any

education level below college.9 k is determined by an allocation function π that describes

the probability on human capital obtained by an individual, for given cognitive skills and

7We use bold face to denote a set, capitals to denote random variables, and lower case to denote generic
variables and realizations of random variables. Recall that in the Greek alphabet the capital for η is H.

8As mentioned in Introduction, the intelligence-disadvantage dichotomy was prominent in the Robbins
(1963) Report (e.g., at p. 53).

9By adopting this definition, we deviate from the literature that studies the evolution of the wage gap
between college and high school graduates, e.g., Machin and McNally (2007), Walker and Zhu (2008), and
Blundell et al. (2022). The reason is that we are interested in evaluating whether the UK expansion was
successful in drawing into college talented students who were previously likely to drop out of education at
any lower level, not just at the high-school level.
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study effort level. The set of effort levels S is the positive real line. We assume that the

human capital level “college”, once achieved, cannot be lost, so the only transition in human

capital is from 0 to 1. In sum, we let π : S×Θ → [0, 1], where π(s, θ) is the probability of

attaining a college degree for an individual whose intelligence is θ and who exerts effort s.

For an individual of type (θ, η), preferences are defined over lifetime consumption and

leisure and are represented by

u(c, s; θ, η) =
c1−σc − 1

1− σc
+ Ω(η)

(1− Γ(θ)s)1−σs − 1

1− σs
, (1)

where c denotes consumption and σc > 0 and σs > 0 are parameters; the functions Ω ≥ 0

and Γ ≥ 0 are effort cost shifts, hence non-negative. They are influenced by the policy maker

and depend on disadvantage and intelligence.10 Absent policy interventions, it is standard

(and reasonable) to assume dΓ(θ)
dθ

< 0 (the marginal disutility of study effort decreases with

intelligence) and dΩ(η)
dη

> 0 (the marginal disutility increases with disadvantage). Under these

assumptions, ceteris paribus, it is less costly in terms of leisure utility to admit to college

more intelligent and more advantaged students. However, for efficiency or equity reasons,

higher education policy can alter the opportunity cost of study effort selectively on the basis

of an individual’s θ and η. Examples are provided in Section 2.4.

Let s∗(θ, η) be the optimal study effort of a (θ, η)-type individual. Since the model

is static, consumption is equal to earnings, which in turn depend only on an individual’s

human capital. That is, an individual’s wage is given by w(k).11 Given a vector of wages

w ≡ (w(0), w(1)), an individual solves:

max
s≥0

(
π(s, θ)∆U(w) + Ω(η)

(1− Γ(θ)s)1−σs − 1

1− σs

)
, (2)

where we denote

∆U(w) ≡ w(1)1−σc

1− σc
− w(0)1−σc

1− σc
. (3)

10The two effort cost shifts Ω(η) and Γ(θ) enter the utility function in an asymmetric way because we hy-
pothesize that higher intelligence improves effectiveness of study effort directly, while disadvantage affects
only the leisure utility at the given effort.

11As mentioned in the Introduction, this is an assumption that we make for tractability. However, note
that even if the productivity of college graduates does not depend on intelligence, in this framework it is
still desirable – ceteris paribus – to select high-intelligence students in college because their study effort cost
is lower. A more general model where additional factors (for example intelligence, background, or gender)
may affect wages directly is a task for future research.
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It is convenient to specify

π(s, θ) = Π(θs), (4)

where Π(·) ≡ min(max(·, 0), 1) is the cut-off function. The resulting probability of attaining

college education is a piece-wise linear probability model. Thus, for a given level of effort,

a more intelligent individual is more likely to attain a tertiary degree. Under assumptions

(2), (3) and (4), the optimal effort is unique and given by:

s∗(θ, η) = min

(
max

(
1

Γ(θ)

(
1−

(
Ω(η)Γ(θ)

θ∆U(w)

) 1
σs

)
, 0

)
, 1

)
. (5)

Note that although an individual can choose any positive effort level, it is never optimal

to choose any s > 1
Γ(θ)

, because effort is costly and the probability of college would not

change. From equation (5), given a utility gap ∆U(w), the probability of college graduation

for an individual of type (θ, η) is

π(θ, η) = Π

(
θ

Γ(θ)

(
1−

(
Ω(η)Γ(θ)

θ∆U(w)

)1/σs
))

. (6)

Let x(k) denote the population fraction with educational attainment k. The aggregate supply

vector xS ≡ [xS(0) xS(1)] is composed by

xS(1) =

∫
Θ×H

π(s∗(θ, η), θ)dµ(θ, η); xS(0) = 1− xS(1). (7)

2.2 Firm

A representative firm has a technology that maps a vector of labor allocation into quantity

of output produced. This technology is of the CES type; for every x ∈ R2
+,

Q(x) ≡ A

 ∑
k∈{0,1}

a(k)x(k)ρ

 1
ρ

, (8)

where A is total factor productivity (TFP), the product of population size and the additional

factor that allows us to normalize
∑

k x
S(k) = 1 and also

∑
k a(k) = 1. We assume ρ ≤ 1,

where ρ ≡ ς−1
ς

, for ς the elasticity of substitution between school and college labor inputs.

The firm is competitive and solves, for any wage vector w taken as given, the following

problem: maxx∈R2
+

(Q(x)−wx), where wx is the inner product. Note that while aggregate
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labor supply is constrained at equilibrium by equation (7) to add up to 1, the competitive

firm ignores this constraint. The first-order conditions for an interior solution are:

w(k) = Aρa(k)x(k)ρ−1Q(x)1−ρ, k ∈ {0, 1}, (9)

and so labor demand by educational attainment, xD(k) for k = 0, 1 satisfies

w(1)

w(0)
=
a(1)

a(0)

(
xD(1)

xD(0)

)ρ−1

⇔ r = α(ξD)ρ−1, (10)

where α ≡ a(1)
a(0)

is the technological skill ratio and r ≡ w(1)
w(0)

and ξD ≡ xD(1)
xD(0)

are the college-

to-school wage and labor demand ratios, respectively. In this model, technical change is

represented by any change in A, α, or ρ. A change from a(k) to a′(k) is called progress if for

all k, a′(k) ≥ a(k). A progress favors college graduates (i.e., is skill-biased) if α′ ≥ α.

2.3 Equilibrium

Definition 1 An equilibrium in an economy described by the parameters (Ω,Γ, σc, σs, A, α, ρ)

is a vector (w∗, s∗,x∗) such that

1. Individuals choose effort to maximize utility; that is, for µ almost every (θ, η):

s∗(θ, η) ∈ arg max
s≥0

(
π(s, θ)∆U(w∗) + Ω(η)

(1− Γ(θ)s)1−σs − 1

1− σs

)
,

and the aggregate labor supply xS is determined by equation (7).

2. The firm chooses labor to maximize profits: xD ∈ arg maxx∈R2
+
Q(x)−w∗x.

3. The labor market clears: xS = xD = x∗.

4. The good market clears:

Q(xD) =
∑
k

w∗(k)xS(k). (11)

We focus on vectors of labor allocation that satisfy the necessary equilibrium condition (10)

and the constraint in (7). The following observation is convenient to establish existence of the

equilibrium (and uniqueness in the special case that we consider in the empirical analysis).
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Lemma 1 For every r > 0 there is a unique pair x(r) = (x(0, r), x(1, r)) and a corresponding

pair w(r) = (w(0, r), w(1, r)) such that

x(0, r) + x(1, r) = 1,
Qx(1)(x(r))

Qx(0)(x(r))
= r; (12)

∀k : w(k, r) = AρQ(x(r))1−ρa(k)x(k, r)ρ−1. (13)

Any pair (x∗,w∗) which is part of an equilibrium is of the form in equations (12) and (13)

for some value of the wage ratio r.

Proof. See the Online Appendix to Section 2.3.

In our structural estimation we use a characterization of the equilibrium labor allocation

that provides a convenient computational algorithm. Using equation (9) to write wages at

equilibrium as a function of the labor allocation, the difference in utility of consumption

between college and school graduates at equilibrium can be written as

∆U(w(x∗)) =
(q(x∗)a(1)x∗(1)ρ−1)

1−σc − (q(x∗)a(0)x∗(0)ρ−1)
1−σc

1− σc
, (14)

where q(x) ≡ AρQ(x)1−ρ. Thus, an equilibrium labor allocation vector x∗ is fully character-

ized by the following equation in the skilled labor fraction x(1),

x(1) =

∫
Θ×H

Π

(
θ

Γ(θ)

(
1−

(
Ω(η)Γ(θ)

θ∆U(w(1− x(1), x(1))

) 1
σs

))
dµ(θ, η), (15)

where we use the fact that at equilibrium the wage vector is a function of the pair (1 −
x(1), x(1)) of labor allocation from equation (9).

2.4 Higher education policy

In order to define higher education policy formally and in a tractable way, we follow the

macroeconomic literature and set σc = σs = 1.12 Under this assumption,

∆U(w) = lnw(1)− lnw(0) ≡ ∆ lnw. (16)

12For example, Prescott (2004) and Greenwood et al. (2017) set σc = σs = 1; Olivetti (2006), Guner et al.
(2011), and Bick and Fuchs-Schündeln (2018) set σc = 1.
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Next, we specify the effort cost shifts as linear functions:13

Ω(η) = δ + βη, (17)

Γ(θ) = γ + τθ, (18)

where the four parameters are controlled by the government, either actively (i.e., a purposeful

stimulation of college attendance by students with certain characteristics) or passively (i.e.,

a mere accommodation of changes in students’ demand for higher education driven by other

factors). Therefore, in what follows we refer to them as to “policy parameters”, and a higher

education policy is a quadruple G = (δ, β, γ, τ).14 Combining equations (6) and (16)-(18),

the equilibrium probability of attaining a college education for an individual of type (θ, η)

at policy G is given by

π∗(θ, η;G) = Π

(
θ

γ + τθ
− β

∆ lnw(G)
η − δ

∆ lnw(G)

)
. (19)

Examples of policies that can be well represented in this framework follow. A government

that wishes to stimulate college attendance by disadvantaged students can offer means-tested

grants, which in the model would be represented by a reduction of β. On the contrary, an

active policy that increases β is the design of complex financial aid, tuition, and enrollment

systems that disadvantaged households can hardly navigate. A public investment program

to build new universities in response to an increased demand for college education across

all families, can be represented as a passive policy that allows δ to decrease. A government

can also build new universities in the absence of such increased demand; this active policy

would aim at increasing the probability of graduation of students living in the affected areas

independently of their intelligence or family background, which in the model would again

correspond to a reduction of δ. As for the remaining parameters, a policy that grants

scholarships based on an intelligence measure not affected by family background (g-factor),

or that ranks college applicants according to this same measure would correspond in the

model to a reduction of τ . Beyond these hypothetical examples, the Online Appendix to

Section 4.1 provides historical evidence of policies that took place after the Robbins (1963)

Report, like the construction of universities and polytechnics (a decrease of δ or β) and the

13As shown below, linearity allows for tractability while not limiting in any important way the types of
higher education policies that we can analyze.

14Recall that the logic of the problem requires that we consider values of G ensuring Ω(η) ≥ 0 and Γ(θ) ≥ 0
for the values of θ and η in the range of the economy. This restriction is imposed throughout the analysis.
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introduction of less stringent admission criteria (an increase of τ).

Given a status quo policy G, it is convenient to classify the possible interventions into

three abstract categories of expansionary higher education policies G′.

Definition 2 Let ∆π∗(θ, η) = π∗(θ, η;G′)− π∗(θ, η;G).

1. An Indiscriminate Expansion (IE) policy is a G′ that induces a function ∆π∗(θ, η) > 0

and equal for all θ and η.

2. A Progressive Expansion (PE) policy is a G′ that induces a function ∆π∗(θ, η) > 0 and

increasing in η for all θ.

3. A Meritocratic Expansion (ME) policy is a G′ that induces a function ∆π∗(θ, η) > 0

and increasing in θ for all η.

We emphasize that these categories are intended to provide a benchmark for the evalua-

tion of real policies that do not necessarily match these requirements exactly. Note also that

the intended aim of a policy is not necessarily the same as the actual outcome of the policy,

once general equilibrium effects are considered. We return on this point below.

A central question that is relevant to study the consequences of further expanding uni-

versity access, is precisely the one addressed in the Robbins Report: namely, whether an

increase in college participation is possible that would put unexploited ability to good use.

To answer this question we need an operational definition of the notion of untapped ability

that is at center stage in the Robbins Report (but notably absent in Council of the EU, 2021

when setting the EU goal of at least 45% of graduates by 2030). A possible definition is that

untapped ability exists if there are two individuals i and j with θi > θj and ki < kj (i.e., i is

more intelligent than j but j achieves a college degree while i does not). However, because

in a free society individuals cannot be forced to go to college, we need a policy-relevant

definition of reachable ability. To this end, we denote with ξ(G) the college-to-school labor

ratio at equilibrium under policy G.

Definition 3 Reachable ability at a policy G exists if there exists a different policy G′ such

that : E(Θ|K = 1;G′) ≥ E(Θ|K = 1;G) and ξ(G′) > ξ(G).

That is, there are skills that can be put to good use via higher education if there exists a

policy such that, at equilibrium, the fraction of population with a university degree is higher
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and mean intelligence of college graduates is not smaller. As remarked in the Introduction,

the Robbins Report claimed the existence of reachable ability by ruling out “that expansion

would lead to a lowering of the average ability of students in higher education.” (p. 53).

In order to establish the conditions for the existence of reachable ability, we assume

(departing from the finite set assumption) that intelligence and disadvantage, [Θ H], are

joint normal with mean [mΘ mH ], standard deviation [σΘ σH ], and correlation λ. Our data

show that the empirical distribution of Θ and H is close to normal. The effects of higher

education policies of different type on the distribution of intelligence in the college population

depends on the relation between the slopes of two functions that link Θ and H.

The first is the tilt of the joint density µ(Θ, H). Its inclination can be conveniently

characterized by the slope λσH
σΘ

of the population linear regression of H on Θ,

H −mH = λ
σH
σΘ

(Θ−mΘ). (20)

The second slope is that of the isoprobability curves of obtaining a college degree, i.e., the

locus of (θ, η) combinations such that the probability of graduating is constant. Using

equation (19), it is immediate that this slope is given by

∂H

∂Θ
(θ, η) =

γ∆ lnw(G)

(γ + τθ)2β
. (21)

When τ = 0, isoprobability curves are straight lines. The comparison between the two slopes

is crucial in the following analysis, so it is convenient to label the difference:

ψ(θ,G) ≡ γ∆ lnw(G)

(γ + τθ)2β
− λσH

σΘ

. (22)

2.5 Characterization of the effects of higher education policy

The behavior of mean intelligence in the population of college graduates and so the existence

of reachable ability depends on the sign of the derivative of the function D defined as:

D(θ) ≡ θ

(
1

γ + τθ
− βλσH

∆ lnw(G)σΘ

)
. (23)

To appreciate the role played by this function, consider the simple case in which τ = 0. In

this case, the expression in parentheses on the RHS of equation (23) is independent of Θ and

(when β > 0) is positive or negative depending on whether the slope of the isoprobability
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curves (which in this case is constant and is given by ∆ lnw(G)
γβ

) is larger or smaller than the

tilt of the density (which is given by λσH
σΘ

). When larger, D is an increasing function, and

then part (ii) of the following proposition states that the probability of attaining a college

degree, conditional on intelligence θ, is increasing in θ.

Proposition 1 At the equilibrium:

(i) The probability of attaining a college degree conditional on θ is

P (K = 1|θ) = Eφεπ
(
D(θ)− β

∆ lnw(G)
ε+

βλσH
∆ lnw(G)σΘ

mΘ −
δ

∆ lnw(G)

)
, (24)

with ε a normal random variable, independent of Θ; its density φε has parameters

(mε, σ
2
ε ) = (mH , (1− λ2)σ2

H).

(ii) If π is any increasing function R to [0, 1], then for any θ1, θ2:

P (K = 1|θ2) ≥ P (K = 1|θ1) if and only if D(θ2) ≥ D(θ1).

(iii) If π is increasing and D is increasing over Θ, for any increasing function g on Θ:

E(g|K = 1) ≥ E(g|K = 0), (25)

with a strict inequality if g is strictly increasing. In particular, when g is the identity

function, equation (25) states that the mean intelligence among college graduates is

higher than among school graduates.

(iv) The mean intelligence of college graduates has the selection equation form in (28).

Proof. For part (i), consider the linear transform of H that is normal, uncorrelated with,

and hence independent, from θ:

ε ≡ H − λσH
σΘ

(Θ−mΘ). (26)

Let φΘε denote the density of the joint distribution of (Θ, ε), and denote by φΘ and φε its

marginal densities. φε is a normal density with parameters (mε, σ
2
ε ) = (mH , (1− λ2)σ2

H).

Expressing the probability of obtaining a college degree as a function of (θ, ε) yields (24).

Part (ii) follows from equation (24) and the assumption that π is increasing.
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We now consider Part (iii). First recall the definition of likelihood ratio order (e.g.,

Shaked and Shanthikumar, 2007, definition 1.C.1):

Definition 2 Given two densities f1 and f0 on Θ, we say that f1 is larger than f0 in the

likelihood ratio order if the function θ → f1(θ)
f0(θ)

is increasing.

Take fi in Definition 2 to be P (·|K = i) for i = 0, 1. To verify the condition in this

definition, we consider

P (θ|K = 1)

P (θ|K = 0)
=

P (K = 0)

P (K = 1)

P (θ,K = 1)

P (θ,K = 0)
=
P (K = 0)

P (K = 1)

P (K = 1|θ)
P (K = 0|θ)

=
P (K = 0)

P (K = 1)

(
P (K = 1|θ)

1− P (K = 1|θ)

)
.

Therefore, by part (ii) above, ifD(θ) is increasing then function θ → P (K = 1|θ) is increasing

and conditional probability P (·|K = 1) is larger than P (·|K = 0) in the likelihood ratio order,

by definition of this order. The conclusion then follows from the fact that the likelihood ratio

order implies the stochastic order (Shaked and Shanthikumar (2007), Theorem 1.C.1), and

from well-known properties of the stochastic order.

To establish part (iv), define

(Pφ)(θ) ≡ φ(θ;mΘ, σ
2
θ)P (K = 1|θ)∫

R φ(τ ;mΘ, σ2
θ)P (K = 1|τ)dτ

(27)

and the moment-generating function MPφ(t) ≡
∫
R(Pφ)(θ)etθdθ. The mean intelligence in

the population in college is given by E(Θ|K = 1) = d
dt
Mfφ(t)|t=0, which we can compute:

E(Θ|K = 1) = mΘ + σ2
Θ

∫
R

(
φ(z; 0, 1)P ′(mΘ + σΘz|K = 1)

(
∫
R φ(x; 0, 1)P (mΘ + σΘx|K = 1)dx)

dz

)
. (28)

Proposition 1 holds for any increasing function π. Thus, this result is an extension of

the standard selection problem in the Roy (1951) model, when selection is determined by

a function of Θ between 0 and 1 described in (24) rather than by passing a threshold. In

fact equation (28) is a general form of the standard selection equation, which is its special

case when the function P is the indicator function of a half line. Following the same steps,

a symmetric result can be derived that characterizes E(H|K = 1).

The comparative statics of interest is how expansive higher education policies of different

type alter mean conditional intelligence and disadvantage, E(Θ|K) and E(H|K), of students
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selected or not selected into college. Such policies induce general equilibrium responses with

effects that vary across regions of the policy space G. For this reason, their consequences

are cumbersome to characterize analytically and we resort to simulations of the model’s

equilibrium to illustrate them.

2.6 Numerical simulation

Using simulated data, Figures 1 and 2 describe the effects of the three higher education

policies of Definition 2 in two paradigmatic types of society. In Figure 1 (Society 1), λ > 0

(i.e., intelligence Θ and disadvantage H are positively correlated), but ψ(·, G) < 0 (i.e., iso-

probability lines are flatter than the line describing the tilt of the joint distribution µ(Θ, H)).

Figure 2 (Society 2) features instead λ < 0, in which case it is necessarily ψ(·, G) ≥ 0.15

The top rows illustrate the role of ψ and λ in determining the conditional distribution of Θ

and H at equilibrium. The scatter plots on the left represent individuals of type (θ, η) in the

population and their allocation to school and college attainment at equilibrium wages. The

dashed line graphs equation (20), which measures the tilt of µ(Θ, H). The three continuous

lines are isoprobability curves associated with graduation probability of 0.9 (bottom), 0.5

(middle), and 0.1 (top). For each isoprobability curve, an individual above or below the

line has a college graduation probability π∗(θ, η;G) smaller or larger than the probability

associated with that curve, respectively. Each individual is assigned to college or school

attainment if π∗(θ, η;G) is above or below a random threshold. In the status quo, it is τ = 0

and so these curves are straight lines. A policy change from G to G′ changes the slope of

isoprobability curves, which is given by equation (21), or their vertical intercept, which for

some probability level π is given by −∆ lnw(G)
β

(
π + δ

∆ lnw(G)

)
, or both. The histograms are

the resulting conditional distributions of intelligence and disadvantage.

In Society 1, many intelligent students with a disadvantaged background are excluded

from higher education (north-eastern region of the scatter plot in the top row of Figure 1),

hence the paradoxical outcome that the population in college is on average less intelligent

than the population outside college. In this society, university access is easier for students

from affluent families even if they are not very talented. As shown below, this is the most

favorable case for a government that wishes to expand access without reducing the quality

15For completeness, the third possible society characterized by λ > 0 and ψ(·, G) ≥ 0 is considered in
Figure A-1 of the Online Appendix to Section 2.6.
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Figure 1: Status quo in Society 1 (λ > 0, ψ < 0) and effects of three expansion policies:
Indiscriminate Expansion (IE), Progressive Expansion (PE), Meritocratic Expansion (ME).

Status quo E(Θ|K = 1) = 99.0 E(H|K = 1) = 2.4

ξ = 0.1; r = 4.4 E(Θ|K = 0) = 100.1 E(H|K = 0) = 5.3

IE policy E(Θ|K = 1) = 95.7 E(H|K = 1) = 2.6

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 100.9 E(H|K = 0) = 5.5

Strongly PE policy E(Θ|K = 1) = 114.5 E(H|K = 1) = 6.8

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 97.2 E(H|K = 0) = 4.6

Strongly ME policy E(Θ|K = 1) = 121.6 E(H|K = 1) = 6.2

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 95.7 E(H|K = 0) = 4.8

Notes: The scatter-plots in the left column illustrate the joint distribution of intelligence and disadvantage for school and
college graduates at equilibrium. The continuous straight lines are the isoprobability curves at values 90%, 50% and 10%, at
equilibrium. The dashed lines describe values satisfying equation (20). The histograms in the middle and right columns of
panels illustrate the associated marginal distributions. The data consist of a simulated population of 10,000 individuals with
type (θ, η) drawn from a jointly normal distribution (mΘ = 100; σΘ = 15; mH = 5; σH = 1.75; corr(Θ, E) = λ = 0.5). In the
first row (status quo), the policy parameters are set to generate ξ = 0.1: γ = 26.1, τ = 0 (so isoprobability curves are straight
lines), δ = 2, β = 1. The technology parameters are α = 1.1 and ρ = 0.4. For each policy experiment in the other rows, the
parameters are set so as to double the college-to-school labor ratio. The wage ratio adjusts to equilibrium. IE policy: δ = 0.
Strongly PE policy: β = −0.16, γ = 86. Strongly ME policy: τ = −8, β = 10−6, γ = 30.1, δ = 5.3.
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Figure 2: Status quo in Society 2 (λ < 0, ψ < 0) and effects of three expansion policies:
Indiscriminate Expansion (IE), Progressive Expansion (PE), Meritocratic Expansion (ME).

Status quo E(Θ|K = 1) = 119.5 E(H|K = 1) = 2.1

ξ = 0.1; r = 4.4 E(Θ|K = 0) = 98.1 E(H|K = 0) = 5.3

IE policy E(Θ|K = 1) = 115.3 E(H|K = 1) = 2.5

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 97.0 E(H|K = 0) = 5.5

Strongly PE policy E(Θ|K = 1) = 101.1 E(H|K = 1) = 6.4

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 99.8 E(H|K = 0) = 4.7

Strongly ME policy E(Θ|K = 1) = 121.6 E(H|K = 1) = 3.7

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 95.7 E(H|K = 0) = 5.3

Notes: The scatter-plots in the left column illustrate the joint distribution of intelligence and disadvantage for school and
college graduates at equilibrium. The continuous straight lines are the isoprobability curves at values 90%, 50% and 10%, at
equilibrium. The dashed lines describe values satisfying equation (20). The histograms in the middle and right columns of
panels illustrate the associated marginal distributions. The data consist of a simulated population of 10,000 individuals with
type (θ, η) drawn from a jointly normal distribution (mΘ = 100; σΘ = 15; mH = 5; σH = 1.75; corr(Θ, E) = λ = −0.5). In the
first row (status quo), the policy parameters are set to generate ξ = 0.1: γ = 31, τ = 0 (so isoprobability curves are straight
lines), δ = 2, β = 1. The technology parameters are α = 1.1 and ρ = 0.4. For each policy experiment in the other rows, the
parameters are set so as to double the college-to-school labor ratio. The wage ratio adjusts to equilibrium. IE policy: δ = 0.
Strongly PE policy: β = −0.18, γ = 87. Strongly ME policy: τ = −8, β = 10−6, γ = 30.1, δ = 5.3.
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of graduates: in Society 1 it is relatively easy to reduce access barriers and draw talented

students from any background into college.

In Society 2, graduates are on average more intelligent than non-graduates and have a

relatively advantaged background. The pool of intelligent students with a disadvantaged

background that are excluded from higher education is evidently smaller than in Society 1.

There is still reachable ability in Society 2 but less than in Society 1. Section 4.5 shows that

this is the case that best characterizes the UK in the years that we study.

The remaining rows of Figures 1 and 2 illustrate the policy effects. Starting from a

college-to-school graduation rate of ξ = 0.1, we simulate three policy changes of interest that

increase this rate to ξ = 0.2. First, an intended indiscriminate expansion (IE) policy, which

decreases the intercept δ in effort cost shift Ω(H) = δ + βH (equation 17). By decreasing

δ, this policy may appear to shift isoprobability curves upward without affecting their slope

and thus, since λ > 0, to allow high-intelligence and high-disadvantage students to access

college. But this conclusion ignores the effect of the policy on the wage gap, which would be

reduced due to the higher supply of graduates; this may offset the policy change by making

isoprobability curves flatter (see equation 21) and ultimately reduce the average intelligence

of individuals selected into college. Parameters are chosen to demonstrate that this may be

the case even in Society 1 (where students not attaining higher education are on average

more intelligent than those who do): although the government intends to shift isoprobability

lines up as an easy way of reaching the many talented students outside college, the drop in

the wage ratio from r = 4.4 to r = 2.9 reduces the slope of the lines and the policy ends up

favoring primarily the not-so-talented students with a relatively advantaged background in

the southwestern portion of the scatter plot. The incidence of graduates with a disadvantaged

background increases only marginally relative to the status quo.

A fortiori, also in Society 2 a similarly intended IE policy reduces mean intelligence

of graduates while not affecting their average background much. Note that in this society

– which is the empirically relevant one in our case study – the expansion decreases mean

intelligence both conditional on having attained a college degree and conditional on not

having attained it. This means that in Society 2 the indiscriminate expansion draws into

college students who are more intelligent than the average non-graduate, yet less intelligent

than the average graduate. As shown in Section 4.2, this is a pattern that we find in the data.

Consider next an intended progressive expansion (PE) policy that decreases the slope β
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of effort cost shift Ω(H) = δ + βH (equation 17) while increasing the intercept γ of effort

cost shift Γ(Θ) = γ + τΘ (equation 18). This reform aims at decreasing the importance of

a student’s background relative to intelligence in determining the graduation probability. In

Figures 1 and 2, it takes a strong form because β turns from positive to negative, so that

a disadvantaged background (large η) becomes an advantage in college access, as indicated

by the fact that isoprobability curves become negatively sloped. This policy induces a large

increase in the incidence of graduates with a disadvantaged background in both societies.

However, its effect on their average intelligence is positive and large in Society 1 but negative

in Society 2. Expanding university access without lowering the average ability of college

students is not easy when the correlation λ between intelligence and disadvantage is negative.

This dilemma is resolved by the strongly meritocratic (ME) policy illustrated in the

bottom row of the two figures. Here the parameters of the effort cost shifts Ω(H) and

Γ(Θ) are adjusted to make τ < 0 (so there is a cost shift in favor of intelligent students),

while β approaches zero (so that one’s background becomes irrelevant) and γ and δ both

increase to obtain the desired college-to-school rate ξ. The result is that isoprobability curves

become nearly vertical. This strongly ME raises the incidence of high-intelligence and high-

disadvantage individuals in the college population of the two societies. Such a policy not only

increases the average ability of students in higher education; it is also an egalitarian one, in

the sense that it draws into college talented students with a disadvantaged background. In

Society 2, this is the only one among the three classes of expansion strategies that achieves

these goals. In Society 1 they can be obtained with a wider range of policies.16

3 Data

We next describe our data sources and the measurement of the four variables that are at

center stage in the model: college attainment, intelligence, disadvantage, and earnings.

3.1 Data sources

Our main data source is Understanding Society (USoc), a representative longitudinal survey

of UK households. Wave 3 (2011-2013) contains information on respondents’ intelligence and

16We emphasize that these conclusions are fairly general. The reader can use the Matlab files available in
our replication package to experiment with different parameter values.
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consists of 49,692 observations that compose our core sample. We restrict this sample to:

(i) observations with non-zero cross-sectional response weights (38,223); (ii) white respon-

dents born in the UK (31,132), so as to work with homogeneous cohorts; (iii) observations

with non-missing education information (31,072); (iv) individuals born between 1940 and

1984 (23,288). Table 1 reports descriptive statistics. Since 1,113 observations have missing

information on intelligence, we distinguish between individuals with and without intelligence

test scores to show that the intelligence measure is missing quasi at random. Our final USoc

sample consists of 22,175 individuals with non-missing intelligence scores.

Table 1: The UK Understanding Society sample

White UK born in 1940-1984 White UK born in 1940-1984
with non-missing intelligence score

N mean sd min max N mean sd min max

Individual characteristics

Age 23,288 49.40 12.32 24 72 22,175 49.25 12.29 24 72
Female 23,288 0.52 0.50 0 1 22,175 0.52 0.50 0 1
Any tertiary degree 23,288 0.24 0.43 0 1 22,175 0.25 0.43 0 1
Age left school 22,896 16.26 1.11 7 21 21,794 16.29 1.12 7 21
Age left FT edu 11,450 22.08 6.18 15 67 11,146 22.10 6.17 15 67
Born in England 22,990 0.81 0.39 0 1 21,892 0.81 0.39 0 1
Health status 23,287 2.57 1.11 1 5 22,174 2.54 1.10 1 5
Number of marriages 20,475 1.01 0.61 0 4 19,469 1.01 0.61 0 4
N. of children < 18 23,288 0.36 0.81 0 8 22,175 0.36 0.81 0 8
Religious belonging 22,051 0.48 0.50 0 1 20,986 0.48 0.50 0 1
Real monthly income 23,288 2.00 1.71 -8 26 22,175 2.03 1.73 -8 26

Family characteristics at age 14-16

Father’s yrs school 19,207 11.93 2.81 0 18 18,353 11.98 2.82 0 18
Mother’s yrs school 19,846 11.47 2.44 0 18 18,950 11.51 2.44 0 18
Father employed 22,905 0.88 0.32 0 1 21,818 0.89 0.32 0 1
Mother employed 23,020 0.62 0.48 0 1 21,930 0.63 0.48 0 1

Notes: We start from the third wave (2011-2013) of the UK Understanding Society survey (USoc). This wave contains

information on respondents’ intelligence and consists of 49,692 observations. We apply four selection criteria: first, we keep

observations with non-zero cross-sectional response weights (38,223); second, we restrict to white respondents born in the

UK (31,132); third, we keep observations with non-missing education information (31,072); finally, we restrict the sample to

individuals who were born between 1940 and 1984 (23,288). The left panel of the table reports descriptive statistics for this

sample. The right panel reports the same descriptive statistics for our final USoc sample consisting of 22,175 individuals with

non-missing intelligence scores. The similarity of the statistics in the two panels suggests that information on intelligence is

missing quasi at random. Real monthly income is expressed in thousands of 2015 GBP.

In order to corroborate some of the evidence produced using USoc, we also use data

from the UK Biobank (UKB). Sample size is considerably larger than USoc, but the UKB
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is not a random sample of the UK population because subjects are adult volunteers who

are older and more educated than average. Like USoc, the UKB contains information on

educational attainment and intelligence. Starting from 502,412 UKB subjects who did not

later withdraw from the survey, we retain white respondents born in the UK (434,123)

between 1940 and 1969 (417,242), with non-missing information on education (411,681).

Information on intelligence is missing for 199,034 observations. Descriptive statistics are

reported in Table 2 for the four variables that can be directly compared with USoc. This

table suggests that also in the UKB the intelligence measure is missing quasi at random.

Our final UKB sample consists of 212,647 observations with non-missing intelligence score.

Table 2: The UK Biobank sample

White UK born in 1940-1984 White UK born in 1940-1984
with non-missing intelligence score

N mean sd min max N mean sd min max

Age 411,681 56.40 7.78 39 70 212,647 56.56 7.78 39 70
Female 411,681 0.54 0.50 0 1 212,647 0.54 0.50 0 1
Any tertiary degree 411,681 0.31 0.46 0 1 212,647 0.36 0.48 0 1
Age left school 279,293 16.64 2.21 0 35 134,529 16.82 2.22 0 35

Notes: Starting from about 502,412 UK Biobank subjects who did not later withdraw from the survey, we retain white

respondents born in the UK (434,123) between 1940 and 1969 (417,242), with non-missing information on education (411,681).

Information on intelligence is missing for 199,034 of these observations. The left panel of the table reports descriptive statistics

for the four UKB variables that can be directly compared with USoc. The right panel reports the same statistics for our final

UKB sample consisting of 212,647 observations with non-missing intelligence score. The similarity of the statistics in the two

panels suggests that information on intelligence is missing quasi at random.

Our third data source is the University Statistical Record (USR), which contains admin-

istrative information on the universe of students enrolled at UK universities between 1972

and 1993. These data are described and used in the Online Appendix to Section 4.1 to

provide evidence on how the UK expansion was enacted.

Finally, following Blundell et al. (2022), we use the UK Labour Force Survey (LFS) for

the analysis of the evolution of the wage gap between college graduates and non-graduates.

Our sample is 1993:Q1–2019:Q4. The LFS is a quarterly survey of about 100,000 adults who,

after applying the appropriate weights, are representative of the UK population in terms of

individual characteristics and earnings. Respondents are asked about earnings during the

first and fifth quarters in the survey. We discard those with missing information on age,

gender, education, earnings, and hours worked, missing or zero weights for earnings and
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personal characteristics, or a foreign educational attainment.

Real hourly wages are constructed for each respondent as the ratio between the weekly

wage in the main job and the actual weekly hours. Nominal values are deflated using the 2022

edition of the OECD GDP deflator (base year: 2015). While Blundell et al. (2022) study

median wages by education group, the relevant variable in our model is the average wage, at

a given age, of college graduates and non-graduates.17 To neutralize the effect of outliers on

average wages, we also drop the top and bottom 0.1% of the real wage distribution.

Our final sample are 936,135 subjects observed during at least one year between 1993

and 2019, with observations in each year ranging between about 25,000 and 50,000. Table 3

presents descriptive statistics for the relevant variables. Section 4.4 explains how we use this

information to measure the evolution of the college-to-school wage ratio over cohorts.

Table 3: The UK Labour Force sample (1993–2019)

UK employees born in 1940-1984

N mean sd min max

Age 936,135 41.35 11.41 16 79
Female 936,135 0.50 0.50 0 1
Any tertiary degree 936,135 0.25 0.43 0 1
Real hourly wage, college graduates 213,632 19.53 12.87 0.80 149.00
Real hourly wage, non-graduates 722,503 11.96 8.61 0.80 148.89

Notes: Starting from the UK Labour Force Survey (LFS) 1993:Q1–2019:Q4, we keep only the first and fifth quarters for each

respondent, i.e., the instances that contain earnings. Respondents with missing information on age, gender, education, weakly

earnings, and weekly hours worked, or with missing or zero weights for earnings and personal characteristics, or with a foreign

education attainment are discarded. We also drop the top and bottom 0.1% outliers of the real wage distribution. Nominal

values are deflated using the 2022 edition of the OECD GDP deflator. Yearly observations range between 25,000 and 50,000.

3.2 College graduation rate and college cohorts

Before 1992, high school graduates wishing to pursue higher education in the UK had two

options: enrolling in a traditional university or attending a polytechnic.18 As illustrated in

Pratt (1997), Willet (2017) and Jandarova and Reuter (2021), these two types of institutions

differed in many ways, e.g., funding, target populations, teaching organization, subjects, and

admission criteria. The Further and Higher Education Act of 1992 allowed polytechnics to

17The Online Appendix to Section 4.4 shows that the use of mean wages instead of median wages is
essentially irrelevant.

18There was also the option of attending professionally-oriented public colleges, such as teacher training
and nursing colleges. This group was relatively small and so we consider it as part of “polytechnics”.
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obtain university status and so eliminated this “binary divide”. Such innovation was a

follow-up on the Robbins Report, which had recommended the unification of the UK higher

education system in consideration of the similarities between universities and polytechnics.

In line with the literature on the evolution of the wage gap between college and high

school graduates in the UK (for example: Machin and McNally, 2007; Walker and Zhu,

2008; Blundell et al., 2022), in the present paper a “college graduate” is defined as a person

who obtained a higher education degree of any kind. This is not a limitation given that we

are studying the expansion of the UK higher education system and that ending the “binary

divide” was in fact part of this policy.

We instead depart from this literature in the definition of the comparison group (see

also Section 2.1). We are interested in evaluating whether the UK expansion was successful

in drawing into college those talented students who were previously likely to drop out of

education at any lower level, not just at the high school level. Therefore, our comparison

group is composed by individuals with any educational attainment below a tertiary degree

in the population that we study.19

To facilitate the interpretation of our results in relation to historical information on policy

and technology trends, we aggregate individuals into “college cohorts”. These are groups of

individuals in actual (for graduates) or potential (for non-graduates) college attendance age.

For such age, we use as a label the year of birth plus 20. The large sample size available

in the UKB allows us to construct college cohorts using 5-year windows. For the smaller

USoc sample that we use for inference, we construct three 15-year periods in order to increase

sample size and thereby statistical power. These three periods are: 1960-1974 for individuals

born between 1940 and 1954 (7,103 individuals in the final sample), 1975-1989 for those born

between 1955 and 1969 (8,329 individuals), and 1990-2004 for subjects born between 1970

and 1984 (6,743 individuals). Labeling these groups as “college cohorts” avoids possible

confusion with birth cohorts. In light of evidence suggesting that the time of entry in the

labor market has long-term consequences on wages and employment along the life cycle,20 it

is reasonable to assume the absence of first-order substitutability between college graduates

across these cohorts, and similarly for non-college graduates.

19To quantify the difference in the definition of the comparison groups, out of the 936,135 observations in
our LFS sample, 146,565 (15.7% of the total) are not high school graduates according to the definition of
Blundell et al. (2022) and so are not included in their comparison group, while they are included in ours.

20See, among others, Kahn (2010), Oreopoulos et al. (2012), Giuliano and Spilimbergo (2014), Schwandt
and von Wachter (2019), von Wachter (2020) and Jandarova (2022).
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3.3 Intelligence

In Wave 3 of USoc, respondents aged 16 or older were eligible for a cognitive ability test,

which was composed of six sub-tests: immediate word recall (episodic memory), delayed word

recall (episodic memory), subtraction (working memory), number series (fluid reasoning),

verbal ability (semantic fluency), and numeric ability (problem solving/numeracy).21 We

observe the fraction of correct answers given by each subject as well as whether help was

received during the test – either specific help in answering a question or generic material aid

during the test. This information results into 14 cognitive ability variables: the six fractions

of correct answers in the sub-tests and eight dummies for whether help was received.

A possible problem in our analysis is that these cognitive variables are measured after

potential or actual college attendance and so may be endogenous to university studies. How-

ever, while Brinch and Galloway (2012) provide evidence that pre-college education may

affect intelligence, Kremen et al. (2019) and Arum and Roksa (2011) show that this is not

the case for college.22 Moreover, consistent with evidence that general cognitive ability (g

factor) is unlikely to be malleable beyond infancy (Heckman and Mosso, 2014; Protzko,

2015), Ritchie et al. (2015) show that any effect of schooling on specific cognitive skills is

not mediated by the g factor which instead seems to be largely unaffected by education.23

In light of this evidence and following the psychometric literature (Fawns-Ritchie and

Deary, 2020), we capture the g factor underlying the 14 cognitive ability variables available in

USoc by aggregating them into a single intelligence score via Principal Component Analysis

(PCA). The First Principal Component, which we label “IQ” and which is the empirical

counterpart of the intelligence construct Θ in the model, has an eigenvalue of 2.55 and

explains 18.2% of the data variability. The corresponding eigenvector features positive values

for the fractions of correct answers, negative values for 6 of the 8 help dummies, and positive

but near-zero values for the remaining two help dummies (see Table A-1 in the Online

Appendix to Section 3.3 for additional details). We therefore conclude that IQ summarizes

the cognitive ability of USoc respondents in a satisfactory way.

The UKB provides instead a Fluid Intelligence Score (FIS), which is the sum of the cor-

21See McFall (2013) for a detailed description of these cognitive tests.
22Conditioning on intelligence measured in adolescence, Clouston et al. (2012) find that higher education

is correlated with cognitive ability measured during midlife, but this evidence cannot be regarded as causal.
23This conclusion is consistent with Ritchie and Tucker-Drob (2018), since “the vast majority of the studies

in [their] meta-analysis considered specific tests and not a latent g factor” (p. 1367).
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rect answers to 13 cognitive questions: numeric addition, identification of the largest number,

word interpolation, positional arithmetic, family relationship calculation, conditional arith-

metic, synonim, chained arithmetic, concept interpolation, arithmetic sequence recognition,

antonym, square sequence recognition, and subset inclusion logic.24 There is no reason to

aggregate the results of the sub-tests in a way different from the one adopted by the UKB,

and so we use FIS as the intelligence measure in this data set, despite its discrete nature.

Fawns-Ritchie and Deary (2020) validate the presence of a g component in FIS and conclude

that “despite the brief and non-standard nature of the UK Biobank cognitive assessment, a

measure of general cognitive ability can be created using these tests” (p. 19).

The intelligence scores produced by PCA in USoc (IQ) or by the UKB aggregation (FIS)

are taken to be cardinal measures of the underlying intelligence construct, so any monotonic

linear transformation (MLT) of these measures is admissible and we must pick one. It is

convenient to choose a MLT such that variable Θ has mean 100 and standard deviation 15,

so as to make the comparison with the widely used measures of intelligence. This choice

implies that we can identify γ and τ as policy parameters determining the cost of effort

relative to that scale of the intelligence measure, as is evident in equation (19). Since we are

interested in policy changes, the particular scale that we choose is irrelevant.

Like all variables in econometric analysis, our intelligence indicators contain measurement

error. For example, it is has been argued that intelligence varies over time for a given age

and over age for a given cohort. The first variation is known as the “Flynn effect” because

Flynn (1987) measured an apparent improvement in IQ scores in 14 nations during the 20th

century (an effect that reversed itself in recent years). The second has been documented

by Salthouse (2012, 2019), who observed that different types of cognitive skills evolve in

different ways during the life cycle. By analogy, we label this as the “Salthouse effect”.

Since we want a measure of intelligence that does not reflect the average age of a cohort,

the Salthouse effect must be removed by normalizing both IQ and FIS within birth years.25

This comes at the cost of removing also the Flynn effect, which is less of a concern because

this finding is more questionable. For example, using high-quality data from Norway that

enable a within-family analysis of IQ, Bratsberg and Rogeberg (2018) argue that the Flynn

effect and its reversal in recent years are explained by environmental factors.

24See the UK Biobank data show case for a detailed description of these cognitive tests.
25The comparison between Figure A-2 and Figure A-3 in the Online Appendix to Section 3.3 illustrates

the effect of this normalization on the two measures.
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Notice that the within-birth year normalization implies that the policy parameters γ and

τ that we will estimate incorporate any residual measurement error and therefore must be

interpreted with a grain of salt. The distribution of the resulting intelligence measures in

USoc and the UKB are illustrated in the left and middle panels of Figure 3, respectively.

Figure 3: Distribution of intelligence and disadvantage measures
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Notes: The figure illustrates the empirical distribution of our measures of intelligence (left and middle) and disadvantage (right).
The continuous line in the left and right panels is the normal density that has the same mean and standard deviation as the
data. The UKB measure is the Fluid Intelligence Score, resulting from the sum of correct answers in 13 cognitive questions.
The USoc measures are: for intelligence, the FPC of 14 cognitive ability variables; for disadvantage, the FPC of 8 socioeconomic
variables at age 14 and the Big Five traits, rescaled so that the minimum is zero.

3.4 Disadvantage

Recall that we are interested in the intelligence-disadvantage dichotomy that was empha-

sized in the Robbins (1963) Report. There are two relevant, non-cognitive dimensions of

disadvantage that reduce the probability of college enrollment and graduation. The first

has a socioeconomic nature. For example, for given intelligence, students from low-income,

low-education, or single-parent families are less likely to enroll and graduate (Bailey and

Dynarski, 2011; Hoxby and Avery, 2012). The second, instead, is in the personality domain.

For example, keeping again cognitive ability constant, a student who is characterized by low

conscientiousness and openness or high neuroticism is less likely to succeed in tertiary edu-

cation (see Corazzini et al., 2021). These two dimensions of disadvantage can be measured

in USoc as follows.

For socioeconomic disadvantage, we aggregate via PCA eight relevant variables: mother’s

and father’s years of schooling, and six dummies referring retrospectively to when the re-

spondent was 14, namely whether a respondent’s father or mother were employed, whether

a respondent was living with only one parent, and whether a respondent’s parent was de-
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ceased. The First Principal Component (FPC) explains 22% of the variability in these eight

variables. The corresponding eigenvector contains negative values for whether either parent

was absent or dead, and positive values for the other variables (see Table A-2 in the Online

Appendix to Section 3.4). We therefore conclude that this FPC summarizes a socioeconomic

advantage. Since we want a measure of disadvantage in college enrollment and graduation

of USoc respondents, we simply invert the sign of this FPC.

For personality disadvantage, we proceed in a similar way by aggregating via PCA the

Big Five personality traits (Openness, Conscientiousness, Extroversion, Agreeableness, and

Neuroticism). The FPC explains 35% of the variability in the five personality variables.

The corresponding eigenvector contains a negative value for neuroticism and positive values

for the remaining four traits (see Table A-3 in the Online Appendix to Section 3.4). We

therefore conclude that also the FPC of the Big Five variables summarizes a personality

advantage, and we invert its sign to obtain a measure of disadvantage.

For tractability, the model of Section 2 features a single disadvantage variable H in

contrast with intelligence Θ. We can safely employ a single measure of socioeconomic and

personality disadvantage because both PCA disadvantage measures are negatively correlated

with the intelligence measure (see Table A-4 in the Online Appendix to Section 3.4). The

single measure of H that we use is produced by a single PCA of the 13 pooled socioeconomic

and Big Five variables. The FPC explains 12.6% of their variability and the resulting

eigenvector preserves the signs of the eigenvectors from the distinct PCAs (see Table A-5 in

the Online Appendix to Section 3.4), so that the negative of the FPC provides a satisfactory

measure of overall disadvantage in college enrollment and graduation of USoc respondents.

The sign of the correlation between our measures of H and Θ is also preserved, as discussed

in detail in Section 4.5. Finally, we shift the support of the FPC distribution so that

disadvantage has a minimum of zero.

Like for IQ, we take the disadvantage measure produced by PCA as a cardinal measure of

the underlying concept and any MLT is admissible. Since there is no scale in the psychometric

tradition for variable H, we simply use the translation of the PCA measure that we have

described above. As is again evident in equation (19), the scale of parameter β adapts to this

particular scale, which is immaterial as we only need to identify changes in β across cohorts.

However, like for γ and τ in the case of intelligence, our estimates of policy parameters δ

and β will contain some measurement error due to our inability to include in the PCA all
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the factors that are relevant determinants of variable H in the model. The distribution of

our disadvantage measure is illustrated in the right panel of Figure 3.

Finally, note that while we normalize IQ within birth year, we do not do the same

for disadvantage. The reason is that there has been an unquestionable improvement of

socioeconomic standards in the UK during the period that we study, which is part of the

reason why the demand for college education has increased. We therefore do not want to

remove by construction the effects of this force from our empirical analysis, contrary to

the removal of the Salthouse effect which is instead desirable for the reasons discussed in

Section 3.3.

4 Key empirical facts

In this section we document four key facts that the model is required to reproduce empirically:

the increase in the fraction of college graduates; the decrease in the average intelligence of

both college and non-college graduates; the decrease in average disadvantage, for the entire

population and by graduation status; and the decline of the wage ratio between college

graduates and non-graduates (college-to-school wage ratio, for brevity). We also document

a fifth key fact that is relevant for interpreting the consequences of the UK expansion: the

correlation between intelligence and disadvantage is negative; this means that, in the period

that we consider, the UK resembles Society 2 of Figure 2.

4.1 The fraction of college graduates increased steeply

Figure 4 shows that in the USoc sample (left panel) the fraction of graduates increased from

about 17% in college cohort 1960-1974 to about 32% in cohort 1990-2004. A similar trend is

observed in our UKB data sample (right panel). Since UKB respondents are on average more

educated than the UK population, their college graduation rate is higher than in USoc; yet

we observe a similar increase in college graduation rates: from about 28% to about 43%.26

In the Online Appendix to Section 4.1, we summarize the literature documenting that this

expansion was enacted in a mostly non-meritocratic way, by ending the binary divide between

26Figure 4 plots model variable x(1), i.e., the fraction of graduates. The structural analysis is in terms of ξ,

i.e., the college-to-school labor ratio. Of course there is a 1:1 mapping between the two, because ξ = x(1)
1−x(1) .
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traditional universities and polytechnics, by increasing the number of academic institutions,

and by reducing ability requirements at entry.

Figure 4: Fraction of college graduates by college cohort
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Notes: The left panel displays the fraction of graduates – model variable x(1) – in three Usoc college cohorts (sample: 22,175
white respondents born in the UK between 1940 and 1984, with non-missing education and intelligence score; see Table 1). The
right panel displays the same variable in six UKB college cohorts (sample: 212,659 white respondents born in the UK between
1940 and 1969, with non-missing education and intelligence score; see Table 2).

4.2 Graduates’ average intelligence declined

The left and middle panels in Figure 5 report the average of the intelligence score (model

variable Θ) in our samples across the different college cohorts, by college graduation status.

In USoc, the average IQ of the population is constant by construction (see Section 3.3), at a

value of 100. However, for college graduates (left panel) it declined by about two points (13%

of a standard deviation), from 110.3 in the 1960-1974 college cohort to 108.2 in the 1990–

2004 cohort. Interestingly, during the same period, also the average IQ of non-graduates

declined by about two points, from 97.7 to 96.0. Similar dynamics are observed in the UKB

sample, where graduates’ average FIS (middle panel) declined from 106.8 in the 1960-1964

cohort to 105.6 in the 1985-1989 cohort; for non-graduates the decline was from 97.4 to

95.8. The declining average intelligence of both graduates and non-graduates suggests that

the expansion of higher education that was enacted in the UK brought into college students

who were more intelligent than average in the group of those previously excluded, yet less

intelligent than the average student who was previously admitted to college, as conjectured

by Walker and Zhu (2008) and Blundell et al. (2022).27

27Additional evidence supporting this interpretation is offered in Table A-7 of the Online Appendix to
Section 5.2, which shows that the bottom percentiles of the intelligence distribution of graduates declined
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Figure 5: Dynamics of intelligence and disadvantage measures by college attainment
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Notes: The left and right panels display, respectively, the dynamics of average IQ and average disadvantage in the population
and by college graduation status across the three USoc college cohorts (sample: 22,175 white respondents born in the UK
between 1940 and 1984, with non-missing education and intelligence score; see Table 1). The middle panel shows the dynamics
of average FIS in the population and by college graduation status across the UKB college cohorts (sample: 212,659 white
respondents born in the UK between 1940 and 1969, with non-missing education and intelligence score, see Table 2).

4.3 Graduates’ average disadvantage declined

The right panel in Figure 5 reports the average disadvantage (model variable H) in the

USoc sample, for the entire population and by college attainment status. This variable

is not constrained to be constant on average in the population (see Section 3.4). In fact

it exhibits a declining trend that reflects the improving socioeconomic status of the UK

population during the period that we consider.28 Between the 1960-1974 and the 1975-1990

college cohorts, the decline was 7.6% in the population, 7.2% among college graduates, and

6.9% among non-graduates. The similarity between these numbers indicates that, initially,

the expansionary higher education policy affected the average background of college and

non-college students only marginally.

The outcome of the sorting process departs more substantially from mere population

changes for the 1990-2004 college cohort: relative to the 1975-1990 cohort, average disad-

vantage declined by 6.1% in the population, 9.9% among college graduates, and 3.2% among

non-graduates. These figures suggest that the more recent stage of the expansion process

brought students into college who were relatively advantaged in the group of those previously

excluded, and also more advantaged than the average student who was previously admit-

significantly while the top remained almost unchanged. The opposite happened for non-graduates.
28The standard deviation does not change and is about 1.35 in all cohorts. A declining mean and a

constant SD imply a declining coefficient of variation, i.e., widening relative inequality along the disadvantage
dimension, in line with evidence in, e.g., Machin (1996) and Office for National Statistics (2021).
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ted to college. This fact is in line with existing evidence that the enlargement of higher

education in the UK has predominantly benefited children from high-income families (e.g.,

Blanden and Machin, 2004; Machin, 2007; Sutton Trust, 2018; Boliver, 2013; and Major

and Machin, 2018, among others), and confirms that our disadvantage measure is (also) a

reliable proxy for socioeconomic status.

4.4 The college-to-school wage ratio declined

The evolution of the college-to-school wage ratio over cohorts is illustrated in Figure 6, using

the LFS data described in Table 3. Since the college cohorts that we study are observed

over different age ranges in the 1993–2019 period covered by our LFS sample, we adopt

the methodology of Blundell et al. (2022) to remove age effects. Specifically, we aggregate

the data in cells defined by the combination of college cohort and age. Using these cells as

observations, we regress the average real hourly wage of college graduates on dummies for

each age and for each cohort. The three dots connected by a continuous line in Figure 6

represent this average real hourly wage at age 45 in each cohort, net of age effects. The three

squares connected by a dotted–dashed line represent the analogous average real hourly wage

of non-graduates. Finally, we compute the college-to-school wage ratio in each cell and we

regress it on dummies for each age and cohort. The triangles connected by a dashed line

describe the evolution of this wage ratio.

Figure 6: Evolution over cohorts of the wage ratio at age 45
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ratio; Left scale: real monetary values obtained using the 2022 edition of the OECD GDP deflator; right scale: ratio between
the two wage levels. Sample: 936,135 LFS respondents surveyed between 1993 and 2019, born in 1940-1984 (see Table 3).

The real hourly wage at age 45 of students who obtained a college degree between 1990

and 2004 increased by about 0.5 GBP with respect to those who graduated thirty years

earlier (from 20.5 to 21.0 GBP). For non-graduates, the real hourly wage increased instead
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by more than 1.5 GBP (from 11.8 to 13.5 GBP). As a result, the wage ratio declined by

about 11 percent, from 1.74 to 1.55. This finding contrasts with the evidence of a weakly

increasing wage gap between college and high-school graduates reported in the literature for

UK post-WW2 cohorts, particularly by Blundell et al. (2022).29 The Online Appendix to

Section 4.4 shows that this discrepancy is essentially due to our different definition of the

comparison groups (college graduates vs non-graduates; see Section 3.2 for the rationale

of this choice in our analysis). In fact there is no contrast between our evidence and the

literature when we compare the Blundell et al. (2022) groups (college graduates vs high-

school graduates), given that we use their same data and methodology to remove age effects.

Other differences, namely the range of the LFS sample (1993–2019 instead of 1993–2016),

the use of mean instead of median wages by education group, the use of age dummies instead

of age polynomials in the regressions to remove age effects, or the focus on only three cohorts

of 15 birth years between 1940 and 1984 instead of eight cohorts of 5 birth years between

1950 and 1989 are less, if at all, relevant.

4.5 Intelligence and disadvantage are negatively correlated

Our measures of intelligence (Θ) and disadvantage (H) are negatively correlated in the USoc

sample. This correlation, which is labeled λ in Section 2, is reported in Table 4 for the three

different college cohorts, alongside its standard error. It is about −0.2, and varies over time

by a statistically insignificant amount. Thus, as far as the correlation between intelligence

and disadvantage in the population is concerned, in the period that we consider the UK

society is represented by Society 2 of Figure 2.

Table 4: Correlation between IQ and disadvantage in USoc

College cohort

1960-1974 1975-1989 1990-2004

λ = Corr(Θ, H) −0.163 −0.198 −0.199

(0.013) (0.012) (0.014)

N 7,103 8,329 6,743

Notes: The table reports the correlation between our measures of intelligence (Θ) and disadvantage (H). The standard error

is produced via the delta method. Cross-sectional response weights are applied. Sample: USoc, 22,175 white respondents born

in the UK in 1940-1984 with non-missing education and intelligence information (see Table 1).

29Other studies include Blanden and Machin (2004), O’Leary and Sloane (2005), Walker and Zhu (2008),
Devereux and Fan (2011), and Chowdry et al. (2013).
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We conjecture that such negative correlation is the outcome of two forces that work in

the same direction. First, since cognitive ability increases education and income, if there is

a sufficiently large heritability of intelligence, more intelligent parents transmit to their chil-

dren both higher cognitive ability via genes and higher socioeconomic status via social forces.

Second, advantaged families offer children an early childhood environment that favors cog-

nitive development via nurture. Note that the underlying mechanism has no consequences

for our conclusions, because the correlation λ determines only the effects of higher educa-

tion policy on the sorting process. It is conceivable that early childhood interventions can

compensate the relative disadvantage reflected in this correlation, turning λ into a positive

value. Therefore, λ reflects a particular social equilibrium and not a deep relation between

intelligence and disadvantage. But from the viewpoint of this paper, if λ is negative, our

model suggests that it would be very costly for society to change this social equilibrium

with a non-meritocratic expansion of tertiary education, because of the ensuing decline of

the cognitive ability of college graduates. Moreover, it would also be hopeless because, as

discussed in Section 3.3, the g factor is not affected by college attendance. To put it dif-

ferently, it would be a mistake to ask tertiary education to correct for the lack of adequate

early education policies.

Figure 7 displays the empirical counterpart of the scatter plot in the top row of Figure 2,

for the three cohorts. The negative correlation between IQ and disadvantage is reflected

in the negative tilt of the underlying distribution (dashed line). Note that although the

separation between graduates and non-graduates is less sharp in USoc data than in the

simulated data, graduates still concentrate among the high-IQ, low-disadvantage individuals.

Figure 7: Empirical joint distribution of IQ and disadvantage in the three college cohorts
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intelligence and disadvantage (see equation 20). Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with
non-missing education and intelligence information (see Table 1).
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5 The UK higher education policy and its consequences

In this section we estimate the model presented in Section 2. The goal is to: (i) infer

the type of higher education policy that prevailed in the UK after the Robbins Report;

(ii) study how the actual policy affected sorting into college in terms of students’ intelligence

and disadvantage; (iii) contrast the realized policy with the one that should have been

implemented to achieve the Report’s aim of drawing into higher education talented children

from disadvantaged backgrounds; (iv) draw lessons for the planned expansion of university

access in Europe and elsewhere.

5.1 Identification and estimation

There are three technology parameters in the model: α (the technological skill ratio), ρ (one

minus the inverse of the elasticity of substitution between school and college labor inputs),

and A (TFP). Equation (16) implies that TFP does not affect the consumption utility

gap ∆U(w), equation (3), and so parameter A can be ignored. Still, it is clear that without

further assumptions, α and ρ are not separately identified in our model – only the locus given

by equation (10) is identified. Using US data, Katz and Murphy (1992) and more recently

Autor, Goldin, and Katz (2020) produce estimates of ρ around 0.3 and 0.4, respectively, in a

partial equilibrium model where technology follows a linear trend. The implicit assumption

is that the relative supply of college graduates is exogenous, and specifically does not respond

to unobserved (to the econometrician) wage shocks originating from the demand side. Such

an assumption cannot hold in our general equilibrium framework. However, since we do not

need to identify the technology parameters separately, we can estimate the model for three

alternative values of ρ in the range that is typically found in the literature: 0.3, 0.4, and

0.5. It follows that technical change is represented only by changes in α. An increase in α

represents skill-biased technical change (see Section 2.2).

On the contrary, the policy parameters that control the effort cost shifts Ω(H) = δ +

βH (equation 17) and Γ(Θ) = γ + τΘ (equation 18), are identified – a fact that follows

immediately from equation (19) – and so we are left with parameters (γ, τ, δ, β, α) to estimate.

For a given value of ρ, the empirical counterpart of the joint distribution µ(Θ, H), and a

target set of empirical moments, we estimate these parameters by minimum distance (MD)

in each college cohort. Specifically, for each point in the discretized parameter space (the
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“grid”), we solve numerically for the equilibrium supply of graduates, x(1), by finding the

unique fixed point of the following equation, which combines equations (14) and (15),

x(1) =
∑
θ,η

ω(θ, η)Π

(
θ

γ + τθ
− δ + βη

lnα + (ρ− 1)(lnx(1)− ln(1− x(1)))

)
µ(θ, η), (29)

where ω(θ, η) denote USoc cross-sectional response weights, adding up to 1. Given the

equilibrium college-to-school workforce ratio ξ = x(1)
1−x(1)

, we obtain the equilibrium college-

to-school wage ratio r. The equilibrium individual graduation probabilities are then used to

classify each individual in the sample as a college graduate if that individual’s probability is

above an individual-specific random threshold. Finally, we pick the parameters that mini-

mize the distance between six informative theoretical moments and their empirical analogs:

the college-to-school workforce ratio, the college-to-school wage ratio, and the average intel-

ligence and disadvantage of graduates and non-graduates. These six moments are the most

informative for estimating our four policy parameters and the residual technology parame-

ter because in our model it is precisely the change in higher education policy or technical

progress that alter the labor market equilibrium and the sorting process into college. Ad-

ditional, untargeted moments are set aside to check how well we match facts not used in

our minimum distance estimation. In consideration of the importance of intelligence and

disadvantage in our analysis, we select – among the many possible untargeted moments –

the 25th and 75th percentiles of the conditional (to educational attainment K) distributions

of Θ and H, i.e., eight moments.

All of the targeted and untargeted moments are estimated using USoc, except for the

college-to-school wage ratio which is based on the LFS, applying the appropriate weights in

all cases. Denoting by

T̂ =
[
ξ̂ r̂ Ê(Θ|K = 1) Ê(Θ|K = 0) Ê(H|K = 1) Ê(H|K = 0)

]
(30)

the target vector of empirical quantities and by

T (γ, τ, δ, β, α; ρ) = [ξ r E(Θ|K = 1) E(Θ|K = 0) E(H|K = 1) E(H|K = 0)] (31)

its theoretical counterpart at equilibrium, the criterion function is

J(γ, τ, δ, β, α; ρ) = (T (γ, τ, δ, β, α; ρ)− T̂ )ΥWΥ(T (γ, τ, δ, β, α; ρ)− T̂ )′, (32)
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where Υ is a diagonal matrix whose elements are the inverse of the elements of T̂ and W

is a weighting matrix. Thus, the criterion function is a weighted sum of percentage squared

deviations of the theoretical moments from the empirical ones. We set W = I and we find the

minimum of J(·; ρ) over the grid. To produce standard errors, we repeat this MD estimation

10,000 times in bootstrap samples obtained from random draws with replacement. The

bootstrap standard errors are given by the standard deviation of each parameter’s estimate

across the 10,000 replications.30

A crucial question about our identification is whether the criterion function J(·; ρ) attains

a global minimum at the estimated parameters. It is plausible that this function has local

minima, and given that the grid is finite, the “wrong” starting point for the search process

may yield estimates that correspond to one of them. This is particularly worrisome as there

is no reference scale for policy parameters γ, τ , δ, and β – while for technology parameter α a

natural reference point is 1, i.e., a(1) = a(0) in equation 8 – and so one does not know where

the grid should be centered in R5 in order not to get stuck into a local minimum. We solve

this problem by noting that a researcher not interested in disentangling the impact of higher

education policy G = (γ, τ, δ, β) from changing technology and socioeconomic characteristics

or not interested in using the model for equilibrium policy analysis, can obtain a partial

set of estimates by Nonlinear Least Squares (NLS) from the supply-side equation (19), after

replacing ∆ lnw(G) with its empirical analog, ln ŵ(1)− ln ŵ(0). The NLS estimates provide

a guess that should be close to the actual policy parameters, i.e., the “right” starting values,

even if it ignores the equilibrium effects of higher education policy. Such initial estimates

are reported in Table A-6 of the Online Appendix to Section 5.1. Anchoring the grid search

process to these NLS estimates of G = (γ, τ, δ, β) and the natural reference value for α

increases our confidence that the MD algorithm – which instead takes into account that

∆ lnw(G) depends on the parameters to be estimated – does not end up at a local minimum.

The Online Appendix to Section 5.1 provides more computational details, including a

visual analysis of two- and three-dimensional sections of the criterion function J(·; ρ). The

figures show that local minima do exist and suggest that our MD estimates correspond in

fact to a global minimum.31

30This procedure is not necessarily efficient because we are not employing the optimal weighting matrix
This is not an issue given that, as reported below, our standard errors turn out to be quite small anyway.

31Our replication files include a Matlab code that can be used to inspect the criterion function over any
subset of R5.
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5.2 Estimates

Our MD estimates of the structural parameters are reported in panel [A] of Table 5 for

ρ = 0.4, which is the value estimated for the US by Autor, Goldin, and Katz (2020). The

Online Appendix to Section 5.2 reports estimates for ρ = 0.3 (Katz and Murphy, 1992)

and ρ = 0.5. The remaining panels of Table 5 compare the model-predicted values of the

six targets to the empirical values computed from the data. The six target moments are

matched remarkably well. Table A-7 in the Online Appendix to Section 5.2 shows that the

eight untargeted moments are also well matched. The MD estimates of the policy parameters

are very close to the NLS estimates, which are reported in Table A-6 of the Online Appendix

to Section 5.1. This is unsurprising given that we search for a minimum around these values,

but is also reassuring in consideration of (i) the different objective functions that the two

estimators optimize; and (ii) the fact that our MD estimator involves five, not necessarily

independent parameters while the NLS estimator involves four parameters only.

According to our estimates, policy parameter γ declines by about 38% between the 1960-

1974 and the 1990-2004 college cohorts; similarly, τ declines, in absolute value, by about 42%.

Parameter δ also declines substantially between the two periods, by about 84%, while β is

approximately constant between the first and second college cohorts and nearly doubles for

the third cohort. The implied variations in the effort cost shifts Γ(θ) = γ + τθ (equation

18) and Ω(η) = δ + βη (equation 17), which we analyze in greater detail in Section 5.4,

indicate: (i) a large reduction in the cost of attending college that is more pronounced for

the relatively less intelligent students; (ii) a lower cost of attending college for the relatively

advantaged ones; and (iii) an increased cost for the relatively disadvantaged ones.

As for technology parameter α, we estimate a significant increase of about 41% during

the same period, which indicates skill-biased technological progress.32

5.3 Anatomy of the policy mechanism

The next step in our analysis is the characterization of the policy that was actually imple-

mented and of policies that could have been implemented instead to improve the quality of

graduates while also reaching disadvantaged students more widely as advocated in the Rob-

32Our estimates of α are all below 1, which implies a(0) > a(1) in the production function, equation (8).
This inequality does not imply that non-graduates are more productive than graduates because marginal
productivity depends on a(k) but also, inversely, on the fraction of the workforce in education group k.
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Table 5: Minimum-distance estimates of model parameters for ρ = 0.4

[A] Parameter estimates [C] Intelligence targets

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

γ 6.173 5.431 3.832
(0.023) (0.022) (0.017) 3. Graduates’ IQ, E(Θ|K = 1)

τ −3.430 −3.054 −1.981 model 110.2 109.2 108.2
(0.028) (0.025) (0.021) (0.4) (0.4) (0.4)

δ 0.055 0.048 0.009 data 110.3 109.0 108.2
(0.002) (0.002) (0.002) (0.4) (0.3) (0.3)

β 0.015 0.013 0.027
(0.001) (0.001) (0.002) 4. Non-graduates’ IQ, E(Θ|K = 0)

α 0.707 0.829 0.998 model 97.7 97.0 96.0
(0.013) (0.013) (0.015) (0.2) (0.2) (0.3)

data 97.7 97.0 96.0
N 7,103 8,329 6,743 (0.2) (0.2) (0.)

[B] Labor market targets [D] Disadvantage targets

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

1. College-to-school workforce ratio, ξ 5. Graduates’ disadvantage, E(H|K = 1)

model 0.224 0.328 0.483 model 3.87 3.58 3.24
(0.007) (0.009) (0.013) (0.03) (0.03) (0.03)

data 0.224 0.328 0.483 data 3.86 3.58 3.23
(0.007) (0.009) (0.014) (0.03) (0.03) (0.03)

2. College-to-school earnings ratio, r 6. Non-graduates’ disadvantage, E(H|K = 0)

model 1.737 1.617 1.546 model 4.32 4.03 3.89
(0.008) (0.006) (0.007) (0.02) (0.02) (0.02)

data 1.736 1.617 1.545 data 4.32 4.02 3.90
(n/a) (n/a) (n/a) (0.02) (0.02) (0.02)

Notes: The table reports the mean and standard deviation of minimum-distance (MD) estimates of model parameters over

10,000 bootstrap samples, setting ρ = 0.4, and of model-predicted vs empirical values of the six targets. The MD criterion

function is given by equation (32), and the weighting matrix is the identity matrix. The Online Appendix to Section 5.1

provides more computational details. The intelligence score is expressed in IQ units in the table but in hundreds IQ units in

the estimation, so as to reduce the order of magnitude of the estimated γ and τ . A college cohort is defined by the period

of actual of potential college attendance, which is an individual’s age plus 20. Cross-sectional response weights are applied.

Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with non-missing education and intelligence information

(see Table 1).
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bins (1963) Report. For the first task, we use the estimates in Table 5 to construct empirical

isoprobability curves to be superimposed to the empirical joint distribution of intelligence

and disadvantage illustrated in Figure 7. The result is shown in Figure 8, which also reports

the empirical conditional distributions of IQ and disadvantage in the three college cohorts.

The isoprobability curves represented in the fgure are those associated with probabilities of

graduating from college equal to 0.1, 0.3, and 0.5.

Moving from the 1960–1974 (top row) to the 1990–2004 (bottom row) college cohorts,

we observe a clockwise rotation of the isoprobability curves, which results from a higher ver-

tical intercept −∆ lnw(G)
β

(
π + δ

∆ lnw(G)

)
and a reduced slope γ∆ lnw(G)

(γ+τθ)2β
. This change becomes

particularly evident in the comparison between the 1975–1989 and the 1990–2004 cohorts.

Considering the estimates in panel [A] of Table 5, the main drivers of the increase in the

intercept are the decline of δ and the increase of β in the effort cost shift Ω(η). The ensuing

increase in the number of graduates reduced the wage ratio ∆ lnw(G), which further con-

tributes to increasing the intercept. As for the slope, its decline is the result of the reduced

wage gap in the numerator and the larger β in the denominator that were not compensated

by a sufficiently large decline of τ in the effort cost shift Γ(θ). Actually, the slope τ of this

shift increased towards zero during the period that we consider, particularly between the

last two cohorts, which contributes to flattening out isoprobability curves.

Therefore, we conclude that the UK higher education policy that followed the Robbins

Report was characterized by a weak meritocratic content and by a “regressive” component for

the more recent cohort. As is evident in the scatter plots of Figure 8, this policy brought into

college a large number of less disadvantaged and less intelligent students (i.e., individuals with

low η and low θ). The more disadvantaged and more intelligent students in the northeastern

portion of the scatter plot, actually ended up with reduced opportunities to access higher

education.

Policies with a strong meritocratic component, instead, could have reached the “reserves

of untapped ability [...] in the poorer sections of the community” (p. 53) that were a central

concern in the Robbins Report. This claim is illustrated by two counterfactual policy exper-

iments presented in Figure 9. This figure shows what would have happened in the UK at the

end of our period of observation (i.e., the 1990-2004 college cohort) if the government had

adopted two policies that would have achieved the observed graduate-to-school workforce

ratio of ξ = 0.48 in a more meritocratic way than in the bottom row of Figure 8.

39



Figure 8: Status quo in the UK and effects of actual expansion policies

1960-1974 E(Θ|K = 1) = 110.2 E(H|K = 1) = 3.9

college cohort E(Θ|K = 0) = 98.1 E(H|K = 0) = 4.3

1975-1989 E(Θ|K = 1) = 109.2 E(H|K = 1) = 3.6

college cohort E(Θ|K = 0) = 97.5 E(H|K = 0) = 4.0

1990-2004 E(Θ|K = 1) = 108.2 E(H|K = 1) = 3.3

college cohort E(Θ|K = 0) = 96.5 E(H|K = 0) = 3.9

Notes: The figure displays the empirical counterpart of the scatter plots and histograms in Figure 2, for the three USoc college
cohorts. In the scatter plots, each point is an individual in our sample. The continuous lines are the 10%, 30%, and 50%
isoprobability lines (see equation 19). Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with non-missing
education and intelligence information (see Table 1).
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Figure 9: Effects of two counterfactual expansion policies in the UK

1990-2004 cohort E(Θ|K = 1) = 111.0 E(H|K = 1) = 3.50

counterfactual ME policy E(Θ|K = 0) = 94.8 E(H|K = 0) = 3.76

1990-2004 cohort E(Θ|K = 1) = 112.1 E(H|K = 1) = 3.52

counterfactual M&PE policy E(Θ|K = 0) = 94.3 E(H|K = 0) = 3.75

Notes: The figure displays the effects on the USoc college cohort 1990-2004 of two counterfactual expansion policies that would
have achieved the observed graduate-to-school workforce ratio ξ = 0.48. First (top row), a strongly Meritocratic Expansion
(ME) policy that – relative to the 1960-1974 status quo – decreases τ to −4.1 and β to 10−6, adjusting γ and δ to values of
6.15 and 0.1, respectively. This policy turns isoprobability curves into essentially vertical lines. Second (bottom row), a ME
policy with a Progressive Expansion (PE) component that, relative to the ME policy in the top row, sets δ to 0.123 for students
whose intelligence is below average and to to 0.123− 0.12η for the above-average ones. This policy makes isoprobability curves
individual-specific, shifting them to the left for more disadvantaged students. Students marked with a “×” graduate from
college under the counterfactual ME policy but not under the counterfactual M&PE policy; for students marked with a “+”
the opposite happens. The policy that was actually implemented is represented in the bottom panel of Figure 8. In the scatter
plots, each point is an individual in the 1990-2004 college cohort in our sample, and the lines are the 10%, 30%, and 50%
isoprobability lines (see equation 19) for the top row, and the 50% isoprobability lines of the most disadvantaged (continuous)
and least disadvantaged (dashed) students in the sample for the bottom row. Sample: USoc, 22,175 white respondents born in
the UK in 1940-1984 with non-missing education and intelligence information (see Table 1).

The first policy experiment (top row of Figure 9) is the strongly ME policy described in

the bottom row of Figure 2, which would have reduced τ towards larger, negative values and

reduced β to essentially zero. The result is that isoprobability curves would have become

nearly vertical. Relative to the observed status quo (1960-1974 college cohort, top row of

Figure 8), the average intelligence of college graduates would have increased by about one
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point, instead of decreasing by two points. Their average disadvantage would have been

still lower than in the 1960s – which partly reflects the declining average disadvantage of

the British population during this period depicted in the right panel of Figure 5 – but

higher than the actual average in the 1990s. Therefore, this counterfactual strongly ME

policy would have brought into college more high-talent disadvantaged students and fewer

low-talent advantaged ones than the policy that was actually implemented.33

The second policy experiment (bottom row of Figure 9) is a variant of this counterfac-

tual strongly ME policy that reduces parameter δ in proportion to a student’s disadvantage,

provided that the student is above average in terms of intelligence. This policy, which we

label meritocratic and progressive expansion (M&PE) policy results in individual-specific iso-

probability curves that shift leftward as disadvantage increases, as indicated by the two 50%

isoprobability lines represented in the figure and associated with the least (dashed line) and

most (continuous line) disadvantaged students, respectively, in our sample. In the figure, we

mark with a “×” students who would have graduated from college under the counterfactual

ME policy but not under the counterfactual M&PE policy, and with a “+” those students

for whom the opposite holds. Clearly, this M&PE policy raises enrollment and graduation

barriers for low-intelligence, more advantaged students while correspondingly lowering such

barriers for high-intelligent, more disadvantaged ones, on average.34 An example of such a

policy is an increase in tuition fees combined with scholarships for sufficiently high-intelligent

students and whose amount increases with a student’s disadvantage.

Relative to the counterfactual ME policy, the M&PE policy selects into college students

whose average intelligence is one point higher (four points above the actual average for

the 1990-2004 college cohort, and two points above the 1960-1974 cohort level) and whose

average disadvantage is also (marginally) higher. This is the outcome that was envisioned

by Robbins (1963), which is the exact opposite of what happened in the UK since the 1960s.

33Note that this counterfactual meritocratic expansion of tertiary education would have been more effective
if complemented by secondary education policies aimed at improving the attainment of talented teenagers
from disadvantaged families. As pointed out by Chowdry et al. (2013), “poor achievement in secondary
schools is more important in explaining lower [Tertiary Education] participation rates among pupils from
low socio-economic backgrounds than barriers arising at the point of entry to [Tertiary Education]” (p. 431).

34The 133 “×” students in the bottom row of Figure 9 have an average intelligence of 90.5 and an average
disadvantage of 3.8, while the 125 “+” students in the bottom row of Figure 9 have an average intelligence
of 109.2 and an average disadvantage of 4.3. The size of the two groups is different due to the stochastic
nature of the model.
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5.4 Welfare implications of alternative expansion policies

Although we do not engage here in a comprehensive social welfare analysis, we show that,

under three assumptions and relative to the policy that was actually implemented, in our

model there is no welfare loss from adopting the counterfactual ME policy, and a welfare

gain from adopting the counterfactual M&PE policy. The reason is that both counterfactual

policies select into college a larger fraction of intelligent and disadvantaged students, which in

the model has contrasting effects on welfare: higher intelligence reduces the cost of each unit

of study effort, higher disadvantaged increases it, and total study effort changes. While in

the ME policy that we simulate these forces compensate each other and so welfare remains

approximately constant, in the counterfactual M&PE policy the negative effect of higher

intelligence on study effort cost dominates and so welfare increases.

The three assumptions are that, following a higher education policy change, (i) total

output does not change; (ii) income distribution does not change; and that (iii) the cost

of alternative higher education policies is the same for a given variation in the number of

graduates. Assumptions (i) and (ii) hold in our model because output and the income dis-

tribution depend only on the fraction of graduates and not on the distribution of intelligence

and disadvantage conditional on educational attainment, µ(θ, η|K). Assumption (iii) can be

regarded as an approximation to reality in a setting in which we do not model explicitly the

government sector; it implies that the aggregate consumption cost of a given expansion ∆ξ

(such as from 0.22 in 1960-1974 to 0.48 in 1990-2004) is approximately invariant to the type

of higher education policy that implements it.

Under these assumptions, we can separate the expansion process in two stages, concep-

tually: first, increase the number of available places in higher education; second, choose

how to allocate those places. Then the aggregate utility cost of study effort in equilibrium

is a welfare measure for the purposes of comparing alternative higher education policies

G = (γ, τ, δ, β) at this second stage:

W(G) =

∫
Θ×H

Ω(η|G) ln(1− Γ(θ|G)s∗(·|G))dµ(θ, η). (33)

The conditioning on G on the RHS of (33) is meant to clarify that different policies have

different welfare properties because they induce different study effort cost shifts Γ(·) and

Ω(·) and, as a consequence, different study efforts s∗ in equilibrium.
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Figure 10 shows how Γ(·) and Ω(·) vary across the 1960-1974 status quo, the actual

policy implemented in 1990-2004 and the two counterfactual ME and M&PE policies. In

either panel, the actual policy change is described by the shift from the continuous line to

the short-dashed line. In the left panel, the shift of Γ(·) implies a reduction of effort cost

that is larger at lower levels of intelligence. In the right panel, the shift of Ω(·) implies a

reduction of effort cost for more advantaged students and an increase for disadvantaged ones.

Thus, the actual policy favored primarily low-intelligence children from advantaged families.

This policy is associated with an aggregate utility cost of study effortW(Gactual) = −0.0792,

which we normalize to 100 for the comparison that follows.

Figure 10: Actual and counterfactual study effort cost shifts

Cost shift Γ(θ;G) = γ + τθ Cost shift Ω(η;G) = δ + βη
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Notes: The figure shows the different study effort cost shifts Γ(·) and Ω(·) implied by different actual (for the 1960-1974 or 1990-
2004 college cohorts) or counterfactual (for the 1990-2004 college cohorts) higher education policies, as a function of intelligence
(left panel) or disadvantage (right panel). The shifts implied by the actual policies are computed using the estimated policy
parameters. The shifts implied by the two counterfactual strongly meritocratic expansion (ME) and meritocratic&progressive
expansion (M&PE) policies are computed using the policy parameters underlying the experiments illustrated in Figure 9.

The counterfactual ME policy is described in either panel by the shift from the continuous

line to the dotted line. In the left panel, the shift of Γ(·) implies a cost reduction that is more

pronounced for more intelligent students. In the right panel, Ω(·) becomes flat because the

ME policy makes effort cost independent of disadvantage. The resulting aggregate utility cost

of effort is W(GME) = −0.0790, or 100.3 on the normalized scale, and therefore equivalent

to the cost of the actual policy, but with a larger fraction of intelligent and disadvantaged

students obtaining a college degree.

Finally, the counterfactual M&PE policy is described in either panel by the shift from

the continuous line to the dashed-dotted lines. On the left, the meritocratic component

is the same as in the ME policy and so the M&PE dashed-dotted line coincides with the

ME dotted line. The progressive component is evident in the right panel, where the slope
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of Ω(·) becomes negative (indicating that the policy turns disadvantage into an advantage)

and higher in absolute value for the more intelligent students (four-dashes-dots line versus

two-dashes-dot line). The net result for welfare is W(GM&PE) = −0.0709, or 111.7 on the

normalized scale, making the M&PE policy welfare-maximizing and most egalitarian among

the actual and the counterfactual policies that we consider.

6 Conclusions

We have introduced into the analysis of higher education policy the systematic consideration

of the intelligence of individuals (g factor), in addition to more conventional measures of

disadvantage. The notion of intelligence as a scarce resource to be allocated across different

levels of education was an important consideration in the rich analysis that led to the Robbins

(1963) Report. Such consideration and analysis are conspicuously absent in the current

debate, and notably in the statement of the European Union’s goal for 2030 (Council of the

EU, 2021). In this document, the target of 45% of 25-34 year-olds with tertiary educational

attainment is set with no mention of any cognitive skill which might be desirable for these

individuals. Ignoring the role of intelligence in higher education may be a laudable criterion

inspired by equity considerations, but it will not alter the importance of students’ ability at

the university level. Most important, it ignores that considerations of intelligence and equity

can be fully reconciled by considering appropriate policy options. This is a key message that

emerges from our analysis.

Our framework is based on a stochastic general equilibrium Roy model where two traits,

intelligence and disadvantage from socioeconomic and psychological factors, determine the

probability of success in acquiring tertiary education. A general equilibrium approach is

essential, because the unintended consequences of policies on the equilibrium outcome may

differ substantially from the intended ones. The latter are usually conceived and evaluated

from the point of view of the partial equilibrium analysis of how students’ choices would be

affected by the education policy, keeping important variables fixed at current values. As we

have seen, when doing so the errors in evaluations of the consequences may be serious.

A crucial conclusion of our analysis is that the effects of higher education policy on the

allocation of ability and on the socioeconomic characteristics of students depend on the sign

of the correlation between intelligence and disadvantage in a population. Although there is no
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consensus on the mechanisms producing such association, it is reasonable to conjecture that

heritability of factors producing economic success or higher-quality nurture from advantaged

parents are likely to produce a negative rather than a positive correlation. We have shown

that when the sign is negative, policies that expand university access tend to reduce the level

of intelligence in the college population while not improving the chances of less advantaged

students, unless some kind of strongly meritocratic expansion policy is adopted.

To be clear, this conclusion does not imply that university admission should be made

even more dependent on test scores at the end of high school (e.g., A-level grades in the UK).

Indeed, whether a student has obtained these qualifications and how high he or she scored

may reflect selection based on family’s socioeconomic status occurring earlier in life. This is

precisely why we have defined the “no college” group broadly to include any student without

a college degree, not only those who left education at the end of high-school. It follows that

secondary education policies aimed at improving the attainment of talented teenagers from

disadvantaged families should support a meritocratic expansion of university. This is also

why our analysis emphasizes the role of intelligence. We think about a meritocratic policy

in terms of low-variance (e.g., repeated over time) and g-loaded intelligence measures (like

the ones constructed in this study and based on Usoc and UKB) that reflect students’ talent

independently of their socioeconomic advantage or disadvantage. A detailed discussion of

such measures is beyond the scope of this paper (and should be left to experts), but our

evidence clearly indicates that this is the way to go if one wishes to increase the number of

graduates and their quality while also providing equality of opportunities.

Is this also the case for European and other advanced countries that are planning to

further expand university access? If yes, then the key lesson conveyed by the UK experience

is that an appropriate meritocratic expansion is the policy that combines graduate workforce

quality with more opportunities for the disadvantaged.
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Appendix to Section 2.3

Proof of Lemma 1

Proof. For given technological skill ratio α and equilibrium graduate-to-school labor ratio

ξ(r), we obtain from equation (9) that

ξ(r) =
(α
r

) 1
1−ρ

, (A-1)

and we obtain from the aggregate constraint on labor supply that

x(1, r) =
ξ(r)

1 + ξ(r)
; x(0, r) =

1

1 + ξ(r)
. (A-2)

Replacing (A-2) into (9) and using (A-1) yields the skilled and unskilled wages as functions

of r, at the demand of the firm. In particular:

w(0, r) = Aa(0)
1
ρ

(
1 + α

1
1−ρ r

ρ
ρ−1

) 1−ρ
ρ
. (A-3)

We can replace equation (A-3) into (3) to express the difference in utility of consumption

between a graduate and a non-graduate worker as

∆U(w) = w(0, r)1−σc
(
r1−σc − 1

1−σc

)
. (A-4)

Using equations (A-1) and (A-2), we see that the demand for skilled labor is a decreasing

function of r. If we consider the supply of skilled labor, it is clear from equation (5) that

effort, and thus supply of skilled labor, is increasing in ∆U , for every pair of individuals

characteristics (θ, η), and any value of σs. We can consider ∆U as a function of r, using the

expression in (A-4), so that the supply of skilled labor is in turn a function of r, written

as ∆U(r). When σc = 1 it is immediate that ∆U(r) = ln r, increasing in r. Thus the

equilibrium exists and is unique in this case.
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Appendix to Section 2.6

Figure A-1 describes a third type of society, characterized by λ > 0 (like in Society 1) and

ψ(·, G) > 0 (like in Society 2), and the effects that alternative expansion policies would have

in this society. In contrast to Society 1 described in Section 2.6 of the paper, the average

intelligence of the population in college is now higher than outside college. There are still

intelligent students from disadvantaged families who are outside college, but fewer than in

Society 1. This fact can be appreciated by drawing in each status-quo scatter plot (first row

of the figure) horizontal and vertical lines at, say, H = 8 and Θ = 120, and noting how many

observations fall in the resulting northeastern quadrants. Thus there is reachable ability also

in this third society but, again, less than in Society 1. This third is type society is meant

to illustrate precisely this fact, i.e., that a positive correlation λ between intelligence Θ and

disadvantage H is necessary but not sufficient for large “reserves of untapped ability [...] in

the poorer sections of the community” (Robbins, 1963).

As the figure illustrates, in this third society the IE policy, implemented by decreasing

the intercept δ in effort cost shift Ω(H) as described in second row of the figure, reduces

the mean intelligence of graduates while not affecting their average social background much.

As for Society 1, the reason is the equilibrium response of the wage ratio, which drops from

r = 4.4 to r = 2.9, with a flattening effects on the isoprobability lines.

The progressive expansion (PE) policy turns a disadvantaged socioeconomic and psycho-

logical background into an advantage in college access by inverting the sign of slope β in

effort cost shift Ω(H) = δ + βH (i.e., the isoprobability lines become negatively sloped as

described in the third row of the figure). Like in Society 1 or 2, this policy induces a large

increase in the incidence of graduates with a disadvantaged background also in this third

society. However, in this case the effect on their average intelligence is not as large as in

Society 1 although it remains positive.

Finally, the effect of the strongly meritocratic expansion (ME) policy mix, illustrated

in the bottom row of the figure, changes the policy parameters in effort cost shifts Ω(H) =

δ+βH (Eq. 17) and in effort cost shift Γ(Θ) = γ+τΘ (Eq. 18) so that the isoprobability lines

become vertical. In this case, only students whose intelligence is above a certain threshold

experience an increase in graduation probability. Like in Society 1 or 2, this strongly ME

raises the incidence of high-intelligence and high-disadvantage individuals.
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Figure A-1: Status quo in Society 3 (λ > 0, ψ > 0) and effects of three expansion policies:
Indiscriminate Expansion (IE), Progressive Expansion (PE), Meritocratic Expansion (ME).

Status quo E(Θ|K = 1) = 111.0 E(H|K = 1) = 4.1

ξ = 0.1; r = 4.4 E(Θ|K = 0) = 98.9 E(H|K = 0) = 5.1

IE policy E(Θ|K = 1) = 104.1 E(H|K = 1) = 3.9

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 99.2 E(H|K = 0) = 5.2

Strongly PE policy E(Θ|K = 1) = 114.1 E(H|K = 1) = 5.9

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 97.2 E(H|K = 0) = 4.8

Strongly ME policy E(Θ|K = 1) = 121.6 E(H|K = 1) = 5.7

ξ = 0.2; r = 2.9 E(Θ|K = 0) = 95.7 E(H|K = 0) = 4.9

Notes: The scatter-plots in the left column illustrate the joint distribution of intelligence and disadvantage for school and
college graduates at equilibrium. The continuous straight lines are the isoprobability curves at values 90%, 50% and 10%, at
equilibrium. The dashed lines describe values satisfying equation (20). The histograms in the middle and right columns of
panels illustrate the associated marginal distributions. The data consist of a simulated population of 10,000 individuals with
type (θ, η) drawn from a jointly normal distribution (mΘ = 100; σΘ = 15; mH = 5; σH = 1; corr(Θ, E) = λ = 0.5). In the
first row (status quo), the policy parameters are set to generate ξ = 0.1: γ = 23.3, τ = 0 (so isoprobability curves are straight
lines), δ = 2, β = 1. The technology parameters are α = 1.1 and ρ = 0.4. For each policy experiment in the other rows, the
parameters are set so as to double the college-to-school labor ratio. The wage ratio adjusts to equilibrium. IE policy: δ = 0.
Strongly PE policy: β = −0.18, γ = 88.5. Strongly ME policy: τ = −8, β = 10−6, γ = 30.1, δ = 5.3.
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Appendix to Section 3.3

Table A-1: Eigenvector of the PCA of cognitive ability measures in USoc

Immediate word recall 0.457 Help in immediate word recall –0.011
Delayed word recall 0.449 Help in delayed word recall 0.004
Correct subtractions 0.318 Help in substractions test –0.050
Number series 0.413 Help in number series test –0.034
Verbal ability 0.365 Help in verbal ability test –0.015
Numeric ability 0.423 Help in numeric ability test –0.004

Material aid in recall test 0.011
Material aid in subtraction test –0.040

Notes: The table reports the eigenvector of the Principal Components Analysis of the 14 cognitive ability measures contained

in Usoc. The First Principal Components (FPC), which we label IQ, is the measure of intelligence that we use in our analysis.

It has an eigenvalue of 2.55 and explains 18.2% of the data variability. The left panel of the table displays the positive values of

the eigenvector terms for the fractions of correct answers in the 6 cognitive questions. The right panel, shows instead that the

eigenvector values are negative for 6 out of 8 help dummies. For the the two remaining help dummies the values are positive

but close to zero.

Figure A-2: Evolution of intelligence scores standardized over all birth years
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Notes: The left panel of the figure displays the mean, the 10th and the 90th percentiles of the average intelligence score
standardized over all birth years in our USoc sample of 22,175 white respondents born in the UK between 1940 and 1984,
with non-missing education and intelligence score (see Table 1). The right panel displays the same statistics for the Average
intelligence score (FIS) in our UKB sample of 212,659 white respondents born in the UK between 1940 and 1969, with non-
missing education and intelligence score (see Table 2).
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Figure A-3: Evolution of intelligence scores standardized in each birth year
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Notes: The left panel of the figure displays the mean, the 10th and the 90th percentiles of the average intelligence score
(IQ) standardized within each birth year in our USoc sample of 22,175 white respondents born in the UK between 1940 and
1984, with non-missing education and intelligence score (see Table 1). The right panel displays the same statistics for the
Average intelligence score (FIS) in our UKB sample of 212,659 white respondents born in the UK between 1940 and 1969, with
non-missing education and intelligence score (see Table 2).

Appendix to Section 3.4

Table A-2: Eigenvector of the PCA of socioeconomic factors generating advantage in college
enrollment and graduation in USoc

Father education 0.277
Mother education 0.290
Mother work 0.191
Mother dead –0.125
Mother absent –0.224
Father work 0.617
Father dead –0.416
Father absent –0.428

Notes: The table reports the eigenvector of the Principal Components Analysis of the 8 socioeconomic background variables

in Usoc (referring retrospectively to when the respondent was 14 years of age) on which we base our measure of socioeconomic

disadvantage. The First Principal Component (FPC) has an eigenvalue of 1.76 and explains 22% of the data variability. The

table displays negative values for the variables that, as expected, reduce the FPC and increase disadvantage: whether either

parent was dead or absent when the respondent was 14 years of age.
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Table A-3: Eigenvector of the PCA of personality factors generating advantage in college
enrollment and graduation in USoc

Big 5: Agreableness 0.432
Big 5: Consciensciousness 0.500
Big 5: Extroversion 0.489
Big 5: Neuroticism –0.352
Big 5: Openness 0.449

Notes: The table reports the eigenvector of the Principal Components Analysis of the Big 5 variables in Usoc on which we

base our measure of personality disadvantage. The First Principal Component (FPC) has an eigenvalue of 1.75 and explains

35% of the data variability. The table displays negative values for the variable that, as expected, reduce the FPC and increase

disadvantage: neuroticism.

Table A-4: Correlation matrix between intelligence, socioeconomic disadvantage, and per-
sonality disadvantage measures in USoc

Intelligence Socioeconomic Personality
disadvantage disadvantage

Intelligence 1
Socioeconomic disadvantage −0.154 1
Personality disadvantage −0.073 0.035 1

Notes: The table reports the eigenvector of the Principal Components Analysis of the Big 5 variables in Usoc on which we

base our measure of personality disadvantage. The First Principal Component (FPC) has an eigenvalue of 1.75 and explains

35% of the data variability. The table displays negative values for the variable that, as expected, reduce the FPC and increase

disadvantage: neuroticism.

Table A-5: Eigenvector of the PCA of pooled socioeconomic and personality factors gener-
ating advantage in college enrollment and graduation in USoc

Big 5: Agreableness 0.249 Mother work 0.176
Big 5: Consciensciousness 0.315 Mother dead –0.087
Big 5: Extroversion 0.320 Mother absent –0.179
Big 5: Neuroticism –0.216 Father work 0.424
Big 5: Openness 0.367 Father dead –0.280
Father education 0.258 Father absent –0.293
Mother education 0.272

Notes: The table reports the eigenvector of the Principal Components Analysis of the 13 pooled socioeconomic background

(referring retrospectively to when the respondent was 14 years of age) and personality variables in Usoc on which we base our

measure of disadvantage (variable H in the theoretical model). The First Principal Component (FPC) has an eigenvalue of

1.82 and explains 12.6% of the data variability. The table displays negative values for the variables that, as expected, reduce

the FPC and increase disadvantage: whether either parent was dead or absent when the respondent was 14 years of age.
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We provide here some evidence on how the UK expansion policy was enacted, using data from

the University Statistical Record (USR). This source provides administrative information on

the universe of students enrolled at UK universities between 1972 and 1993. USR was

initiated following the Robbins Report, which had stressed the need for better data for the

proper design of higher education policies. It was subsequently discontinued and replaced

by the Higher Education Statistics Agency (HESA) in 1993. Unfortunately, pre-1993 USR

information was not merged into HESA.

Out of the initial 8,103,977 person/year records of students enrolled in a UK higher

education institution in this period, we keep the 6,889,425 records of white individuals born

in the UK, so as to match the final USoc and UKB samples. These records correspond,

after some minor data cleaning, to 1,523,192 students born between 1948 and 1976. USR

provides us with information about the evolution of higher education enrollment and entry

criteria (e.g., A-level scores), which we use to characterize the UK expansion. The latter

was not just a consequence of the creation and expansion of Polytechnics.A-1 The left panel

of Figure A-4 plots data from Table 3.3 and Figure 3.2 in Pratt (1997), which show that

the stock of students enrolled in universities more than doubled (from 152,227 to 376,074)

between 1966 and 1992. This increase is smaller than for Polytechnics (where numbers more

than quadrupled in the same period, from 149,720 to 659,790), but is still substantial. While

the growth of Polytechnics is an obvious consequence of an explicit expansion policy, the

increase in the number of students enrolled in traditional universities is the result of more

subtle policy changes.

A first piece of evidence is provided in the right panel of Figure A-4, which shows that the

cost of accessing a university was reduced by increasing the number of academic institutions

and bringing their departments closer to potential students.A-2 In the USoc sample, the

average distance from the closest university dropped by about 6km between 1960 and 2005.

It is plausible that the goal of this expansion was to reduce enrollment costs. In this period

most of these institutions did not impose tuition fees, and so mobility costs were an important

A-1According to Pratt (1997), about thirty institutions of this kind were created between 1966 and 1973.
In 1988, the Education Reform Act reduced funding per student granted to Polytechnics, inducing them to
expand students’ enrolment in order to keep constant the total amount of available resources.
A-2According to Blundell et al. (2022), more than twenty new universities were created in the 1960s. See

also the evidence in Blackburn and Jarman (1993).
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Figure A-4: Higher education enrollment and distance to the closest college
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Notes: The left panel uses the data in Table 3.3, page 29, of Pratt (1997) to reproduce a modified version of Figure 3.2, page
31, of the same book. The modification is that we aggregate “Polytechnichs” and “Other colleges”, which in Figure 3.2 of
Pratt (1997) are displayed separately. For the right panel, we use a list of all Royal Charters granted in the UK ever since the
13th century (the list can be found at https://privycouncil.independent.gov.uk/royal-charters/list-of-charters-granted/), and
we selected entries corresponding to universities and colleges. Each entry has a legal address, which we use as a location point
to count the number of universities active over time in each area. For each year we then count, how many active universities
were located in each county. If this step returns a positive number, we set the distance to zero; if it returns a zero, we compute
the distance (in km) to the nearest university from the county boundary. For each year, the figure plots the average distance
over counties from the closest university.

component of the total cost of attaining a college degree. As summarized by Willet (2017),

the 1962 Education Act introduced tuition and maintenance grants for all UK students,

which in the 1980s were tied to family income in order to provide stronger support for more

disadvantaged students. Only in 1998, with the Teaching and Higher Education Act, fees

of 1,000 GBP per year were introduced. And only after the period that we study, with the

2004 Higher Education Act, fees raised to 3,000 GBP per year and then again to 9,000 GBP

following the 2010 Independent Review of Higher Education Funding and Student Finance

(the “Browne Review”).

A second piece of evidence is that the criteria for admission to a university became less

stringent. Using USR data, the left panel of Figure A-5 shows the fraction of students ad-

mitted without A-levels to three groups of UK universities: Oxbridge, the Russell group, and

the remaining, less prestigious institutions. In all groups, the fraction of students admitted

without A-levels increased between 1973 and 1993. The increase is particularly evident in

the residual group, but it is visible also for the Russell group and even for Oxbridge. The

USR documentation explains that this is an indicator of less demanding admission criteria

because it refers to two main categories of students: those who had less than 3 A-Level scores
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(i.e., the regular mininum requirement for admission) and those admitted on the basis of

HNC/HND/ONC/OND qualifications, which have a more vocational or technical nature.

Figure A-5: Criteria for admission to a university
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Notes: The left panel displays the fraction of students admitted without A-level scores to three groups of UK universities:
Oxbridge, the Russell group, and remaining institutions. The right panel reports instead the average sum of the best 3 A-Level
scores for students admitted to the three groups of universities during the period covered by USR data. Source: USR.

The right panel reports instead the average sum of the best 3 A-Level scores for students

admitted to the three groups during the period covered by USR data. As expected, in all

years students admitted at Oxbridge have higher best A-level scores than students admitted

at the Russell group, which in turn dominate students in the remaining institutions. What

is more striking is that in all the three groups this indicator increases significantly over

the period of observation. This increase has two possible interpretations. First, there was

grade inflation in high schools so as to facilitate college admission. Second, universities

became more selective in admitting students or high school students improved over time their

performance in A-Level exams. We are unable to establish which scenario is the correct one.

However, the evidence in Figure 5 of the main text (that the average intelligence of graduates

has declined over time) reduces the plausibility of the second explanation. If universities had

become more selective, the average intelligence of graduates would have increased.

Another important policy change took place in 1988, when the GCSEs replaced the CSEs

and O-Levels as the exams that UK students take at age 16. According to Blundell et al.

(2022), this “reform led to an increase in educational attainment at the secondary level and

hence an increase in the proportion of the young with sufficient academic credentials for

potential admission to universities”.
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Appendix to Section 4.4

The evolution of the wage gap between college and high school graduates in the UK has

been studied by Blanden and Machin (2004), O’Leary and Sloane (2005), Walker and Zhu

(2008), Devereux and Fan (2011), Chowdry et al. (2013), and Blundell et al. (2022), among

others. Our finding in Section 4.4 of a declining wage ratio between college graduates and less

educated individuals over consecutive cohorts is apparently in contrast with the evidence of

a weakly increasing gap reported in this literature, particularly by Blundell, Green, and Jin

(2022) – BGJ, henceforth. In this appendix we show that the discrepancy is essentially due to

the different definition of the comparison groups: college graduates vs high school graduates

in BGJ, college graduates vs non-graduates in our paper.A-3 We have explained in Section 3.2

the rationale of this choice in our analysis. In fact there is no contrast when we use BGJ’s

comparison groups, given that we use their same data source (LFS) and their methodology

to remove age effects. Other differences between the two studies are less relevant.

Figure A-6: College-to-high school wage ratio across birth cohorts in Blundell et al. (2022)

Notes: This figure a screenshot of the right panel of Figure 4 in Section 5 of the Online Appendix of Blundell et al. (2022).
Their note to this panel reads: “We aggregate LFS data 1992-2016 up to the level of 5-year-birth-cohorts and age, where age
is restricted to 20-59. We look at cohorts 1950-1985 only, so that each cohort appears many years in the data. ... For the
right sub-figure, we regress the BA proportion” (proportion of college graduates) “on cohort dummies and an age polynomial
of order 5. For the BA proportion, the cohort effects are scaled to the observed proportion for 1965 cohort at 30 year old. For
the wage gap, the cohort effects are normalized to 0 for the 1965 cohort.”

Figure A-6 reproduces the right panel of Figure 4 in Appendix 5 of BGJ. The dashed line

A-3Specifically, we compare college graduates defined as individuals who have obtained a university degree
or any other tertiary education diploma to all other subjects with a lower educational attainment. They
compare college graduates (defined in the same way) to high-school graduates only (i.e., individuals with a
secondary or some tertiary education below a university degree level, where the bottom line of secondary
education is Grade C in the GCSE exam).
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describes the evolution of the college-to-high school wage gap across 5-year birth cohorts,

from 1950-54 until 1985-89. The methodology followed by the authors is to aggregate ob-

servations in cells defined by these 5-years cohorts and age in years. The difference between

the log of median wages by education group in each cell is then regressed on cohort dummies

and on a fifth-order polynomial in age. The dashed line plots the coefficients of the cohort

dummies from this regression, normalized to zero in 1965, and suggests a weakly increasing

pattern of the wage gap across successive cohorts. According to BGJ, the wage ratio was

about 4% higher for the 1985-89 birth cohort relative to the 1950-54 cohort.

The top-left panel of Figure A-7 reproduces Figure 6 of the main tex, which shows a

decreasing wage ratio across the three college cohorts that we consider, in contrast with

BGJ. A first possible reason of this discrepancy is the fact that (for the reasons explained in

Section 3.1) we compare mean wages by education group while BGJ compare median wages.

The top-right panel of Figure A-7 shows that if we use median wages while sticking to all our

other specifications, the wage ratio between college graduates and non-graduates exhibits a

similar decrease, so using the mean or the median is actually irrelevant for the dynamics of

the wage ratio across consecutive cohorts.

The bottom-left panel of Figure A-7, in addition to using medians, makes another step

towards the BGJ specification by using 1993-2016 LFS data instead of 1993-2019. All our

other specifications are preserved. As expected, this change affects mainly the wage ratio

of the most recent cohort, which is now observed for fewer years, and results in a slightly

flatter pattern. Finally, in the right-bottom pattern we change the comparison groups to

those used by BGJ, while still using the median and the 1993-2016 sample: college graduates

vs high-school graduates (see footnote A-3 for the exact definitions). Now the discrepancy

between BGJ and us disappears: the wage ratio over consecutive cohorts increases as in

BGJ, from 1.50 to 1.62, i.e., by about 8 percent.A-4

We conclude from this analysis that the discrepancy between the decreasing wage ratio

that we find and the weakly increasing wage ratio found by BGJ is essentially due to the

different educational groups considered in the two papers. As explained in Section 3.2, our

broader definition of non-college graduates is justified by the fact that we study policies

A-4We do not report here analogous figures showing that the remaining differences are practically irrelevant,
namely: the consideration of only three cohorts, each one spanning 15 birth years between 1940 and 1984
(instead of BGJ’s eight birth cohorts of 5 years from 1950 until 1989) and the use of age dummies (instead
of BGJ’s age polynomials) in the regressions that removes age effects.
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aimed at expanding university access so as to bring into higher education untapped ability

from any less educated group that was previously excluded from college, not only from the

pool of high school graduates. To quantify the difference in the definition of the comparison

groups, out of the 936,135 observations in our LFS sample, 146,565 (15.7% of the total) are

not high school graduates according to the definition of BGJ and so are not included in their

comparison group, while they are included in ours.

Figure A-7: Wage levels and ratios for different specifications

Labor Force Survey 1993–2019 Labor Force Survey 1993–2019

College graduates vs non-graduates College graduates vs non-graduates

Mean wages by education group Median wages by education group

1.
5

1.
6

1.
7

1.
8

1.
9

2
w

ag
e 

ra
tio

 a
t a

ge
 4

5

10
12

14
16

18
20

22

re
al

 h
ou

rly
 w

ag
e 

in
 G

BP

1960-1974 1975-1989 1990-2004

college cohort

college no college wage ratio

1.
5

1.
6

1.
7

1.
8

1.
9

2
w

ag
e 

ra
tio

 a
t a

ge
 4

5

10
12

14
16

18
20

22

re
al

 h
ou

rly
 w

ag
e 

in
 G

BP

1960-1974 1975-1989 1990-2004

college cohort

college no college wage ratio

Labor Force Survey 1993–2016 Labor Force Survey 1993–2016

College graduates vs non-graduates College graduates vs high-school graduates

Median wages by education group Median wages by education group
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Notes: The top-left panel reproduces Fig. 6 in the main text, based on our specifications and definitions. The top-right panel
shows how this figure changes when median wages by education are used instead of mean wages. The bottom-left panel is like
the top-right, except that the 1993-2016 LFS sample is used (like in BGJ) instead of the 1993-2019 LFS sample. Finally, the
bottom-right panel shows how the figure in the bottom-left panel changes when education groups are defined as in BGJ: college
graduates vs high school graduates, instead of college graduates vs non-graduates as in the three other panels (see footnote A-3
for the exact definitions).
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Appendix to Section 5.1

Our MD estimates and standard errors are obtained as follows. Starting from the initial NLS

estimates of the policy parameters (see Table A-6) and considering the reference value α = 1

for the technology parameter, we set up a grid to locate the global minimum of criterion

function J(γ, τ, δ, β, α; ρ) defined by equation (32) in the main text, for a given value of ρ.

Table A-6: Initial NLS estimates of policy parameters

College cohort

1960-1974 1975-1989 1990-2004

γ 6.193 5.433 3.852
(1.031) (0.707) (0.564)

τ −3.417 −3.017 −1.963
(0.770) (0.524) (0.408)

δ 0.056 0.049 0.009
(0.019) (0.016) (0.020)

β 0.013 0.011 0.025
(0.002) (0.002) (0.002)

N 7,103 8,329 6,743

Notes: The table reports Nonlinear Least Squares (NLS) estimates of parameters in equation (19), after replacing ∆ lnw(G)

with its empirical value, i.e., lnw(1) − lnw(0). The intelligence score is expressed in hundreds IQ units in the estimation, so

as to reduce the order of magnitude of the estimated γ and τ . A college cohort is defined by the period of actual of potential

college attendance, which is an individual’s age plus 20. Cross-sectional response weights are applied. Sample: USoc, 22,175

white respondents born in the UK in 1940-1984 with non-missing education and intelligence information (see Table 1).

In order to mitigate the consequences of the curse of dimensionality, we design an algo-

rithm that starts from a small grid composed by 40,500 points: 3 for each of the four policy

parameters (the NLS estimate and two neighboring points, at distance 0.01 for γ and τ and

distance 0.001 for δ and β) and 500 for α (from 0.01 to 5, in steps of 0.01). We then solve

numerically for the model’s equilibrium at each point of this grid by finding the unique fixed

point of equation (29) for that particular combination of (γ, τ, δ, β, α), and we obtain a MD

estimate by locating the minimum of J(·; ρ) over the grid. If this MD estimate hits a grid

boundary (for example, if the estimate for γ is the minimum or the maximum in the vector

of values for γ that is used to build the grid), then a point is added to enlarge that boundary

and estimation is repeated with the expanded grid.

This process is iterated until the MD estimates are at an interior point of the grid. When

calibrating ρ = 0.4, in the initial, actual sample (“one-shot” estimates) this occurs in final
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grids of: 96,000 points for college cohort 1960-1974 (the minimum value of the criterion

function is min = 0.0000128); 720,000 points for cohort 1975-1989 (min = 0.0000213); and

96,000 points for cohort 1990-2004 (min = 0.0000140). Thus, the advantage of anchoring the

MD starting values to the partial equilibrium NLS estimates is that we can greatly reduce

the grid size. Despite this computational gain, we needed a further expedient in order to

complete the 10,000 bootstrap replication in no more than 10 hours (on a fast computer)

for each cohort. The expedient is that the initial grid for each bootstrap sample consists

of only 35 = 243 points, resulting from vectors of 3 points for each parameter (the MD,

one-shot estimates and 2 neighboring points); estimation is iterated according to the “no

boundary estimates” rule described above, and repeated in the 10,000 bootstrap samples.

The distribution of the resulting 10,000 bootstrap estimates of each parameter (conditional

on ρ = 0.4) is illustrated in Figure A-8 for three three college cohorts. The vertical lines

mark the averages that we report as our point estimates in Table 5 of the main text, and

the standard deviations are our bootstrap standard errors in that table.

As discussed in the main text, a crucial question is whether our MD algorithm produces

estimates corresponding to a global minimum or not. To increase our confidence that it does,

we inspect two- and three-dimensional sections of the criterion function over a much wider

grid than the one employed in our computational algorithm. The two-dimensional sections

are shown in Figure A-9 for each cohort and for ρ = 0.4. A panel plots the value of the

log of the MD criterion as a function of a parameters, keeping the remaining 4 parameters

fixed at the one-shot MD estimates. The global minimum as well as local minima are clearly

visible in each panel. Note that despite the appearance of a cusp, the function is smooth

around the minimum. This appearance is produced by the log scale, which is convenient

but produces a large negative value at the minimum because it is very close to zero. The

associated three-dimensional sections are shown in Figure A-10 for college cohort 1960-1974.

Here we fix 3 parameters at the one-shot MD estimates and we plot the contour lines of the

MD criterion as a function of the 10 possible combinations of the remaining 2 parameters.

The minimum is marked by the intersection of the two dashed lines. It is again clear that the

NLS estimates provide a guess that helps us locating the global minimum in the presence of

several local minima. Our replication package can be used to produce the analogous figures

for college cohorts 1975-1989 and 1990-2004.
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Figure A-8: Distribution of MD estimates across 10,000 bootstrap samples, for ρ = 0.4

College cohort
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Notes: The figure illustrates the distribution of MD estimates of the five structural parameters of interest across 10,000 bootstrap
samples, conditional on ρ = 0.4. The vertical line is the mean of the distribution. The point estimates and standard errors
reported in Table 5 of the main text are the means and standard deviations, respectively, of these distributions.
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Figure A-9: 2D sections of criterion function for ρ = 0.4, log scale

College cohort

1960-1974 1975-1989 1990-2004

Notes: Each panel plots the value of the log of the MD criterion as a function of one parameter, keeping the remaining four
parameters fixed at the MD estimates obtained in the actual (as opposed to bootstrap) sample. The dashed line marks the
global minimum, which corresponds to our MD estimates. Local minima are clearly visible, and anchoring the grid to the initial
NLS estimates of the policy parameters (see Table A-6) helps avoiding them. Note that despite the appearance of a cusp, the
function is smooth around the global minimum, which takes a large negative value on the log scale because it is very close to
zero.
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Figure A-10: 3D sections of criterion function for ρ = 0.4 and cohort 1960-1974, log scale

Notes: Each panel plots the contour lines of the log of the MD criterion as a function of two parameters, keeping the remaining
three parameters fixed at the MD estimates obtained in the actual (as opposed to bootstrap) sample. The possible

(5
2

)
= 10

combinations are represented. The intersection of the two dashed lines marks the global minimum, which corresponds to our
MD estimates. Local minima are clearly visible, and anchoring the grid to the initial NLS estimates of the policy parameters
(see Table A-6) helps avoiding them.
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Appendix to Section 5.2

This Appendix shows how well we match eight untargeted moments not used for estimation

(namely, the 25th and 75th percentiles of the conditional – to educational attainment K –

distributions of Θ and H, Table A-7) and replicates the results in Table 5 of the main text

and Table A-7 in this Appendix for the cases in which ρ is assumed to be equal to 0.3

(Table A-8 and Table A-9) or 0.5 (Table A-10 and Table A-11). Our replication package can

be used to replicate also for these alternative values of ρ the visual analysis of the criterion

function performed in the previous Appendix to Section 5.1.
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Table A-7: Quality of match for eight untargeted moments at minimum-distance estimates
of model parameters for ρ = 0.4

Intelligence distribution Disadvantage distribution

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

Graduates’ IQ, 25th percentile Graduates’ disadvantage, 25th percentile

model 102.1 101.2 99.8 3.14 2.80 2.54
(0.5) (0.4) (0.4) (0.04) (0.03) (0.03)

data 103.0 101.6 100.3 3.12 2.79 2.51
(0.5) (0.3) (0.4) (0.04) (0.03) (0.03)

Graduates’ IQ, 75th percentile Graduates’ disadvantage, 75th percentile

model 118.1 118.0 117.3 4.52 4.20 3.86
(0.5) (0.3) (0.3) (0.04) (0.04) (0.03)

data 117.7 117.6 117.0 4.53 4.23 3.85
(0.4) (0.3) (0.3) (0.05) (0.04) (0.04)

Non-graduates’ IQ, 25th percentile Non-graduates’ disadvantage, 25th percentile

model 89.2 88.2 87.5 3.42 3.08 2.92
(0.3) (0.3) (0.3) (0.02) (0.02) (0.02)

data 89.4 88.3 87.6 3.43 3.08 2.91
(0.3) (0.2) (0.3) (0.02) (0.02) (0.02)

Non-graduates’ IQ, 75th percentile Non-graduates’ disadvantage, 75th percentile

model 108.2 107.7 106.2 4.99 4.70 4.57
(0.2) (0.3) (0.3) (0.02) (0.02) (0.03)

data 107.9 107.6 106.2 4.99 4.69 4.55
(0.2) (0.2) (0.3) (0.02) (0.03) (0.03)

Notes: The table reports the mean and standard deviation over 10,000 bootstrap samples (at the respective minimum-distance

estimates obtained setting ρ = 0.4) of model-predicted vs empirical values of eight untargeted moments targets. A college

cohort is defined by the period of actual of potential college attendance, which is an individual’s age plus 20. Cross-sectional

response weights are applied. Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with non-missing education

and intelligence information (see Table 1).
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Table A-8: Minimum-distance estimates of model parameters for ρ = 0.3

[A] Parameter estimates [C] Intelligence targets

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

γ 6.183 5.437 3.832
(0.022) (0.020) (0.017) 3. Graduates’ IQ, E(Θ|K = 1)

τ −3.440 −3.070 −1.981 model 110.2 109.2 108.2
(0.028) (0.025) (0.022) (0.4) (0.4) (0.4)

δ 0.055 0.051 0.009 data 110.3 109.0 108.2
(0.002) (0.002) (0.002) (0.4) (0.3) (0.3)

β 0.015 0.012 0.027
(0.001) (0.001) (0.002) 4. Non-graduates’ IQ, E(Θ|K = 0)

α 0.609 0.741 0.928 model 97.8 97.0 96.0
(0.013) (0.013) (0.016) (0.2) (0.2) (0.3)

data 97.7 97.0 96.0
N 7,103 8,329 6,743 (0.2) (0.2) (0.2)

[B] Labor market targets [D] Disadvantage targets

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

1. College-to-school workforce ratio, ξ 5. Graduates’ disadvantage, E(H|K = 1)

model 0.224 0.328 0.483 model 3.87 3.58 3.24
(0.007) (0.009) (0.013) (0.03) (0.03) (0.03)

data 0.224 0.328 0.483 data 3.86 3.58 3.23
(0.007) (0.009) (0.014) (0.03) (0.03) (0.03)

2. College-to-school earnings ratio, r 6. Non-graduates’ disadvantage, E(H|K = 0)

model 1.737 1.617 1.546 model 4.32 4.02 3.89
(0.008) (0.006) (0.007) (0.02) (0.02) (0.02)

data 1.736 1.617 1.546 data 4.32 4.02 3.90
(n/a) (n/a) (n/a) (0.02) (0.02) (0.02)

Notes: The table reports the mean and standard deviation of minimum-distance (MD) estimates of model parameters over

10,000 bootstrap samples, setting ρ = 0.3, and of model-predicted vs empirical values of the six targets. The MD criterion

function is given by equation (32), and the weighting matrix is the identity matrix. The Online Appendix to Section 5.1

provides more computational details. The intelligence score is expressed in IQ units in the table but in hundreds IQ units in

the estimation, so as to reduce the order of magnitude of the estimated γ and τ . A college cohort is defined by the period

of actual of potential college attendance, which is an individual’s age plus 20. Cross-sectional response weights are applied.

Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with non-missing education and intelligence information

(see Table 1).
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Table A-9: Quality of match for eight untargeted moments at minimum-distance estimates
of model parameters for ρ = 0.3

Intelligence distribution Disadvantage distribution

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

Graduates’ IQ, 25th percentile Graduates’ disadvantage, 25th percentile

model 102.1 101.3 99.8 3.14 2.80 2.54
(0.5) (0.4) (0.4) (0.04) (0.03) (0.03)

data 103.0 101.6 100.3 3.12 2.79 2.51
(0.5) (0.3) (0.4) (0.04) (0.03) (0.03)

Graduates’ IQ, 75th percentile Graduates’ disadvantage, 75th percentile

model 118.1 118.0 117.3 4.52 4.21 3.86
(0.5) (0.3) (0.3) (0.04) (0.04) (0.03)

data 117.7 117.6 117.0 4.53 4.23 3.85
(0.4) (0.3) (0.3) (0.05) (0.04) (0.04)

Non-graduates’ IQ, 25th percentile Non-graduates’ disadvantage, 25th percentile

model 89.2 88.2 87.5 3.42 3.08 2.92
(0.3) (0.3) (0.3) (0.02) (0.02) (0.02)

data 89.4 88.3 87.6 3.43 3.08 2.91
(0.3) (0.2) (0.3) (0.02) (0.02) (0.02)

Non-graduates’ IQ, 75th percentile Non-graduates’ disadvantage, 75th percentile

model 108.1 107.7 106.2 4.99 4.70 4.57
(0.2) (0.3) (0.3) (0.02) (0.02) (0.03)

data 107.9 107.6 106.2 4.99 4.69 4.55
(0.2) (0.2) (0.3) (0.02) (0.03) (0.03)

Notes: The table reports the mean and standard deviation over 10,000 bootstrap samples (at the respective minimum-distance

estimates obtained setting ρ = 0.3) of model-predicted vs empirical values of eight untargeted moments targets. A college

cohort is defined by the period of actual of potential college attendance, which is an individual’s age plus 20. Cross-sectional

response weights are applied. Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with non-missing education

and intelligence information (see Table 1).
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Table A-10: Minimum-distance estimates of model parameters for ρ = 0.5

[A] Parameter estimates [C] Intelligence targets

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

γ 6.175 5.430 3.830
(0.022) (0.022) (0.021) 3. Graduates’ IQ, E(Θ|K = 1)

τ −3.438 −3.046 −1.984 model 110.2 109.1 108.2
(0.028) (0.025) (0.026) (0.4) (0.4) (0.5)

δ 0.055 0.046 0.008 data 110.3 109.0 108.2
(0.002) (0.002) (0.002) (0.4) (0.3) (0.3)

β 0.015 0.013 0.028
(0.001) (0.001) (0.002) 4. Non-graduates’ IQ, E(Θ|K = 0)

α 0.821 0.927 1.083 model 97.7 97.0 96.0
(0.012) (0.012) (0.014) (0.2) (0.2) (0.3)

data 97.7 97.0 96.0
N 7,103 8,329 6,743 (0.2) (0.2) (0.2)

[B] Labor market targets [D] Disadvantage targets

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

1. College-to-school workforce ratio, ξ 5. Graduates’ disadvantage, E(H|K = 1)

model 0.224 0.328 0.484 model 3.87 3.58 3.24
(0.007) (0.009) (0.013) (0.03) (0.03) (0.03)

data 0.224 0.328 0.483 data 3.86 3.58 3.23
(0.007) (0.009) (0.014) (0.03) (0.03) (0.03)

2. College-to-school earnings ratio, r 6. Non-graduates’ disadvantage, E(H|K = 0)

model 1.736 1.617 1.557 model 4.32 4.03 3.89
1 (0.007) (0.006) (0.022) (0.02) (0.02) (0.02)

data 1.736 1.617 1.545 data 4.32 4.03 3.90
(n/a) (n/a) (n/a) (0.02) (0.02) (0.02)

Notes: The table reports the mean and standard deviation of minimum-distance (MD) estimates of model parameters over

10,000 bootstrap samples, setting ρ = 0.5, and of model-predicted vs empirical values of the six targets. The MD criterion

function is given by equation (32), and the weighting matrix is the identity matrix. The Online Appendix to Section 5.1

provides more computational details. The intelligence score is expressed in IQ units in the table but in hundreds IQ units in

the estimation, so as to reduce the order of magnitude of the estimated γ and τ . A college cohort is defined by the period

of actual of potential college attendance, which is an individual’s age plus 20. Cross-sectional response weights are applied.

Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with non-missing education and intelligence information

(see Table 1).
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Table A-11: Quality of match for eight untargeted moments at minimum-distance estimates
of model parameters for ρ = 0.5

Intelligence distribution Disadvantage distribution

College cohort College cohort

1960-1974 1975-1989 1990-2004 1960-1974 1975-1989 1990-2004

Graduates’ IQ, 25th percentile Graduates’ disadvantage, 25th percentile

model 102.1 101.2 99.8 3.14 2.80 2.54
(0.5) (0.4) (0.4) (0.04) (0.03) (0.03)

data 103.0 101.6 100.3 3.12 2.79 2.51
(0.5) (0.3) (0.4) (0.04) (0.03) (0.03)

Graduates’ IQ, 75th percentile Graduates’ disadvantage, 75th percentile

model 118.1 117.9 117.3 4.52 4.20 3.86
(0.5) (0.3) (0.3) (0.04) (0.04) (0.03)

data 117.7 117.6 117.0 4.53 4.23 3.85
(0.4) (0.3) (0.3) (0.05) (0.04) (0.04)

Non-graduates’ IQ, 25th percentile Non-graduates’ disadvantage, 25th percentile

model 89.2 88.2 87.4 3.42 3.08 2.92
(0.3) (0.3) (0.3) (0.02) (0.02) (0.02)

data 89.4 88.3 87.6 3.43 3.08 2.91
(0.3) (0.2) (0.3) (0.02) (0.02) (0.02)

Non-graduates’ IQ, 75th percentile Non-graduates’ disadvantage, 75th percentile

model 108.1 107.7 106.1 4.99 4.70 4.57
(0.2) (0.2) (0.3) (0.02) (0.02) (0.03)

data 107.9 107.6 106.2 4.99 4.69 4.55
(0.2) (0.2) (0.3) (0.02) (0.03) (0.03)

Notes: The table reports the mean and standard deviation over 10,000 bootstrap samples (at the respective minimum-distance

estimates obtained setting ρ = 0.5) of model-predicted vs empirical values of eight untargeted moments targets. A college

cohort is defined by the period of actual of potential college attendance, which is an individual’s age plus 20. Cross-sectional

response weights are applied. Sample: USoc, 22,175 white respondents born in the UK in 1940-1984 with non-missing education

and intelligence information (see Table 1).
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