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1. Introduction

Like two trains running on different railroads, studies of the natural rate and bond risk premia in

the macroeconomic and finance literatures have tended to follow their own line even if ostensibly

headed for the same place. The destination is clear and important: rates of interest, across all

maturities, matter for saving, investment, capital allocation, economic growth, and monetary policy.

But passengers on each route see different landscapes for the most part: on the macro track, a wide

focus on slow-moving trends in natural rate Wicksellian models where the fundamental secular

driver ties into the rate of output growth with no financial market structure (e.g, Holston, Laubach,

and Williams, 2017; Rachel and Summers, 2019; Jordà and Taylor, 2019); on the finance track, a

tightly-framed look at cross-section no-arbitrage models of yields and no role for macroeconomic

growth (e.g, Litterman and Scheinkman, 1991; Piazzesi, 2010; Adrian, Crump, and Moench, 2013).

But the two tracks converge and a collision was unavoidable. As we show, workhorse finance

models generate an implied path for the natural rate dramatically at odds with the macro literature.

Equivalently, workhorse macro models generate an implied path for bond risk premia equally at

odds with the finance literature. We call this the natural rate puzzle. To get on the same track, the

two approaches must be somehow shunted together. A consensus unified model should not fail

these consistency tests and this is a first-order challenge for macro-finance research. We build on a

long literature and make new headway. We explore the international aspect of this problem with

newly-constructed data from the U.S. and 9 other advanced economies and we advance a new

empirical approach which jointly disciplines estimates of the natural rate and risk premia with both

financial market and macro information.

We first document the puzzle, for both the U.S. and other countries. For clarity, we do nothing

analytically new here: we rely only on off-the-shelf models and data. The analysis revolves around

three trend estimates. For the U.S., we construct an estimate of the bond risk premium following the

canonical model (Adrian, Crump, and Moench, 2013) used by academic and financial professionals,

and also by the Federal Reserve. We estimate inflation expectations following recent research

incorporating trend inflation into models of bond yields and risk premia (Cieslak and Povala, 2015).

And we employ or construct an estimate of the natural rate using the seminal model in the macro

literature (Laubach and Williams, 2003). We then use directly-observed long-dated forwards to

show a contradiction. In the U.S., for example, bond premia, inflation, and forwards, the implied

natural rate is nearly flat over six decades, inconsistent with the rise and fall seen in macro estimates

(with the implication that changes in the bond risk premium mostly explain long-yield changes).

Conversely, using natural rates, inflation, and forwards, the implied bond risk premium is nearly

flat, inconsistent with the rise and fall seen in finance estimates (with the implication that changes in

natural rates mostly explain long-yield changes). Both models cannot be true. The puzzle is not an

artifact of these particular estimates, and obtains using other well-respected estimates of U.S. bond

risk premia, trend inflation, and the natural rate from multiple credible sources. The same puzzle

also exists internationally in data we have newly compiled from other advanced economies.
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The puzzle matters because our understanding of recent history hinges on whether one or the

other story is more accurate. One narrative (macro) is of steadily declining natural real rates from the

1980s to the present, arguably culminating in a global secular stagnation trap, with active debate over

a wide range of causal factors including demography and aging, productivity growth, inequality,

and safe-asset demand from emerging economies, and all the attendant problems (Caballero, Farhi,

and Gourinchas, 2008; Summers, 2015; Carvalho, Ferrero, and Nechio, 2016; Holston, Laubach, and

Williams, 2017; Rachel and Smith, 2017; Rachel and Summers, 2019). The other narrative (finance) is

of a sweeping rise and fall in risk premia, from sometime in the 1970s to the 1980s, the backwash of

the Great Inflation episode, accounting for most of the trajectory of nominal rate with little or no

movement in the natural rate (Kim and Wright, 2005; Wright, 2011; Adrian, Crump, and Moench,

2013; Bernanke, 2015). But when adding these up we find that something has to give.

At some level, it might be tempting to suggest that the puzzle can be brushed away with an

argument that these various models from different traditions were never supposed to be coupled

together in this way: finance models were not designed to be used to infer the natural rate, nor

macro models to infer the bond risk premium. Yet, that is our point—and the rationale for this

paper. If these models are never unified into a fully consistent approach, different strands of the

literature will be destined to keep on producing contradictory results, speaking to their own niche

but unable to reach common ground with the other approach. More broadly, this leaves the wider

audience in macro and finance research, and in markets and the policy world, confused at to what

is ultimately the right historical accounting for important long-run trends in the bond markets.

To tackle this conflict we set out a unified macro-finance model to ground the empirical work that

follows. The model crystallizes the uncontroversial view—among macroeconomists, at least—that

nominal bond returns must include compensation for macroeconomic risks linked to real factors

and inflation (Ang and Piazzesi, 2003; Ludvigson and Ng, 2009; Cieslak and Povala, 2015).

Here, as we indicated at the start, what we will mean by “macro-finance” is a model that

incorporates simultaneously higher-frequency insights from the yield curve in finance models and

lower-frequency secular inflation and growth trends (as distinct from cyclical macro phenomena

within the business cycle). Thus we have to build on the idea that term structure models should

allow all nominal rates to include a slow-moving stochastic trend, as seen in early work by Campbell

and Shiller (1987) and developed further in the seminal papers of Kozicki and Tinsley (2001) and

Cieslak and Povala (2015), to allow yields and expected returns to bonds of different maturities

derived under no-arbitrage constraints from a short-rate process linked to the two macroeconomic

factors, r∗ and π∗, the natural rate and inflation trends.

Next, in the empirical core of the paper, we take the model to the data. We apply the model

to the postwar data (as far back as the 1950s for some countries) for 10 advanced economies, a

global historical laboratory considerably larger than any previously explored in the study of these

questions as far as we know. We thus develop new estimates of the natural rate covering many more

countries and several more decades than prior studies: for example Holston, Laubach, and Williams

(2017) cover only 4 economies from 1961 to 2015.
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We find strong support for the model. Trend inflation is treated as an observable, as in prior

work, but the unobservable natural rate is treated as latent and estimated from a no-arbitrage state-

space model, with both macro and finance blocks, using the Kalman filter. Specifically, we make a

unifying link here, by also including a macroeconomic growth driver in a Wicksellian r∗ = g + z state

equation, in addition to a yield measurement equation, so our model utilizes information from both

macro and financial market data. We therefore choose to refer to our r∗ estimate as the market-implied
natural rate.1 Dropping either trend variable significantly worsens the model fit: the baseline R2

statistics are relatively high, but fit worsens one or both trends are removed, especially in return

forecast regressions. Indeed, the macroeconomic factors subsume much of the relevant information

needed to predict returns as compared with benchmark yield-only term-structure models, leaving

only detrended yields to play a role, amplifying the insight of Cieslak and Povala (2015), but now

for two trends and more countries.

The main contribution of this paper is a unified model which bridges the methodological divide

and exploits fully all the information used separately in previous finance and macro approaches.

Summing up the model we connect to the literature and review the reasons why such an encom-

passing modeling approach is needed. Finance models of unobserved bond risk premia have

utilized yield-based factors, Wicksellian macro models of the unobserved natural rate have utilized

macroeconomic variables like growth. The two produce inconsistent results and we argue that

a unified approach using both sets of information is necessary. To get there, our paper makes a

number of specific points along the way, touching on questions that have emerged from distinct

literatures. First, we document for many countries, over many decades, an important macro-finance

puzzle which the separate paths of risk premia research and natural rate research have often skirted

around. Second, to operationalize the model, we apply a joint estimation strategy; though novel,

and computationally much more burdensome, this should be preferred to approaches which draw

natural rate and risk premia estimates from disparate models, which can lead to inconsistency.

Third, we put together a new database of zero-coupon yield curves for ten countries, a valuable data

contribution in its own right for the use of future researchers. Fourth, using these data and other

proxies, we present estimates from a long and wide sample of 10 advanced economies, where we

find that this is not just a U.S. story and this allows us to identify diverse global trends. Fifth, our

method produces improved predictions for bond yields and returns in the U.S. and international

samples, including out of sample return prediction. Sixth, our natural rate estimates covary with

growth and demographic variables in a manner consistent with theory and previous findings.

By the end, we are in a position to assay the natural rate puzzle, and we get a clear answer:

across advanced economies, most of the long-term variation in yields in recent decades has come

from shifts in the natural rate and inflation trend components, not from shifts in bond risk premia.

A key takeaway is that macro and finance models do not have to go their separate ways any longer.

1A related and distinct model is Bauer and Rudebusch (2020), with a single stochastic trend, a nominal
natural rate factor i∗. Their estimation uses yield-based factors but omits macroeconomic variables like growth
in the state-space model (see their Appendix C).
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2. The natural rate puzzle

The natural rate puzzle is the observation that standard finance models of bond risk premia generate

a natural rate path at odds with the macro models.

In a wide class of standard stationary affine asset pricing models, the term structures (of bond

yields, prices, excess returns, and forwards) are affine functions of the model’s vector of risk factors

F which will be made precise in the next section. As we will formally demonstrate below, in a

typical such model we can express the very-long maturity forward rate, in the asymptotic limit, as

limiting forward rate = natural rate trend + inflation trend + limiting risk premium . (1)

This expression is intuitive. Investors in long maturity forwards must be compensated by the sum

of the natural rate and inflation, plus a term that is by definition the long bond risk premium. The

seminal work of Kozicki and Tinsley (2001) captures this in a term structure model with a “shifting

endpoint” and they found improved fit when the endpoint was inferred from long-dated forwards.

If extant models were consistent, we could empirically validate Equation 1 by taking proxies

for each term and checking to see if they add up appropriately. We do this as follows. We naı̈vely

take the limiting risk premium (denoted Γ) from benchmark models in the finance literature, we

take the natural rate trend (denoted r∗) and the inflation trend (denoted π∗) from benchmark macro

models, and take a proxy limiting forward rate (denoted f ) from long-dated market data. Having

constructed these four terms for multiple countries, we can show that the above equation fails to

hold. This is what we term the natural rate puzzle.

This section sets out to document this fact across the advanced economies and the rest of the

paper explores a hybrid macro-finance model which may offer a way out. As might be anticipated,

Equation 1 offers only two escape routes. Given that the forward rate is an observed trending

variable, and that the observed inflation trend π∗ is not subject to large estimation error, or can be

treated as quasi-observable, then either the trend in the natural rate r∗ is mismeasured, or the trend

in the risk premium Γ is mismeasured, or both.

2.1. U.S. evidence

To see the puzzle, we take Equation 1 directly to the data. In Figure 1, Panel (a), the U.S. time-series

estimates for each of the four terms are shown. We simply take these estimates from canonical

models in the finance and macro literatures. The bond risk premium term Γ (two-sided) is from the

baseline five-factor model of Adrian, Crump, and Moench (2013) [henceforth abbreviated ACM];

the inflation expectations term π∗ is the Cieslak and Povala (2015) measure π∗
t = (1 – ν) ∑t–1

i=0
νiπt–i ,

where πt is year-on-year CPI inflation in month t. and the (two-sided) natural rate term r∗ as in

Laubach and Williams (2003) [LW]. Finally, we proxy f with the long-dated 10-year, 10-year forward

rate taken from Bloomberg, with n = m = 120 months here.
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Figure 1: The natural rate puzzle in U.S. data

This figure displays market data (f ) and existing trend data (other variables) based on other studies in Panel
(a), and then displays the puzzle in the form of the difference between existing trend data and implied data in
Panels (b) and (c). The presentation is based on Equation 1, which we can rewrite in simplified form, omitting
subscripts and expectations, and taking them as understood, with the notation f = r∗ + π + Γ. The puzzle is
that existing benchmark estimates violate this equation.

In Panel (a), the four terms are shown: the bond risk premium Γ from Adrian, Crump, and Moench
(2013); inflation expectations π from Cieslak and Povala (2015); and the real natural rate r∗ from Laubach
and Williams (2003). We also show the 10-year, 10-year forward rate (f ) from from Bloomberg. The sample
period is June 1961–July 2022. In Panel (b), we compare the real natural rate r∗ (two-sided) from Laubach
and Williams (2003) to that implied by r∗ = f – π∗ – Γ. There is a large difference between these two series. In
Panel (c), we compare the bond risk premium Γ (two-sided) from Adrian, Crump, and Moench (2013) to that
implied by Γ = f – r∗ – π∗. There is the same large difference between these two series.
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The first version of the consistency test rearranges Equation 1 to obtain a formula for the real

natural rate r∗ = f – π∗ – Γ, and Panel (b) plots both sides of this expression using the above data

sources: the left-hand side is taken from an LW model and the right-hand side is the implied

value using an ACM model. The equality is violated, and the disparity is often quite large. The

ACM-implied r∗ does not match the LW r∗. The ACM series starts around +2% in the 1960, displays

a sharp decline to a level below –2% during the Great Inflation period of the 1970s, returns to +2%

in the 1990s, drops to near zero after the financial crisis, and then shows a consistent increase after

2013 to a level close to 2% in 2019. In contrast, the familiar LW estimate of r∗ has fallen gradually

from a +4% level in the 1960s and 1970s, with the sharpest decline occurring after the mid-2000s,

and since 2010 it has sat in the 0.5%–1.0% range, and never turned negative. The difference between

the two series, before the last decade, is often large, between 100 and 600 basis points (bps), with the

LW r∗ much higher than the ACM r∗, on average. Around 2012 the two series intersected and then

the difference inverted to about –100 bps in the other direction.

A second, equivalent, version of the test is shown in Panel (c). We rearrange again to obtain a

formula for the bond risk premium Γ = f – r∗ – π∗, and Panel (b) plots both sides of this expression

using the aforementioned data sources. Now the left-hand side is from an ACM model and the

right-hand side is the implied value in an LW model. This equality is, of course, also violated, and

the same large disparity is seen. The ACM bond risk premium starts near zero in the 1960s, rises

sharply in the Great Inflation period of the 1970s to about 6%, then gradually falls back, reaching

zero again in the mid-2010s. The LW bond risk premium behaves very differently, and is almost

flat by comparison. It actually starts at a negative level in the 1960s, rises much later, but only to a

modest 2% by the early 1980s, then declines by a small amount up to the mid 2000s. After that the

two series cross, with LW signaling a small positive bond risk premium, but ACM turning negative.

The puzzle is vividly apparent in these charts. Persistent inconsistencies of several hundred

basis points are quantitatively just too large to ignore. Both approaches cannot be simultaneously

right. A substantial contradiction thus emerges from the heart of benchmark macro and finance

models once they are studied in unison. The rest of this paper is devoted to building theory and

empirics to help resolve the puzzle.

2.2. Alternative trend measures

As a robustness check, Figure 2 examines whether the existence of the puzzle for the U.S. is sensitive

to the source data used. For a variety of widely used and respected sources we compute the

discrepancy in Equation 1 as discrepancy = r∗ – f + π∗ + Γ, and plot the series over time.

The same forward rate data f from Bloomberg are used in all cases. The sources of the other

three series rotate through all possible combinations, with the sources are abbreviated as follows:

• Natural rate estimates r∗: Laubach and Williams (2003) [LW]; Holston, Laubach, and Williams

(2017) [HLW]; Del Negro, Giannone, Giannoni, and Tambalotti (2017) [DGGT]; and Lubik and

Matthes (2015) [LM].
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Figure 2: The natural rate puzzle in U.S. data using alternative trend measures

This chart displays the discrepancy in Equation 1 for the United States. The presentation is based on
Equation 1 and the series computed is discrepancy = r∗ – f + π∗ + Γ. See text.
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• Inflation estimates π∗: Cieslak and Povala (2015) [CiP]; the University of Michigan Inflation

Expectations from FRED [MI]; the Survey of Professional Forecasters from the Federal Reserve

Bank of Philadelphia [SPF]; and the TIPS 10-Year Breakeven Inflation Rate from FRED [TIPS].

• Bond risk premium estimates Γ: Adrian, Crump, and Moench (2013), 5-factor model [ACM5];

the same authors’ 3-factor model [ACM3]; and Kim and Wright (2005), 3-factor model [KW].

Note that because quite a few of these series (e.g., TIPS, KW) are only available for a shorter

span of recent years, full-sample comparisons across all trend estimates are not always possible.

The figure reveals that the natural rate puzzle is a quite robust phenomenon in recent U.S. data.

A discrepancy arises in all cases. It is often more than 100 bps, and at certain times it exceeds 500

bps. It is present in a wide variety of trend estimates currently used in the macro-finance literatures.

The figure shows that, as in the baseline variant above, the extent of the puzzle varies from year to

year, and over decades. Most series combinations make errors in one direction, but a few go the

other way. The discrepancies are large in the 1970s, and often surge to their highest levels around

1980. The discrepancies are smaller by the late 1990s and early 2000s, but they open up again for

some series, in the opposite direction to the vicinity of –400 bps, after the global financial crisis.

2.3. International evidence

We also sought evidence for or against the natural rate puzzle in 5 other advanced economies:

Japan, Germany, the U.K., Canada, and Australia. Figure 3 presents these findings. For the real

natural rate we use an established r∗ from an LW- or HLW-type model, the risk premium from

an ACM-type estimation, inflation expectations from a CiP-type estimation, and the forward rate.

However, established natural rate estimates of an LW- or HLW-type are only available for 6 out of

our 10 sample countries, and so we cannot perform this exercise for France, Spain, Sweden, and

Switzerland.

For the LW-type natural rate estimates we use the LW estimate itself for the U.S. as above;

the Holston, Laubach, and Williams (2017) (two-sided estimates) for the Germany, U.K., and

Canada; the Okazaki and Sudo (2018) (two-sided estimates) for Japan, and the McCririck and Rees

(2017) (two-sided estimates) for Australia. We then replicate the ACM and CiP methodologies for

these 6 countries and construct forward rates from zero-coupon bonds, as described later in this

paper, and finally compute the discrepancy for all the countries to complete the analysis, with

discrepancy = r∗ – f + π∗ + Γ, as above.

The discrepancy can be visualized over time in Figure 3, which presents the time-series data

for each natural rate estimate. Here again, discrepancies of several hundred basis points are not

uncommon. In short, the natural rate puzzle is not simply a U.S. puzzle. It applies to many advanced

economies, suggesting a deeper and more general pattern of conflict between widely-used standard

estimates of the natural rate and bond risk premia.

8



Figure 3: The natural rate puzzle in international data

This chart displays the discrepancy in Equation 1 for the set of 6 countries. The presentation is based on
Equation 1 and the series computed is discrepancy = r∗ – f + π∗ + Γ. See text.
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3. Term-structure models with two macro factors

A large literature over 20 years has built a foundation of affine term-structure models with a role for

macroeconomic trends in inflation and the natural rate. Building on that we ask: first, can theory

frame the natural rate puzzle seen above? Second, can joint estimation of the natural rate and the

term-structure model deliver new insights and better forecasts? Third, can the approach work not

just in U.S. data but also in other advanced economies? We will answer yes to these questions based

on the approach described in this section.

Stationary term-structure model We use a standard setup as in the seminal paper of Cieslak

and Povala (2015) which features two trends for inflation and the real rate, building on the earlier

insights of Kozicki and Tinsley (2001). At time t, we denote the nominal yield on an n-period

Treasury bond by y(n)
t , the current trend inflation by πt, and the current trend real natural rate by rt.

Nominal yields across all maturities are driven by the two trends and other factors contained in a

price-of-risk factor xt vector, so the full set of factors is Ft = (πt, rt, xt)′. Building on, Cieslak and

Povala (2015) as a baseline we will set xt equal to the average yield across the curve, or, equivalently

(as we see below) its residual component after projection onto the two macro trends (πt, rt).

The core of the model is the specification of the short-rate process and the stochastic discount

factor, from which all other pricing relationships follow. The short-rate process is assumed to depend

on the factors, which in turn follow independent AR(1) processes, with

y(1)
t = δ0 + δππt + δrrt , (2)

rt = µr + ϕrrt–1 + σrϵr
t , (3)

πt = µπ + ϕππt–1 + σπϵπ
t , (4)

where δπ > 0, δr > 0, with δx = 0, as shown, and ϵπ
t , ϵr

t are standard normal, i.i.d.

At Equation 2, a natural benchmark noted by Cieslak and Povala (2015) is δ0 = 0, δπ = δr = 1, i.e.,

the Fisher constraints. At Equation 3 and Equation 4, with persistent inflation we expect ϕπ < 1 but

close to unity. The natural rate also tends to be persistent, with ϕr < 1 and close to unity. In very

long run historical data (100+ years) both series are seen to be stationary. Cieslak and Povala (2015)

estimate annual ϕ̂π = 0.975, ϕ̂r = 0.75 for their U.S. sample.

The endpoints for the trends are the long-run limits (Kozicki and Tinsley, 2001). Allowing for

possibly time-varying parameters the unconditional means of the endpoints are r(t)
∞ = µ

(t)
r /(1 – ϕ

(t)
r )

and π
(t)
∞ = µ

(t)
π /(1 – ϕ

(t)
π ). These values prevail in the long run when all shocks have died out.

Finally, the price-of-risk factor follows an AR(1) process with i.i.d. normal shocks,

xt = µx + ϕxxt–1 + σxϵx
t . (5)

Cieslak and Povala (2015) estimate ϕ̂x = 0.392 for the U.S. when detrending with the inflation trend.
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The model economy is then compactly described by the equations

Ft = µ + ΦFt–1 + Σϵt , (6)

y(1)
t = δ0 + δ′

1
Ft , (7)

with Φ and Σ diagonal, δ1 = (δπ , δr, 0)′, and ϵt = (ϵπ
t , ϵr

t , ϵx
t )′.

As is common, the simplest single-yield-factor formulation would define xt = ȳt, so the price-

of-risk factor is the average level of yields, ȳt = 1

N ∑N
1

y(n)
t .2 Clearly then, in light of our earlier

discussion, this is (see Duffee, 2011) a “yields-plus” model and not a “yields-only” model. That is,

we are interested in whether the two macro trends rt and πt add useful information over and above

a model using just a set of yield-based factors.

Our choice of Ft = (πt, rt, xt)⊤ follows Cieslak and Povala (2015) and assumes that ϵπ
t , ϵr

t are

uncorrelated. Thus, the natural rate factor rt is intended to capture variations in the benchmark real

rate due to factors other than shifts in trend inflation. Equation 2 specifies in a stylized way how

monetary policy, through its control of the short end of the curve, may react to both changes in price

dynamics and real-economy-driven natural rate forces. A large stream of literature has related these

forces to demographic factors, global supply and demand equilibrium in the safe-assets market,

changes in international capital flows, income and wealth inequality, among others.

Imposing standard restrictions on the model SDF Using a standard no-arbitrage affine

term-structure model as in Cieslak and Povala (2015), the log nominal stochastic discount factor is

exponentially affine in the risk factors,

mt+1 = –y(1)
t –

1

2

Λ′
tΛt – Λ′

tϵt+1 , (8)

where Λt is the compensation for risk of shock ϵt+1, with Λt = Σ–1(λ0 + Λ1Ft).

We need more structure to make progress. Suppose xt is taken to be a single yield-based factor,

and the loadings in Λt are assumed to take the form

λ0 =


λ0π

λ0r

0

 , Λ1 =


0 0 λπx

0 0 λrx

0 0 0

 . (9)

As Cieslak and Povala (2015) note, this setup fits with the empirical finding of Cochrane and

Piazzesi (2005) that bond risk premiums move on a single mean-revering factor that is largely

unexplained by the level, slope, and curvature movements. In this spirit, as is seen in a wide range

2This baseline setup is motivated by the Cochrane and Piazzesi (2005) finding that a single-factor can
explain bond pricing quite well, but x could be expanded to a vector as in three-factor yield models (Nelson
and Siegel, 1987; Litterman and Scheinkman, 1991; Joslin, Singleton, and Zhu, 2011) or even five-factor yield
models (Adrian, Crump, and Moench, 2015).
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of established term structure models, the price of risk is assumed to follow a univariate process

that is independent of other state variables. Cieslak and Povala (2015) estimate λ̂πx = –0.47 and

λ̂rx = 0.16 for their U.S. sample.

Solving the model The model can then be solved (e.g., Duffee, 2013) as a set of affine equations

for log bond prices, yields, forwards, and excess returns, in terms of the factors:

p(n)
t = An + B′

nFt , (10)

y(n)
t = An + B′

nFt , (11)

f (n,m)
t = (An – An+m) + (Bn – Bn+m)′Ft , (12)

rx(n)
t+1

= B′
nFt + vn

t , (13)

where An = – 1

nAn, Bn = – 1

nBn, vn
t = B′

n–1
Σϵt+1.

Solutions are derived from Riccati equations, where the recursions are

An+1 = –δ0 + An + B′
nµq +

1

2

B′
nΣΣ′Bn , (14)

Bn+1 = –δ1 + (Φq)′Bn , (15)

with A0 = 0, B0 = 0, and risk-neutral dynamics governed by µq = µ – λ0 and Φq = Φ – λ1.3

Concretely, in the baseline model used here, factor loadings of bond prices can be derived as

Bπ
n = –δπ

1 – ϕn
π

1 – ϕπ
, (16)

Br
n = –δr

1 – ϕn
r

1 – ϕr
, (17)

Bx
n = –Bπ

n–1
λπx – Br

n–1
λrx + Bx

n–1
ϕx , (18)

and the factor loadings of excess returns attach only to the price-of-risk factor, with

Bn = B′
n–1

(λ0 + Λ113)xt –
1

2

B′
n–1

ΣΣ′Bn–1 . (19)

Equivalent formulation using detrended yields As above, we might set xt = ȳt, so the

price-of-risk factor is the average level of yields. But to better describe the role of the trends we use

the key innovation in Cieslak and Povala (2015), and reformulate the model using yields which have

been detrended to orthogonalize them relative to the trends. We apply this idea to both trends, and

define the detrended yield by c(n)
t = y(n)

t – Ân – B̂r
nrt – B̂π

n πt , which is the residual from the regression

defined by Equation 11 with the yield factor x suppressed. Now let the average of this detrended

yield be c̄t = 1

N ∑N
1

c(n)
t .

3The closed form solution for Bn is Bn = –
[
∑n–1

j=0
(Φq)j

]′
δ1.
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The model can then be expressed in our preferred form in terms of xt = c̄t and the full set

of factors consists of the two trends and the detrended average yield, Ft = (πt, rt, c̄t)′. Due to

detrending, in this setup the unconditional mean of Ft is now µ = E(Ft) = (π(t)
∞ , r(t)

∞ , 0). To be clear,

this reformulation leaves the model unchanged, but this attribution exercise parses out those shifts

in yield factors that are ultimately driven by the macro trends.

Statistical identification of the natural rate of interest A crucial step in affine models with

trends is to obtain the right trends. Ever since Kozicki and Tinsley (2001) and Cieslak and Povala

(2015), the literature takes inflation as observable πt = π∗
t , e.g., from surveys or a learning model.

However, the natural rate is unobserved or latent. One of our contributions is to focus on the joint

problem of estimating both the affine model and the natural rate in a consistent framework.

We propose a way to bridge the statistical objects specified in Equation 2 through Equation 4

to the economic object of interest, the natural rate, consistent with the Wicksellian notion of r∗.

To do this we link the natural rate to variations in trend growth gt plus an additional component

denominated the “headwinds” factor zt, as in canonical state-space models of the natural rate. Thus,

we aim to straddle the yields-plus approach of finance models and the Wicksellian estimation of

macro models in the tradition of Laubach and Williams (2003), and this entails adding the equation:

rt = r∗t = zt + gt . (20)

The headwinds factor is intended to capture all variations in the natural rate due to structural,

slow-moving factors such as demographics, structural shifts in international capital flows, global

income inequality, among others. The coefficient on gt is in general c ̸= 1, and is equal to the inverse

EIS. It is set here to a reference value of one for simplicity, given the considerable uncertainty over

the appropriate value of EIS in the macro and finance literatures. This is consistent with the four

estimates of c in Table 2 of Laubach and Williams (2003) which fall in the range 0.970 to 1.062.

We also assume that the headwinds factor follows an AR(1) process, so that

zt+1 = ρzzt + ez
t+1

, ez
t+1

∼ N
(
0, σ2

z
)

. (21)

Without any constraints, the headwinds factors would absorb all the high frequency variation in

rates. We argue that the frequency and persistence of the headwinds factor should be more like the

process followed by trend growth than, say, yields. In order to discipline this process, and make

its frequency compatible with the fundamental growth trends observed, we impose suitable priors

on ρz and σz, as discussed below and in Appendix A. These priors force the headwinds process to

follow a lower frequency than financial data (yields, etc.), without forcing a link from the natural

rate to particular economic data, other than the Wicksellian link to growth g.

Trend output growth gt is assumed to be a stationary process and observable. We take it as

an exogenous process that we can estimate separately by typical filtering procedures. To avoid
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forward-looking bias, we estimate the as-of-date (one-sided) Hodrick-Prescott filter on country real

GDP growth (to be conservative, when calculating the growth rate at t, we use information available

at time t – 1, namely growth rates up to t – 2).

The above steps harmonize our state-space model with the macro approach to interest rate

trends epitomized by Laubach and Williams (2003). Full details of the state-space model follow in

the next section and, in detail, in the Appendix. For now we cover some further ground to explain

how this approach connects to the natural rate puzzle presented earlier, and how it contributes to

the literature.

Corollary 1: Long-dated forwards, macro trend endpoints, and the bond risk premium
Using the baseline model we can provide justification for the decomposition at Equation 1 to

introduce the natural rate puzzle.

For a 1-period forward at horizon n, f (n,1)
t = (An – An+1) + (Bn – Bn+1)′Ft and from the recursions

(e.g., Duffee, 2013) we obtain

f (n,1)
t = –

1

2

B′
n–1

ΣΣ′Bn–1︸ ︷︷ ︸
negative convexity term

+ δ0 – B′
nµq + δ′

1
(Φq)nFt︸ ︷︷ ︸

expected short rate under q

. (22)

Let the benchmark Fisher constraints hold, δ0 = 0, δπ = δr = 1, substitute for µi, and we have

lim
n→∞

f (n,1)
t = r(t)

∞︸︷︷︸
endpoint for
natural rate

+ π
(t)
∞︸︷︷︸

endpoint for
inflation

+ Bπ
∞λ0π + Br

∞λ0r –
1

2

B′
∞ΣΣ′B∞︸ ︷︷ ︸

bond risk premium as n → ∞

. (23)

Thus the limiting forward rate equals the sum of the natural rate and inflation endpoints and

the limiting bond risk premium.4 Intuitively, at shorter maturities the difference between the

forward and the sum of the two endpoint will also be affected by transitory variation in short-rate

expectations (i.e., due to the term δ′
1
(Φq)nFt); in the long-horizon limit we get the non-transitory

limiting bond risk premium, and short-term expectation deviations fade away, as Equation 23 shows.

Thus, in the limit at large maturities, or in a large sample limit where the mean of xt is zero, we

obtain an expression which justifies our earlier exercise using Equation 1,

forward rate = natural rate trend + inflation trend + bond risk premium ,

where we associate the endpoints with the natural rate trend and inflation trend. We now see

how the limit result using forwards frames the puzzle in a clean way. This approach can be

complemented by an examination of the direct implications of different specifications of affine term

structure models on observables such as yields, forward rates, and excess bond returns.

4As n → ∞, Bπ
n → –π

(t)
∞ /µπ , Br

n → –r(t)
∞ /µr, and (1 – ϕx)Bx

n → λπxπ
(t)
∞ /µπ + λrxr(t)

∞ /µr, with µc = 0.
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Corollary 2: Expected returns and the cyclical factor We can also solve (e.g., Duffee, 2013)

for the factor loadings of excess returns,

rx(n)
t+1

= B′
n–1

(λ0 + Λ1Ft) –
1

2

B′
n–1

ΣΣ′Bn–1 + B′
n–1

Σϵt+1 . (24)

Setting xt = c̄t, the expected return for the average bond across all maturities is

Et(rxt+1) = (Bπ ,Br)′(λ0π + Λπxc̄t, λ0r + Λrxc̄t) – convexity terms︸ ︷︷ ︸
bond risk premium for average bond

. (25)

As n grows large the average risk premia in Equation 23 and Equation 25 are the same. Note

that, with detrending, i.e., having conditioned on trends, only the cyclical factor xt = c̄t predicts bond

excess returns, and not the trends themselves rt and πt. Of course, this does not mean than shifts in

rt and πt play no role: they will of course change the cyclical deviation xt = c̄t via detrending.

The nonstationary case Recent contemporaneous work by Bauer and Rudebusch (2017, 2020)

studies the trends in the U.S. case and allows the trends to be nonstationary. Bauer and Rudebusch

(2017) extend Cieslak and Povala (2015), and allow the factor process to include unit roots in r
and π, as well as short run AR(1) disturbance terms, with 5 state variables instead of 3. The two

corollaries noted above are preserved exactly, and the endpoints are the current values of the r and

π, the expected values as t → ∞. The loadings on the permanent components of r and π are unity

at all horizons, so the Fisher constraints hold mechanically. In Bauer and Rudebusch (2020, see

Appendix C) a different theoretical framework is used as a backdrop. In the real-world measure

there is a unit root in a single nominal natural rate trend (i∗) and three stationary cyclical yield

factors. The model could be extended to two trends and/or fewer yield factors. The model is

restricted to be stationary under the risk-neutral measure, and thus threads a new path between

widely-used stationary models (Cieslak and Povala, 2015) and models with unit roots under both

measures (Kozicki and Tinsley, 2001).5 The corollaries stated in the previous section no longer hold

exactly, but empirically there is very close alignment.6 In this sense, the key empirical lessons still

remain intact for this case when compared with the baseline stationary setting.

Summary: Bridging three interest rate traditions The modeling of interest rates is one of

the oldest questions in economics. We can now clarify how this paper falls between two distinct

approaches, the purely macro and purely finance approaches, with some important precursors.

5The model is unspanned, and the yield curve does not contain all relevant information for predicting
future interest rates. The Fisher constraints hold on the short rate, but forwards and excess returns now load
on the trend in a different way. Unit loadings down the yield and forward curves are not implied here, a
prediciton that might better fit the data.

6This is demonstrated by Bauer and Rudebusch (2020, see Appendix C): for forwards, at practically relevant
horizons in the data (e.g., up to 15 years), the loadings on the trends are very close to one (and simulated
confidence intervals are wide); and for excess returns, loadings on non-cyclical factors are close to zero, and
second order.
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The pure finance approach uses information purely from financial markets, with no macroeconomic

variables. Here, the yields-only model is the starting point of all affine term structure models (Duffie

and Kan, 1996; Piazzesi, 2010). The simplest model uses a single factor, the average level of yields,

or a tent-shape weighted average (Cochrane and Piazzesi, 2005). More refined models may include 3

or 5 yield factors, using level-slope-curvature or principal components (Litterman and Scheinkman,

1991; Kim and Wright, 2005; Adrian, Crump, and Moench, 2015). In the pure form of this approach

no macroeconomic information is used.

The pure macro approach focuses on a latent trend in the natural rate. These state-space models are

grounded in the Wicksellian equation r∗ = g + z, where the latent trend is disciplined by information

on the real growth rate of the economy, and no financial market information is used (Holston,

Laubach, and Williams, 2017; Laubach and Williams, 2003). To extend from this estimation approach

to a latent nominal natural rate trend, one might then call upon the Fisher conditions, to solve for a

nominal yield level y = π∗ + r∗. Here survey expectations or a backward-looking learning model can

be used to treat π∗ as an observable, not latent variable.

A third way in the literature is a hybrid macro-finance approach and into which our paper fits.

This large tradition has many different ingredients, so we must situate our paper properly, and our

approach using inflation and natural rate trends overlaps with some but by no means all antecedents

in this literature. Since at least Campbell and Shiller (1987), the literature has considered stochastic

trends. One strand includes Ang and Piazzesi (2003) and Ludvigson and Ng (2009) who brought

macro factors and latent factors into an affine term structure model, but without specifically the

Wicksellian equation r∗ = g + z. Kozicki and Tinsley (2001) argued that a “shifting endpoint” inferred

from long-dated forwards delivered a marked improvement when added to a term structure model,

while Cieslak and Povala (2015) located the inflation trend as one such factor. Both left a Wicksellian

estimation equation of the real rate trend to one side. So too did Bauer and Rudebusch (2020), who

used either external observed trend estimates of the natural rate from the macro literature, or an

internally estimated natural rate not governed by the Wicksellian equation.7

Now our point of departure comes into focus: without joint estimation of a macro Wicksellian

equation r∗ = g + z and the affine model of yields, other approaches must take sides. On the one hand,

a yields-only finance model has an implied endpoint, but ignores information in the Wicksellian

condition r∗ = g + z to guide its estimate. On the other hand, macro models (e.g., Holston, Laubach,

and Williams, 2017; Laubach and Williams, 2003) use the Wicksellian equation but information in

yields play no role. The two types of natural rate estimates must, in general, differ; symmetrically,

the same disparity will manifest in implied bond risk premia too, given observable forwards and

the inflation trend, as we saw earlier. As we see it, this is the heart of the natural rate puzzle, and it

is this tension that we set out to resolve.

7Their estimated-shifting-endpoint model has no Wicksellian equation, one trend τ = i∗ = r∗ + π∗, with
trend estimation disciplined with priors similar to Del Negro, Giannone, Giannoni, and Tambalotti (2017).
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4. Reduced-form model estimation and model evaluation

Taking the above structural model as given, we operationalize it via the following Bayesian reduced-

form estimation method, as in common. From now on, we restore the star notation, and denote by

r∗t the trend natural rate, and by π∗
t trend inflation. We aim to extract the latent r∗t from average

bond yields by using state-space estimation with an affine measurement equation of the form:

yt = ay + bππ∗
t + brr∗t + ϵ

cyc
t , (26)

where π∗
t is trend inflation, a variable which is treated as an observable, and for each country is set

equal to the Cieslak and Povala (2015) measure. This equation can be seen as deriving from the

structural Equation 11 with y(n)
t = An + B′

nFt averaged over all maturities, 1 to 180 months. (One could

entertain model variants with more points across the curve are more difficult to estimate without

more structure, since for each point they add one equation and at least four more parameters.)

Also note that the risk factor x and its disturbance terms are absorbed into the “cyclical” error

term ϵ
cyc
t , and we assume that the error term follows an AR(1) processes of the form

ϵ
cyc
t+1

= ρyϵ
cyc
t + ecyc

t+1
, ecyc

t+1
∼ N(0, σ2

cyc) . (27)

Now let gt denote trend real GDP growth. We also treat this variable as observable conditional

on time t, set equal to the as-of-date, rolling, exogenously detrended rate of real GDP growth using

a Hodrick-Prescott filter. To avoid forward-looking bias, the filter is recalculated for each date in

which the natural rate model is computed, so the only r∗t estimate that contains the full sample

information about realized output growth is the last point in the sample.

We then define the state variable zt as a “headwinds” factor related to the natural rate through

the state transition equation

r∗t = zt + gt , (28)

as is standard in state-space models of the natural rate, such as Laubach and Williams (2003), with

the coefficient on growth set to c = 1 as above.

Finally, we also assume that the headwinds factor follows an AR(1) process, so that

zt+1 = ρzzt + ez
t+1

, ez
t+1

∼ N(0, σ2

z ) . (29)

Again, we stress why we we see this not just as a macro-finance model, but also the minimal

such model we could set up that contains both yields and macro data. The key finance part is the

underlying term-structure model of the yield curve. The key macro part is just r∗ = z + g, which

would be meaningless without constraints on z but is disciplined through our assumptions (volatility

priors). This will allow us to generate a “feasible” path for r∗, tied in to both the macro and finance

blocks, but with little theoretical baggage otherwise.
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Thus, including an equation linking r∗t to yield curve data, Equation 26, and one linking r∗t to

growth, Equation 28, is a distinctive feature of our unified empirical macro-finance model, as we

bring information from both financial and macroeconomic data to bear on estimating the natural rate.

Consistent with the relative frequencies of financial series and macroeconomic series, the headwinds

factor, zt+1, is conjectured to capture structural macroeconomic phenomena with a frequency similar

to that of macroeconomic series, while the error to average yields, ϵ
cyc
t+1

, is assumed to capture high

frequency movements from financial phenomena. Through Equation 28 this implies a view of the

natural rate r∗t consistent with Laubach and Williams (2003) of representing a medium-run real rate

“anchor” for monetary policy. In Appendix A we provide details on how explicit identification

assumptions about ρz and σz prevent the headwinds variable from taking a high frequency similar

to that of financial prices. We use priors to impose this view on variable volatility, without explicitly

linking the headwinds factor to a particular set of low frequency structural data.

Summarizing the state-space model, the Kalman system is thus defined by the following state

equation, (
zt

ϵ
cyc
t

)
=

(
ρz 0

0 ρcyc

)(
zt–1

ϵ
cyc
t–1

)
+

(
ez
t

ecyc
t

)
. (30)

The associated measurement equation can then be written as

yt = ay + bππ∗
t + br∗gt + br∗zt + ϵ

cyc
t . (31)

This fully describes the state-space model, which has then to be estimated. The estimation

algorithm is described in Appendix A.

5. Data for estimation and evaluation

Estimation and model evaluation lead us to collect bond data for 10 advanced countries for a

maximal sample over the postwar period. The data requirements are as follows, and prompted us

to collect data over two different windows, a broad window and a narrow window.

Estimation and evaluation: narrow window using full zero-coupon curves Estimation

uses the measurement affine equation yt = ay + bππ∗
t + br∗gt + br∗zt + ϵ

cyc
t . In samples where we have

complete information on the zero-coupon yield curve we can construct a true average yield based

on 1 to 15 year maturity zero-coupon yields. We also need the more easily sourced data on the rate

of output growth (gt) and the inflation trend (π∗
t , computed via constant-gain learning),.

We refer to these samples as the narrow window, and to evaluate the model we calculate the

fit of affine equations for yields and returns (or equations derived therefrom), y(n)
t = An + B′

nFt

and rx(n)
t+1

= B′
nFt + vn

t . Specifically we examine yields (at various maturities, 5, 10, and 15 years)

as well as average excess returns (averaged over maturities 2 to 180 months, and computed with

inverse-maturity weights).
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Estimation and evaluation: broad window using proxy average yields Estimation uses the

measurement affine equation yt = ay + bππ∗
t + br∗gt + br∗zt + ϵ

cyc
t . Given data on the rate of output

growth and the inflation trend, this step can still be carried through in samples where we have an

acceptable proxy of average yields, and we lack the zero-coupon yield curve.

We refer to these samples as the broad window, where we achieve an estimate of the latent natural

rate r∗t . Also in this case to evaluate the model we can still examine the fit of the affine equations

for excess returns, rx(n)
t+1

= B′
nFt + vn

t , but without the zero-coupon yield curve we need to rely on a

proxy measure of excess returns as detailed below.

Whilst this broad window method may give less precise estimates of the natural rate, we find

strong correlations between our proxies for yields and returns and their values computed using

complete information on the zero-coupon yield curve where the methods overlap in the narrow

window. Still, one virtue is that we can compute natural rates often for an extra 10 or 20 years going

back to the 1950s and 1960s for the countries in our sample. A second important virtue is that the

longer samples provided by this proxy method allow us to achieve more stable estimates of the

latent variables by the time the starting point of the narrow window is reached, pushing back the

period of initialization where the filter can produce unstable and unreliable estimates (we typically

drop the first 5 years a a burn-in period in results shown below).

Data: narrow window In the narrow window samples we need complete information on the

zero-coupon yield curve. We use yields at all monthly maturities from 1 to 180 months in all

countries. We rely here on existing datasets by official institutions and other researchers.

We employ a Svensson (1994) model of the zero-coupon yield curve. Here a set of time-varying

parameters β0,t, β1,t, β2,t, β3,t, τ1,t, and τ2,t are estimated to express the smoothly-approximated yield

y(n)
t , at any given time t, of a maturity n zero-coupon bond as

y(n)
t = β0,t + β1,t

1 – e–n/τ1,t

n/τ1,t
+ β2,t

(
1 – e–n/τ1,t

n/τ1,t
– e–n/τ1,t

)
+ β3,t

(
1 – e–n/τ2,t

n/τ2,t
– e–n/τ2,t

)
. (32)

Obtaining the parameters of a Svensson model lets us generate zero-coupon yields for all maturities

at each point in time, circumventing the problem of data sparsity in some parts of the curve. For

some countries, the datasets by official institutions and other researchers already provide estimates

of the above parameters; we can then directly compute the zero-coupon yields at each date as above

without any further step. In other cases, the datasets available to us consist of zero-coupon yields at

a large number (but maybe not all) maturities, and possibly build from alternative models, and in

these cases we simply fit a Svensson curve as a preliminary step at each date.

For the 10 countries our sources for these fitted Svensson zero-coupon yield curves are as follows:

• U.S.: parameters from Gürkaynak, Sack, and Wright (2007) from June 1961 to the present.

• Japan: yields from the Ministry of Finance starting in September 1974, at maturities from 1 to

40 years.
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• Germany: parameters from the Bundesbank from October 1972 to the present.

• U.K.: Bank of England data on yields, allowing us to recover complete yield curves from

January 1970 to the present.

• Canada: Bank of Canada estimates of yield curves for maturities ranging from 0.25 years to

30 years from January 1986 to the present.

• Australia: Reserve Bank of Australia data on yields from 0 to 10 years in quarterly maturity

increments from July 1992 to the present.

• France: up to 2004 yield curves kindly supplied by Cadorel (2022), at maturities from 1 to 40

years; from 2005, yield curves at maturities from 1 to 50 years, from Grishchenko, Moraux,

and Pakulyak (2020) and subsequent updates.

• Spain: parameters kindly supplied by the BIS to construct yield curves from January 1991 to

June 2019 (with permission granted to use and share these derived curves).

• Sweden: parameters from the Riksbank from December 1992 to the present.

• Switzerland: parameters from the Swiss National Bank from January 1988 to the present.

To the best of our knowledge, these estimations provide a new and unique set of zero-coupon data

unmatched in the literature by extending the Gürkaynak, Sack, and Wright (2007) methodology

consistently to other developed markets and over many more years.8

Data: broad window As we have seen above, the availability of complete zero-coupon yield

curves varies from country to country. We have full coverage for all 10 countries in the last three

decades, since roughly the early 1990s. In contrast, for most the 1970s and 1980s only a handful of

countries can be covered. For the 1960s, only the U.S. is available.

How then can we estimate the model and, thus, the natural rate outside these windows?

As noted, we can use proxies (ỹt and ỹ(1)
t ) to approximate average yields and short rates, and

given those proxies, and without a curve, we can approximate average excess bond returns (r̃xt =

ỹt – kỹt+1 – (1 – k)y(1)
t ), where the average is over bonds of maturities from 2 to 15 years.9

We therefore rely on an array of secondary sources for proxy average yields and short rates.

These will typically reference an average built from a vaguely defined basket of long bonds, or will

8The closest prior work was a decade ago. Wright (2011) compiled a 10-country panel of zero-coupon
yields with the data series ending in 2009, using Svensson, Nelson-Siegel, and spline models.

9Consider an inverse-duration weight basket of bonds at annual maturity increments n = 2, . . . , 15. The
forward excess return of the maturity n bond is ny(n)

t – (n – 1)y(n–1)
t+1

– y(1)
t . Applying a weight 1/n and summing

over all 14 bonds we obtain a weighted average return rxt = 1

14
∑15

n=2
y(n)

t – 1

14
∑15

n=2

(n–1)
n y(n–1)

t+1
– 1

14
∑15

n=2

1

n y(1)
t .

We take the approximation to this given by r̃xt = ỹt –
(

1

14
∑15

n=2

(n–1)
n

)
ỹt+1 –

(
1

14
∑15

n=2

1

n

)
y(1)

t . Now define

k ≡
(

1

14
∑15

n=2

(n–1)
n

)
and we can write r̃xt = ỹt – kỹt+1 – (1 – k)y(1)

t .
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present a time series of multiple long bond yields from which we can mechanically construct an

average. Sources used here include technical documents from central banks and finance ministries,

or from the OECD, and aggregators such as Global Financial Data and Haver. A full description of

these sources can be found in the online appendix. [TBD]

6. Estimates and fit of yield and return equations

6.1. Bond yield regressions

In this subsection, we now apply the affine bond pricing model with OLS regressions based on

Equation 11, y(n)
t = An + Br

nr∗t + Bπ
n π∗

t + Bc̄c̄t. This is the specification in Cieslak and Povala (2015),

but with a second trend for the estimated natural rate. The detrended average yield then represents

a cyclical fluctuation of bond yields (or prices) about the long run trends. We could also run

this regression in equivalent form with c̄t replaced by ȳt, but this would only produce different

coefficients requiring a different interpretation or attribution, but the model and fit would be the

same.

Our findings confirm and extend those of Cieslak and Povala (2015), in two ways. First, the

inclusion of the inflation trend improves the fit of the yield model relative to a specification with no

trends. Second, this is true for all 10 advanced economies and not just the U.S., and notably, the fit

improvement is most marked at the longer end of the curve. Third, the inclusion of the natural rate

trend improves the fit even more, confirming that both trends are relevant for bond pricing, as in

Bauer and Rudebusch (2020).

Table 1 presents full-sample OLS yield regressions at the 5-year maturity point. Panel (a) uses

the average yield as the only factor. Panel (b) uses the average yield and the inflation trend only,

where the average yield is first detrended. Panel (c) uses the average yield and both trends, where

the average yield is first detrended. In this case, at the shorter end of the curve, the improvements

in fit are small as we move from the first specification to the second and then the third. And, as is

generally seen in the literature, the fit is always very close to an R2 of 1.

Table 2 presents OLS yield regressions at the 10-year maturity point and Table 3 presents OLS

yield regressions at the 15-year maturity point. Here, the improvements in fit are a little more

evident, but we start from a very high baseline fit in the yields-only specification so these increments

can only be quite small.

Of greater interest, as highlighted by Cieslak and Povala (2015), is the role of the trends versus

the cyclical detrended yield term in accounting for the fit. This is shown in Table 4 and the result

is striking. Here the R2 measures are typically around 90% of those seen in the previous tables,

indicating that when it comes to explaining the level of yields, the macro trends are doing almost all

of the work, and that the orthogonal component of yields c̄ only accounts for around 10% of the fit.

Indeed, complementary regressions (not shown) including only the detrended yields c̄ show this to

be the case.
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Table 1: International yields, 5-year maturity

The tables reports OLS estimates on international monthly data of yields y(n)
t = Ãn + B̃c̄c̄t. ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) Narrow window. Detrending: none.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
y 1.059

∗∗∗
1.011

∗∗∗
1.024

∗∗∗
1.043

∗∗∗
1.062

∗∗∗
0.988

∗∗∗
1.011

∗∗∗
1.025

∗∗∗
1.012

∗∗∗
1.045

∗∗∗

(0.003) (0.002) (0.003) (0.002) (0.003) (0.004) (0.003) (0.002) (0.003) (0.002)

Constant -0.004
∗∗∗ -0.003

∗∗∗ -0.003
∗∗∗ -0.004

∗∗∗ -0.006
∗∗∗ -0.004

∗∗∗ -0.002
∗∗∗ -0.003

∗∗∗ -0.003
∗∗∗ -0.005

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.997 0.998 0.997 0.997 0.998 0.991 0.993 0.997 0.998 0.997

RSS 0.0007 0.0009 0.0005 0.0020 0.0008 0.0074 0.0071 0.0016 0.0006 0.0022

(b) Narrow window. Detrending: inflation only, c̄ equal to projection of ȳ on π.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

2.258
∗∗∗

1.683
∗∗∗

1.672
∗∗∗

1.963
∗∗∗

1.809
∗∗∗

0.997
∗∗∗

0.935
∗∗∗

0.900
∗∗∗

1.620
∗∗∗

1.464
∗∗∗

(0.009) (0.005) (0.005) (0.006) (0.005) (0.005) (0.003) (0.002) (0.004) (0.004)

c(π∗)
1.060

∗∗∗
1.020

∗∗∗
1.042

∗∗∗
1.042

∗∗∗
1.052

∗∗∗
1.014

∗∗∗
1.045

∗∗∗
1.004

∗∗∗
1.058

∗∗∗
1.071

∗∗∗

(0.005) (0.004) (0.007) (0.004) (0.009) (0.009) (0.007) (0.005) (0.004) (0.005)

Constant -0.015
∗∗∗

0.001
∗∗∗ -0.002

∗∗∗ -0.003
∗∗∗ -0.015

∗∗∗
0.010

∗∗∗
0.018

∗∗∗
0.010

∗∗∗
0.001

∗∗∗ -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.997 0.998 0.997 0.997 0.998 0.991 0.994 0.997 0.999 0.997

RSS 0.0007 0.0009 0.0005 0.0020 0.0008 0.0072 0.0067 0.0016 0.0004 0.0021

(c) Narrow window. Detrending: inflation and natural rate, c̄ equal to projection of ȳ on π∗ and r∗ .
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

1.030
∗∗∗

0.985
∗∗∗

1.154
∗∗∗

0.937
∗∗∗

1.317
∗∗∗

0.979
∗∗∗

0.641
∗∗∗

0.461
∗∗∗

0.926
∗∗∗

1.119
∗∗∗

(0.011) (0.005) (0.006) (0.007) (0.021) (0.004) (0.004) (0.003) (0.005) (0.004)

r∗ 1.271
∗∗∗

1.161
∗∗∗

1.380
∗∗∗

1.640
∗∗∗

0.592
∗∗∗

1.126
∗∗∗

1.514
∗∗∗

0.754
∗∗∗

1.006
∗∗∗

1.193
∗∗∗

(0.006) (0.005) (0.011) (0.007) (0.025) (0.012) (0.011) (0.004) (0.004) (0.008)

c(π∗,r∗)
1.014

∗∗∗
1.099

∗∗∗
1.080

∗∗∗
1.092

∗∗∗
1.063

∗∗∗
1.063

∗∗∗
0.987

∗∗∗
1.049

∗∗∗
1.070

∗∗∗
1.079

∗∗∗

(0.011) (0.009) (0.014) (0.008) (0.009) (0.019) (0.010) (0.010) (0.008) (0.008)

Constant -0.005
∗∗∗ -0.006

∗∗∗ -0.003
∗∗∗ -0.004

∗∗∗ -0.011
∗∗∗ -0.007

∗∗∗ -0.009
∗∗∗ -0.006

∗∗∗ -0.001
∗∗∗ -0.007

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.997 0.998 0.997 0.997 0.998 0.991 0.994 0.997 0.999 0.997

RSS 0.0007 0.0007 0.0005 0.0018 0.0008 0.0071 0.0062 0.0015 0.0004 0.0021
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Table 2: International yields, 10-year maturity

The tables reports OLS estimates on international monthly data of yields y(n)
t = Ãn + B̃c̄c̄t. ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) Narrow window. Detrending: none.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
y 1.000

∗∗∗
0.988

∗∗∗
0.965

∗∗∗
0.984

∗∗∗
0.949

∗∗∗
0.996

∗∗∗
0.997

∗∗∗
0.985

∗∗∗
1.006

∗∗∗
0.959

∗∗∗

(0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.003) (0.002) (0.003) (0.003)

Constant 0.002
∗∗∗

0.003
∗∗∗

0.003
∗∗∗

0.004
∗∗∗

0.006
∗∗∗

0.004
∗∗∗

0.002
∗∗∗

0.003
∗∗∗

0.003
∗∗∗

0.005
∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.995 0.995 0.992 0.993 0.995 0.994 0.994 0.996 0.997 0.993

RSS 0.0009 0.0019 0.0014 0.0036 0.0015 0.0050 0.0057 0.0017 0.0007 0.0039

(b) Narrow window. Detrending: inflation only, c̄ equal to projection of ȳ on π.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

2.178
∗∗∗

1.640
∗∗∗

1.591
∗∗∗

1.872
∗∗∗

1.598
∗∗∗

1.019
∗∗∗

0.945
∗∗∗

0.858
∗∗∗

1.648
∗∗∗

1.360
∗∗∗

(0.010) (0.007) (0.008) (0.008) (0.006) (0.004) (0.003) (0.002) (0.005) (0.005)

c(π∗)
0.971

∗∗∗
1.008

∗∗∗
0.927

∗∗∗
0.966

∗∗∗
1.032

∗∗∗
0.963

∗∗∗
0.954

∗∗∗
0.993

∗∗∗
0.993

∗∗∗
0.930

∗∗∗

(0.005) (0.006) (0.012) (0.005) (0.011) (0.008) (0.006) (0.005) (0.005) (0.007)

Constant -0.010
∗∗∗

0.007
∗∗∗

0.004
∗∗∗

0.005
∗∗∗ -0.002

∗∗∗
0.018

∗∗∗
0.021

∗∗∗
0.015

∗∗∗
0.005

∗∗∗
0.009

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.996 0.995 0.992 0.994 0.996 0.994 0.995 0.997 0.997 0.993

RSS 0.0008 0.0019 0.0013 0.0035 0.0012 0.0048 0.0051 0.0017 0.0007 0.0038

(c) Narrow window. Detrending: inflation and natural rate, c̄ equal to projection of ȳ on π∗ and r∗.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

1.058
∗∗∗

0.920
∗∗∗

1.104
∗∗∗

0.877
∗∗∗

0.886
∗∗∗

1.002
∗∗∗

0.689
∗∗∗

0.404
∗∗∗

0.990
∗∗∗

1.047
∗∗∗

(0.012) (0.008) (0.010) (0.009) (0.027) (0.004) (0.004) (0.003) (0.007) (0.006)

r∗ 1.159
∗∗∗

1.197
∗∗∗

1.297
∗∗∗

1.590
∗∗∗

0.858
∗∗∗

1.109
∗∗∗

1.316
∗∗∗

0.778
∗∗∗

0.954
∗∗∗

1.082
∗∗∗

(0.007) (0.008) (0.017) (0.009) (0.031) (0.009) (0.010) (0.004) (0.005) (0.011)

c(π∗,r∗)
0.948

∗∗∗
0.912

∗∗∗
0.812

∗∗∗
0.869

∗∗∗
1.020

∗∗∗
0.892

∗∗∗
0.983

∗∗∗
0.882

∗∗∗
0.969

∗∗∗
0.889

∗∗∗

(0.012) (0.014) (0.022) (0.010) (0.011) (0.015) (0.009) (0.010) (0.011) (0.011)

Constant -0.001
∗

0.000 0.003
∗∗∗

0.003
∗∗∗

0.005
∗∗∗

0.000 -0.003
∗∗∗ -0.001

∗∗∗
0.003

∗∗∗
0.002

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.996 0.996 0.993 0.995 0.996 0.994 0.995 0.997 0.997 0.994

RSS 0.0008 0.0017 0.0012 0.0028 0.0012 0.0046 0.0049 0.0013 0.0007 0.0036
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Table 3: International yields, 15-year maturity

The tables reports OLS estimates on international monthly data of yields y(n)
t = Ãn + B̃c̄c̄t. ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) Narrow window. Detrending: none.
y 0.923

∗∗∗
0.964

∗∗∗
0.936

∗∗∗
0.934

∗∗∗
0.875

∗∗∗
0.988

∗∗∗
0.978

∗∗∗
0.948

∗∗∗
0.987

∗∗∗
0.916

∗∗∗

(0.007) (0.006) (0.008) (0.006) (0.006) (0.007) (0.008) (0.005) (0.005) (0.005)

Constant 0.006
∗∗∗

0.007
∗∗∗

0.006
∗∗∗

0.009
∗∗∗

0.013
∗∗∗

0.008
∗∗∗

0.005
∗∗∗

0.006
∗∗∗

0.006
∗∗∗

0.010
∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.982 0.984 0.974 0.977 0.987 0.976 0.962 0.982 0.991 0.979

RSS 0.0031 0.0057 0.0041 0.0112 0.0032 0.0191 0.0388 0.0081 0.0025 0.0112

(b) Narrow window. Detrending: inflation only, c̄ equal to projection of ȳ on π.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

2.014
∗∗∗

1.606
∗∗∗

1.548
∗∗∗

1.783
∗∗∗

1.469
∗∗∗

1.015
∗∗∗

0.940
∗∗∗

0.815
∗∗∗

1.644
∗∗∗

1.310
∗∗∗

(0.018) (0.012) (0.013) (0.014) (0.009) (0.007) (0.008) (0.005) (0.009) (0.008)

c(π∗)
0.893

∗∗∗
0.972

∗∗∗
0.880

∗∗∗
0.912

∗∗∗
0.977

∗∗∗
0.942

∗∗∗
0.896

∗∗∗
0.993

∗∗∗
0.937

∗∗∗
0.852

∗∗∗

(0.010) (0.011) (0.020) (0.009) (0.017) (0.015) (0.015) (0.011) (0.009) (0.012)

Constant -0.005
∗∗∗

0.010
∗∗∗

0.007
∗∗∗

0.009
∗∗∗

0.006
∗∗∗

0.022
∗∗∗

0.023
∗∗∗

0.019
∗∗∗

0.008
∗∗∗

0.013
∗∗∗

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.983 0.984 0.975 0.978 0.988 0.977 0.964 0.983 0.992 0.980

RSS 0.0029 0.0057 0.0040 0.0110 0.0029 0.0187 0.0365 0.0078 0.0022 0.0106

(c) Narrow window. Detrending: inflation and natural rate, c̄ equal to projection of ȳ on π∗ and r∗ .
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

1.010
∗∗∗

0.889
∗∗∗

1.065
∗∗∗

0.820
∗∗∗

0.707
∗∗∗

0.998
∗∗∗

0.713
∗∗∗

0.361
∗∗∗

1.025
∗∗∗

1.015
∗∗∗

(0.022) (0.013) (0.017) (0.016) (0.040) (0.007) (0.009) (0.007) (0.012) (0.010)

r∗ 1.040
∗∗∗

1.192
∗∗∗

1.287
∗∗∗

1.540
∗∗∗

0.918
∗∗∗

1.095
∗∗∗

1.170
∗∗∗

0.778
∗∗∗

0.897
∗∗∗

1.021
∗∗∗

(0.013) (0.013) (0.030) (0.015) (0.047) (0.019) (0.026) (0.009) (0.010) (0.018)

c(π∗,r∗)
0.959

∗∗∗
0.754

∗∗∗
0.648

∗∗∗
0.740

∗∗∗
0.957

∗∗∗
0.843

∗∗∗
1.007

∗∗∗
0.882

∗∗∗
0.924

∗∗∗
0.782

∗∗∗

(0.022) (0.022) (0.038) (0.018) (0.016) (0.030) (0.025) (0.023) (0.020) (0.018)

Constant 0.003
∗∗∗

0.004
∗∗∗

0.006
∗∗∗

0.008
∗∗∗

0.012
∗∗∗

0.005
∗∗∗

0.002
∗

0.002
∗∗∗

0.006
∗∗∗

0.007
∗∗∗

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.983 0.988 0.978 0.982 0.989 0.977 0.966 0.984 0.992 0.981

RSS 0.0028 0.0045 0.0036 0.0091 0.0027 0.0182 0.0348 0.0074 0.0022 0.0102
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Table 4: International yields, contribution of macro trends alone

The tables reports OLS estimates on international monthly data of yields y(n)
t = Ãn + B̃c̄c̄t. ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) Narrow window. 5-year yields regressed on π∗ and r∗ alone .
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

1.030
∗∗∗

0.985
∗∗∗

1.154
∗∗∗

0.937
∗∗∗

1.317
∗∗∗

0.979
∗∗∗

0.641
∗∗∗

0.461
∗∗∗

0.926
∗∗∗

1.119
∗∗∗

(0.055) (0.031) (0.025) (0.041) (0.144) (0.012) (0.016) (0.015) (0.034) (0.023)

r∗ 1.271
∗∗∗

1.161
∗∗∗

1.380
∗∗∗

1.640
∗∗∗

0.592
∗∗∗

1.126
∗∗∗

1.514
∗∗∗

0.754
∗∗∗

1.006
∗∗∗

1.193
∗∗∗

(0.033) (0.031) (0.044) (0.040) (0.169) (0.030) (0.043) (0.018) (0.029) (0.045)

Constant -0.005
∗∗∗ -0.006

∗∗∗ -0.003
∗∗∗ -0.004

∗∗∗ -0.011
∗∗∗ -0.007

∗∗∗ -0.009
∗∗∗ -0.006

∗∗∗ -0.001
∗ -0.007

∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.920 0.933 0.958 0.899 0.904 0.940 0.909 0.944 0.929 0.910

RSS 0.0179 0.0261 0.0077 0.0614 0.0340 0.0476 0.0960 0.0293 0.0195 0.0607

(b) Narrow window. 10-year yields regressed on π∗ and r∗ alone .
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

1.058
∗∗∗

0.920
∗∗∗

1.104
∗∗∗

0.877
∗∗∗

0.886
∗∗∗

1.002
∗∗∗

0.689
∗∗∗

0.404
∗∗∗

0.990
∗∗∗

1.047
∗∗∗

(0.052) (0.027) (0.020) (0.034) (0.139) (0.010) (0.015) (0.013) (0.032) (0.020)

r∗ 1.159
∗∗∗

1.197
∗∗∗

1.297
∗∗∗

1.590
∗∗∗

0.858
∗∗∗

1.109
∗∗∗

1.316
∗∗∗

0.778
∗∗∗

0.954
∗∗∗

1.082
∗∗∗

(0.031) (0.027) (0.036) (0.033) (0.164) (0.025) (0.043) (0.015) (0.026) (0.038)

Constant -0.001 0.000 0.003
∗∗∗

0.003
∗∗∗

0.005
∗∗

0.000 -0.003
∗ -0.001

∗∗
0.003

∗∗∗
0.002

∗∗

(0.001) (0.001) (0.000) (0.001) (0.002) (0.001) (0.001) (0.000) (0.001) (0.001)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.920 0.949 0.968 0.925 0.888 0.959 0.909 0.956 0.940 0.924

RSS 0.0159 0.0192 0.0053 0.0406 0.0318 0.0331 0.0939 0.0209 0.0164 0.0435

(c) Narrow window. 15-year yields regressed on π∗ and r∗ alone .
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

1.010
∗∗∗

0.889
∗∗∗

1.065
∗∗∗

0.820
∗∗∗

0.707
∗∗∗

0.998
∗∗∗

0.713
∗∗∗

0.361
∗∗∗

1.025
∗∗∗

1.015
∗∗∗

(0.056) (0.025) (0.022) (0.032) (0.135) (0.011) (0.018) (0.014) (0.032) (0.019)

r∗ 1.040
∗∗∗

1.192
∗∗∗

1.287
∗∗∗

1.540
∗∗∗

0.918
∗∗∗

1.095
∗∗∗

1.170
∗∗∗

0.778
∗∗∗

0.897
∗∗∗

1.021
∗∗∗

(0.034) (0.025) (0.039) (0.031) (0.158) (0.029) (0.050) (0.018) (0.026) (0.037)

Constant 0.003
∗

0.004
∗∗∗

0.006
∗∗∗

0.008
∗∗∗

0.012
∗∗∗

0.005
∗∗∗

0.002 0.002
∗∗∗

0.006
∗∗∗

0.007
∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Observations 354 432 408 591 342 561 624 553 349 634

R2
0.894 0.954 0.961 0.927 0.878 0.946 0.875 0.940 0.938 0.922

RSS 0.0183 0.0164 0.0062 0.0365 0.0296 0.0437 0.1281 0.0271 0.0165 0.0410
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6.2. Excess return regressions

We just saw that macro trends can improve the modeling of yields, but we now see how they matter

for predicting bond returns. Similar findings were shown for the U.S. case in Cieslak and Povala

(2015) with just an inflation trend, and also in the contemporaneous work of Bauer and Rudebusch

(2020) with trends for inflation and the natural rate combined. We show that the same applies more

generally at the international level for both yields and excess returns.

The intuition is quite straightforward. The macro trend factors, being slow moving and near

unit-root, are mainly priced in one-period ahead and, being so highly persistent, they contain little

new useful information about short-run returns. In contrast, the cyclical factor, being the more

volatile driver of the high-frequency error-correction part of the bond price process, is very much

more informative about how bond prices revert to trend in the short run.

Formally, in this section we present estimates for the excess return Equation 13, rx(n)
t+1

= B⊤
n Ft + vn

t .

These one-step ahead predictions are noisy but their explanatory power is almost entirely due to the

role of the detrended, or cyclical, yield factor c̄. This is inline with intuition, and the cyclical factor is

the only force at work in the long-maturity limit, as we saw at Equation 25.

Table 5 present results for the excess return forecasts in the narrow window sample. Here we

have full zero-coupon yield curves and do not have to rely on proxy yields or proxy returns. Note

that these are in-sample regressions (using 2-sided r∗ estimates) and, whilst illustrative, they should

not be judged the same as real-time out-of-sample forecasts, which we discuss below. As is clear,

when we move from a yields only model in panel (a), to the model with the inflation trend in panel

(b) and then the two trends in panel (c), the fit of the excess return forecasts improves dramatically.

For the U.S., the R2 rises from 0.004, to 0.128, to 0.207; and the RSS falls from 0.0624, to 0.0546, to

0.0497. Similar large improvements are seen across all 10 countries, though from different baselines.

Table 6 recasts the regressions with two trends in panel (a), but here replacing the detrended

yield c̄ with the average yield itself ȳ. This allows a different interpretation and a sense check.

Holding fixed the average level of yields we would expect increases in either macro trend (higher

inflation or higher natural rates) to be associated with lower returns (bond prices adjusting down)

going forward, and this intuition is confirmed, and 19 of 20 trend coefficients are negative in this

panel (the only exception is not statistically significant). Panel (b) allows for a different check, and

recasts the regressions with two trends but now excluding the average yield term. This amounts to

omitting the detrending, and our intuition above was that this should destroy the fit of the forecast

since the volatile cyclical term is the main source of predictive power, and this is indeed the case.

The fit here is 80%-90% attenuated relative to the fit achieved when the cyclical term is present.

Table 7 expands the sample to the broad window, to see if similar success is achieved with yield

and return proxies in periods when the full curve is not available. Despite the noisier data, the fit of

the full model in panel (a) remains good (all 20 trend coefficients are negative) even for countries

with large spans of proxy information. And in panel (b) the intuition about detrending is preserved,

and macro trends alone still account for only a small share of the forecasts’ explanatory power.

26



Table 5: International excess returns, weighted-average portfolio

The table reports OLS estimates on international data of the excess return equation rx(n)
t+1

= B⊤
n Ft + vn

t . ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) Narrow window. Detrending: none.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
y 0.112

∗∗∗
0.031

∗∗
0.013 0.025

∗
0.082

∗∗∗ -0.012 0.019 0.035
∗∗∗

0.097
∗∗∗

0.021

(0.019) (0.012) (0.016) (0.011) (0.019) (0.011) (0.010) (0.009) (0.017) (0.013)

Constant -0.002
∗

0.002
∗∗

0.002
∗∗∗

0.002
∗∗∗

0.001 0.003
∗∗∗

0.001 0.002
∗∗∗

0.001 0.002

(0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
Observations 348 426 403 586 330 538 618 547 345 629

R2
0.090 0.016 0.002 0.008 0.053 0.002 0.006 0.027 0.089 0.004

RSS 0.0241 0.0221 0.0172 0.0402 0.0349 0.0492 0.0636 0.0223 0.0256 0.0624

(b) Narrow window. Detrending: inflation only, c̄ equal to projection of ȳ on π.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

0.204
∗∗∗ -0.049

∗ -0.016 0.041 0.023 -0.050
∗∗∗

0.007 0.004 0.055 -0.045
∗

(0.053) (0.021) (0.027) (0.027) (0.028) (0.012) (0.011) (0.009) (0.031) (0.019)

c(π∗)
0.132

∗∗∗
0.189

∗∗∗
0.152

∗∗∗
0.029 0.654

∗∗∗
0.148

∗∗∗
0.055

∗∗
0.132

∗∗∗
0.251

∗∗∗
0.263

∗∗∗

(0.029) (0.021) (0.042) (0.018) (0.048) (0.024) (0.020) (0.018) (0.030) (0.028)

Constant -0.002 0.005
∗∗∗

0.002
∗∗∗

0.003
∗∗

0.005
∗∗∗

0.004
∗∗∗

0.002
∗∗

0.003
∗∗∗

0.003
∗∗∗

0.005
∗∗∗

(0.002) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
Observations 348 426 403 586 330 538 618 547 345 629

R2
0.092 0.174 0.033 0.008 0.360 0.096 0.012 0.089 0.180 0.128

RSS 0.0241 0.0186 0.0166 0.0402 0.0236 0.0445 0.0632 0.0209 0.0231 0.0546

(c) Narrow window. Detrending: inflation and natural rate, c̄ equal to projection of ȳ on π∗ and r∗.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

0.232
∗∗∗ -0.122

∗∗∗
0.004 0.080

∗ -0.439
∗∗∗ -0.051

∗∗∗
0.023 -0.025

∗ -0.004 -0.066
∗∗

(0.053) (0.024) (0.034) (0.032) (0.123) (0.011) (0.012) (0.012) (0.031) (0.021)

r∗ -0.030 0.124
∗∗∗ -0.054 -0.064

∗
0.562

∗∗∗
0.077

∗∗ -0.085
∗

0.050
∗∗∗

0.087
∗∗

0.074

(0.033) (0.025) (0.060) (0.032) (0.146) (0.030) (0.034) (0.015) (0.027) (0.041)

c(π∗,r∗)
0.731

∗∗∗
0.511

∗∗∗
0.710

∗∗∗
0.248

∗∗∗
0.645

∗∗∗
0.399

∗∗∗
0.252

∗∗∗
0.372

∗∗∗
0.831

∗∗∗
0.492

∗∗∗

(0.053) (0.042) (0.076) (0.036) (0.050) (0.047) (0.032) (0.037) (0.053) (0.040)

Constant -0.002 0.004
∗∗∗

0.002
∗∗∗

0.003
∗∗∗

0.009
∗∗∗

0.003
∗∗∗

0.004
∗∗∗

0.002
∗∗∗

0.003
∗∗∗

0.004
∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
Observations 348 426 403 586 330 538 618 547 345 629

R2
0.378 0.296 0.182 0.086 0.361 0.156 0.101 0.170 0.434 0.207

RSS 0.0165 0.0158 0.0141 0.0370 0.0235 0.0416 0.0575 0.0190 0.0159 0.0497
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Table 6: International excess returns, additional results, narrow window

The table reports OLS estimates on international data of the excess return equation rx(n)
t+1

= B⊤
n Ft + vn

t . ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) Narrow window. Detrending: inflation and natural rate, without projecting ȳ.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗ -0.491

∗∗∗ -0.619
∗∗∗ -0.802

∗∗∗ -0.139
∗∗ -1.166

∗∗∗ -0.449
∗∗∗ -0.144

∗∗∗ -0.184
∗∗∗ -0.811

∗∗∗ -0.600
∗∗∗

(0.075) (0.048) (0.092) (0.045) (0.135) (0.048) (0.024) (0.020) (0.060) (0.048)

r∗ -0.898
∗∗∗ -0.470

∗∗∗ -1.012
∗∗∗ -0.459

∗∗∗
0.114 -0.374

∗∗∗ -0.440
∗∗∗ -0.234

∗∗∗ -0.707
∗∗∗ -0.475

∗∗∗

(0.071) (0.055) (0.119) (0.065) (0.150) (0.061) (0.056) (0.032) (0.057) (0.060)

y 0.731
∗∗∗

0.511
∗∗∗

0.710
∗∗∗

0.248
∗∗∗

0.645
∗∗∗

0.399
∗∗∗

0.252
∗∗∗

0.372
∗∗∗

0.831
∗∗∗

0.492
∗∗∗

(0.053) (0.042) (0.076) (0.036) (0.050) (0.047) (0.032) (0.037) (0.053) (0.040)

Constant -0.001 0.006
∗∗∗

0.002
∗∗∗

0.003
∗∗∗

0.011
∗∗∗

0.004
∗∗∗

0.005
∗∗∗

0.003
∗∗∗

0.002
∗∗∗

0.005
∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.002) (0.001) (0.001) (0.000) (0.001) (0.001)
Observations 348 426 403 586 330 538 618 547 345 629

R2
0.378 0.296 0.182 0.086 0.361 0.156 0.101 0.170 0.434 0.207

RSS 0.0165 0.0158 0.0141 0.0370 0.0235 0.0416 0.0575 0.0190 0.0159 0.0497

(b) Narrow window. Macro trends only.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗

0.232
∗∗∗ -0.122

∗∗∗
0.004 0.080

∗ -0.439
∗∗ -0.051

∗∗∗
0.023 -0.025 -0.004 -0.066

∗∗

(0.066) (0.028) (0.037) (0.034) (0.152) (0.012) (0.013) (0.013) (0.041) (0.024)

r∗ -0.030 0.124
∗∗∗ -0.054 -0.064 0.562

∗∗
0.077

∗ -0.085
∗

0.050
∗∗

0.087
∗

0.074

(0.040) (0.029) (0.066) (0.033) (0.180) (0.032) (0.036) (0.016) (0.035) (0.046)

Constant -0.002 0.004
∗∗∗

0.002
∗∗∗

0.003
∗∗∗

0.009
∗∗∗

0.003
∗∗∗

0.004
∗∗∗

0.002
∗∗∗

0.003
∗∗∗

0.004
∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.000) (0.001) (0.001)
Observations 348 426 403 586 330 538 618 547 345 629

R2
0.040 0.052 0.002 0.010 0.030 0.042 0.010 0.018 0.025 0.012

RSS 0.0254 0.0213 0.0172 0.0401 0.0358 0.0472 0.0634 0.0225 0.0274 0.0619
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Table 7: International excess returns, additional results, broad window

The table reports OLS estimates on international data of the excess return equation rx(n)
t+1

= B⊤
n Ft + vn

t . ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) Broad window. Detrending: inflation and natural rate, without projecting ȳ.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗ -0.418

∗∗∗ -0.491
∗∗∗ -0.563

∗∗∗ -0.141
∗∗ -0.442

∗∗∗ -0.444
∗∗∗ -0.152

∗∗∗ -0.184
∗∗∗ -0.859

∗∗∗ -0.606
∗∗∗

(0.043) (0.037) (0.088) (0.045) (0.040) (0.047) (0.024) (0.020) (0.070) (0.048)

r∗ -0.252
∗∗∗ -0.546

∗∗∗ -0.649
∗∗∗ -0.559

∗∗∗ -0.492
∗∗∗ -0.344

∗∗∗ -0.414
∗∗∗ -0.229

∗∗∗ -0.661
∗∗∗ -0.469

∗∗∗

(0.060) (0.053) (0.095) (0.063) (0.065) (0.060) (0.056) (0.032) (0.072) (0.060)

ȳ 0.343
∗∗∗

0.487
∗∗∗

0.435
∗∗∗

0.282
∗∗∗

0.527
∗∗∗

0.395
∗∗∗

0.258
∗∗∗

0.370
∗∗∗

0.741
∗∗∗

0.497
∗∗∗

(0.038) (0.036) (0.070) (0.035) (0.045) (0.046) (0.032) (0.037) (0.063) (0.040)

Constant 0.002
∗

0.003
∗∗∗

0.003
∗∗∗

0.002
∗∗

0.004
∗∗∗

0.004
∗∗∗

0.005
∗∗∗

0.003
∗∗∗

0.005
∗∗∗

0.005
∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
Observations 622 742 623 634 473 563 634 553 527 634

R2
0.164 0.203 0.071 0.113 0.233 0.158 0.098 0.170 0.224 0.209

RSS 0.0663 0.0635 0.0351 0.0411 0.0457 0.0431 0.0590 0.0191 0.0759 0.0501

(b) Broad window. Macro trends only.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AUS CAN CHE DEU ESP FRA GBR JPN SWE USA
π∗ -0.049

∗∗ -0.037
∗ -0.028 0.111

∗∗∗ -0.024 -0.050
∗∗∗

0.017 -0.025 -0.061
∗∗ -0.066

∗∗

(0.015) (0.018) (0.018) (0.033) (0.019) (0.012) (0.013) (0.013) (0.021) (0.024)

r∗ 0.197
∗∗∗

0.041 -0.112
∗∗ -0.113

∗∗∗
0.099

∗
0.102

∗∗∗ -0.047 0.052
∗∗

0.059 0.088

(0.037) (0.034) (0.039) (0.031) (0.046) (0.031) (0.035) (0.016) (0.043) (0.045)

Constant 0.000 0.002
∗

0.003
∗∗∗

0.002
∗∗

0.003
∗∗∗

0.003
∗∗

0.003
∗∗∗

0.002
∗∗∗

0.005
∗∗∗

0.004
∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
N 622 742 623 634 473 563 634 553 527 634

R2
0.052 0.005 0.014 0.025 0.010 0.048 0.004 0.020 0.016 0.013

rss 0.0753 0.0792 0.0372 0.0452 0.0590 0.0487 0.0652 0.0226 0.0961 0.0626
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6.3. Model fit: in-sample

To better compare model fit, Figure 4 is based on the yield regressions at the 10-year maturity point in

Table 2, and uses the Fields (2003) regression decomposition method for R2 to attribute contributions

of explanatory power to each regressor. As in most affine models, using a contemporaneous yield

factor generates a very high R2, but the figure clarifies the source of this excellent fit. When 0 macro

trends are present it is all attributed to the average yield factor ȳ. But once ȳ is detrended using 1 or

2 trends, we find that the macro trends π∗ and r∗ are responsible for 90% of the empirical fit, and

the cyclically-detrended yield factor ct accounts for only about 10% of the fit. That is to say, over

the last 50 years in advanced economies, the level of yields have been consistently explained to a

dominant extent by the levels of inflation and natural rate trends.

Figure 5 is based on the excess return regressions for the weighted -average bond portfolio in

Table 5, and also uses the Fields (2003) regression decomposition method. When 0 macro trends

are present and the only regressor is ȳ, the fit is poor. But once ȳ is detrended using 1 or 2 trends,

we find that the fit improves dramatically. With ct as a regressor alongside the the macro trends

π∗ and r∗, then again, consistent with intuition grounded in theory, the cyclically-detrended yield

factor accounts for over 90% of the fit on average. That is to say, over the last 50 years in advanced

economies, excess returns have also been consistently explained to a dominant extent by the levels

of cyclically-detrended yields, accounting for the underlying and inflation and natural rate trends.

Without accounting for these trends, investors would be misguided as to the deviation of yields

from their equilibrium, and would therefore make much poorer predictions of returns.

6.4. Model fit: out-of-sample

The above evidence is based on strictly in-sample metrics of fit. A natural question is whether the

use of macro trends also improves out-of-sample fit, which is usually the gold standard for models

of return prediction. To that end, for the various excess return forecast regressions we compared in-

and out-of-sample fit for the 2010–2019 period.

The choice of period was appealing for three reasons: first, it excludes the pandemic shock;

second, it allows sufficient length for every country to have a reasonable size of training period,

given that yield curves start only in the 1990s for some countries; third, we expected that both π∗

and r∗ would have variation in this period, in line with prior work, so this would give both trends

to potentially make meaningful contributions to model performance, as compared to periods (like

the pre-2008 Great Moderation era) when relative stability of both trends would limit their potential

usefulness versus a no-trend model with constant terms implicitly in their stead.

Figure 6 shows the results of this exercise. Model residuals are collected for 10 countries in each

period, and the resulting pooled mean squared error, MSE, is calculated. The null is the 0-trend

model with a yield factor ȳ. MSE ratios are relative to the null. The alternative models add: (I)

1-trend using π∗; (II) 1-trend using r∗; and (III) 2-trends using π∗ and r∗.
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Figure 4: Decomposition of in-sample fit: yield regressions with 0, 1, and 2 macro trends

The chart displays R2 values for the excess returns regressions by country. 0 denotes the model with no trend,
1 the model with π∗ trend, and 2 the model with π∗ and r∗ trends.
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Figure 5: Decomposition of in-sample fit: excess return regressions with 0, 1, and 2 macro trends

The chart displays R2 values for the excess returns regressions by country. 0 denotes the model with no trend,
1 the model with π∗ trend, and 2 the model with π∗ and r∗ trends.
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Figure 6: In- versus out-of-sample performance: MSE ratio evaluation for the 2010s period

For this chart, model residuals are collected for all ten countries in each period, and the resulting mean
squared error, MSE, is calculated. The null model is the 0-trend model with only a yield factor ȳ. MSE ratio
for other models is shown relative to the null. The alternative models add: (I) 1-trend using π∗; (II) 1-trend
using r∗; and (III) 2-trends using π∗ and r∗.
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First, Panel (a) reports findings using in-sample estimates and the 2-sided Kalman Filter estimates

of the natural rate. As might be expected, the best performing models were II and III, since

movements in the natural rate were more salient in this period than changes in inflation. MSE ratios

of 0.7 are achieved relative to the null. Next, Panel (b) reports findings using in-sample estimates

and the 1-sided Kalman Filter estimates of the natural rate. The same ranking of model performance

is seen again, but now the performance gains are reduced since future information is not being used

in any period by the filter, and MSE ratios of 0.9 are achieved relative to the null. Finally, Panel (c)

reports findings using out-of-sample estimates with an expanding window and the 1-sided Kalman

Filter estimates of the natural rate. Here again, accruing over time we see significant improvement

of models II and III over the null model, and model I. MSE ratios of 0.7 are achieved relative to the

null by the end of the window.

The final results here confirm that the 2-trend model also improves out-of-sample fit in a

meaningful way, so that the extension from a 0-trend or 1-trend model is delivering true performance

gains in real time.

32



7. Assessing the natural rate trends in 10 advanced economies

We now turn to a discussion of the plausibility of our model estimates of the natural rate, the latent

r∗ time series which we obtain for all 10 countries. Associated with this natural rate trend, we can

also plot the values of trend growth g, and the headwinds term z, where r∗ = g + z, by definition,

which can give further insight into the interpretation of the trends.

These estimates are displayed in Figure 7. Again we stress that prior work has not been able

to generate a natural rate estimate for as many countries over as long a period in the postwar

period, but we can still discuss the relevance and plausibility of these estimates as compared to

prior consensus views and also by direct comparisons in places of overlap with other estimates in

Figure 8 and Figure 9.

In this section we now discuss these comparisons, before moving on to evaluate how well

our estimates conform with the drivers most commonly associated with the decline in r∗, namely

slowing economic growth and demographic aging.

Overview The top panel in Figure 7 shows the natural rate estimates, and we can make several

remarks here. First, the natural rate has in general been falling over time for all countries, although

not monotonically, and some reversals are larger than others. This finding is consistent with previous

historical works documenting the long-run decline of real rates over the long to very-long run (Jordà,

Knoll, Kuvshinov, Schularick, and Taylor, 2019; Rogoff, Rossi, and Schmelzing, 2022). As recently as

the 1990s, natural rates in these countries were between 100 and 600 bps. At the end of the sample 8

out of 10 countries have a negative r∗, and the other 2 are between 0 and 50 bps.

Taking a closer look at the evolution across time in natural rates, we do however see a general

shift upwards across all countries in the 1960s–1980s period, even if the timing varies from one

country to the next. And perhaps the most dramatic coherence across countries is seen in the sharp

downward trend in r∗ that is set in motion around the year 2000. This was previously noted for

one or two countries, starting with the U.S., and various explanations have been offered for that

phenomenon, including not just slower growth but also demographics, the EM savings glut, the

falling price of investment, among others (Rachel and Smith, 2017; Del Negro, Giannone, Giannoni,

and Tambalotti, 2017; Rachel and Summers, 2019; Cesa-Bianchi, Harrison, and Sajedi, 2022). What

we see here is how broadly that phenomenon was experienced across a wide swath of advanced

economies.

Lastly, we see that the dispersion of natural rates across countries also falls over time At the start

of each country’s sample period, in the 1970s and 1980s, the natural rate estimates range widely

between about 100 and 800 bps. But by the end of the sample in all 10 countries have a natural rate

sit in a narrower interval between –100 and 50 bps. This would be consistent, mechanically, with

convergence in either the g or z terms — which we discuss in a moment — and also aligns with the

idea that under common forces (of demography or via globalization in technology or finance), in

the long run, countries may be under the sway of a common global factor in r∗ (Clarida, 2019).
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Figure 7: Trends in r∗, g, and z in international data, our estimates

The top chart displays our estimates of the natural rate r∗, the middle chart trend growth g, and the bottom
chart the estimates of the headwinds term z, where r∗ = g + z, by definition.
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Figure 8: Trends in r∗, our estimates versus HLW

The charts display the four HLW estimates of the natural rate r∗ and our 2-sided estimates.
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The middle panel in Figure 7 shows the evolution of growth rates g. We can see two immediate

implications from this chart. First, in line with common wisdom, trend growth rates have been

declining inexorably during the postwar decades, with rare reversals. They have also tended to

converge, but started to do so earlier than any convergence in natural rates. Thus, whilst some of

the variation in the country-level natural rates r∗ across space and time can be explained by g, this

is by no means the entire story and so much work is left for the residual.

The final panel in Figure 7 shows the important role played by the non-growth headwinds term

z in accounting for variations across time and space in natural rates. Most striking here is the rise in

this z term, often more than offsetting the decline in growth g during the 1970–1990 period, which is

why natural rates tended to rise in that time frame. In contrast, the z term reaches a synchronized

peak around 1990, and then enters a secular decline in all countries. This captures a global bond
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Figure 9: Trends in r∗, our estimates versus other estimates

The charts display various estimates of the natural rate r∗ and our estimates. Our estimates are shown
in both 2-sided (solid line) and 1-sided (dashed line) forms. Other estimates are shown as a scatter using
the following abbreviations in the legends: GJST = Grimm, Jordà, Schularick, and Taylor (2023); DGGT =
Del Negro, Giannone, Giannoni, and Tambalotti (2017) for USA and Del Negro, Giannone, Giannoni, and
Tambalotti (2019) for others; HLW = Holston, Laubach, and Williams (2017); LM = Lubik and Matthes (2015);
BOJ = Okazaki and Sudo (2018); RBA = McCririck and Rees (2017).
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Figure 9: Trends in r∗, our estimates versus other estimates (continued)
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Figure 9: Trends in r∗, our estimates versus other estimates (continued)
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Figure 9: Trends in r∗, our estimates versus other estimates (continued)
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Figure 9: Trends in r∗, our estimates versus other estimates (continued)
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market “conundrum” — to use Greenspan’s term — whereby the decline in real rates in the last

thirty years takes on a pronounced turn beyond what can be explained by growth fundamentals

alone. Seen here, the extra headwinds in the form of a fall in z were experienced not just in the U.S.

but across all advanced economies, consistent with trends, like demographics and investment prices,

that were witnessed in all of these countries.

Comparison with HLW and other estimates As we have noted before, for cross-country

estimates, Holston, Laubach, and Williams (2017) [HLW] is the earliest, best-known, and most

widely-used precursor of our work, a study which provided natural rate estimates for 4 countries.

So as a first sense check we compare our natural rate estimates to HLW for the U.S., U.K., Canada,

and the Euro Area (which we compare to our series for Germany, France, and Spain).

In Figure 8 we see that our U.S. natural rate series is close the the HLW series in shape but is

in general at a much lower level. In the 1970s and again in the 2000s, our series is about 100–200

bps lower and towards the end of the sample we find a negative natural rate when the HLW series

is still positive. In the Euro Area, our series shows more of a rise and fall pattern, and generally

finds a much steeper decline after the 1990s, with natural rates turning negative in France and

especially Germany. For the U.K., we see an upswing and very large downswing in natural rates in

the 1990s and afterwards, and the natural rate drops to zero at the end, about 200 bps below the

HLW estimate. A similar decline is seen for the case of Canada, as well as much lower natural rates

earlier in the sample. We surmise that our estimates differ from the HLW because we are using

information from the bond market at the longer end curve (via ȳ), so our somewhat different trends

may arise because of substantial variations in the headwinds component z could become apparent

in longer-maturity bonds, with larger shifts in average yields than are implied from a model linked

to GDP growth and short rates alone.

In Figure 9 we take comparisons much further and utilize all of the current natural rate estimates

that we could find for all 10 of the countries in our sample. From this exercise we conclude that our

estimates are not wildly out of line with previous work, but there are some notable difference in

amplitude and timing. The other estimates are, in addition to HLW, as follows:

• GJST = Grimm, Jordà, Schularick, and Taylor (2023) for all 10 countries;

• DGGT = Del Negro, Giannone, Giannoni, and Tambalotti (2017) for USA and Del Negro,

Giannone, Giannoni, and Tambalotti (2019) for 6 others;

• LM = Lubik and Matthes (2015) for USA;

• BOJ = Okazaki and Sudo (2018) for JPN; and

• RBA = McCririck and Rees (2017) for AUS.

In general, our estimates suggest that the decline in natural rates over the last 50 years has been

somewhat larger in terms amplitude and somewhat later in terms of timing, as compared to other
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estimates. In almost all cases, we find the sharpest declines do not really commence until around

the 1995–2005 window, with the exception of Japan where as is well understood, the downswing

had begun much earlier. In Europe, the trends in Germany and Spain begin the decline earlier than

others, but for other European countries the main shift starts a bit later, and the peak is maybe even

later still in Britain and the three New World economies.

The global and local components of natural rates For further insight into the global pattern

of natural rates over time we do a mechanical decomposition into global and local components. Let

r∗Wt denote the cross sectional average 1

N ∑i r∗it in period t of our natural rate estimates in N = 10

countries.

Then,

r∗it = r∗Wt︸︷︷︸
global component

+ r∗it – r∗Wt︸ ︷︷ ︸
local component

and again we can use the Fields (2003) regression decomposition method for R2 to attribute

contributions of explanatory power to each term. For clarity, we do this exercise decade by decade.

And since R2 is one we opt to scale by the standard deviation of r∗it, so that contributions to the

amplitude of natural rates can be compared over time in absolute terms.

The results shown in Figure 10 are striking. From the 1970s to the 1990s, variations in natural

rates were dominated by local rather than global factors, and in absolute terms they were large. In

the 2000s and 2010s, variations were perhaps one-half due to global factors, but in absolute terms

they were smaller.

Figure 10: Decomposition of r∗: local versus global components

The chart displays the Fields (2003) regression decomposition of natural rates decade by decade, scaled by the
standard deviation of r∗it. See text.

0

.005

.01

.015

.02

σ(
r* )

 d
ec

om
po

si
tio

n

1973–1982* 1983–1992 1993–2002 2003–2012 2013–2022
*Unbalanced panel

r* decomposition, panel, by decade: Global component Local component

42



We think this aligns with intuition, both in terms of the likely deep drivers of natural rates,

and also the scope for global arbitrage. Before the 1990s, countries were hit by more idiosyncratic

growth shocks and were also in different demographic trajectories. As we show later, empirically, as

well as theoretically, these drivers matter for r∗. But after the 1990s all advanced countries followed

more similar trajectories of low growth and aging demographics. In addition, financial globalization

was weak before the 1990s, so the extent to which capital could flow, and interest rates could be

arbitraged, as limited. Both explanations would lead us to expect larger differences in natural rates

further back in time.

8. Major drivers of natural rates: growth and demography

In a final exercise we explore whether our new natural rate estimates are consistent with some

of the prevailing explanations in the literature for the secular decline of natural rates over recent

decades. The two drivers we focus on are the rate of growth and demography, since these have

been found to be consistent and dominant forces in many studies that have examined recent real

rate trends (Carvalho, Ferrero, and Nechio, 2016; Rachel and Smith, 2017; Rachel and Summers,

2019; Eggertsson, Mehrotra, and Robbins, 2019; Cesa-Bianchi, Harrison, and Sajedi, 2022; Kopecky

and Taylor, 2022) The literature has used a variety of calibrated equilibrium models (PE and GE) as

well as reduced-form saving-investment models, to argue for the importance of these channels. But

given the extent of our new natural rate estimates for 10 countries over many decades, we explore

the question with a direct panel econometric approach.

Panel estimating equation We suppose the headwinds term z depends on growth g, demogra-

phy summarized by the age structure D, and other factors X, so that r∗ = g + z = f (g, D; X). We will

assume growth affects r∗ linearly as ϕg , but not necessarily with a unit coefficient, since theory is

ambivalent on this point. In a standard neoclassical model, as noted, the coefficient c = 1/σ depends

on the EIS parameter; but in life-cycle OLG models, growth can affect aggregate saving, since, all

else equal, slower (higher) growth implies a need to save (borrow) more for smoothing, since less

(more) future income will materialize; conversely, buffer-stock motives may work in the opposite

direction; on the investment side, all else equal, lower growth entails less investment demand.

Overall, higher growth g may be associated with higher natural rates, with ϕ > 0 as saving supply

falls and investment demand rises. As for the demography channel, an OLG model with variable

income and labor participation across ages will also generate aggregate saving that depends on the

population age shares, with young-adults saving little, or borrowing, middle-age adults saving a lot,

and the older workers and retirees holding on to their wealth to provide retirement income in a

world of stochastic mortality and, possibly, also bequest motives. On the investment side, we also

expect more workers (non-workers) to be associated with higher (lower) investment demand.10

10Various works have examined demographic impacts on consumption, saving and investment quantities.
See, e.g., Aksoy, Basso, Smith, and Grasl (2019) and Kopecky (2023).
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These modeling assumptions align with the standard intuition that, all else equal, the age

structure D will have an inverted-U shaped relationship with r∗, with net positive effects from

younger-age lower-wealth people in work, and net negative effect from older higher-wealth people

near to or in retirement. As we see below, this intuition is consistent with the empirical evidence.

We want to estimate the empirical relationship between growth, population structure, and r∗. A

saturated approach would be to estimate a panel country fixed-effects model

r∗it = ai + ϕ git +
J

∑
j=1

αjpj,it + θXit + ϵit , (33)

where pj,it is the population age share in bin j, in country i, at time t, and wlog the αj sum to one.

For parsimony, and to avoid overfitting to a large number of age shares, we follow Kopecky and

Taylor (2022) and fit a Fair and Dominguez (1991) cubic polynomial function to a finite set of age

bins j = 1, . . . , J, with J = 12, with αj are fit with a polynomial αj = γ0 + γ1j + γ2j2 + γ3j3, with γ0

obtained from the restriction that the αj sum to one.

We then define

D
1,it =

 J

∑
j=1

j pj,it –
1

J

J

∑
j=1

j

 , D
2,it =

 J

∑
j=1

j2 pj,it –
1

J

J

∑
j=1

j2

 , D
3,it =

 J

∑
j=1

j3 pj,it –
1

J

J

∑
j=1

j3

 . (34)

An equivalent linear estimating equation, absorbing all other factors X into the error term, is then

r∗it = ai + ϕ git +
3

∑
k=1

γkDk,it + ϵit , (35)

and estimates of the αj terms can be recovered from the estimated γk.

Model estimates, drivers and predictions To estimate this equation we take our annual

natural rate estimates r∗it for all 10 countries, along with growth rates git, over the post-1970 sample

and merge them with annual UN population age-structure estimates, as used in Kopecky and Taylor

(2022), from which the D
1,it, D

2,it, D
3,it terms can be built. This yields an almost-balanced panel of

about 500 observations. The resulting estimates are shown in Table 8 and the implied αj effects by

age bin are shown in Figure 11.

The baseline model in Column (1) fits will with an R2 of 0.62. A model with quartic and quintic

polynomial terms was found to fit no better, as those higher-order terms were not statistically

significant, so we stick to the cubic approximation. The cubic term is small and positive, and so in

the relevant range the approximation is close to quadratic, but flatter to the right as j increases. The

coefficient on growth is positive, as expected, but the effect is less than one-for-one. The age effects

follow the expected inverted-U shape, with young adults ages 20–49 having a net positive effect

on r∗, but older adults 55+ having a net negative effect. To guard against spurious regression with
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Table 8: Empirical model of natural rates using Fair and Dominguez (1991) age effects specification

(1) (2)
r∗ r∗

g 0.594
∗∗∗

0.573
∗∗∗

(0.055) (0.053)
D1 0.173129

∗∗∗
0.172479

∗∗∗

(0.023356) (0.022492)
D2 –0.022371

∗∗∗ –0.017606
∗∗∗

(0.004696) (0.004581)
D3 0.000687

∗∗
0.000350

(0.000254) (0.000250)
Time trend –0.000384

∗∗∗

(0.000059)
Constant 0.0334

∗∗∗
0.0424

∗∗∗

(0.0028) (0.0030)
N 543 543

R2
0.674 0.698

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure 11: Implied αj effects of population share on r∗ by age bin
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trending variables in Column (2) we also estimated the model with a time trend (year minus 2000)

but the results were very similar, with a mild global time trend of minus 3.84 bps per year.

We now want to ask how well this empirical model can fit the observed historical data. The

evolution of the right-hand-side variables since 1970 can tell us right away that the model has the

potential to work, as is well known. Looking at these underlying drivers in Figure 12 and Figure 13,

the patterns are clear and consistent. Over 50 years, the rate of growth in the advanced economies

steadily declined, with some cross-sectional timing variation. And, over those same 50 years, the

over 55 age-share in the advanced economies steadily rose, again with some timing variation. In

both cases, the trends become stronger and more uniform across countries from the 1990s onwards.

And in both cases, the trends were most extreme in Japan, as is also well known.

To evaluate the fit, we take the model and compare the actual and fitted values of r∗it. For clarity,

we demean by country, and aggregate observations into quinquennial averages. The results are

shown as a scatter plot in Figure 14. Here countries move from top right towards bottom left, over

time, although some reversals happen along the way as growth and demographic factors fluctuate.

What might be surprising is that the model fit is quite respectable. The correlation of actual

and fitted natural rates is about 2/3, as is the slope of the line of best fit for these data (β = 0.66, as

shown). In Japan both the actual and fitted natural rate fell by about 650 bps. The fit is almost exact,

and close to the 45-degree line, for the case of Japan, suggesting a close to 100% explanatory power.

In other countries the decline is 300 bps or less, and shallower slope allows that other factors may

have played a minor contributing part to the decline in r∗.

Thus, in our new and large sample of annual r∗ estimates for 10 advanced economies, across

time and space we find a strong role for growth and demography as drivers or declining real rates

in our empirical model, which serves to corroborate and extend previous theoretical decompositions

based on “global” natural rate estimates built for a single group aggregate of advanced economies

(cf. Rachel and Summers, 2019; Cesa-Bianchi, Harrison, and Sajedi, 2022).

9. Conclusion: Alternative histories of the global bond market

The finance approach to interest rates uses term-structure models of the yield curve but excludes

macro factors. The macro approach to interest rates in the Wicksellian tradition downplays finan-

cial market information. Both omit potentially valuable information and lead to a puzzle with

contradictory interpretations of recent bond market trends.

We propose a bridge between these approaches and utilize both macro and financial market

information in an encompassing model. Returning to the puzzle identified in section 2 via the

limiting decomposition equation Equation 1, in Figure 15 we reconsider long run trends in light

of our new natural rate estimates. Recalling the notation f – π – r∗ = Γ, we plot forward rates

(10y-10y), then we subtract inflation and the natural rate to infer the proxy limiting risk premium

term, showing all these time series for all 10 countries, along with y, the corresponding nominal

10-year zero coupon yield, which tends to track the forward rate over long periods.
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Figure 12: Trends in g in each country after 1970
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Figure 13: Trends in the over-55 age share in each country after 1970
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Figure 14: Actual and fitted natural rates from the empirical model after 1970
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These results point towards a new historical narrative of the bond market over 50+ years that

tells a somewhat different story. Take the U.S., where yields have often been seen as being driven

by falling inflation and bond risk premia since the peak of inflation circa 1980. But as we saw, that

interpretation has rested on finance models of risk premia that exclude macro factors (e.g. Adrian,

Crump, and Moench, 2013), and the same issues arise in other countries traditional histories. Yet

here, bringing macro factors to the fore, we obtain a picture of mostly flat risk premia over time in

the U.S., as seen in the figure, and instead a more dominant role for the downward trend in the

natural rate. The same change of story applies in general to the other advanced countries, where

allowance for falling natural rates in this decomposition also tends to leave less variation to be

accounted for by the residual risk premium proxy: compare the red dashed line (f – π) and the

orange dotted line (f – π – r∗ = Γ).

In the process of trend construction, we showed how these findings rest on a macro-finance

modeling framework that delivers objective improvements in model performance. Our 2-trend

market-implied estimates deliver better yield regression fit and better excess return forecasts than 0-

and 1-trend models. This holds in-sample and out-of-sample. These estimates also differ from both
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Figure 15: Resolution of the puzzle: forwards, macro trends, and the residual
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the prior macro and finance approaches, but they resolve the puzzle by coming down closer to the

macro view.

Finally, we stress that our natural rate estimates have trends and turning points much like

consensus macro estimates, and they tend to converge over time to a common path, but they

differ in being typically somewhat lower in the recent years that many other estimates. We find

bigger “headwinds” with natural rates converging near zero or even negative in all 10 countries by

2020, intensifying concerns about secular stagnation and proximity to the effective lower-bound on

monetary policy in advanced economies. Mapping our estimates of the natural rate into growth and

demographic drivers, we find that these two contributing factors can explain most of the decline

seen since the 1970s. Going forward, economic and population projections look stable, and forecasts

of continued slow growth and further aging in the advanced economies in coming decades would

mean that natural rates will remain lower for longer absent any other major shocks.
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A. Appendix

Bayesian estimation of the state-space model
We estimate the model using Bayesian inference. First, Bayesian methods are a potent framework to
handle latent variables in state-space models as the one presented here. Second, it allows us the use
prior distributions to regularize the estimation of the unobserved low-frequency macroeconomic
and high-frequency financial drivers in the model. In particular, it allows us to impose priors that
ensure that the headwinds factor, zt+1, captures structural macroeconomic phenomena.

Bayesian inference constructs a posterior distribution p(θ|Y) by combining a likelihood p(Y|θ)
and prior distribution p(θ) as follows

p(θ|Y) =
p(Y|θ)p(θ)

p(Y)
(36)

where Y is the set of observations, and the marginal data density p(Y) is a normalization constant
independent of the estimated parameters θ. Since we cannot easily compute moments of the
posterior p(θ|Y) or directly sample from it, we use a random-walk Metropolis-Hastings (RWMH)
algorithm, a Markov chain Monte Carlo (MCMC) method, to sample from the posterior p(θ|Y).

We then estimate the state-space model using the RWMH algorithm for each country separately.
The algorithm builds a Markov chain of posterior draws {θn}N

n=0
which give rise to a sequence of

posterior distributions {pn(θ|Y)}N
n=0

, with the last draw in the sequence being equal to the posterior
distribution. At each step n, the algorithm propagates the parameter vector, or the particles θn–1,
such that over the whole sequence, the parameter vector {θn}N

n=0
represents the target distribution

p(θ|Y). Thus, at each step n, the algorithm draws a new proposal particle ϑn, conditional on the
previous particle θn–1, the set of observations Y, and the proposal density q(·|·). We accept step n
draw ϑn with probability

α
(
ϑn|θn–1

)
= min

{
p(Y|ϑn)p(ϑn)/q(ϑn|θn–1)

p(Y|θn–1)p(θn–1)/q(θn–1|ϑn)

}
, (37)

where the step n likelihood function p(Y|ϑn) is computed using the Kalman filter on the state-
space representation of the model determined by equations Equation 30 and Equation 31. The
RWMH algorithm sets the proposal distribution to

q
(
·|θn–1

)
= N

(
θn–1|c · Σ̂

)
. (38)

Formally, the algorithm proceeds as follows

1. Initialization: The initial particles are drawn from the prior distribution θ0 ∼ p(θ).

2. Recursive updates: For n = 1, ..., N recursively update the particle sequence

(a) Draw step n proposal particles ϑn from q
(
ϑn|θn–1

)
(b) Accept new draw with probability α

(
ϑn|θn–1

)
(c) Update the particle sequence: If accepted θn = ϑn, else θn = θn–1

3. Remove the burn-in samples and construct posterior estimates as follows

h̄ =
1

N

N

∑
n=1

h(θn)
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Σ̂ is estimated as the diagonal matrix with entries calculated from the empirical variance of the
drawn parameters for the first 1000 draws. We set the constant c = 0.075 to target an acceptance rate
of 23.4 percent, as it is the standard for the optimal acceptance target in Metropolis algorithms.

Our estimation is calculated with a number of simulations equal to 50,000, and assumes the
same prior distribution for all countries. We run our RWMH in four parallel chains, which gives us
a total of 200,000 iterations for the posterior distribution estimation. Using the posterior mean of
the obtained particle sequence as the estimator for the parameter vector θ, we rerun the state-space
model to construct our results. However, we also experimented with using the median and mode
which did not affect the results.

For each country, we use as input information the inflation expectations measure π∗
t and the

real GDP series. We obtain the trend GDP series by applying the HP filter over quarterly GDP data
with a smoothing parameter equal to 25, 600 = 1600 · 16. The series thus obtained is interpolated to
monthly data, and the trend growth rate gt is then calculated. Since a filter applied over the entire
history of the series would contain forward-looking bias, we have been careful to recalculate the HP
filter only with as-of-date information, allowing for the effect of late release in GDP data (that is, we
do not assume that GDP figures are available at the end of the corresponding quarter, but at the
usual dates at the end of January, April, July and October).

Our identification assumption is r∗ cointegrates with the trend GDP series, and that the difference
has mean reversion properties compatible with a half-life within business cycle frequency, and not
higher. This avoids the problem of r∗ acting as a residual term that would capture high-frequency
oscillations in bond markets.

Prior specification
We specify tight priors for the parameters of the headwinds factor zt, and relatively loose priors for
other parameters in the model, as detailed in Table A.1. As described above, this way we impose
the conjecture that the headwinds factor captures structural macroeconomic phenomena with a
frequency similar to that of macroeconomic series. The prior distribution is common for all countries,
except for the the headwinds prior volatility σz which we set as outlined below.

• The persistence parameter ρz is chosen to be close to unit root, but within the unitary circle to
prevent an explosive solution. Its magnitude is taken to match a half life of around 60 months.
This keeps the headwinds factor within business-cycle frequency and not higher. In a freer
setting, this term would act as a residual in the Kalman system and would tend to capture
high-frequency variations that are hard to identify given the data.

• The volatility of the headwinds factor σz is set to match a relatively small range of variation
for the frequency of the headwinds factors. For each country, the prior volatility is chosen
based on the relative yield and GDP volatility of the respective country in order to normalize
the range of variation in the headwinds frequency. While the drawing process allows for
certain range around the 60 months business-cycle frequency, it imposes the view that this
variable should not deviate largely from that horizon. Similarly, we impose relatively tight
priors on σy.

• The model coefficients br∗ , ay, and bπ are set to have large variances with coefficients centered
around values that calibrate the U.S. experience relatively well in a simple regression context.
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Table A.1: Prior specification for model parameters

Parameter Distribution Mean Variance
ρz Beta 0.997 2.00×10

-6

ρy Normal 0.9 0.025

σz Log-Normal σ̄z×10
-4

1.00×10
-5

σy Log-Normal 1.00×10
-3

5.00×10
-4

ay Normal 0.00 7.50×10
-4

bπ Normal 1.25 0.10

br∗ Normal 0.50 0.05

Note: Here σ̄z is a country-specific normalization as we have described. See text.
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