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Abstract

I develop a theory of joint production and apply it to data on US manufacturing firms
to estimate aggregate economies of scope—the cross-industry elasticity of prices to output.
Increased export demand in one industry raises output in a firm’s other industries the more
that these industries share knowledge inputs such as R&D, software, and management. I estimate
that, different from other potentially shared inputs, knowledge inputs are scalable and partially
non-rival within the firm. Prices in one industry fall by on average 0.4 percent for every 10
percent increase in output in other industries. Such economies of scope constitute one-quarter
of aggregate increasing returns but manifest disproportionately among knowledge-proximate
industries. The resulting industry linkages imply large spillover impacts of recent US-China

trade policy on producer prices.
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Introduction

Multi-industry firms produce three-quarters of US manufacturing output. What explains this
pattern of joint production, and how do production decisions within such firms determine the
aggregate impact of industry-level shocks such as tariffs or production subsidies? Despite a mature
literature on the theory of joint production,! there is little systematic evidence on how output in
one industry of a firm affects its marginal costs in another industry. Quantitative models in trade
and macroeconomics assume that firms operate nonjoint, industry-specific production functions
and remain silent on the aggregate consequences of joint production.?

This paper combines new theory and evidence to show that joint production within the firm
generates economies of scope in the aggregate. On average, producer prices fall with respect to
output in not only the same industry but also other industries. I estimate that such economies of
scope are due to the scalability and partial non-rivalry of shared knowledge-producing inputs such
as R&D, software, and management. As a firm scales up shared knowledge inputs to produce
more output in any one industry, the non-rivalrous nature of knowledge inputs also increases
output in the firm’s other industries. Economies of scope from joint production contribute to
an aggregate elasticity of prices to output of -0.04, constituting one quarter of typical estimates
of aggregate increasing returns to scale. Far from uniform, economies of scope are clustered
among knowledge-intensive industries, indicating that shocks to such industries as electronics,
aerospace and medical equipment, and navigation and optical instruments have disproportionate
and widespread impacts on the aggregate economy.

I begin in Section 1 by testing and rejecting the usual assumption that a firm’s production
technology is nonjoint. I assemble panel data from the US Economic Census between 1997 and
2007 on the sales and exports of all US multi-industry firms in each of 206 manufacturing industries.
I leverage variation in firms” exports by product and destination country along with changes in
the size of these markets to construct plausibly exogenous demand shifters for each industry of
the firm. If the production technology were nonjoint, a demand shock in one industry of a firm
would have no impact on its sales in any another industry.

Instead, I find that a positive demand shock in one industry of a firm increases its sales
in another the more that the two industries share knowledge inputs. I define knowledge inputs
based on the NAICS classifications of headquarter services, professional and technical services,
information, and the leasing of intangible assets, and I measure input-proximity using bilateral
input-output expenditure data from the BEA. The cross-industry impact of demand shocks on sales
increases with proximity in the use of knowledge inputs but not proximity in any other type of

input, such as agricultural or manufactured intermediates. These findings suggest that knowledge

'A production technology is nonjoint if and only if the cost function can be written as C(q1, .., q7) = Xj=1,...; Cj(q;)
(see Shephard, 1953; Diewert, 1973; Lau, 1972; Hall, 1973; Baumol et al., 1982)

2For example, this assumption is adopted in influential models of firm heterogeneity in international trade (Bernard
et al., 2010; Mayer et al., 2014), macroeconomics (Klette and Kortum, 2004), as well as industrial organization (Foster et
al., 2008; De Loecker et al., 2016).



inputs have distinct properties in production, consistent with recent evidence on their sharability
and scalability within the firm (Atalay et al., 2014; Haskel and Westlake, 2017; Ding et al., 2022).

To interpret the empirical evidence, in Section 2, I develop a quantitative model of joint produc-
tion where heterogeneous firms produce potentially multiple outputs using various inputs over
two stages. In the first stage, a firm decides how much knowledge to accumulate in each of its in-
dustries. Accumulated knowledge is a proxy for the net contribution of any firm-wide inputs such
as R&D, software, management, or physical capital that are shared across the firm’s industries. In
the second stage, the firm takes knowledge as given and uses a variety of industry-specific inputs
to generate final output in each industry facing CES demand under monopolistic competition.
Whereas the firm’s second-stage production decisions are separable by industry, the firm’s use of
shared inputs in the first-stage generates interdependence across industries.

Two key properties of shared inputs—scalability and rivalry—parametrize interdependence in
costs and generate cross-industry elasticities of sales to demand shocks that are heterogeneous and
unrestricted in sign. The more scalable and the less rival are shared inputs, the more that a positive
demand shock in one industry of a firm increases output in another. Consider how a shared input
like R&D is used within General Electric in response to increased demand to one of its industries,
aviation equipment. GE would want to scale up its overall R&D expenditures, for example hiring
more scientists to increase the hot gas path of its aviation turbines. And the less rival is R&D
within the firm, the more likely are the additional scientists to create ideas (e.g., high-sensitivity
scanning) that also improve productivity in GE’s MRI scanners, or even to start up entirely new
industries. However, if it is difficulty to scale up R&D on the margin, and if R&D is rival in use,
increasing the output of aviation turbines would require R&D resources to be reallocated from
other divisions of the firm, thereby reducing output in other industries.

I parametrize scalability and rivalry as elasticities that potentially vary across different types
of shared inputs. On net, output among industries are likely complements whenever their shared
inputs tend to be more scalable and less rival. Expanding output in one industry would lower
marginal costs and increase output in another, just like the example with aviation and healthcare
equipment, both of which are R&D intensive. In contrast, output among industries are likely
substitutes when their shared inputs tend to be less scalable and more rival. Consider, for example,
a shared input like real estate, which enters intensively in the production of glass and metal
hardware. If real estate is harder to scale and more rival in its use within the firm, expanding
output of glass would come at the expense of metal hardware. Technology coefficients in the model
explain fundamental differences across industries in how much they benefit from different types
of inputs (like real estate or R&D) and allow some industry pairs to be complements in production
while others substitutes.

In Section 3, I leverage variation within the firm over time to estimate the joint production
technology. In the same way that demand shocks identify the firm’s supply curve in the single-
industry case, in my multi-output setting demand shocks identify both own- and cross-partial



derivatives of the firm’s cost function (and thus the scalability and rivalry of shared inputs). I
express this identification logic using micro moment conditions that set the same- and cross-
industry covariances of demand shocks and sales growth within the firm to equal that in the
model (conditional on firm observables). Whereas a firm’s same-industry elasticities of sales to
demand shocks identify input scalability, cross-elasticities identify input rivalry.

I estimate these micro elasticities together with other macro-level model parameters under a
nested fixed point algorithm. Conditional on micro parameters (scalability and rivalry of shared
inputs and parameters governing firm heterogeneity), I solve for the macro aggregates in the model
that exactly replicate industry-level data in each cross-section. For example, data on industry-level
output identify residual profitability in the model, and data on bilateral industry input expen-
ditures identify technology coefficients behind shared inputs. In turn, these macro parameters
influence the value of micro moment conditions. Changes in industry residual profitability influ-
ence the model’s predictions for firm sales growth. Technology coefficients allow me to separately
identify the scalability and rivalry of knowledge inputs from other types of shared inputs like
physical capital.

I estimate that knowledge inputs are scalable as well as partially non-rival within the firm.
My estimates of scalability are consistent with Aghion et al. (2019) and Lashkari et al. (2019),
who find that French firms increase R&D and IT expenditures in response to positive demand
shocks. Whereas this existing literature treats the entire firm as the unit of analysis (and models
production at the level of the firm), my concurrent estimates of input non-rivalry imply that
output is complementary across knowledge-proximate industries within the firm.3 In comparison,
I estimate that other shared inputs are less scalable and more rival, which causes output across
industries that do not share knowledge inputs to be potentially substitutes. The co-existence of
both complementarities and substitutabilities imply that joint production is responsible for both
economies as well as diseconomies of scope.

In Section 4, I use these estimates to quantify the macroeconomic implications of joint pro-
duction. I compute the aggregate elasticity of the producer price index in any one industry to
demand shocks in any other industry. In general equilibrium, any initial industry demand shock
could change firms’ joint production decisions, affect price indices and residual demand in other
industries, and thus trigger yet further responses among other firms. I show, however, that all
of these percolation effects can be expressed by the inverse of a matrix defined by parameters of
the joint production technology: the scalability and rivalry of shared inputs in the first stage and
same-industry production returns to scale in the second stage.

Under a calibration to US manufacturing data from 2017, I simulate a proportional increase

3Numerous papers study the effects of specific knowledge inputs in isolation, for example R&D in Aw et al. (2011),
marketing in Arkolakis (2010), management in Bloom et al. (2019), and ICT in Fort (2016). These papers all focus on
the scalability of knowledge inputs in single-output production rather than their rivalry in use across multiple types of
output. My results are also consistent with Hsieh and Rossi-Hansberg (2020), where firms can lower their marginal
costs across all sectors by paying large fixed costs of ICT investment.



in foreign demand in each industry and decompose the equilibrium change in the US producer
price index into (i) same-industry increasing returns to scale and (ii) cross-industry economies of
scope. I find that both same- and cross-industry elasticities of price to output are on net negative.
My estimates of same-industry increasing returns to scale match those in recent papers such as
Bartelme et al. (2019) and Lashkaripour and Lugovskyy (2019). However, negative cross-industry
price elasticities of output are unique to my model of joint production where shared knowledge
inputs are scalable and partially non-rival within the firm.

On net, economies of scope from joint production contribute to an aggregate elasticity of prices
to output of -0.04, one-quarter of aggregate increasing returns to scale. Economies of scope manifest
disproportionately among knowledge-proximate industries and overwhelm mild diseconomies of
scope among industries that share less knowledge inputs. For example, a demand shock in the
computer and peripherals industry that raises output by 10 percent lowers prices in other industries
by on average 1.4 percent. In contrast, in the production of flavoring syrup, the industry with the
highest diseconomies of scope, a demand shock that raises output by 10 percent only raises prices
in other industries by on average 0.1 percent.

As a proof of concept, I show that joint production changes the consumer price impact of
the recent US-China trade war compared to conventional quantitative models (with nonjoint,
linear production) surveyed in Costinot and Rodriguez-Clare (2014). Endogenous producer price
declines under joint production mutes the direct adverse CPI-impact of unilateral tariffs on Chinese
imports. By expanding US firms” market access at home, protection triggers scale and scope
economies that lower US producer prices by 0.37 percent. The US manufacturing CPI rises by only
0.5 percent in my model compared to 0.76 percent under linear production. However, while joint
production mitigates the harms of domestic import protection, it amplifies the harms of retaliatory
tariffs by China. Retaliatory tariffs restrict US exporters’ market access in China and raise producer
prices, offsetting more than half of the producer price decline triggered by unilateral US import
tariffs. The endogeneity of producer prices under joint production suggest that tariff policy and
market access are determinants of a country’s comparative advantage and product mix, especially

among knowledge-proximate industries.

Related Literature

This paper relates to a vast literature on multi-output firms. Related papers in international trade
have modeled interdependence across a firm’s products through demand-side cannibalization
(e.g., Eckel and Neary, 2009; Feenstra and Ma, 2007; Dhingra, 2013) and span-of-control (e.g., Nocke
and Yeaple, 2014; Bernard et al., 2018). Whereas these models predict negative and symmetric
cross-product impacts of demand shocks on sales (or entry), I provide new evidence that cross-
industry impacts increase with knowledge input proximity. A different strand of empirical research

studies spillovers within internal firm networks (e.g., Giroud and Mueller, 2019) but does not focus



on industry heterogeneity or consider joint production as the mechanism.* On the other hand,
papers in industrial organization and agricultural economics provide more flexible estimates of
joint production but in settings limited to only two or three types of outputs.®

I contribute to these strands of the literature by developing and estimating a tractable, quanti-
tative model of joint production across 206 specific manufacturing industries. My model places no
restrictions on the sign, magnitude, or symmetry of cross-industry price elasticities of supply, and
endogenizes both extensive and intensive margin responses within heterogeneous firms. Whereas
prior work dating to Penrose (1959), Gort (1962), and Rubin (1973) have proposed that knowledge
generates economies of scope within the firm, I provide the first quantitative framework where
properties of these shared inputs (among others) can be estimated in the data.® Relative to existing
stylized models cast under perfect competition (e.g., Jovanovic, 1993; Klette, 1996), I rationalize the
heterogeneous responses of profit-maximizing firms under monopolistic competition. This par-
ticular structure of my model is advantagenous for estimation. Data on firm sales, demand shocks
and input-output tables suffice for identifying the joint production technology. My estimation
strategy contrasts with traditional approaches that require real measures of inputs and outputs
at the level of the firm (e.g., following Fare and Primont, 1995), where the high-dimensionality of
cross-elasticities would be computationally infeasible in my empirical setting with 206 industries.

My estimates of the joint production technology imply quantitatively large aggregate economies
of scale and scope. These results contribute to a literature in macroeconomics estimating returns to
scale. Early research by Hall (1973) provides an econometric framework for testing joint production
using macro data, but subsequent empirical findings have remained inconclusive (see, e.g., Burgess,
1976 and Kohli, 1981, who use data aggregated to the level of two or three sectors). I circumvent
many of the challenges confronting these papers through a different micro-to-macro model and
estimation strategy. Under my estimates, economies of scope from joint production resolve the
‘aggregation puzzle’ noted by Caballero and Lyons (1992) and Basu and Fernald (1997). Aggregate
increasing returns are more than 33 percent higher than the sum of industry-level increasing
returns to scale precisely because industry-level estimates miss cross-industry price declines in
equilibrium.

Besides aggregate price impacts, my quantitative model generates predictions for how a shock

in any one particular industry affects outcomes in another. I offer a wholly technological explana-

*For example, mechanisms for intra-firm spillovers range from internal capital markets (Stein, 1997; Lamont, 1997),
multinational knowledge transfer (Keller and Yeaple, 2013; Cravino and Levchenko, 2016; Bilir and Morales, 2019),
vertical supply linkages (Desali et al., 2009; Boehm et al., 2019a), to distance (Giroud, 2013; Gumpert et al., 2019). None
of these papers consider industry heterogeneity in the use of inputs.

SFor example, Dhyne et al. (2017) estimate pairwise relationships between manufacturing industries, and Grieco
and McDevitt (2016) estimate tradeoffs between the quality and quantity of dialysis care. The Cobb-Douglas functional
form in these papers, however, presumes that different types of outputs are substitutes in production. Pokharel and
Featherstone (2019) non-parametrically estimate the cost frontier but limit their analysis to four types of outputs among
agricultural cooperatives.

¢Using data from Indian manufacturing, Boehm et al. (2019b) also emphasize industry heterogeneity, although they
study the role of physical manufacturing inputs (instead of knowledge) and focus on the extensive margin (instead of
extensive and intensive margins).



tion in contrast to other papers where mechanisms external to the firm shape industry linkages. For
example, in the neoclassical trade literature that estimates similar aggregate supply functions (e.g.
Harrigan, 1997), general equilibrium factor price movements determine cross-industry impacts.
Other external mechanisms feature in research on agglomeration externalities (Ellison et al., 2010),
innovation spillovers (Bloom et al., 2013), input complementarity (Jones, 2011), and production
networks (Hulten, 1978).7 These alternative mechanisms operate across firms and would not dilute
the quantitative relevance of joint production. If anything, I find that embedding joint production
within, for example, an input-output production structure a la Caliendo and Parro (2014) more

than doubles the baseline cross-industry price elasticity of output.

1 Data and Empirical Evidence

1.1 Multi-Industry Firms in US Manufacturing

I assemble data on the universe of US manufacturing firms’ sales by industry, every five years
between 1997 and 2012. First, I obtain sales by product line at each establishment of the firm using
product trailer files from the US Census of Manufactures. Next, I aggregate sales across a firm’s
products and establishments to the level of 206 industries j € J (roughly 5-digit NAICS, the most
disaggregated level at which BEA input-output data are available).® Finally, I combine this dataset
with the Longitudinal Foreign Trade Transaction Database (LFTTD), which contains data on each
firm’s exports and imports (if any), by product and country.

Table 1 highlights the prevalence of multi-industry firms as well as their persistence over time.
One-fifth of all US manufacturers produce in two or more manufacturing industries, accounting
for a disproportionate three-quarters of manufacturing sales, exports, imports, and employment
in each year. The second and third rows of Table 1 reveal that this dominance stems not only from
each firm’s primary (highest sales) industry. Output in remaining industries within multi-industry
firms still account for more than one-quarter of the entire manufacturing sector.

Table 1 also reveals considerable limits to firm scope. The median multi-industry firm produces
in only two industries, where the two industries are sufficiently dissimilar that they belong in
different sectors (3-digit NAICS). Given the already-coarse definition of an industry (j € J is a 5-
digit NAICS code), I interpret multi-industry firm activity in my data as reflecting the production

of sufficiently distinct categories of goods (like MRI scanners versus jet engines in General Electric)

"Research on production networks (e.g. Gabaix, 2011; Acemoglu et al., 2012, 2016; di Giovanni et al., 2018; Baqaee and
Farhi, 2019; Liu, 2019; Lim, 2018) has focused on how productivity shocks propagate across industries, typically under
constant returns to scale, whereas my paper focuses on how demand shocks propagate under non-constant returns.

8By aggregating over plants and products within an industry, I abstract from the plant-dimension and product-
variety dimension of the firm, the subject of much existing research. Further, to avoid the possibility that sales in
multi-plant firms would be over-counted (relative to that of a single-plant firm) when output is shipped from one plant
for use as an input in another, I subtract intra-firm shipments from a plant’s total shipments and use the resulting value
as my measure of (external) sales. This matters little in practice because intra-firm shipments constitute a trivial fraction
(between 1 and 2 percent) of aggregate shipments in my data, consistent with Atalay et al. (2014).



Table 1: Summary Statistics on US Multi-Industry Manufacturing Firms

1997 2002 2007 2012

Share of aggregate outcome (out of all manufacturing firms)

Number of firms 19 .20 .20 .20
External manufacturing sales 74 74 74 75
in firm’s primary (highest grossing) industry 47 A48 51 52
in firm’s remaining industries 27 25 23 23
Manufacturing employment 62 63 .61 .60
Exports .84 .80 .81 .76
Imports 82 79 79 77
Mean and median scope (among multi-industry firms)
Mean number of industries 269 273 263 265
Median number of industries 2 2 2 2
Mean number of sectors 1.69 174 169 170
Median number of sectors 2 2 2 2

Notes: A firm is multi-industry if it manufactures goods under at least two distinct industry classifications in that
year. An industry is defined at roughly the 5-digit NAICS level, of which there are 206 in manufacturing. A sector
refers to a 3-digit NAICS code, of which there are 21 in manufacturing. External manufacturing sales is equal to the
firm’s gross manufacturing sales less its total inter-plant shipments reported. Manufacturing employment refers to
the firm’s employment at manufacturing establishments.

rather than closely substitutable product varieties, the subject of much existing research.’

1.2 An Empirical Test of Nonjoint Production

The cross-sectional data in Table 1 reveal nothing about whether output is jointly determined
across a firm’s industries. Such data would be consistent with modeling the multi-industry
firm as a random collection of industry lines each operating independently (i.e., under nonjoint
production, as in Bernard et al., 2010 or Klette and Kortum, 2004).

I thus turn to within-firm variation over time to test the conventional assumption of nonjoint
production. Under the null hypothesis, a firm’s sales in a given industry would increase in response
to a demand shock in that same industry but would be unaffected by demand shocks in any of its
other industries. I carry out this test using variants of the reduced-form specification in equation
(1). Tregress each firm’s sales growth in a given industry j (Alog X¢;) on its demand shock in the
same industry j (Alog S¢;t), its demand shocks in other industries k # j (Alog SJ?}.{HER), and other
controls:

Alog Xsjt = ngAMEAlog Srir + gbCROSSAlog SJ(BJ.{HER + Controlsfj ;-1 + FEjt + €¢jt, (1)

where A is a five-year first-difference operator between f and t — 1, and ¢ € {1, 2,3} maps to years

°See, e.g., Feenstra and Ma (2007), Arkolakis et al. (2019), and Macedoni and Xu (2019), who focus on interdependence
across substitutable and symmetric product varieties, highlighting a demand-side rather than supply-side mechanism.



1997, 2002, and 2007 in the data.’ Industry-year fixed effects (FE ;) control for unobserved supply
and demand shocks common to all firms within each given industry j, while Controls¢; ;-1 include
initial-period firm and firm-industry-level characteristics (such as size and export intensity) that

might explain non-parallel growth trends.

Constructing Export Demand Shocks

My identifying assumption requires demand shocks (Alog S¢k;) in any other industry k # j of the
firm to be conditionally uncorrelated with the error term € ¢;;, which comprises unobserved supply
and demand-side shocks for the same firm f in industry ;.

I construct plausibly exogenous firm-industry-level demand shocks by leveraging differential
exposure of US firms to changes in foreign market size. First, using the BACI Comtrade dataset, I
measure each foreign destination #n’s import growth in each HS 6-digit product / (excluding im-
ports from the US). I denote this five-year market-size change change by Alog IMP,,; (a destination
n and product / pair)."" Next, I average these market size shifters to the level of each industry of

each US firm using the firm’s pre-existing export shares across these markets as weights:

AlogSpje =, 1 > > Sfjuni1Alog IMPy, 2
n hEH]'

where sfjup,-1 is the firm’s exports of HS product 1 to destination 7 as a share of its total exports

*

fit-1
the firm’s export intensity in industry j in year ¢ — 1 (so firms that sell predominantly at home

in industry j (containing HS6 products i € H;), and the share s scales the demand shock by
receive appropriately smaller export demand shocks). I use data from the LFTTD on firm exports
by destination and product to construct the export intensity and share variables.

Key to my empirical strategy is that demand shocks vary across industries within the firm.
A large literature has constructed firm-level export demand shocks by aggregating over variation
across all products and destinations among a firms’ exports (see Hummels et al., 2014; Mayer et al.,
2016; Aghion et al., 2019; Garin and Silverio, 2018, who use firm-level data from various countries

in Europe). Ibuild on this approach by extracting variation at the level of different industries within

o] do not use the time period 2007-2012 because (i) the financial crisis generated correlated shocks across countries,
industries, as well as firms, jeopardizing independent variation in demand shocks, and (ii) variation in input expenditure
shares from the input-output table (which I hold fixed to 1997) used to construct other-industry demand shocks would
have become less relevant by 2012.

Changes in import growth Alog IMP,,;,; could reflect both (i) changes in the level of demand in that market, and
(ii) changes in the degree of foreign versus home producer competition in that market that affect the price index. Both
sources of variation are relevant shifters of a US firm’s residual demand, though they would move residual demand in
opposite directions. Column (1) of Table 2 shows that empirically, the first force dominates. Nevertheless, one threat
to my identification assumption is that measured changes in foreign market size could reflect idiosyncratic supply-side
shocks within a sufficiently large US exporter. For example, if GE, a major exporter, became more productive as a firm
and exported more MRI scanners to India, Indian imports of MRI scanners from non-US countries could fall . At the
same time, the firm-wide productivity shock would raise GE’s output in other industries. To mitigate this possibility,
I construct export demand shocks in equation (2) using only variation from export markets where the firm’s market
share is below 10%. None of my results hinge on this choice or on the value of the threshold.



a firm. Much to my advantage, in the US data, manufacturers have extensive export networks that
vary by destination and product. The median number of destination-product (n/) export markets
within a single industry of a firm in my sample is 6.2, and the mean is 24.1, from among over one

million potential combinations of destination-product pairs.

Parametrizing the Cross-Industry Impact of Demand Shocks: Input Proximity

Under the null hypothesis that the production technology is nonjoint, a firm’s sales in an industry

j would be unaffected by a demand shock in any other industry k # j. While in principle I can

CROSS GOTHER _
jk fit

Alog S st in equation 1), I lack statistical power given my limited sample size and sparsity in firms’

test whether all 206 x 205 pairwise cross-elasticities are zero (by setting Alog
industry presence. Instead, I test two simpler, necessary conditions for the null to hold: whether
(i) cross-elasticities are zero on average, and (ii) cross-elasticities do not vary with industries” input
proximity. A rejection of either condition suffices for rejecting the null hypothesis of nonjoint
production.

First, to test condition (i), I average demand shocks in each of the firm’s other industries k # j

using the industry’s share in firm sales as weights:

Xfkt-1
Alog SOTHER = (f—')Alo Skt (3)
g f]t qu&] Zk’ij ka',t—l g f f
The coefficient on Alog S?]fHER identifies the average cross-elasticity of sales to demand shocks.

A regression coefficient different from zero would imply that this necessary condition for nonjoint
production does not hold.

However, condition (i) is not sufficient for production to be nonjoint. Joint production can yield
positive cross-elasticities for some industry pairs and negative cross-elasticities for other industry
pairs, such that the average effect measured above will wash out to zero. Such heterogeneity could
come from properties of different types of shared inputs under joint production. For example,
suppose real estate is a rival input in fixed supply within the firm. To expand output in a
real estate-intensive industry, the firm may have to reallocate real estate resources and decrease
output in its other real estate-intensive industries. On the other hand, suppose another input,
like information technology (IT), is non-rival and can be scaled to meet increased demand. When
expanding output in an IT-intensive industry, the firm can purchase incremental IT resources and
the non-rival nature of IT would increase output in its other IT-intensive industries.

Condition (ii) tests for such heterogeneity by stipulating that cross-elasticities are uncorrelated
with industries” input proximity. Using data on input expenditures by industry from the BEA’s

input-output (I/O) and capital flow tables, I define input-proximity, Prox ¢k, to measure how an



industry-k shock might affect industry-j output through potential sharing of input m:

Bim Xk )

Proxfjkm = Bjm (—Zk';tj,gk’mxfk’ (4)

where f,, is the share of industry j expenditures on input m, and Xy; is the firm’s output in
industry j. Input proximity is the product of two share terms and is intentionally asymmetric and
firm-specific. Proxjkm,¢-1 is increasing in both share terms: (i) industry j’s expenditures on input
m (relative to other inputs m’), and (ii) expenditures on input m by shocked industry k (relative to
the firm’s other industries k’). The first share reflects how much industry j output might benefit
from a marginal change in input m, and the second share reflects how the firm’s overall use of
inputs m might change with respect to a demand shock in k.

To test condition (ii), I estimate a triple-differences specification where I additionally interact
the firm’s demand shock in each other industry k with its proximity to industry j in relation to

various sets of inputs m € M:

Alog SJ(?].{HERXM = ( Z Proxfjkm,t_l) Alog Sgis. (5)
k#j \meM

A regression coefficient of zero on this interaction variable is consistent with inputs m € M being
used separately in the production processes of j and k. But a regression coefficient different from
zero for any set of inputs M would imply that this necessary condition for nonjoint production
?ij ERXM is consistent with shared inputs M being

scarce and rival within the firm (e.g., real estate), while a positive coefficient would imply that

does not hold. A negative coefficient on Alog S

shared inputs M are scalable and non-rival within the firm (e.g., software).

I group inputs m in the BEA input-output data (roughly 5-digit NAICS) into sets M according
to the following root codes: agriculture (NAICS 1); construction, mining, and utilities (NAICS 2);
manufacturing (NAICS 3); transportation, wholesale, and retail (NAICS 4); finance, insurance, and
real estate (NAICS 52, 531, 532); information, intellectual property, management, and professional,
scientific and technical services (NAICS 51, 533, 54, 55); administrative services (NAICS 56); other
service inputs (NAICS 6, 7, 8, and 9); labor; and capital. Like the examples above, the different
groupings of M allow me to estimate whether properties of one category of inputs, such as

manufacturing, differ from that of another category, such as professional services.

1.3 Cross-Industry Impact of Demand Shocks on Output

I estimate these variants of equation (1) on a regression sample of all exporting multi-industry
firms in each base year, t — 1. An observation is a continuing industry of one of these firms over a
five-year period from t — 1 to t. This regression sample of roughly 5000 multi-industry firms per

year accounts for over half of all US manufacturing gross output. Appendix Table A.2 provides
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Table 2: Same- and Cross-Industry Impacts of Demand Shocks on Sales within the Firm

Change in sales, Alog X 1) (2) 3) (4) ()
Same-industry demand shock 0.45%*  0.46** 0.46**  0.51**  0.37%
Alog Syt (0.10)  (0.10)  (0.09) (0.10) (0.19)
Other-industry demand shocks
(i) Average effect -0.08  -0.83** -0.81*** -1.67***
Alog$S JQJ{HER (0.12)  (0.24) (0.26)  (0.52)
(ii) X knowledge input-proximity 8.00%**  8.26%**  13.31***
Alog sj?}.{HER xKLG (225) (222)  (3.58)
Industry-year fixed effects v v v v v
Firm-wide and firm-industry characteristics v
Firm-year fixed effects v
Observations 21,500 21,500 21,500 21,500 17,500
R? 0.06 0.06 0.06 0.12 0.39

Notes: This table estimates regression equation (1): the response of sales in one industry of the firm to demand shocks
in the same industry and also other industries, in 5-year differences over the period 1997-2007. Two measures of other-
industry demand shocks are considered. Measure (i) is a sales-weighted average demand shock (equation 3). Measure (ii)
interacts other-industry k demand shocks with knowledge input-proximity to industry j (equation 5 where m is within
NAICS 51, 533, 54, and 55). Firm-wide and firm-industry level characteristics include: initial period firm size, firm export
intensity, firm-industry size, firm-industry export status, firm-industry export intensity, as other-industry characteristics,
and other-industry characteristics interacted with knowledge input-proximity. Standard errors are clustered at the firm
level, with asterisks indicating p-values below 0.1, 0.05, and 0.01 respectively.

summary statistics on regression variables and other attributes of firms in the sample.

Table 2 presents estimates of the same- and cross-industry impacts of demand shocks on firm
sales. First, column (1) reveals that the same-industry impact is positive and statistically significant,
suggesting the constructed shocks are empirically relevant as shifters of demand.!? Next, column
(2) tests and does not reject condition (i) for nonjoint production. Cross-elasticities are on average
statistically insignificant from zero.

In the remaining columns, I test condition (ii)—that cross-elasticities do not vary with input-
proximity. To allow for differences in cross-elasticities across input categories, I estimate a triple-
differences specification separately for each category M. I regress the firm’s sales growth in

industry j on other-industry demand shocks interacted by input-m proximity (Alog SJQJ{H ERXMy,

OTHER) and

controlling for the average (common) impact of other-industry demand shocks (Alog S fit

the same-industry demand shock (Alog S¢;).13

ppendix Table A.3 shows that this effect is not driven by any correlation between the export intensity variable
2A dix Table A.3 sh that this effect i t dri b lation bet th t intensit iabl
(s}j t—l) embedded in the shock and unobserved pre-trends in growth rates (e.g., if more export-intensive industries of

the firm grow faster). Results are robust to controlling for a full set of industry-year dummy variables interacted with
the export intensity variable, following Borusyak et al. (2021)’s recommendation for specifications with ‘incomplete’
shares.

BThere is no stand-alone coefficient on the input-proximity interaction terms because they sum to industry j’s
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Cross-industry Impacts of Demand Shocks Increase with Knowledge Input-Proximity

GOTHERXM
fit
M, and Appendix Table A.4 provides the results in tabular form. I find that cross-elasticities

Figure 1 plots the estimated interaction coefficients on Alog across input categories
increase with the industries” proximity in use of inputs from the information, intellectual property,
management, and professional, scientific, and technical services sectors (NAICS 51, 533, 55, 54). 1
abbreviate these 21 input industries as knowledge inputs in the rest of the paper, and summarize
their use in manufacturing production in Appendix Table A.1.1* Besides from knowledge, cross-
elasticities do not vary with proximity in the use of any other category of inputs. The estimated
coefficients relating to all other input categories are insignificant from zero, suggesting that these
inputs may indeed be industry-specific as commonly assumed.

These results suggest knowledge inputs have distinct properties under joint production com-
pared to other inputs. This is consistent with the existing literature. Knowledge inputs produce
much of the intangible capital hypothesized to be sharable (Atalay et al., 2014) and non-rival
(Haskel and Westlake, 2017) within the boundary of the firm. As of 1997, knowledge industries
constitute 15 percent of US GDP and are used intensively by manufacturing firms. Manufacturing
firms” expenditures on knowledge inputs constitute 9 percent of their gross output as a whole,
and vary greatly by the input-output industry pair. For example, organic chemical production
(NAICS 325190) has the largest expenditure share (2.4 percent of gross output) on architectural,
engineering and related services (NAICS 541300), while semiconductor manufacturing has the
largest expenditure share (1 percent of gross output) on computer systems design services (NAICS
541512).

Column (3) of Table 2 reports this key finding from Figure 1: cross-elasticities increase with
knowledge input-proximity. The exact coefficient estimates suggest that cross-elasticities are neg-
ative for industry-pairs that do not use any knowledge inputs in common, while positive for
industry-pairs that have high expenditure shares on the same knowledge inputs.’® The existence
of both positive and negative cross-elasticities are consistent with the estimate of a zero average
cross-elasticity in column (2).

The economic magnitudes of these reduced-form elasticities are hard to assess because the

regressions are unweighted and fixed effects absorb any correlated changes across firms. While

expenditure share on inputs m € M and are absorbed by industry-year fixed effects (X x; Zmem Proxfjkm,t-1 = Bjm)-

“Examples of such input industries include data processing services, scientific R&D, engineering, consulting, archi-
tectural, advertising, and legal services. Knowledge input industries in my model relate closely to the classification of
‘professional and technical services’ in Ding et al. (2022), ‘skilled scalable services’ in Eckert et al. (2020) and ‘tradable
services’ in Gervais and Jensen (2019) and Eckert (2019).

5The results do suggest a mildly significant (at the 10 percent level) positive cross-elasticity across industries proximate
in their use of inputs from the ‘transportation, wholesale, and retail” sector, which is consistent with cost savings from
shared warehousing and distribution.

16] also estimate specifications with multiple interactions of input proximity with other-industry demand shocks
jointly. In all specifications the coefficient on the knowledge input-proximity weighted demand shock, yROSS X KLG,
is positive and significant. See, for example, specification (4) of Appendix Table A.5, which simultaneously estimates
coefficients on three measures of other-industry demand shocks: (i) average, (ii) interaction with knowledge-input
proximity, and (iii) interaction with other input-proximity.
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Figure 1: Cross-industry Impact of Demand Shocks interacted by Input-Proximity
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Notes: This figure displays point estimates and 95% confidence intervals of cross-industry elasticities y CROSS XM where
M references a different input category (in each row of the figure) in the triple-differences regression specification (3)
of Table 2. See Appendix Table A.4 for the corresponding regression table and the exact industry codes of these input
categories.

the rest of the paper develops and structurally estimates a theoretical model to quantify the impact
of joint production, I first provide a back-of-the-envelope calculation. Using the estimates in
column (3), I find that cross-elasticities are sizable compared to same-industry elasticities and
switch from being net negative to positive depending on knowledge input proximity. Consider
two different industries j and j” within a firm: industry j has knowledge input-proximity relative
to the firm’s other industries equal to 0.06, one standard deviation below the mean, while industry
j" has knowledge input-proximity equal to 0.12, one standard deviation above the mean. Suppose
this firm receives a uniform demand shock in all of its industries equal to 10 log points, roughly one
standard deviation in the sample (Alog S¢j; = 0.1 ¥j). The demand shock in industry j alone would
increase sales in the same industry by 4.6 log points (= 0.1 X 0.46), while the demand shocks in
other industries would decrease sales in industry j by 3.5 log points (= 0.1x—0.83+0.1x0.06x8.00).
Combining the direct and cross-industry impacts, sales in industry j would increase on net by only
1.1 log points.

In comparison, the same demand shocks would increase output by more in an industry j” that
is more knowledge input-proximate to the firm’s other industries. The same-industry demand
shock would still increase sales in industry j* by the same 4.6 log points, but now other-industry
demand shocks would additionally increase (rather than decrease) sales in industry j* by 1.3 log
points (= 0.1 X —=0.83 + 0.1 X 0.12 X 8.00). Combining the direct and cross-industry impacts, output
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in industry j would increase on net by 5.9 log points, of which more than one-fifth comes from the

cross-industry impact.

Robustness to Additional Covariates

The estimates in Table 2 are robust to controlling for an exhaustive set of initial-period firm-
industry-level characteristics that explain subsequent growth in a firm’s industries. These controls
mitigate omitted variables bias if the assignment of demand shocks is correlated with covariates. I
construct both same-industry and other-industry measures of these covariates, just as I do for shocks.
For example, an other-industry control for size represents the average log sales among the firm’s
other industries. I also interact these other-industry characteristics with the same knowledge input-
proximity measures that are interacted with demand shocks. For example, the control variable for
any characteristic Yy ;-1 in the firm’s other-industries interacted with knowledge input-proximity
is:
ControljﬁjijER *KLG(y) = Z Z Prox gjkm,i-1 | Yk e-1-
k#j \meKLG

These cross-industry controls address the potential for omitted variables bias if a firm’s growth in
oneindustry j is correlated with pre-existing covariates Yy ;1 its other knowledge input-proximate
industries.

In column (4) of Table 2, I saturate the triple-differences specification with an exhaustive list of
controls for pre-period characteristics: firm log sales, firm export intensity, firm-industry-level log

sales, firm-industry export intensity, firm-industry export status, the value of these characteristics

in the other industries of the firm (C ontrol?ijER(Y)), as well as these other-industry covariates
interacted with knowledge input proximity (Control})j{HERXKLG(Y)). Controlling for all these

covariates affects neither the significance nor magnitude of the key regression coefficients )y R055

and yCROSSXKLG Gince the same proximity measures, sales shares, and export intensities used to
construct other-industry demand shocks are also used to construct these other-industry covariates,
this specification with additional controls also provides reassurance that the cross-elasticities are
identified from changes in foreign market size rather than the shares.?”

Finally, column (5) of Table 2 shows that results remain robust to controlling for firm-year fixed
effects, which soak up any unobserved supply and demand changes common to each industry of
the firm.®

7The latest research on shift-share analyses (Addo et al., 2019; Borusyak et al., 2021) emphasizes the importance of
adjusting standard errors to address the mismatch between the levels at which the shocks are observed (destination-
market /1) versus applied (firm-industry fj). My empirical setting falls outside of these frameworks, because I construct
and utilize multiple shift-share shocks with differing shares. In practice I find that standard errors clustered by firm
are conservative. Results are robust to other forms of clustering as well as heteroskedasticity-robust standard errors.
Moreover, the null coefficients on other shock-interactions in Figure 1 provide reassurance that my choice of standard
errors does not lead to an abundance of false positives.

18Results from the triple-differences specification are also robust to further including firm-industry fixed effects,
which limits identifying variation to changes in growth rates and demand shocks between the period 1997-2002 and the
period 2002-2007.
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1.4 Mechanisms and Discussion of Results

Table 2 provides evidence on how knowledge inputs are used within the firm. One mechanism
consistent with positive cross-elasticities is that knowledge is scalable and partially non-rival. A
positive demand shock in one industry causes the firm to scale up its use of knowledge inputs, and,
as long the incremental knowledge is partially non-rival, output in the firm’s other industries also
stand to increase. In contrast, other potential mechanisms for explaining interdependence across
industries, such as demand cannibalization or credit constraints, would have resulted in cross-
elasticities that are on average negative rather than increasing with knowledge input-proximity.
The null result in column (2) rules out these alternative mechanisms as the primary driver of

cross-industry impacts in my empirical setting.!’

Evidence that Knowledge Inputs are Scalable within the Firm

Next, I provide evidence that firms” knowledge input expenditures increase with a shock to de-
mand, a necessary condition behind my proposed mechanism. While each firm’s total knowledge
input expenditures (which include, for example, expenditures on in-house knowledge inputs) are
hard to measure, the CMF provides data on a particular subset: firms” purchases of professional
services, which comprise software, data processing, management, and advertising services. Table
3 estimates the elasticity of these knowledge input expenditures with respect to firm-level demand
shocks, and compares the elasticity to that of other firm-level outcomes Ygs: capital expenditures,

payroll, and sales. I run the following firm-level regressions:

Alog Yy = ﬁank,t—1A10g Stkt + €ft, (6)
k

where I use weights 77 ;-1 (the share of industry k in the firm’s initial-period outcome Yy ;1) to
construct the relevant firm-wide average demand shock.?

I estimate these regressions at the firm-level because unlike sales, there is no data on firms’
input expenditures by industry of use. Of course, this data limitation arises naturally in the context
of joint production when inputs are shared. Both the reduced-form evidence in this section and
model estimation in Section 3 rely only on industry-level rather than firm-level input expenditure
data. There is an econometric advantage to doing so. Input proximity constructed from aggregate
expenditure shares ,, is unlikely to be correlated with firm-specific unobservables (e.g., unequal
access to input markets), therefore mitigating a potential source of endogeneity bias.

Column (1) of Table 3 shows that firms increase their expenditures on these professional services

in response to positive firm-wide demand shocks. The coefficient of 0.65 comprises the product

¥This null result is consistent with Borusyak and Okubo (2016), who also do not find average intra-firm, cross-segment
impacts of demand shocks in Japanese firm-level data.

2Data Appendix A.3.4 provides the precise definitions. Results are robust to using simple averages or any other
common type of weight across all four outcome variables in Table 3.
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Table 3: The Impact of Demand Shocks on Firm-level Input Expenditures

(1) (2) 3) 4)
Purchased Prof. Services Capex Payroll Sales
Outcome-relevant demand shock 0.65*** 0.47 0.25**  0.37***
2k Nk t-1A10g S it 0.22) (0.37) (0.11) (0.15)
Year-FE v v v v
Observations 3,900 3,900 3,900 3,900
R? 0.02 0.04 0.01 0.05

Notes: This regression table estimates the impact of demand shocks (averaged across the firm’s industries) on firm-level
variables, in 5-year differences over the period 1997-2007. Weights used for the average, 7 ;-1, are defined in Data
Appendix A.3.4. Standard errors are clustered at the firm level, with asterisks indicating p-values below 0.1, 0.05, and
0.01 respectively. Number of observations are rounded for disclosure avoidance. The sample of firms is limited to those
reporting non-zero purchased professional services.

of two elasticities: (i) a “first-stage” elasticity of marginal revenue to the empirically measured
demand shocks, and (ii) the elasticity of knowledge input expenditures to the shift in marginal
revenue. The remaining columns of Table 3 repeat the analysis for other firm-wide outcomes.
While each coefficient shares the same “first-stage” elasticity, the second elasticity is different.
Columns (2) and (3) show that the elasticity of expenditures on capital and payroll with respect to
the same shift in marginal revenue is lower, consistent with knowledge inputs being more scalable
than these other inputs. Finally, column (4) estimates the firm-level elasticity of sales to demand
shocks at 0.37. This coefficient lies in between the elasticity of various input expenditures in the

prior columns, consistent with the assumption of constant markups taken up in my model.

Other Interpretations and Threats to Identification

My identification assumption requires demand shocks in a firm’s other industries k # j to be
conditionally uncorrelated with unobserved demand and supply shifters in a given industry j of

the firm.?! I entertain and rule out various potential threats to this identification assumption.
OTHER

fit

the possibility of a simple, symmetric correlation structure between export demand shocks and

First, the lack of statistical significance on Alog$ in column (2) of Table 2 rules out
unobserved shifters across industries. Therefore, correlations between demand shocks in industry
k and unobservable shifters in industry j would be problematic for the main results in columns (3)-
(5) only if the correlation happens to be precisely stronger among knowledge-proximate industries.

To entertain the possibility of such a correlation, suppose that import demand in each foreign
country happens to be more correlated across more knowledge-proximate industries. Under this

scenario, the cross-elasticities in Table 2 could reflect firms receiving correlated shocks across

2Demand shocks can be arbitrarily correlated with own-industry unobserved shocks without affecting the use of
cross-industry coefficients 1y “ROSS to test for nonjoint production. Demand shocks also do not need to be unanticipated.
The possibility that a particular shock in k is anticipatable t years ahead of time simply changes the interpretation of
the relevant time horizon for a supply-side response in j to materialize.
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industries within their export markets and taking advantage of ‘demand-scope’ complementarities
(Bernard et al., 2018) or shared market access costs (Arkolakis et al., 2019). A related threat occurs
if knowledge-intensive industries are disproportionately demand-complementary within a firm’s
set of buyers. Under any of these scenarios, a positive demand shock in one industry would raise
the firm’s sales in its other knowledge-proximate industries.

I address these concerns in three ways. First, in Appendix Section A.3.5I find no evidence that
import growth within a foreign destination is positively correlated among knowledge-proximate
industries. Second, the regressions in Table 2 control directly for same-industry demand shocks
(Alog S¢jt), which would contain any correlated shocks in a given export destination as long as the
firm already exports in industry j to that destination n. Third, my results are robust to excluding
from the definition of industry sales Alog X¢;; any exports of j to destination countries where
demand shocks in other industries k originated.?

A different threat to identification comes from selection on correlated supply-side shocks. If
such shocks were anticipatable by the firm and, again, happen to be positively correlated in knowl-
edge input-proximate industries, selection on industry and export market entry could generate
spurious positive cross-industry impacts of demand shocks specifically among knowledge input-
proximate industries. However, this hypothesis does not survive the following placebo exercise.
I re-assign firm-industry exporters in each industry k different export demand shocks drawn
from the empirical distribution of shocks received by other firms in that same industry. Keeping
all remaining firm variables (e.g. firm-industry sales weights, and other controls) unchanged in
these placebo regressions, I do not find a statistically significant share of positive cross-industry
coefficients.?

Finally, recall that the outcome variable is the firm’s external sales, so the cross-elasticities I
estimate cannot be explained by increased intra-firm shipments of goods, for example, to supply
a shocked downstream industry. Nevertheless, it could be that increased intra-firm shipments
trigger productivity improvements upstream that then induce firms to sell externally. I use data in
intra-firm shipments to test and reject this mechanism in Appendix Section A.3.6. Ifind no evidence
that intra-firm shipments in an upstream industry respond to demand shocks in a downstream

industry (or vice versa).

2As a fourth step, I find that results are also robust to controlling for latent demand shocks—a measure of demand
for industry j of the firm not from where it is currently exporting its products in industry j (which is Alog S ;) but from
any other destinations in which it currently exports products in other industries k. These results are undisclosed but
can be provided upon request.

BThese results are undisclosed but can be provided upon request. This placebo exercise also provides further
reassurance that pre-existing variation in Bartik weights or bilateral industry characteristics such as knowledge input-
proximity are not picking up correlated industry trends in the error terms.
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2 Model of Joint Production

I develop a theory of joint production that rationalizes the heterogeneous cross-industry trans-
mission of demand shocks within the firm. Under joint production, inputs are potentially shared
across multiple industries, so that marginal cost in a given industry depends on the firm’s output
in not only the same industry but also other industries. The theory illustrates two key properties
of shared inputs—scalability and rivalry—that parametrize this interdependence in costs and allow
for arbitrary returns to scale and scope.

I embed this joint production technology within a conventional monopolistic competition
setting featuring CES industry demand and endogenous entry and exit of firms across industries.
The model relaxes the assumption of constant-returns and nonjoint production found in workhorse
models of heterogeneous firms (e.g., Melitz, 2003; Bernard et al., 2010) and nests their general

equilibrium predictions as special cases.

2.1 Production Technology and Market Structure

Figure 2 illustrates the static joint production technology of the firm. I model production as taking
place sequentially over two stages, where inputs are denoted in blue and outputs are denoted in
orange. While the mapping between inputs and outputs in the model is general, I use specific
labels motivated by the empirical evidence to aid exposition.

[ interpret the first stage as the firm’s production of knowledge (or intangible) capital ¢y;
across its industries using shared inputs ¢, like information technology, intellectual property,
and professional services from the knowledge-producing sector. Knowledge capital accumulated
in this ex-post form is proprietary to the firm and cannot be bought or sold on the market. By the
second stage, accumulated knowledge ¢y; acts as a revenue productivity shifter. The firm takes
@f; as given and combines it with a bundle of industry-specific inputs /¢ like assembly-line labor,
materials, and energy to produce its differentiated variety q¢; in each industry.

Using this technology, a continuum of firms compete across a set of industries j € J under
monopolistic competition facing CES demand (with elasticity o;) within each industry. In both
stages of production, firms face constant input prices and know their own fundamental (exogenous)
profitability shifters & #j» which reflect, for example, idiosyncratic differences in product appeal,
production know-how, or access to foreign output and input markets.

In stage I, the firm chooses quantities of each type of shared input m (e.g., engineering services,
software) and the industries in which to accumulate knowledge capital. The firm’s decisions in
stage I also determine its extensive margin—the set of industries j € J in which it sells final output.
In stage II, the firm chooses quantities of each type of industry-specific input (e.g., production labor

and materials) to maximize total profits. I describe the two production stages in reverse order.
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Figure 2: An Illustration of the Firm'’s Joint Production Technology
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Notes: This figure illustrates the firm’s two-stage joint production technology that transforms inputs (in blue) to quality-
adjusted outputs across multiple industries, j, k, 11, ... (in orange). Inputs used in stage I are shared across the firm’s
industries, whereas inputs used in stage II are industry-specific. The firm uses shared inputs to develop discrete ideas
(displayed by the small orange circles) that, when adapted to an industry j, increases the value of knowledge capital
@fj. Profitability shifters (shaded grey) are exogenous and observable by the firm in both stages. In the example, the
firm does not produce output (does not enter) in industry n because it has not accumulated any knowledge capital in
that industry (¢, = 0).

Stage II: Production with Industry-specific Inputs

By this latter stage, production of final, quality-adjusted output {q¢;};; is independent across
industries given that stage II inputs are industry-specific (and available at constant unit prices). I
assume that standard Cobb-Douglas production functions given by equation (7) transform inputs

into outputs.

Assumption 1 (Stage II Industry Production Functions) In each industry j, quality-adjusted output
q¢; is a Cobb-Douglas function over (i) a homothetic index l¢; of industry-specific inputs, (ii) an index ¢y,
of accumulated knowledge determined in stage I, and (iii) an exogenous profitability shifter, & i

9 =1y w51 & Vi€, 7)
where y; € [0, %) is the elasticity of final output with respect to stage-II inputs l¢;.

My production technology is a generalization of that found in standard models of hetero-
geneous firms. For example, when stage-II returns to scale are constant (y; = 1) and stage I
knowledge accumulation is exogenous (so the combined revenue productivity term ¢ fjé £j is ex-
ogenous), equation (7) yields the constant-returns, nonjoint-production benchmark of Bernard et

al. (2010). Relative to this benchmark, my production technology provides more flexibility in two
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dimensions. First, properties of stage-II inputs allow for arbitrary increasing (y; > 1) as well as
decreasing (y; < 1) within-industry returns to scale. Second, properties of shared inputs in stage
I, described below, lead to interdependence across industries between marginal costs and output

and therefore arbitrary economies or diseconomies of scope.

Stage I: Production with Shared Inputs

Assumption 2 completes the description of the firm’s production technology. The firm uses
shared knowledge-producing inputs (indexed by type m € M) to develop ideas and adapt them
across different industries to improve knowledge capital (i.e., enhance revenue-productivity in
stage II). For example, inputs like scientists and managers contribute to knowledge by developing
automation techniques, configuring factory floor space, improving assembly-line productivity, or
raising brand awareness. The combined value of all these ideas adapted in an industry make up

the index of accumulated knowledge, ¢ ;.

Assumption 2 (Stage I Stochastic Accumulation of Knowledge) Shared inputs iy, contribute to the

firm’s Poisson rate of development of ideas of each type m:

pm=1

Pm
Afgm ~ Poisson Z( p"i 1Lfm) ’ Vme M, 8)

Pm

where parameter Z governs the average arrival rate of ideas, and p,, € (1, 00) measures input m’s scalability.
Eachidea i € {1,..., Ay }m has match-specific value ¢ fyi,j when adapted in an industry j. Match-specific
values are drawn i.i.d. from a Fréchet distribution with shape parameter 6,, € (1, c0):

Pr(dmij<x)=e ™,  Vjed. 9)

The firm chooses the industry j in which to adapt each idea (denoted by indicator 15,,; ;) after observing the
idea’s match-specific values in each industry. Total accumulated knowledge @y; in an industry is a power
sum over the value of all ideas adapted in that industry:

%
Afp $—71‘

Pfj = Z Z i fmi,j Lfmi,j ., Vied, (10)

meM i=1
where technology coefficients { &y }m,j denote the average value of type-m ideas when adapted in industry j.

I model the development of ideas within the firm as an endogenous Poisson process, given by
equation (8). The more shared inputs tf, the firm uses, the greater the number Ay, of type-m
ideas the firm expects to develop. Input scalability, p,, € (1, ), parametrizes the elasticity of

the arrival rate to the quantity of inputs used. The lower is p;,, the less responsive are the firm’s
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input m expenditures to changes in demand (profitability) conditions. In the limit as p,, — 1, the
arrival rate of ideas is inelastic to input use, and knowledge accumulation becomes exogenous:
Afp ~ Poisson(Z).

Each idea iy, = 1, ..., Afy that the firm develops has an idiosyncratic i.i.d. value ¢y,;,; when
adapted to improve knowledge capital in a given industry j. The firm observes {¢ i }jes and
chooses the most suitable industry j in which to adapt that idea. Equation (9) parametrizes
variation in match-specific values using a Fréchet distribution with shape parameter 0,,. This
variability is natural in the context of knowledge creation. Consider, for example, General Electric,
which employs ceramics scientists to develop R&D ideas. A particular idea represents an invention
like gemstone scintillators, which are more valuable when adapted in GE’s CT medical scanners
than in GE’s aviation turbines. Whereas some shared inputs like scientists may generate more
variable ideas (indicated by a lower 0,,), other shared inputs like legal and accounting services
could generate very predictable ideas (indicated by a higher 0,,).

Finally, equation (10) combines the value of all ideas adapted in an industry j into a single
index of accumulated knowledge, ¢f;. The functional form assumes that the marginal profit
contribution of each idea is additively separable from that of other ideas.?* In addition, exogenous
technology coefficients a,,; allow the ideas of a given type m to be either more or less valuable
on average when adapted in a given industry j. Similar to conventional input-output coefficients,
{@mjtmem, jeg generate variation across industries in the use of stage-I shared inputs m and facilitate
the quantitative mapping between the model and the data. For example, software inputs are
intensively used in computer manufacturing while management consulting inputs are intensively
used in petrochemicals production. Because the two industries are not proximate in the types m
of shared inputs used, the cross-industry transmission of demand shocks from petrochemicals to

computers will be close to zero even under joint production.

2.2  Solution of the Firm

Given the production technology described by Assumptions 1 and 2, it is easy to solve for the
firm’s profit-maximizing decisions in reverse order.

In stage II, conditional on accumulated knowledge ¢y;, the firm’s gross profit maximization
problem is separable by industry. Equation (11) describes the well-known solution under mo-
nopolistic competition and CES industry demand. The firm’s revenues Xy; and gross profits 7t¢;
(revenues less stage-II industry-specific input costs) in each industry can be expressed in terms
of accumulated knowledge (¢;;), an exogenous profitability shifter (£¢;), and an industry-level

#n addition to generating additive separability, the index 0;/(0; — 1) — y; in equation (10) serves as a normalization
that, when combined with equation (7), limits the overall returns to scale in production to be smaller than ¢;/(c; — 1).
This normalization ensures that the firm’s profit-maximization problem is well-defined, i.e., the supply curve is less
steeply downward sloping than the demand curve. Note that since stage-I inputs have arbitrary scalability y; and
stage-Il inputs have arbitrary scalability p;, the firm’s supply curve is not dependent on demand elasticities o; (oustide
of the edge-case values of either p; = o0 or y; = 0;/(0; — 1)).
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profitability index (B;) common to all firms:

Jj*l
aj(l=¢)

gy ==Xy =Bt (11)

o;i—1

]

where & fj = EW is a convenient re-normalization and ¢ i =Y Ug—jl < 1 is an industry-level
parameter equal to the share of sales expensed on stage-Il inputs /¢;. Industry-wide profitability B;
is an equilibrium object that depends on gross profit margins 1 - ¢;, the unit cost c; of the industry-
specific input composite /¢, and two shifters of residual demand: P; (the CES price index), and Y;

(total expenditures):
g

_ S\ (porrty |
Bi=(1-¢) - (P]. Yj) . (12)

Having optimized over the firm’s stage-II input use, the only remaining endogenous variable is
the index value for accumulated knowledge (¢;), the outcome of the firm’s decisions in stage I.
In stage I, the firm faces a multi-dimensional profit maximization problem. It chooses (i) the
industry j in which to adapt each idea {1f}(i=1,.,4/,},. (ii) overall quantities of shared inputs
{tfm}m,and (iii) its “extensive margin”—the set of industries j € . to produce outputin. Replacing
knowledge capital ¢ ; in the firm’s stage-II gross profit function (11) with its definition in equation
(10) yields firm gross profits as an additively separable function of the number and value of ideas

adapted to that industry:

A fm
nip= D D Bl idn@pmii lpmiy Vi€ T
meM i=1
Given this additive separability, the firm’s decisions in Stage I can be solved for inisolation. First,
the choice of which industry j in which to adapta givenidea {i,, = 1, ..., Ay } s becomes a repeated
discrete choice problem. The firm observes the Fréchet-distributed industry match-specific values
{¢fmi,j}jeg and chooses the industry where adapting that idea would yield the greatest (additive)
increase in profits. The firm adapts each type-m idea to industry j with probability p s,
§0m

fmj
Hfmi = g Ofmj = BjéfjamiZ, (13)

Zkej o fmk
which is increasing in 6 f,,,j, an index of input-by-industry-level exogenous profitability terms: the
firm’s stage-II profit shifters (B;¢; in equation 11), stage I technology coefficients (renormalized
as ayj = @p;l'(1 - 1/60,)), and the exogenous rate of arrival of ideas (Z).
Second, the firm chooses its overall level of each shared input (7, such that the marginal
benefit of that input equals its marginal cost (a constant). The marginal benefit is the product of

two terms: (i) the effect of the marginal input towards increasing the Poisson arrival rate of ideas,
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and (ii) the expected profit contribution of a given idea that arrives. The first term is decreasing in
Lfm given concavity in the production of ideas ((p — 1)/pm < 1 in equation 8). The second term,

the expected profit contribution of a given type-m idea, is a constant and given by:

L
Hﬂl

Afw =E \maxB;& 5, ﬁbfmirf] =\ 20| (14
j<g

a power sum of the exogenous profitability terms 6,,; in each industry. Even though each idea is
only adapted in a single industry, the power sum captures the firm'’s option value from being able
to observe {¢ i ;}; and then choose the most profitable industry to adapt that idea. The power
sum expression is consistent with option value being higher whenever variation in match-specific
productivities is high (whenever 0, is low). Altogether, trading off a constant marginal cost against
a diminishing marginal benefit yields a unique interior solution for shared inputs {¢f; } .

Lastly, the industry entry decision of the firm is simple in the absence of fixed costs. Each firm
can adapt ideas and produce output in any of the J industries. But because industry knowledge
capital ¢y; is essential for production in stage II, the choice of whether to adapt the first idea
to an industry (which causes ¢¢; > 0) is in fact the choice of whether to “enter” that industry.
The first idea adapted to an industry marks entry, while adaptations of subsequent ideas to the
same industry improve knowledge capital (and thus output) on the intensive margin. Given their
additive separability in profits, each idea is adapted to industry j with probability ¢, regardless
of whether it is the first or subsequent idea.?

Lemma 1 puts these results together and derives closed-form expressions for the firm'’s ex-ante

expected industry sales, probability of industry entry, and net profits.

Lemma 1 (The Firm’s Solution) Let w denote the (normalized) constant unit cost of each shared input.
The firm’s expected gross profits in each industry j € [ is a constant fraction (1 — ¢;) of expected sales:

Om m=6m —Pm
Elny] = (1)) B[Xs] = ) 6% A ™!, (15)

and the probability of industry entry (denoted x ¢; = 1), is one minus the probability the firm does not adapt

any idea to industry j:

m m—1=0p —0Om
Pr(xsi=1)=1-exp|-Z Z o AT O | (16)
memM

2The use of discrete stochastic processes to explain ‘zeros’ (the absence of firm entry) is inspired by Klette and Kortum
(2004), Eaton et al. (2013), and Armenter and Koren (2014), and presents theoretical and computational advantages over
settings with literal fixed costs. Fixed costs generate non-convexities from the point of view of not just firms but also the
aggregate economy. Recent work by Jia (2008), Antras et al. (2017), and Arkolakis and Eckert (2017) provide algorithms
that reduce the computational burden of fixed-cost models but operate under a partial equilibrium framework where
industry profitability is fixed. Instead, in my stochastic setting each individual firm’s profit maximization problem is
convex, which guarantees a unique solution for industry profitability {B;}; in multi-industry equilibrium.
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The firm's ex-ante expected net profit (revenues less stage-I and stage-1I input costs) is given by:

] = ZE[nf] Z Wify = Z p—AJ’i'” wl=Pm, (17)
j

meM meM

2.3 Interdependence from the Scalability and Rivalry of Shared Inputs

In Lemma 1, the firm’s expected sales in a given industry j (both the intensive and extensive
margin) depends on profitability shifters in not only the same industry but also other industries
k # j (contained in the Ay, terms). The precise direction of interdependence is governed by
parameters p,, and 0,, of shared inputs. I define p,, as input scalability and 0,, as input rivalry.
These two properties of shared inputs generate scale and rivalry effects that have opposing
effects on cross-elasticities. The more scalable are shared inputs (the higher is p;;), the more that
the firm increases these inputs in response to an industry-k-specific demand shock. As long as
inputs are not fully rival, this increase in shared inputs benefits knowledge accumulation (and thus
sales) in other industries j of the firm. But the more rival are shared inputs (the higher is 0,,), the
more that the firm will optimally substitute its use of shared inputs away from other industries
j to meet the increase in demand in industry-k. As long as inputs are not fully scalable, this
substitution comes at the expense of knowledge accumulation (and sales) in its other industries j.
I describe these two effects analytically before combining them in Proposition 1. First, the firm’s

sales in each industry j can be re-written as

gi—1
¢ e | B
B[Xy] = 1]_?15 A ]fj]ZEAfm ymi Blopmij 1 1mij =11 (18)
m S———
scale effect rivalry effect

where the last equality decomposes expected knowledge ¢y; into a term determined by input
scalability (the total number of ideas of each type m developed), and a term determined by input
rivalry (the share of all ideas and expected value of each idea that the firm adapts in industry j). A
demand shock in another industry k can raise industry-j output through the scale effect but also

lower it through the rivalry effect.

Rivalry effect is parametrized by 0,,. The rivalry effect consists of two terms. First, in response
to an increase in demand in industry k, the firm will find it more profitable to adapt a greater share
of ideas to industry k and a smaller share piy; to industry j. From equation (13), the higher is
Om, the more that the share of ideas adapted in industry j will fall. Besides from pif,;, the second
term contributing to input rivalry measures the expected value of an idea conditional on the firm
adapting it in industry j. This second term is slightly offsetting due to selection: when demand
is higher in industry k, any ideas that the firm still chooses to adapt to industry j must have on

average a higher idiosyncratic match-specific value in industry j. Overall the rivalry effect can be
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expressed as:

8 mj\ "
1fmi,j = 1] = (m) , VYm e M,

tgmj BlPfmi,

which is decreasing in other-industry demand shocks (Ay;,) with elasticity 6, — 1.
In the limit as 6,, — 1, shared inputs m become fully non-rival within the firm. In response to
a demand shock in industry k, the slight decline in the share of ideas (i f,,; adapted in industry j is
tully offset by the increase in the expected value of ideas still being adapted in industry j, and the
rivalry effect in equation (18) disappears. In the other limit as 8,, — oo, relative adaptation shares
are so sensitive that a slight increase in profitability in another industry k can cause virtually all
ideas to be adapted in that industry, therefore shutting down production in all industries j # k.

Values of 0,, between 1 and oo therefore flexibly parametrize input rivalry in my model.

Scale effect is parametrized by p,,. Inresponse to an increase in demand in industry k, the firm
will also find it more profitable to increase its overall arrival rate of ideas, E[Af;,]. From equation
(8), the higher is p,;, the more elastic is the arrival rate of ideas to the firm’s use of shared inputs.
The firm chooses quantities of shared inputs (7, to equate marginal expected gross profits with

its marginal input cost. The firm’s expected number of adaptable ideas can be expressed as:

pm—1

_ pm pm Pm_l
E[Afm] = (—pm — 1) A

which is increasing in other-industry demand shifters (A fm) with elasticity p,, — 1.

In the limit as p,, — 1, shared inputs are not scalable and knowledge accumulation within the
firm is an exogenous process. Firms do not adjust their use of shared inputs, and the scale effect
in equation (18) disappears. In the other limit as p,, — oo, shared inputs are so scalable that the
slightest increase in profitability in industry k causes the firm’s profits in each industry to increase
infinitely (this virtuous cycle is possible in partial equilibrium as the firm moves down its cost
curve and lower prices invite even more demand). Values of p,, between 1 and oo therefore flexibly

parametrize input scalability in my model.

Net effect on cross-elasticities. Proposition 1 combines these two effects to derive the net cross-
industry elasticities of sales (E[ X ¢;]) with respect to demand shocks (& xBy).?® Cross-elasticities are
increasing in the scalability (p;;) and decreasing in the rivalry (0,,) of proximate shared inputs m,
such that the net effect can be either positive or negative. The model-relevant measure of shared-
input-m proximity is Afjm i fmk, the theoretical counterpart to Prox gy, in Section 1. Finally, the
last term in equation (19) includes a strictly positive term whenever the outcome industry is the

%The elasticities in Proposition 1 include both extensive and intensive margin responses in expectation. In the
Supplementary Online Notes, I use equation (16) to decompose the two margins and show that the total elasticity of
sales to demand shocks occurs mostly on the extensive margin for smaller firms and mostly on the intensive margin for
larger firms (such as those in my regression sample).
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same as the shocked industry (k = j). A positive demand shock always increases same-industry

sales because scale and rivalry effects push in the same direction.

Proposition 1 (Cross-Industry Elasticities within the Firm) The elasticity of expected firm sales in

any industry j, E[X¢;], to a change in profitability in any industry k, & rx By, is given by:

_ dlog E[X/]

Yk = W Z (Pm = Om) Afjm tfmk + L=k Z Om Afim, (19)

memM meM

where industry adaptation shares sy are given by equation (13) and input utilization shares Ay, denote
the share of industry j gross profits attributable to shared input m:

i Al w0
o A0t

Afjm =

The theory nests two edge cases where the null hypothesis of nonjoint production would hold
(Yfjk = 0). The first, trivial, case occurs when all shared inputs in stage-I are in fact industry-
specific: each input m is only ever useful when adapted to improve knowledge in a given industry
j, 80 ayx = 0forall k # j. Inthis case A ¢ fmk = 0, so the cross-elasticity is zero. The second case
occurs on a knife’s edge when scale and rivalry effects perfectly offset each other (p,,, = 6,, Ym). For
example, if all proximate shared inputs (e.g., brand capital) were completely unscalable and also
perfectly non-rival (p,, = 0,, = 1), knowledge accumulation is fixed, and the model is isomorphic
to the firm receiving exogenous firm-industry ‘productivity draws’ of ¢y;.

Outside of these edge cases, cross-elasticities are asymmetric and heterogeneous across firms
and industry-pairs. They depend flexibly on the scalability and rivalry of shared inputs as well
as the technology coefficients a,; that parametrize input-proximity, allowing me to estimate these

parameters from the observed elasticities of sales to demand shocks in the data.

3 Model Estimation

This section connects the empirical evidence in Section 1 with the theory in Section 2. I leverage
the conditional exogeneity of demand shocks at the firm-industry level to estimate the firm’s joint
production technology. I base inference on exact model-implied moment conditions, allowing
demand shocks and other general equilibrium controls to affect firm outcomes non-linearly. The
moment estimator allows me to leverage variation in the data from not only the intensive margin
(e.g., decrease in sales) but also the extensive margin (e.g., closure of an industry), consistent with
the model.
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3.1 Overview and Assumptions

Notationally, I use variables in boldface to refer to vectors and matrices, for example B = {Bj;}; ;.
I develop a nested fixed-point algorithm to jointly estimate the model’s micro and macro pa-
rameters. First, conditional on micro parameters (scalability p and rivalry 0), I set the model’s
macro parameters (industry profitability levels B and technology coefficients &) to exactly match
BEA industry-level data on output and input expenditures. Second, conditional on macro param-
eters, I compute the model’s structural residuals—the difference between the model and the data
in each firm’s output growth in each industry, AXy;. I exploit the orthogonality of these structural

residuals with respect to same- and cross-industry demand shocks to identify micro parameters.

Input Taxonomy

Estimation requires taking a stance on which inputs in the data are shared inputs used in stage I
of joint production. The reduced-form evidence in Section 1 is consistent with knowledge inputs
being shared within the firm. I classify inputs from the knowledge sector into three categories
of shared inputs in the model: (i) leasing of intangibles (NAICS 533), (ii) headquarters services
(NAICS 55), and (iii) information and professional services (NAICS 51, 54). I specify a pair of
scalability and rivalry parameters (pXtC, 6XLC) common to these shared knowledge-sector inputs.

In addition, I create a fourth residual category of shared inputs in the model to accommodate
regression evidence of negative cross-elasticities among industries that are the least knowledge-
proximate. I map spending on this residual category to the following inputs where uncertainty
around interaction effects in Figure 1 is high: finance and real estate (NAICS 52), the leasing of
tangibles (NAICS 531, 532), administrative services (NAICS 56), other services (NAICS 6, 7, 8, and
9), and capital. I aggregate all these inputs in the data into one composite residual input in the
model to speed up computation (leaving only 4 X | 7| technology coefficients to identify). I let the
scalability and rivalry of this residual shared input (pRE°, ORES) differ from those of knowledge-
sector shared inputs. In practice, this residual shared input allows the model to quantitatively
account for any other mechanism that generates interdependence, including, for example, span-
of-control or internal capital markets.

I assume that production in stage II uses inputs from all remaining BEA sectors: agriculture,
mining, construction, utilities, manufactures, wholesale, retail and transportation industries, as
well as labor value added. Since these inputs are industry-specific by assumption, their impact on
firms” production decisions are absorbed in the estimation of industry profitability B.

Altogether @ = {pKLC, OKLG  oRES QRES} represents the key micro parameters to be estimated.

Firm Profitability Shifters and Demand Shocks

Similar to the reduced-form regressions, I exploit variation within the firm over time for identifi-

cation. Firms compete under a separate static equilibrium in each period t € {1,2, 3} in the model
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(corresponding to years 1997, 2002, and 2007 in the data). Firms optimize their input expenditures,
knowledge accumulation, and final output in each period t after observing profitability conditions
By, &

In the first period, firms draw their exogenous profitability shifters {£f;}; in each industry
from a joint lognormal distribution specified by Assumption 3. Profitability shifters &¢; stand
in for any firm-specific demand and supply conditions (e.g., differences in product appeal, non-
depreciating capital stocks) unobservable to the econometrician. I assume that the firm-industry-
specific demand shocks constructed in Section 1 shift &¢; over time, thereby triggering changes in
firm sales in the model (as a function of ®@). Besides from the impact of these idiosyncratic demand
shocks, I assume that firms retain their initial exogenous profitability shifters over time, allowing

the model to explain persistence in firm size and industry specialization in the data.

Assumption 3 (Demand Shocks as Profitability Shifters) Each firm’s fundamental profitability shifters
are distributed joint lognormal in period t = 1 according to:

Efjt=1=CrjCr, logCsj~iia. NO,70), logCr~iia. N(O,71), VfeF,jeTJ.

In years t = {2, 3}, a measure-zero set of firms F,© (corresponding to the regression sample) receive demand

shocks {Alog S¢jt}jes as constructed in Section 1, which affect their profitability shifters according to:
Alogé&sy =v AlogSsie,  VfeFP, jed, t=1{2,3} (20)
Other firms retain their initial-period profitability shifters over time.

The variance parameters y = {y9, y1} control firm-level comparative and absolute advantage
respectively. First, the higher is yp, the more dispersed is profitability across industries within a
tirm, and the more persistent is a firm’s pattern of specialization over time. This occurs as the firm
is more likely to repeatedly accumulate knowledge in industries with very high &y;. I estimate yq
by matching the share of industries in multi-industry firms that survive over 5-year intervals to
that in the data, equal to 0.42. Second, the higher is 1, the more dispersed is size across firms. I
estimate y1 by matching the aggregate share of sales by multi-industry firms in 1997 to that in the
data, equal to 0.74. I normalize the means of the lognormal distributions to zero because they are
isomorphic to shifters of industry profitability B.

ZIn other words, I assume that accumulated knowledge completely depreciates across periods. Using the BEA’s
estimates of knowledge capital depreciation rates of 0.33, only 14 percent of accumulated knowledge would remain
across five-year intervals, so this assumption is not far off. In addition, by allowing profitability shifters & f to persist
over time, I account for the impact of any (unobserved) capital that does not depreciate across periods.

28This assumption can be explicitly micro-founded in a multi-destination export setting in which firms draw different
latent initial taste shifters across destinations. These initial shifters inform pre-existing patterns of exporting, and
subsequent changes in foreign market size across destinations will manifest in changes in firms’ profitability shifters in
the model.
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I estimate the ‘first-stage” elasticity v in equation (20) by leveraging the model’s log-linear rela-
tionship between a firm’s expenditures on professional services M ]1: tROF (one of the four categories

of shared inputs) and the firm’s average demand shock:

Alog MPROF _ VpKLG Z 77PROFAIOg St

ft ft-1
ke
where model-consistent expenditure shares n?f?_ﬂ are approximated using BEA industry-level

expenditure shares on professional services Sk pror:

Pm
prop _ Hfmkt=1 8 1 BrproF X fk i1

Tlfk,t—l = Pm
Afm,t‘—l

, for m = PROF.

2k Bk,PROF X fk t-1

Intuitively, the elasticity of professional service input expenditures with respect to demand shocks
depends on the product of two elasticities (i) v, the elasticity of firm profitability with respect to
demand shocks, and (ii) pXL©, the elasticity of professional service input expenditures with respect
to firm profitability. Column (1) of Table 3 provides a regression estimate of the combined elasticity
vpKLG =

turning to identification of micro scalability and rivalry parameters ®, I describe identification of

0.65, allowing identification of v conditional on knowledge input scalability pX-C. Before
macro variables conditional on ©®.

3.2 Identification of Macro Variables

The first half of Table 4 summarizes the macro variables and their sources of identification. First, I
set the mass of potential entrants at N = 318000, the total number of firms (including administrative
and inactive records) in the 1997 Census of Manufactures.? Second, ¢; = y;(0;—1)/0; in the model
is equal to the share of gross output expensed on stage-II inputs, which is readily available in BEA
input-output data.® Third, I calibrate the average arrival rate of ideas, Z;, by matching the share
of multi-industry firms in the model to that in the data in each year (0.2).

Finally, I calibrate industry profitability B; and technology coefficients & = {a s },; so that the
model exactly matches BEA data on gross output X; and expenditures on shared (stage-I) inputs
M; by industry. In the model, firms” expenditures on stage-I inputs are shared across industries,
but these expenditures (e.g., on R&D) are reported in BEA data separately by industry. I assume
that an equivalent statistical agency in the model registers the entire firm’s expenditures on a given
shared input m under the industry j where the firm adapts its first type-m idea. Given a continuum

of firms, assuming that each firm registers shared input expenditures under their first industry of

YFirms in my model move in and out of active status due to stochasticity in knowledge accumulation. An inactive
firm is any firm that, despite positive stage-I input expenditures, has accumulated zero knowledge. In any period in
which this happens, the firm will register zero sales and fall out of the observed sample, i.e., become an inactive record.

%Estimation is invariant to values of actual production returns to scale y; or demand elasticities ;. Under monopo-
listic competition, the sufficient equilibrium parameter is ¢ j,a combination of the two.
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Table 4: Overview of Model Parameters and Sources of Identification

Variable and Description Source of Identification

Macro Variables

N Mass of all firms All active and inactive firms (318,000)

¢j  Stage-Il input expenditures as share of output ~ Corresponding shares in BEA I/O Table
Z;  Average arrival rate of ideas Share of multi-industry firms (0.2)

Bj  Industry profitability BEA Industry Gross Output X

amj Average value of shared input m inindustry j  BEA Input-by-industry Expenditures M,,;

Micro Parameters
yo  Variance in & across industries within the firm  Share of industries that continue (0.42)

y1  Variance in &y across firms Share of sales by multi-industry firms (0.74)
v Responsiveness of {¢ to demand shocks Assumption 3 and Table 3 (vpXLG = 0.65)
®  Scalability and rivalry of shared inputs Proposition 2

use is equivalent under aggregation to apportioning each firm’s expenditures on input m across
industries according to adaptation probabilities i fy;.
Equation (21) provides the national accounting identities that define industry-level output (X;;)

and input expenditures (M;,;) as a sum over respective firm-level variables in the model:

X = N/ D om AAGE),  Vied, te{1,2,3),
meM (21)

p - m m m .
Mmjtz’;—mN/ on A0 dG(E),  Vied, t=1, meM,

where G(&; y) is the joint-lognormal distribution parametrized by Assumption 3.5! Inormalize the
price of each type of shared input w; to equal one in each year (differences across types of shared
inputs m are absorbed by &) and deflate data on Xj; and M,,;; in each year by wage inflation.
I calibrate & to match input-by-industry expenditure data from the first cross-section, 1997, and
assume that « is time-invariant. Equation (21) is a system of || X 3 + || X | M| equations with
as many unknowns. I develop a fast recursive computational algorithm that inverts the system of
equations to solve for B; and « (contained in 6 and A) given data on X; and M, taking as given
other macro and micro parameters. I provide more details in Quantitative Appendix C.1.

Notice that identification of these macro variables does not require specifying other general
equilibrium details of the model (such as trade or vertical input-output linkages) as long as such
features affect all firms equally. Industry-level profitability B; encapsulates the combined effect of
export market access, import market competition, as well as prices of industry-specific intermediate

inputs in each year, as long as they are common to all firms.

3'With an abuse of notation, a variable subscripted with f indicates that it is dependent on &.
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3.3 Identification of Scalability and Rivalry Parameters

Lastly, I exploit within-firm variation over time and use the vector of demand shocks Alog § £t as
instruments to identify scalability and rivalry parameters ®. By Assumption 3, demand shocks
shift firms” profitability &7 between t and ¢ — 1, allowing me to identify © from changes in firms’
sales across industries. Just as demand shocks trace out the firm’s marginal cost curve in the
textbook single-product case, in my multi-industry setting, same- and cross-industry demand
shocks identify the matrix of same- and cross-industry elasticities of marginal cost to output—
which is parametrized by ©.

An immediate challenge for mapping the model to the data is the non-random assignment of
demand shocks to firms. Export demand shocks Alog S from Section 1 are constructed only for
tirms that are already selling in a given industry j. Firms active in industry j would have a higher-
than-average fundamental profitability &¢; ;-1 in that industry, and comparing the outcomes of
such a firm in the data against a those of a randomly drawn firm in the model would lead to
selection bias.

I address this potential selection bias using Assumption 4. I assume that demand shocks are
uncorrelated with initial-period unobserved profitability & ;-1 and sales Xy ;1 conditional on the
firm’s initial industry presence, xf-1. In other words, identification only requires that shocks are

as good as randomly assigned among firms with identical initial-period extensive margins.

Assumption 4 (Conditional Independence) Demand shocks are randomly assigned to firms conditional

on pre-existing industry presence:
AlogSsr L & p1, Xpi1 | Xf i1, t € {2,3}.

Proposition 2 describes the moment conditions I use to estimate ®. Equation (22) stipulates
that under true values of ®, conditional covariances between demand shocks and sales growth in
the data should equate that in the model for any pair of industries j, k. This yields a | J|*> matrix of
moment conditions for each of the two time-differenced periods t = 2, 3. In the sample analogs of
each moment condition, I include firms with industry activity in j and k in the initial period, t — 1
and include endogenous exit as an outcome of the firm (whereby X;; = 0). By conditioning model
predictions on the firm’s initial-period extensive margin xs-1, [ am able to correct for potential
selection bias arising from a firm having higher-than-average ¢, and &¢; whenever it is observed

to be jointly active in those industries.

Proposition 2 (Identification of Scalability and Rivalry) Define structural residuals Aeyj; as:

Aegjr = (Xpjr = Xpje-1) — (BelXpje | Ept] = BroalXpjeo1 | & p-1]),

the difference between a firm's change in sales in a given industry j in the data (the first bracketed term)

and its expected change in sales in the model (the second bracketed term, where E; is an expectation operator
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expressing the firm’s ex-ante expected sales conditional on © as well as macro parameters By, Z;, &, G, as in

equation 15). Under Assumptions 3 and 4, the following moments hold in expectation (for any j, k):
Ef [Aefjt AlogSsut | xp-1] =0,  VE={2,3}, Vjked. (22)

In Appendix C.2, I derive analytical sample analogs for these micro moment conditions as
functions of the data and the micro and macro parameters in Table 4. By estimating micro and
macro parameters jointly, I account for the effect of equilibrium changes in industry demand
and supply conditions on firm sales growth. Macro parameters By, Z;, &, ¢ behave in my micro
moment conditions as non-linear fixed effects. For example, any changes in industry-wide demand
(or supply) conditions between t and t — 1 are reflected in differences between B;; and B ;-1, which
affect output growth E+[Xyjs | &f¢] — Et—1[Xfj -1 | &f,4-1] in the model.

Given the sparsity in firms’ extensive margins in the data, I create four groupings of moments
in each year t = {2,3}. Each grouping contains an average over the following elements from the
J X J matrix of moments: (i) main-diagonals j = k for industries j with higher-than-average
expenditure shares on knowledge inputs, (ii) remaining main-diagonals, (iii) off-diagonals j # k
for industry pairs j, k with higher-than-average knowledge-input proximity, and (iv) remaining
off-diagonals.

Grouping moments according to same- versus cross-industry covariances helps identify scala-
bility (pKLC, pRES) separately from rivalry (9XLG, ORES). Recall from Proposition 1 that scale and
rivalry effects push in opposite directions for the response of sales to cross-industry shocks, but
push in the same direction for the response of sales to same-industry shocks. For example, if a
positive demand shock in industry k increases sales in another industry j of the firm, shared inputs
used by k and j can be either more scalable or less rival (i.e., p,, > 0;,) to match this covariance in
the data. If, however, the same demand shock also raises sales in the same industry k of the firm,
shared inputs must be sufficiently scalable on an absolute basis (i.e., p;; is high).

Next, grouping moments according to their knowledge-proximity helps identify parameters
associated with shared knowledge inputs (pXtC, OKLC) separately from that of residual shared
inputs (pRES, ORES). If industries with greater knowledge-proximity (parametrized by technology
coefficients a in the model) exhibit greater covariances of sales growth to demand shocks, it mustbe
that the shared inputs used intensively by those industries (i.e., knowledge inputs) are more scalable
and less rival than the residual shared input. Altogether these four groupings of moments provide
sufficient identifying variation to estimate the four micro parameters (® = pKLG, gXKLG, pRES , GRES )
behind the joint production technology.

Table 5 presents estimates of input scalability and rivalry ® as well as the variances y of
fundamental firm profitability shifters. I use ten moment conditions: the four grouped moments
above repeated for each of two years t = 2,3, and two remaining cross-sectional moments (from

the initial year ¢ = 1, shown in Table 4), which identify the variances y9, y1 in the joint-lognormal
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Table 5: Estimates of Scalability, Rivalry, and Firm Heterogeneity Parameters

Parameter Description Estimate S.E.
pKEG Scalability of shared knowledge inputs 12.64 (0.39)
OKLG Rivalry of shared knowledge inputs 3.61 (0.07)
pRES Scalability of residual shared inputs 2.63 (0.05)
ORES Rivalry of residual shared inputs 4.06 (0.12)
Y0 Degree of comparative advantage within the firm 0.85 (0.03)
Y1 Variation in absolute advantage across firms 0.99 (0.05)
Test of Over-identifying Restrictions: 7.28 ~ x2 p =0.12

Notes: This table reports estimates of micro parameters in the model. The six parameters are estimated on the sample of
all multi-industry firms and all pairwise industries in which they are initially active, over years 2002-2007 and 1997-2002,
using 10 moments. There are 13,000 (rounded) firm-year observations used in the sample. Standard errors of estimates are
computed based on results from 21 bootstrap samples, where I re-draw over both the data and the simulated & samples.

distribution. Consistent with evidence in Section 1, the ranking pXt¢ > GRES > QKLG . ,RES
implies that knowledge inputs induce stronger scale effects and weaker rivalry effects within the
firm. In contrast, residual shared inputs induce weaker scale effects and stronger rivalry effects,
which is consistent with negative cross-elasticities for industries that are not knowledge-proximate.
For these baseline estimates I give each of the ten sample moments equal weight. Estimates do not
change by much when using the optimal weighting matrix under two-step GMM. In the last row, I
show that a test of over-identifying restrictions does not reject the null that the identifying moment
conditions are jointly valid, suggesting the estimated parameters provide a good fit to these micro

moments.

3.4 External Validation: Scale, Scope, and Industry Joint Production

Despite its limited number of (six) micro parameters, the estimated model reproduces other
extensive-margin moments in the data not targeted in estimation. First, the model matches the
distribution of the number of firms and their sales by firm scope in the data, shown in Figure 3.
Both the data and the model attribute a significant size premium to the right tail of the firm scope
distribution, though, for firms with nine or more industries, the model somewhat undershoots
the data because it cannot account for the existence of true conglomerates and holding companies.
Overall, the close fit between the model and data validate the Poisson and Fréchet functional form
assumptions.

Next, I conduct a sharper validation test by assessing the model’s predictions for which indus-

tries firms enter. I create an asymmetric jk-level measure of co-production as the share of industry
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Figure 3: Model versus Data: Distribution of Firms and Sales by Scope in 1997
(a) Share of firms by scope (b) Share of sales by scope

15 —= Data 4 —=- Data
Model Model

Share of Firms
Share of Sales
n

2 3 4 5 6 7 8 9+ 2 3 4 5 6 7 8 9+
Firm Scope (Number of Active Industries) Firm Scope (Number of Active Industries)

Notes: Panel (a) plots the distribution of firms by scope. Panel (b) plots the share of total sales accounted for by firms
across the scope distribution. Data in 1997 is shown in green and model outcomes (computed using 1997 macro
aggregates By, &) are shown in orange.

j sales by firms that also produce in k:

Zf Xffl(ka>0)

CoProd; = ,
]k X Xfj

and I measure an industry-pair’s knowledge-proximity similarly to equation (5) but with industry-

level output X; in place of firm-level output X;:

Brom Xk
ProxKLG_ Z Bjm Zklejm,gk’ Xpr (23)

me MKLG

Panel (a) of Figure 4 finds that, in the data, co-production increases with knowledge input-
proximity. In panel (b), I show that the estimated model reproduces this strong bilateral positive
correlation. Co-production is more prevalent across these industries because knowledge inputs
are more scalable (resulting in a higher overall arrival rate of ideas) and less rival (resulting in ideas
being adapted to improve knowledge in a wider set of industries). These results provide external
validation to the model estimates given that the cross-sectional patterns of co-production were not

targeted during estimation.

4 The Macroeconomic Implications of Joint Production

Under the estimated model parameters, joint production generates aggregate increasing returns
to scale in the US manufacturing sector. The partial non-rivalry of knowledge inputs is a source

of aggregate economies of scope, so that increasing output in one industry will on average reduce
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Figure 4: External Validity: Co-production in the Data and the Model in 1997

(a) Co-production in the Data

(b) Co-production in the Estimated Model
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Notes: These panels correlate bilateral industry co-production (share of industry j sales by firms with activities in k)
with bilateral knowledge-proximity, in (a) the data, and (b) the model.

prices in not only the same industry but also others. I analytically characterize these industry
linkages in general equilibrium using a matrix of same- and cross-industry elasticities of the
producer price index to demand shocks. I use these macro elasticities to decompose aggregate
increasing returns into same and cross-industry components and re-assess the implications of

trade policy.

4.1 Joint Production in General Equilibrium

To highlight the impact of joint production, I close the model under bare-bones general equilibrium
assumptions that rule out any other cross-industry interdependence. Definition 1 in Quantitative
Appendix D.1 lays out the equilibrium conditions. Consumer demand is Cobb-Douglas across
industries, which shuts down demand-side linkages. The stage-II, industry-specific input com-
posite [f; consists of only labor, which shuts down conventional input-output linkages.??> The US
economy (denoted u) trades with a set of foreign partners (denoted d € DF) each with exogenous
macro aggregates (demand levels and foreign firm price indices), which shuts down cross-country
linkages. I pin down wages by assuming that there is a large-enough non-manufacturing sector
in which US exporters face infinitely elastic foreign demand. This assumption keeps wages fixed
across counterfactuals, since overall trade can balance via changes in the non-manufacturing sec-

tor’s net exports. I fix the total number of firms at N (which still allows for firm entry and exit

#2In Appendix D.2, I prove a more general version of Proposition 3 that accommodates arbitrary stage-II input-output
linkages across manufacturing industries. I make this simplifying assumption here only to isolate the quantitative
impact of joint production, and doing so is not inconsistent with prior sections of the paper. Recall that estimation of
model parameters in Section 3 does not require taking a stance on the input-output structure of the economy. Price
effects from changes in stage-II input costs are absorbed by the industry profitability shifter B;.
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across industries, as well as in and out of active status). Finally, all firm profits and tariff revenues
are spent on the non-manufacturing sector, which shuts down expenditure-driven feedback effects.

The key endogenous macro aggregates are domestic industry-level producer price indices:

P “’—N/ [ “’1] dGE), Vjed,

which depend on joint production decisions undertaken by individual firms f. Proposition 3
derives the general equilibrium elasticity of industry PPI and output with respect to any exogenous
shifter of industry market size S (e.g., from shocks to population size, foreign demand, or or foreign

prices).

Proposition 3 (Industry Linkages from Joint Production) Under the open economy general equilib-
rium conditions provided in Definition 1, domestic producer price indices dlogP and output dlogX

respond to exogenous shocks to industry market size dlog S (defined in equation 33) according to:
dlog P = diag ( L ) (I+W diag(A%")) " Wdlog, (24)

dlogX = dlog$ + diag(A?'(1 - 0))dlog P (25)
where (i) 1is the identity matrix, (ii) W is a macro joint production matrix containing inverse cross-industry
supply-side elasticities Y for the ‘average’ firm:

W]k = o0;(1— )Y ik — 1=,

= Z (Pm - Qm)/i]m ,ajmk + 1j:k Z Om ij/ V]/k €J,
meM meM

—
=
~.
=
I

where industry choice shares [ijn indicate the average propensity for type m-ideas to be adapted in industry
k (relative to other industries k') among firms that produce in j, and input utilization shares Aj,, indicate

the average profit-contribution to industry j of shared input m (relative to other shared inputs m’):

E[Xf] /\ffm
fE X5l fjm dG(&)

E[X]
TEX;146@ "

tfmk dG(E), dG(&),

[«l]mk

and (iii) AP! reflects the potential for US firms to gain share from foreign competitors in each market d:

cpt= X M .
ATt= Y a%a-alh  vied,

de{u,DF}

where )\%I is the share of country d’s industry j consumption originating from US firms, and Agj is the share

of US firms” industry j sales exported to d.
The joint production matrix W encapsulates the equilibrium impact of demand shocks on

36



industry-level PPIand highlights two within-firm sources of aggregate increasing returns to scale.*
First, economies of scale (same-industry elasticities of price with respect to output) are governed
by the scalability of stage-II industry-specific inputs (y) and stage I shared inputs (p). Second,
economies of scope (cross-industry elasticities of price with respect to output) are governed by the
relative scalability and rivalry of shared inputs (p — 0).

For intuition on how these forces manifest in equilibrium, first consider an economy under

autarky, so A°?* = 0 and equation (24) simplifies to:

dlog# = diag (ﬁ) Wdlogs$S.
The relative magnitude of economies of scale and scope depend on own-diagonal versus off-

diagonal elements of the matrix W. I analyze each in turn.

Economies of Scale. When off-diagonal elements of W are zero, the only force present is same-
industry economies of scale. This occurs when either (i) shared inputs are in fact industry-specific
(so that ij fimk = 0Vm), or (ii) scale and rivalry effects offset each other on a knife’s edge
(pm = O Ym). Whereas producer price indices in each industry are unaffected by demand shocks
in any other industry, the main-diagonals of W still allow for arbitrary same-industry returns to

scale. Equation (24) simplifies further to:

dlog®; =

1 oi(1-c¢j)
0j — 1 Zm i]mpm

—1) dlog§;, Vied,

with an elasticity bounded between (—ﬁ, 1), nesting the range of elasticities in Kucheryavyy et
al. (2019). The more scalable are stage I inputs (p,,) and stage II inputs (recall y; = gj%), the
more negative is this elasticity, and the stronger are industry-level economies of scale.

Two limit cases are worth highlighting. First, when p,, — 1, knowledge accumulation in stage
I is exogenous and non-responsive to changes in industry profitability. The response of industry
prices to demand shocks depends only on the scalability y; of stage II industry-specific inputs.
Under, for example, constant returns to scale in stage II production (y; = 1), the matrix W is
element-wise 0 (since (1 — ¢;) = 0; — yj(0; — 1) = 1), and prices are affected by neither same-
industry nor cross-industry demand shocks. Outside of this knife-edge value of y;, higher values
generate economies of scale (y; > 1), and lower values (y; < 1) generate diseconomies of scale.

Industry-level economies of scale also increase with the scalability of shared inputs in stage I,
pm. When stage-I shared inputs are scalable, firms easily respond to an increase in market size

by accumulating more knowledge capital and lowering marginal costs of production, without

3While Proposition 3 suffices for the analysis in the rest of the section (evaluating the impact of counterfactual
shocks to foreign demand), I provide more theoretical results in the Supplementary Online Notes. I show how the
joint production matrix W characterizes (i) partial-equilibrium aggregate cross-price elasticities of supply, and (ii) how
supply-side rather than demand side shocks (e.g., industry-level TFP) propagate.
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having to run into potential decreasing returns to scale in stage II. For any value of y;, in the
limit as p,; — oo for any m, industry-level economies of scale reaches its maximum strength (at
—1/(0; — 1)). This limit reproduces the same elasticity of industry prices with respect to output
as that in a standard multi-industry Krugman (1980) model. One difference, however, is that
scale economies in my model are internal to the firm. They come from (quality-adjusted) cost

improvements rather than new varieties by entrants.

Economies of Scope. On the other hand, economies of scope increase with the scalability and
non-rivalry of stage-I shared inputs, p,, — 0,;, which shape the off-diagonal elements of W. To
understand this force, consider an economy with two symmetric industries, ex-ante identical firms,
identical demand elasticities (o = 5), constant returns to scale in stage-II production (y = 1), and
a single type of shared input that is scalable and partially non-rival (p = 7 and 0 = 3). In this case,
using the fact that o(1 - ¢) =1, A =1, and fi = 0.5, equation (24) reduces to:

025 0 5 -2 10 -0.191 -0.024
dlog® = 1 - dlog$ = dlogs.
0 025] |21\-2 5 01 -0.024 -0.191
diag(17) w=y"-]

A demand shock that raises profitability in one industry lowers firms” marginal costs in other
industries the more that shared inputs are scalable and non-rival (p > 0). This is reflected in
positive cross-elasticities in Y, which corresponds to the firm-level elasticities of sales with respect
to demand shocks from Proposition 1. In equilibrium, these changes within each firm affect output
price indices (PPI) and therefore competition in other industries, triggering additional changes in
firms’ production decisions. Similar to the Leontief inverse, W = Y~ — I captures the equilibrium
impact of an industry demand shock on the price index as it percolates across industries and firms.
In the parametrization above, a 1% increase in demand in the first industry lowers the PPI in the
same industry by 0.19% and lowers the PPI in the other industry by 0.02%, one-eight the size of
the own-industry effect. Outside of this toy setting, of course, cross-elasticities are asymmetric
and unrestricted in sign. Cross-elasticities can even be positive if shared inputs were rival and

non-scalable, indicating diseconomies of scope.

Open Economy Effects. Finally, under the presence of trade, a decline in producer prices allow
domestic firms to win market share against foreign producers (in both the home market and
abroad). The equilibrium impact of demand shocks on producer prices (equation 24) depends on
an additional term, (I+W diag(ACpt))_l. Once again, the matrix inverse captures how domestic
firms” market share changes against foreign firms generate additional changes in firm scale that in

turn trigger further rounds of changes in the PPI.
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4.2 Quantifying the Impact of Joint Production

I use Proposition 3 to decompose aggregate increasing returns in the US manufacturing sector
into that contributed by economies of scale (same-industry elasticities) versus economies of scope
(cross-industry elasticities). Whereas many different models can generate increasing returns at
the industry-level (e.g., a Krugman model with free entry, or a perfectly competitive model with
external economies of scale), economies of scope represent a new within-firm channel specific to
joint production.

Making headway on this question requires knowledge of CES industry demand elasticities
0. Up until now, estimation of supply-side parameters p, 0 conditioned on observable general
equilibrium changes and firm input expenditure shares ¢ (a combination of ¢ and y), absolving
the need for 0. However, Proposition 3 illustrates that counterfactual changes in the economy in
response to shocks depend separately on values of ¢ and y. Under monopolistic competition,
o mediates firms’ profit incentives and therefore the extent to which they increase production in
response to a demand shock.

In my baseline estimates, I calibrate demand elasticities o so that my model generates the
same sector-level increasing returns to scale as estimates in Bartelme et al. (2019). In Appendix
D.5.1, I show that the contribution of economies of scope towards aggregate increasing returns (in
level terms) is not sensitive to using other direct estimates of ¢ in the literature or to alternative
calibration strategies. I calibrate remaining aggregate parameters of the model to fit data on the
US economy trading with two foreign regions: China, and the rest of the world. I calibrate foreign
price indices and expenditure levels so the model’s equilibrium exactly matches industry-level
production and trade data from 2017, as detailed in Quantitative Appendix D.4.

Under this calibration, I simulate a proportional change in foreign demand in each industry k
(so dlog Sk =1 - /\fk Vk, the share of industry sales that are exported), and use Proposition 3 to
compute the aggregate scale elasticity, defined as the elasticity of overall manufacturing PPI with

respect to output:

dlog PPI Yjeg A} dlog P
9 - <
dlog X dlog$ ZjejAj dlong dlogs
~ Zjej )\JX dlog P]gsame) . Zjej /\]X dlog 7’](.“055) (26)
B dlog X dlog X ’
dlog S dlog$S
economies of scaley economies of scope;

where weights /\]X represent industry j’s share of sales within manufacturing. The second line
decomposes the overall change in prices into those due to same-industry elasticities versus cross-
industry elasticities (i.e., main and off-diagonals of the transmission matrix in equation 24). In my

general equilibrium setting, cross-elasticities reflect the impact of any economies of scope.
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The top panel of Figure 5 illustrates the relative contribution of economies of scope versus scale
towards aggregate increasing returns. I estimate that economies of scope from joint production
constitute one-quarter of aggregate increasing returns in US manufacturing. Aggregate manu-
facturing prices fall with respect to output with an elasticity of -0.16, with -0.04 (the darker bar)
resulting from cross-elasticities and -0.12 (the lighter bar) coming from same-industry elasticities.
In other words, economies of scope cause aggregate US producer prices to fall by 0.4 percent for
every 10 percent increase in output induced by foreign demand. This quantitatively large spillover
would be absent in a model that does not take into account joint production.

Moreover, I find that economies of scope are disproportionately concentrated among clusters
of knowledge-proximate industries. In the bottom panel of Figure 5, I provide a disaggregated
visualization of how demand shocks impact price indices. I display cross- and same-sector elastic-
ities for sectors defined at the NAICS 4-digit level (there are 86 such sectors in manufacturing, each
containing one or more industries). Each cell in the matrix represents the contribution to overall
increasing returns from price changes in the row sector m induced by demand shocks in a column

sector n. For example, the mn cell in the matrix in Figure 5 measures

Djem A]X dlog #;

dlog X dlog s

where dlogS§, is the vector containing (1 — Afk) for all industries k € n and 0 everywhere else.
Down each column 7 (a given demand-shocked sector), off-diagonal cells over rows m # n sum
to the net effect of economies of scope that manifest across sectors, while the main diagonal cell
m = n consists of both same-industry economies of scale and economies of scope that manifest
across industries within that sector n.

While the main diagonals are strongly negative and reflect the contribution of within-sector
economies of scale and scope, a substantial amount of economies of scope manifest even across four-
digit manufacturing sectors. Cross-industry elasticities, indicated by the off-diagonal values, are
heterogeneous and asymmetric. Sectors such as computers are strong contributors to aggregate
increasing returns via economies of scope, while other sectors such as aerospace products are
strong beneficiaries. For example, a demand shock to computers and peripherals (NAICS 3341)
that raises manufacturing output by 10 percent trigger price declines in other sectors that lower
the PPI by a total of 1 percent. This is indicated by the strong negative column for NAICS 3341
in the matrix. On the other hand, prices changes in just the aerospace products (NAICS 3354)
sector lower the PPI by 2.4 percent for every 10 percent increase in manufacturing output caused
by demand shocks in other sectors. This is indicated by the strong negative row for NAICS 3354 in
the matrix.

Other sectors that are less knowledge-proximate have cross-elasticities that are much smaller

in magnitude. In fact, cross-elasticities are mildly positive for 264 sector pairs (four percent of all
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Figure 5: Decomposition of Aggregate Scale Elasticity under Joint Production

(a) Economies of Scale versus Scope
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pairs), indicating diseconomies of scope, which I shade in red. For example, glass manufactures
(NAICS 3272) and metal hardware (NAICS 3325)—two industries with the strongest diseconomies
of scope—share more residual inputs such as capital and administrative services than they do
knowledge. Prices of glass manufactures are predicted to rise in response to a demand shock for
metal hardware as firms reallocate scarce and rivalrous residual shared inputs m (p,, < 0,,) away
from glass products and towards metal hardware.

Figure 6 offers systematic evidence that joint production among more knowledge-intensive
industries generates stronger economies of scope. To illustrate this heterogeneity, I decompose
the equilibrium scale elasticity induced by foreign demand shocks into same and cross-industry
components for one shocked industry k at a time. Panel (a) of Figure 6 plots the contribution of
cross-elasticities (economies of scope) towards the aggregate scale elasticity (y-axis) against the
shocked industry’s expenditure share on knowledge inputs (x-axis). The magnitude of economies
of scope is strongly increasing in knowledge intensity. Panel (b) plots the same estimates of
economies of scope on the y-axis against economies of scale on the x-axis. Interestingly, industries
that induce strong economies of scope (computers, electrical equipment, machinery) tend to induce
lower economies of scale, and vice versa for industries like chemicals and plastics. Focusing only on
within-industry returns to scale would overweigh the contribution toward aggregate increasing
returns of the chemicals and plastics industries relative to the computer electronics or medical

equipment (part of Misc. sector) industries.

4.3 Joint Production in the US-China Trade War

Finally, I demonstrate that the endogenous responses of producer prices to market size in my
model are quantitatively important in light of a real shock to manufacturing. I analyze the impact
of bilateral import tariffs applied since the ongoing US-China “trade war” since 2018.

I compare the predictions of my model against an alternative production-side assumption
where firms operate linear, nonjoint, constant-returns production functions. Under joint produc-
tion, US domestic producer prices respond to market size changes due to economies of scale and
scope. US tariffs on imports from China protect US firms from competition and expand their
market access, while Chinese tariffs on imports from the US restrict US firms and reduce their
market access. In comparison, under linear production, domestic producer prices do not change
absent other general equilibrium forces.

I find that the difference in the producer price response between these two models are large
in light of actual tariff changes applied during the US-China trade war. I average data on applied
tariffs by commodity (HS10 for US imports and HS8 for US exports) from Fajgelbaum et al. (2019)
to the level of the 206 industries used in my paper (using, respectively, US imports and exports to
China by product as weights). I re-calibrate the macro parameters in my model to exactly match
aggregates in 2017, before the onset of the trade war. I then solve for counterfactual changes

in equilibrium price indices (both US consumption price indices and producer price indices by
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Figure 6: Estimates of Economies of Scope, Scale, and Knowledge Intensity by Industry

(a) Economies of Scope and Knowledge Intensity (b) Scope versus Scale Decomposition
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Notes: This graph plots on the y-axis, for a demand shock in each given industry, the net contribution to the aggregate
scale elasticity due to changes in other industries’ PPI. Panel (a) plots on the x-axis the shocked industry’s knowledge
input expenditures as a share of output. Panel (b) plots on the x-axis the contribution to the aggregate scale elasticity
due to changes in same, shocked industry” PPI. The size of each blue circle is proportional to the industry’s gross output,
and a list of top and bottom industries on the y-axis can be found in Table D.8. Overlaid in black text are additional
scatterplots of the same y and x statistics but aggregated at the level of broad NAICS 3-digit sectors.

43



Table 6: Impact of the US-China Trade War on US Manufacturing

Linear (CRS) Production Joint Production
Import tariffs by: USonly  US+ China USonly US + China
Change (%) in UL.S. Manuf. Sector Outcome
CPI 0.76 0.76 0.50 0.61
PPI 0 0 -0.37 -0.17
Imports from China -37.23 -37.23 -38.23 -38.09
Imports from RoW 6.29 6.29 491 5.52
Exports to China 0 -36.76 1.59 -36.82
Exports to RoW 0 0 2.01 0.63
Output 1.53 0.92 2.46 1.34
Manufacturing Sector Trade Deficit -12.32 -7.39 -19.72 -10.75
US Tariff Revenues as share of initial Manuf. Output ~ 0.57 0.57 0.55 0.55

Notes: This table presents estimates of the impact of US-China bilateral import tariffs on the US manufacturing sector under two
different model settings calibrated to match US industry-level aggregates in 2017. The first two columns display results under linear
production, where firms operate under constant returns to scale and no economies of scope. The last two columns display results
under the estimates of the joint production technology in the paper. I first compute the impact of unilateral US tariffs on imports
from China and then the full impact after Chinese tariffs on imports from the US. Data on tariffs at the HS-level are taken from from
Fajgelbaum et al. (2019). See Definition 1 for a characterization of the equilibrium and Appendix D.6 for the exact hat system of
equations used to solve for model responses after the shock.

industry) in response to these tariffs, holding all else equal. I develop and apply an “exact hat”
system of equations (see Appendix D.6) to solve for changes in industry price indices in response
to any set of exogenous shocks under the equilibrium given by Definition 1.

Table 6 compares the impact of US-China tariffs on various economy-wide aggregates. I first
compute the impact of unilateral US tariffs on imports from China, before computing the full
impact after retaliatory tariffs by China on imports from the US. In the first two columns, under
linear production, changes in market size have no effect on producer prices (recall that wages are
pinned down by a non-manufacturing sector and there is no entry and exit of firms). The only
effect of US tariffs is to raise consumer prices by 0.76 percent, while expanding manufacturing
output by 1.5 percent. Retaliatory tariffs have no additional impact on the US CPI but of course
reduces US manufacturing output (by 0.6 percent), so that on net output increases by only 0.9
percent.

In the last two columns of Table 6, I find that the price impacts of tariffs are substantially
different under joint production. Given the sizable estimates of economies of scale and scope, US
producer prices fall by 0.4 percent as unilateral import protection expands US firms” market size.
Each industry-level import tariff causes prices of US goods to fall not only in that same industry
but also in other, knowledge-proximate industries. Altogether these producer price declines offset
about one third of the CPI impact under linear production, so that the consumption price index
rises by only 0.5 percent. Other margins of the US economy also improve compared to the case of
linear production. As US producer prices fall, manufacturing exports rise, the deficit shrinks, and
import substitution towards the rest of the world is less pronounced.

However, while joint production mitigates the harms of domestic import protection, it also
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Figure 7: Impact of the US-China Trade War on US Manufacturing PPI
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Notes: This table presents estimates of the impact of US-China bilateral import tariffs on US manufacturing PPI under
the joint production model calibrated to match US industry-level aggregates in 2017. Shown here are the model’s
industry-level predictions aggregated (using sales-weights) to the level of NAICS 3-digit manufacturing sub-sectors.
The gray bar illustrates the impact of unilateral US tariffs on imports from China. The navy bar illustrates the full impact
after Chinese tariffs on imports from the US. See Definition 1 for a characterization of the equilibrium and Appendix
D.6 for the exact hat system of equations used to solve for model responses after the shock.

amplifies the harms of foreign import protection. In the last column, retaliatory tariffs by China
restrict the foreign market access of US firms and push up producer prices, offsetting a majority of
the aggregate producer price decline. US producer prices decrease by only 0.17 percent compared
to 0.37 percent under unilateral tariffs, leading to an overall CPI increase of 0.61 percent.

While this brings the aggregate CPI change closer to the alternative model of linear production,
the aggregate impact masks substantial heterogeneity at the industry level. Because the industries
facing restricted market access due to Chinese tariffs are different from those facing import pro-
tection due to US tariffs, the distribution of the changes in industry prices are actually wider after
Chinese retaliation. Producer prices rise by more than one percent in optical instruments, pulp,
computers, broadcast and wireless communications equipment and small electrical appliances.
Producer prices fall by more than three percent in lighting fixtures, furniture, textiles, and printing
ink (see Figure 7 for changes by broad manufacturing sector). These results illustrate the poten-
tial for tariffs to alter a nation’s comparative advantage and trade structure—not only in directly
affected industries, but also in other industries linked under joint production.

While the general equilibrium assumptions used in these counterfactuals are stark, it is straight-

forward to extend the model to feature firm entry, exit, endogenous input price changes, or
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input-output linkages. These additional details introduce further interactions but all preserve the
intuition conveyed by the quantitative results thus far. Economies of scope generate large, negative
cross-elasticities of price with respect to output among knowledge-proximate industries. In the
aggregate, joint production represents a novel and economically sizable channel through which

shocks propagate across industries.

Conclusion

Much of the existing literature in international trade and macroeconomics assumes that firms
operate independently across industries. I provide evidence that this assumption is inconsistent
with the behavior of manufacturing firms in US micro-data. A demand shock in one industry of
a firm increases its sales in another industry the more that the two industries share knowledge
inputs.

This paper develops a model of joint production to explain and quantify such interdependence
within the firm. Whereas solving for a firm’s decisions under interdependence is typically a hard
computational problem, I provide a micro-foundation where firms use shared inputs to accumulate
knowledge in a firm’s industries under an endogenous stochastic process. This convexifies the
firm’s ex-ante decisions and yields analytical expressions for the firm’s extensive and intensive
margins in each industry. I estimate that knowledge inputs stand out from other shared inputs in
terms of their scalability and non-rivalry in joint production. Output among knowledge-proximate
industries are complements in production.

Joint production within the firm generates a new dimension of cross-industry linkages in the
aggregate. Firms derive economies of scope from the scalability and rivalry of shared knowledge
inputs. I find that this intra-firm mechanism is quantitatively important in the aggregate. On
average a demand shock that raises output by 10 percent would lower prices in other industries by
0.4 percent. This accounts for more than one quarter of conventional values of aggregate increasing
returns in US manufacturing. Endogenous price responses under joint production suggest that
trade policy and market size are determinants of comparative advantage across countries. More-
over, the concentration of economies of scope among knowledge-proximate industries highlight
sensitive industry clusters that could particularly benefit from unilateral import protection as well
as be harmed by retaliatory tariffs. These results provide grounds for further research on optimal

trade and industrial policy.
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APPENDICES (for online publication)

A Data Appendix

A.1 Data Construction and Details

Firms, Plants, and Products. I assemble data from the Economic Censuses (EC), the Longitudinal Business
Database (LBD), and the Longitudinal Firm Trade Transactions Database (LFTTD) from 1997 to 2012. The
Censuses are conducted quinquennially in years ending with 2" and ‘7’. Data on product shipments made
by establishments come from the product trailer (PT) files which are attached to the Census of Manufactures
(CMF). These trailer files contain responses of establishments that are sent a CMF ‘Long Form’. The long
form is sent to all establishments belonging to multi-establishment firms as well as a sample of single-
establishment firms. The long form elicits shipments made by the establishment at a disaggregated level
(varying from 6 to 10 digit NAICS).3

Using firm identifiers in the LBD, I match establishments to their parent firms and aggregate industry-
level shipments to the level of the firm. The firm identifier in the LBD comes from information the Census
collects from the Company Organization Survey and from tax identifier and plant identifier information in
the Business Register. An establishment is a physical location where business activity occurs. The firm is
defined (by the Census) as the highest level entity that controls more than 50% of each of the establishments
assigned to the firm. I drop establishments that are administrative records (for which sales data is imputed).

External Sales. The CMF contains data on the shipments of a plant made to other plants within the same
firm. However, this data is not broken down at the product-line level. For plants that produce in multiple
industries, I apportion this inter-plant shipment data into industry-level intra-firm shipments using shares
taken from the plant’s total sales across industries. I then define the external sales of a firm in each industry
as its total sales in that industry minus its intra-firm shipments. I drop external sales computed in this way
in any industries of the firm that (i) account for less than 0.5% of firm-wide external shipments and (ii) are
never the main produced industry of any plant the firm owns. This is conservative and allows product
shipments in very small industries of the firm to be entirely intra-firm. This also prevents the spurious
adding / dropping of products simply because of changes to the PT forms over the years.

Firm Trade Data. I use two sources. First, the LFTTD contains the value of all import and export
transactions, by trading country and by HS10 product, that each firm entity (a set of EIN tax codes) is a
counter-party to. Second, the CMF also contains data on plant-level shipments that are ultimately destined
for export markets (whether directly or indirectly through an intermediary). If the plant is a multi-industry
plant, I apportion this plant-level shipment across the plant’s industries using product trailer product
shipment shares. I use both LFTTD and CMF data on exports to construct the export demand shock,
detailed below. Data on firm exports and imports reported in Table 1 come from the LFTTD.

Country-level Trade Data. I use data from BACI and Comtrade (bilateral country-level trade flows at
the HS6 level) to generate the five-year growth rates in imports of a destination # in product / used in the
analysis, Alog IMP,;p;.

Knowledge Inputs. I use BEA data from 1997 to collect input expenditure data by industry. Table

3This procedure is likely to underestimate the significance of multi-product activity in the US economy for two
reasons. First, the long-form elicits questions about product sales over a pre-specified list of products (specific to the
plant’s classified industry). Although there is space for the firm to report shipments in products not covered by that
pre-specified list, in practice firms rarely do. Second, the long-forms do not cover all single-establishment firms in the
economy. A single-establishment firm could be selling in multiple industries but would not report the breakdown of
its sales over these industries unless it was sent a long-form.
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Table A.1: Definition of Knowledge Inputs and their Use in Manufacturing in 1997

Expenditures as Share of Gross Output (%)

Code Description Mean 25th pctile 75th pctile
550000 Management of companies and enterprises 3.54 2.60 4.94
541700  Scientific research and development services 0.62 0.25 0.96
541300  Architectural, engineering, and related services' 0.62 0.31 0.96
5419A0 All other professional, scientific, and technical services 0.61 0.61 0.63
541511 Custom computer programming services' 0.58 0.21 0.86
541800 Advertising, public relations, and related services 0.48 0.14 0.62
541610 Management consulting services 0.28 0.28 0.30
541100 Legal services 0.28 0.09 0.30
541200 Accounting, tax prep., bookkeeping, & payroll services 0.15 0.08 0.21
541400 Specialized design services 0.09 0.01 0.02
541512  Computer systems design services' 0.07 0.02 0.06
54151A  Other computer related services 0.04 0.02 0.04
5416A0 Environmental and other technical consulting services 0.04 0.01 0.02
541940  Veterinary services 0.00 0.00 0.00
541920 Photographic services 0.00 0.00 0.00
533000 Lessors of nonfinancial intangible assets 0.69 0.06 0.34
5111A0 Wired telecommunications carriers 0.34 0.17 0.37
511200  Software publishers® 0.33 0.05 0.19
518200 Data processing, hosting, and related services 0.20 0.17 0.26
512100 Motion picture and video industries 0.03 0.00 0.03
512200  Sound recording industries 0.00 0.00 0.00
All Knowledge Inputs 9.01 6.38 11.48

Notes: Mean refers to the weighted average across all 206 BEAX manufacturing industries, with industry gross output as weights. 25th
and 75th pctile refers to expenditure shares of the corresponding percentiles (unweighted) across the 206 manufacturing industries. Codes
in the first column refer to BEAX codes that are hand-developed; they roughly correspond to codes available in BEA I/O tables but are
aggregated to ensure consistency over time.

Source: BEA Input-Output & Capital Flow Tables, 1997.

* Indicates industries where data on capitalized investments from the capital flow tables are used to compute expenditures. Capitalized
investments make up only 0.64% of gross manufacturing output.

A1 lists the input industries from BEA input-output and capital flow tables that I classify as knowledge
inputs. These fall under NAICS sectors 55, 54, 51, and 533. Although results are robust to including finance,
insurance, real estate, and other rental leasing (NAICS 52, 531, and 532), I exclude these inputs because of

the separate way that financial inputs affect businesses. Instead, I am able to separately account for these
GOTHER,SYM

mechanisms using the Alog fi

control variable in Section 1, and using residual shared inputs in
my quantitative framework.

In the three columns of Table A.1, I compute aggregate expenditures by manufacturing firms on these
input industries. The input-output tables record only expenses on inputs whose accounting value fully de-
preciates within one year. Given the arbitrary depreciation rates of many intangible assets and idiosyncratic
rules around which inputs are expensed versus capitalized, I incorporate data from the capital flow tables
on capitalized investments made by firms in manufacturing industries on knowledge input industries (for
example, a shoemaker investing in software capital). I count both capitalized investments and expensed
investments as knowledge input expenditures. In practice, capitalized expenditures on intangibles in 1997

are so small (0.64% of output) that it makes no difference to the results in the paper if I exclude data from

52



the capital flow tables. Most knowledge input expenditures circa 1997 (like R&D) were still expensed under
national accounting rules. I do not use data on knowledge input expenditures after 1997 because of subse-
quent changes to accounting rules that generate a lot of time variation in the data series, and because the
capital flow tables are no longer published.

The largest category of knowledge input expenditures is NAICS 55, ‘Management of companies and
enterprises’, at 3.54% of gross output. To my understanding, this reflects the BEA’s best estimates of the value
of professional services (the categories under NAICS 54) produced internally by the firm’s headquarters
for use by the firm’s other manufacturing plants. By comparison, expenses over the remaining delineated
professional services industries (NAICS 54) are outsourced.

Industry Definition. I construct a unified industry nomenclature, BEAX, that is time-invariant over the
period 1997 and 2012 and concordable with HS, NAICS, and BEA industry codes in each year. There are 206
BEAX industries in manufacturing. I use the HS-NAICS concordance in US Census Bureau data provided
by Schott (2008) and Pierce and Schott (2012) to convert import and export HS codes (at the 10-digit and
6-digit levels) in each year to NAICS. I use the concordances provided by US Census Bureau and BEA to go
between NAICS codes and BEA codes in each year. I use an iterative algorithm to aggregate over m:m splits
over years and in each cross section so that in any given year, each NAICS code and HS10 code is entirely
contained within a BEAX code.

A.2 Export Demand Shocks

I leverage both the LFTTD and CMF sources of data on firm-industry exports to construct demand shocks,
Alog S¢j. First, among LFTTD data, I compute export shares of each industry of each firm across destina-
tions n and HS6 products h. I exclude destination-product markets whenever the firm’s exports in those
markets exceed 10% of the market’s imports from the rest of the world. I use these shares as sy ¢-1 in
}]., - Ifa
firm reports no exports in an industry from among its manufacturing plants that produce in that industry, it

equation (2). Next, I use data from the CMF on export shipments to compute export intensity, s

is likely that its exports in the customs data is an instance of carry-along trade, made by the firm’s wholesale
/ retail arm. In this case customs-data-derived demand shocks would be uninformative: they are as likely
to affect this firm as they are to affect any other exporter in the industry. Export intensity from the CMF thus
helps to discipline the export demand shocks derived from the LFTTD. I also set export intensity to zero for
instances where carry-along trade of the firm (customs exports less census exports) in an industry exceeds
its total external shipments in the CMF. After purging these edge cases, I am left with two measures of
export intensity: (i) census exports divided by census sales in an industry, and (ii) customs exports divided

*

by census sales in an industry. I take the average of these two measures as my measure of s i1

A.3 Regression Analysis

A.3.1 Summary Statistics

Table A.2 displays summary statistics on common variables that appear in regression Table 2. The regression
sample consists of all continuing firm-industries (across 5-year periods) of firms that have at least one
industry with a non-zero export demand shock. For example, suppose a firm f produces in industries A
and B in 1997 but only produces in A in 2002. Aslong as the firm received a demand shock in either industry
Aor Bin 1997, Linclude the firm in the sample (where it takes up a single observation). However, if the firm
had switched to producing industries C and D in 2002, there is no intensive margin overlap and this firm
would not be included in my sample.
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Table A.2: Summary Statistics on Key Regression Sample

Statistics by firm-industry: Variable Mean Std. Dev.
Change in sales Alog X¢jt 0.15 0.99
Has export demand shock? - 0.68 0.47
Export intensity s;}]., 1 0.06 0.10
Same-industry demand shock Alog S¢it 0.028 0.082
Other-industry demand shocks

(i) Average effect Alog S7HER 0025  0.063
(if) X knowledge input-proximity Alog SfO]{H ERXKLG 0,002 0.007
Initial Period Sales (millions) Xfje-1 165 1225
Initial Period Employment - 522 2245

Other Statistics Value
Number of manuf. firms from 1997-2002 5000
Number of manuf. firms from 2002-2007 4700
Share of U.S. manuf. sales accounted for by sample 0.51
Share of U.S. manuf. employment accounted for by sample 0.37

Notes: This table reports sample statistics for the particular sample of multi-industry firms and their continuing industries
used in the regression in Table 2. Number of firms are rounded for disclosure avoidance. The selection criteria is any
firm-industry with continuing sales over a 5-year period, and belonging to a firm with at least one industry exporting in
the initial period.

A.3.2 Export Demand Shock Relevance

I verify that demand shocks are indeed able to shift firm sales in the same industry by running the following
regression for the sub-sample of firm-industries that have non-zero same-industry export demand shocks:

Alog Xyt = aAlog Syjr + Controls]-t(s}jlt_l) +FEjt + €51,

where Controls jt(s}j/ ,_,) refers to various ways of controlling for the export intensity scaling variable to
ensure that the estimated impact of the export demand shock is not driven by firms with different export
intensities being on different growth trends. Results are presented in Table A.3. Across all three columns
(that vary in terms of the control for export intensity used), the coefficient on the shock variable is positive
and ranges from 0.32 to 0.59. The impact of the demand shock is higher without controlling for export

intensity (column 1), consistent with selection on export intensity.
placebo _

fit
where, for each f7, i references a randomly selected firm from the set of firms with non-zero

In undisclosed results I also run a placebo test where for each firm-industry f j, I compute Alog S

. AlogS; jt
fit=1 sj, 4

demand shocks in j. The placebo tests return false positives in column (1) but not columns (2) and (3). This

suggests that linear controls for export intensity control adequately for selection on export intensity.

A.3.3 Cross-Industry Impacts and the Potential for Input-Sharing

Table A.4 displays the regression table counterpart to coefficients shown in Figure 1. Each row of the
regression refers to a specification that where demand shocks in other industries of the firm are interacted
with proximity to j with respect to a specific category of inputs. The numbers next to the description
in parentheses display the NAICS subroot (1, 2 or 3 digits) of the input category. Taxes, government
sector inputs, and the two types of value-added (labor and gross operating surplus) are specific BEA
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Table A.3: Relevance of Export Demand Shocks for Predicting Change in Sales

Change in sales, Alog Xy (1) (2) 3) 4)
Same-industry demand shock 0.59%*  0.36*** 0.34*** (0.32%**
Alog Sy (0.10) (0.12) (0.11)  (0.11)
Industry-year-FE v v v v
s}]., ;_1X year-FE v v
S}j, 11X Industry-year-FE v
Control for pre-period sales, log Xy ;-1 v v
Observations 14,500 14,500 14,500 14,500
R? 0.08 0.08 0.12 0.15

Notes: This table displays responses of firm-industry sales to same-industry demand shocks, in 5-year differences over
the period 1997-2007. Standard errors in parentheses are clustered at the firm level, with asterisks indicating p-values

below 0.1, 0.05, and 0.01 respectively. Number of observations are rounded for disclosure avoidance. The control S}j -1
is the firm’s export intensity (exports over sales) in industry j in the initial census year.

categories that have no corresponding numeric NAICS code. The first three rows of the table break out
the knowledge category interaction (given by column (3) of Figure 1) into finer constituent subcategories:
the leasing of intangibles (NAICS 533), headquarter services (NAICS 55), and professional services and
information (NAICS 51, 54) and show that cross-industry impacts increase with proximity with respect to
each constituent subcategory.
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Table A.5: Same and Cross-Industry Impacts of Demand Shocks: Additional Specifications

Change in Sales, Alog Xy (1) 2) 3) 4)
Same-industry demand shock 0.47**  0.47%**
Alog Syjt (0.09)  (0.09)
Other-industry demand shocks
(i) Average effect -0.74%** -0.48
Alog Sfoj{HER (0.24) (0.39)
(i) X knowledge input-proximity 7.51%* 6.54**  7.02%* 814
Alog$ %HER *KLG (2.22) (208)  (211) (2.22)
(iii) X remaining input-proximity -0.75***  -0.86"*  -0.44
Alog$ fj{HER X REM (0.26)  (0.26)  (0.44)
Industry-year-FE v v v v
Observations 21,500 21,500 21,500 21,500
R? 0.12 0.05 0.06 0.06

Notes: This table displays additional specifications using the same sample of firms as regression Table 2. Standard
errors are clustered at the firm level, with asterisks indicating p-values below 0.1, 0.05, and 0.01 respectively. Number
of observations are rounded for disclosure avoidance.

Table A.5 estimates variants of the main regression equation (1) and finds that cross-industry elasticities
of sales with respect to demand shocks are robust to alternative specifications. Column (1) finds that
the impact of other-industry demand shocks are robust to dropping controls for same-industry demand
shocks, providing reassurance that same-industry demand shocks have independent variation with respect
to other-industry demand shocks in the data. In columns (2)-(4), instead of using average other-industry

OTHER
t

demand shocks Alog S fi , I focus only on the input-sharing mechanism and separate out knowledge

inputs from the remaining inputs in the BEA I/O tables. I denote the remaining set of inputs by M?EM and

construct A log S?]ZH ERXREM

using the same equation (5) as Alog S}?}IH ERXKLG " Column (2) shows that they
pull in opposite directions within the firm. Cross-industry impacts increase with the sharing of knowledge
inputs, and decrease with the sharing of remaining inputs. Column (3) adds the same-industry shock back
to the regression, and column (4) includes both Alog S Of HERXREM and Alog S?.{ HER " Across specifications
(2)-(4), the effect of other-industry demand shocks interacted with knowledge input proximity is always

positive and statistically significant.

A.3.4 Impact of Demand Shocks at the Firm-level

Weights n fkt used in the firm-level regression equation (6) are given by:

 BryXrke
LI By Xt

where Xy is firm sales in industry k and fy ,, is defined depending on the outcome of interest y:

(i) Purchased professional services: By, = Pkpror, professional services expenses as a share of gross
output in industry k,

(i) Sales: Bk, =1 (so 1 are simply sales shares),
(iii) Capex: Bk, = Bk,cap, gross operating surplus as a share of gross output in industry k,

(iv) Payroll: Bk, = Bk, LaB, labor value added as a share of gross output in industry k.
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Data on purchased professional services at the firm level come from aggregating responses of plants
of the firm to the following questions in the Annual Survey of Manufactures (ASM): expenses on legal,
accounting, management, communication, advertising, and computer software and data processing ser-
vices. Firms that do not have plants respond to these questions in the ASM and firms that more than 5%
of sales outside of the manufacturing sector are dropped for this particular regression. Data on firm-wide
capex come from summing up plant-level capital expenditures, and data on payroll come from summing
up plant-level production worker payroll. Both variables come from the CMF.

A.3.5 Threats to Identification

Related to the discussion on threats to identification in Section 1.4, I directly test and reject the hypothesis that

import growth patterns across industries within a destination are positively correlated among knowledge-

~Uus
nk,t—1

for k € J, and interact industry-level import growth with knowledge proximity corresponding to the

intensive manufacturing industries. I aggregate imports of each destination to the industry level, IMP

intra-firm equation (5) used in the main firm-industry regressions:

US,0THER xKLG Z Z BinIMP 17| us
AlogIMP > = Bjm — AlogIMP 7.
" k#j me MKLG Z:k?&j ‘BkaMPnlgts—l i

For each given industry in a destination, I compute the change in import demand in other industries of that
destination:

- X
Alog IMP; [[SOTHER = %" (Zk;ﬁ—ka) Alog IMP; 15,
kzj \SKF

I then run the following regression, at the level of destination-industries, over the same time period (in
5-year differences):

Alog IMP;1® = Y Alog IMP, > THER 4 pKLG Alog IMP /S OTHERXELS L FEj 4 FE, 4 €.

I do not find that K€ is positive, either with or without destination-year fixed effects.

A.3.6 Vertical Explanations

There are four general reasons a demand shock in industry k may increase sales in industry j within the
firm: (i) j supplies k, (ii) k supplies j, (iii) k, j use similar inputs, and (iv) k, j are demand-complementary
and have similar buyers. My focus is on mechanism (iii). The discussion in Section 1.4 rules out (iv),
demand-complementarity. I also rule out the first two, vertical mechanisms:

(i) This is unlikely to explain the main regression results, which show external sales of the firm changing.
However, it could still be the case that external sales growth is driven by productivity effects (i.e.
increasing returns to scale) induced by intra-firm sales growth. I find, though, that intra-firm sales
growth in j does not respond to demand shocks in k (even among only the tiny fraction of j industries
that have any inter-plant shipments at all).

(if) For this to occur there must first be an increase in internal shipments in the shocked industry k. Then
the story would be that increased quality of shipments (as measured by increased internal sales) drives
productivity growth in industry j. I use growth in inter-plant (intra-firm) shipments as an outcome
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variable across the specifications in Table A.3. I find that they do not respond (even among the tiny
fraction of k industries that have any inter-plant shipments at all).

A.3.7 Deflating

Even though the main regressions specifications all include industry-year fixed effects (which absorb in-
dustry price deflators), whether variables are nominal or deflated (with industry-deflators) could still make
a difference in terms of the relative sizes of export shares and expenditure shares used in weights. All the
reduced-form results are virtually unchanged when the following variables are deflated with industry-level
price deflators from the NBER-CES manufacturing database: demand shocks (import growth at destina-
tions), outcomes (external shipments of a firm-industry), as well as ‘initial-period” variables, for example

the proximity weights behind A log S)C‘)]'IH ERXKLG

B Theory Appendix

B.1 Variability of ideas as a micro-foundation for input non-rivalry

I provide more intuition for equation (14), which specifies that the expected profit contribution of a given
idea is a 6,,-power sum of the firm’s profitability shifters in all industries. The lower the 6,,, the more
variable are ideas generated by that input, and the more the firm benefits in expectation from an idea
generated by that input (from being able to select the most suitable among all potential industries in which
to adapt that idea).

Combine the assumption of additive separability (equation 10) with the expression for firm-industry
profits in equation (11) to derive the expected impact on firm gross profits from an additional idea:

A% =B |max @miBic s §pmiy | .

where ¢y;,; is an independent random draw from a Fréchet distribution. The expected impact is the
change in gross profits in the industry in which the idea (conditional on the match-specific values of ¢, ;
in different industries) generates the highest increase in profits. The remainder of this proof simply relies on
properties of the Fréchet distribution popularized by Eaton and Kortum (2002). I can re-express the profit

contribution as:
Afm -
Va =E m]?lX (mei,j ,

where ¢ fmi,j 1S an independent random draw from a different Fréchet distribution that absorbs the multi-
plicative shifters:

~ ~ Om __,
Pr((mei,j < x) — e—(aijjéf/) x Um, \7,] 9,
and it follows that ) .
Om Om

A =| D (Z&uBieg)™ | TA=1/0w) =| Y 600,
j

]

where I' is the gamma function and 67 = Efjam;B;Z.
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B.2 Proof of Lemma 1: The Firm’s Solution

In stage 11, the firm decides its expenditures on industry-specific inputs given its accumulated knowledge,
{¢fj}jeg. This problem is separable by industry. Under monopolistic competition, the solution for the
firm’s gross profits (sales less production input expenses) and sales is given by equation (11).

At the beginning of stage I, the firm decides its expenditures on shared inputs. Throughout stage I, the
firm receives a stream of ideas indexed by i = 1, ..., Asy, for each type of shared input m and adapts each
idea to a given industry. Given the additive separability assumption in equation (10), expected firm net
profits Iy can be written as:

Afm

E[lls] = ZZB Efjlim; Z¢fm111fm11 - Wt

lfm meM

The first half of the expression denotes the expected gross profits of the firm given how its choices of shared
inputs (7, affect the Poisson-distributed number of ideas Af;, and their adaptation probabilities across
industries 17,,;,;. (Note the expectation operator is taken over Ay, ¢ ;) j, as well as the firm’s adaptation
decisions 1f;;). The second half of the expression relates to the unit costs of shared inputs, which I
normalize at w. Any differences in unit prices across types of shared inputs are isomorphic to technology
parameters afy,.

Given the linearity of this problem and the independence of the Poisson and Fréchet distributions, the
adaptation of a given idea 7 is independent of past and future ideas. The adaptation decision 1y,,;,; has the
following expectational properties inherited from Fréchet (Section B.1):

89
Pr(1fpi; =1) = Pr(j = argmax i) = fTr:] = Ufmj,
ke Afm

where 17y, are industry adaptation probabilities for any given idea of type m and

A
E[@miBi&sjPfmij | 1pmij =11 =E max amjBjcy; ﬁbfmzvf] = %
by the resultin Section B.1. Recalling that A 7, is distributed independently with Poisson mean Z (% Lfm )
expected firm net profits I'1¢ can be re-written as

{lfm}mEM m

E[lTf] = max ZZE[Afm | trm|El&miBi&ri®rmij | Lrmij = Pr(Lpmij=1) — ZWLfm'
j m

pm—1

= max Z(p:nil )"’” Zwam

{lfm}mEM

This is a convex optimization problem separable across shared input types m, with optimal inputs given by:

_ Pm— Pm . =pm
Lfm = o Afm , Vm,
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and thus net profits are equal to

S Y Y e

m

Likewise, expected gross profits in a single industry j are given by

The probability that a firm is active in industry j, denoted xs; = 1, is one minus the probability that no
ideas (of any type) is adapted that industry. Since adaptation probabilities are independent across ideas,
and the total arrival rate of ideas of any type m is a Poisson process with rate Ay, the arrival of adapted ideas
in j is also a Poisson process, with rate Ay . The probability of industry entry is thus one minus the
probability that there are no arrivals from the joint Poisson processes over all shared input types m € M:

_ O Pm_l Om_ 1- "
—1—exp(—ZZ(Sfm]Afm w P ),

and is independent across industries due to Poissonization. Similarly, an inactive firm is a firm with no

Pr(xsp=1)=1-exp (Z HfmiAfm
m

ideas arrive at all. The probability that a firm is active is thus (also endogenous to its inputs used and to
profitability shifters) and given by

Pr(xf=1)=1-exp

ZAfm): exp( ZZAP'" “wl- F””).
m

B.3 Proof of Proposition 1: Cross-Industry Elasticities within the Firm

Log-differentiating equation (15) with respect to shifters of firm profitability in industries k, holding factor
prices w constant, yields

dlogE[Xsj] = dlogE[ns] = > Asim (6m1k=j dlog (EpkBx) + (pu = On) Y pime dlog (gkak)) ,
m k

where (i, are industry adaptation shares given in equation (13), and A¢;,, denote input utilization shares:
the share of gross profits of industry j attributable to ideas from input type m (relative to m’):

- P‘fwApm P

Afjm =

Zm, [,lfm/]*Afm/wl_pm/ .

B.4 Connecting Firm-level Elasticities in the Model and Reduced-Form

The firm-level cross-industry elasticity from Proposition 1 combines responses on both intensive and ex-
tensive margins (E[Xy;] includes the non-trivial probability of zero sales). But for sufficiently large firms
(high in &¢), all the responses load on the intensive margin. The intuition is that the largest firms choose a
level of shared input expenditures so high to start with that the likelihood of cross-industry shocks affecting
the extensive margin vanishes. For example, a demand shock for General Electric’s MRI machines might
affect GE’s intensive margin sales of jet engines but is unlikely to affect whether the company is active at
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all in the jet engine business. With a high enough arrival rate, the expectation operator becomes exact due
to the law of large numbers. (This large firm limit corresponds to the framework pioneered in Tintelnot
(2016) and Antras et al. (2017), whereby outcomes are smoothed across a continuum within the firm instead
of being granular.) The following Lemma clarifies this point and motivates the focus of the reduced-form
regressions on the intensive margin (given that the regression sample comprises large firms):

Lemma 2 (Intensive Margin Cross-Elasticities in Large Firms) Cross-industry elasticities between j and k char-
acterized by Proposition 1 load completely onto the intensive margin as s and & gy become arbitrarily high:

dlogE[X;]  dlogE[Xf|Xf; > 0]

lim =
min(&yj,Epx)—00 dlog ékak dlog Ekak

As a corollary, the share of the cross-industry elasticity in Proposition 1 explained by the extensive margin ranges from
1 (for the lowest & firms) to O (for the highest & firms).

Proof. Decompose the expected gross sales into intensive margin and extensive margins:
log E[X¢;] = log E[Xf;|Xf; > 0] + log Pr(Xy; > 0).
Differentiate the extensive margin:

dlog Pr(Xs; > 0)  exp(=Xf)Ly;
dlog & sk Bk T1- exp(—ij)

Z Smj (Gmlk:j +(pm — Qm),ufmk) ’

where s,,; are weights bounded between 0 and 1:

,Um—l 1-pm
Z:“fmJ'Afm w P
Smj =

7

L

and X5, = Z 3, yfmjA?::i_lwl‘P'". Because the term s,j (O 1k=j + (0m — Om)itfmk) in the derivative of the

extensive margin is bounded (weighted average of elasticities),

dlog Pr(Xsj >0)  exp(-Zp)Ly
m = —_— =
min(& ;& pr)—>00 dlog & ¢k By Zpj—eo 1 —exp(=Lf)

7

where the last equality makes use of L'hopital’s rule. m

C Estimation Appendix

C.1 Identification of Macro Variables

Conditional on micro parameters @, y, I identify macro variables—technology coefficients «, industry
profitability, B;, and the average arrival rate Z;—by relating the aggregate predictions of the model to their
counterparts in the data. I do so in a block-recursive manner.

First, I solve the second line of equation (21) separately for each of the three types of shared knowledge
inputs m € MXLC. For each type of knowledge input m, given data on expenditures {M;}je in the base
period (t = 1), [ invert a separate system of |J| equations for || model variables {a;,;Bj=1Z;}jc g (with
the three terms grouped together).
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For each industry j, the mean of &,,; across m is isomorphic to a constant term in B; ;=1. Thus, [ am free
to normalize the technology coefficient of the residual shared input aggs,; = 1. As a second step, I subtract
knowledge expenditures (the second line of equation 21 for all m € MXLC) from gross profits (the first line
of equation 21) to yield (for t = 1):

KLG
T — ZmeMKLG piL—G_lej
N ) /

RES _QRES

S .
6??I§ES,]‘A?,RES dG(é), Vied,

where the left-hand-side is data contained in BEA input-output tables, and the right-hand side contains a
|T| vector of unknowns {B; 1=1Z} je s (since aggs,; = 1). This represents the forth system of | J| equations
for | | model variables that I invert. (The other three being each of the three types of knowledge inputs,
described in the first step).

Third, given values of {B;=1Z;=1}jeg from step 2, and {am]‘B]',tzlztzl}jej,mEMKLG from step 1, I can
directly back out technology coefficients {@m;};c g, memric. Ihold a constant over all three time periods due
to lack of expenditure data on knowledge inputs in subsequent years.

Forth, I use the expression for gross output X; in equation (21) in years t = 2,3 to find future-period
industry profitability {B jt=2Zt=2, B ]-,t=3Zt=3} jeg- In each year, given values of a,,;, [ can invert a system of
|J| equations for |J| model variables {B;;Z;}jcg.

Fifth, given the full set of {Bj;Z} e t=1,2,3 (from steps 2 and 4) and technology coefficients «, I solve for
Z; such that the closed-form expression for the share of single-industry firms in the model matches 0.8 in
the data:

J 25 (PrOcss = D ey (1= Prixse = 1)) dG(&)
=0.8. (27)
J Prixs =1)dG(8)

where entry probabilities by industry (xf;+) and firm-wide (x ;) are given in Theory Appendix B.2.

Finally, given {Bj; Z; }je 7 t=12,3 and Z;, I directly back out B;.

C.2 Identification and Inference of Scalability and Rivalry

Notationally, many functions described below depend on macro variables (i.e. B, &, Z), which I suppress
into a time subscript ¢ for ease of exposition.

Proof of Proposition 2. First, I show that at true parameter values ©, y, the following ] X J structural
moment conditions hold true for any pair of industries j, k:

By [(esje = &pi1) MogSpu | xpima| =0, vi={2,3}, 8)

%Note that no expenditure data on the residual capital input category is needed. The residual category is set up
to also absorb payments to latent factors (e.g. venture capital, sweat equity). This equation imposes a non-negativity
restriction which manifests as a lower bound on the value of pKLC according to the model:

pKLG pKLG
”1’>ZpKLG_1M'”j (1_gj)>pKLG—1 2, Bme Vi
m meKLG
pKLG -1 Bj,KLG Bj.xLG
&= —xg > max =max —————,
p j l-g¢j i Bj,KLG * Bj,RES

for BEA expenditure shares ;. In the data, this restriction corresponds roughly to imposing that pKLG > 3,
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where Alog Sgy; is the de-meaned shock among shocks received by all firms that are active in industry k,
and é £j,t-1 is a modified structural error conditional on the firm’s extensive margin:

€fji-1 = Xgj i1 = E[Xyj i1 | &f0-1, XF 1-1]-

By the law of iterated expectations, the moment condition for any pair of industries j, k in any year
t = {2,3} can be written as

Eg, 1 Alogsy, [Alog St By [(eft — €fje-1) | Xf -1, & -1, Alog Syt | Xf,t—l] ,

where the (e — é fjt-1) terms inside the inner expectation are zero in expectation because (i) Assumption
3 (relevance) implies that & ; can be computed from (&f-1, Alog S¢;), so:

Ef [Xgje | Xpi-1,Ep 1, Alog S| =B [Xypje | &54]

and (ii) Assumption 4 (conditional independence) implies that Alog Sy; is independent of outcomes X¢; ;-1
conditional on the industry presence x and unobserved profitability shifters &¢ -1, so:

Ef [ij/ffl | Xf -1, 6f -1, Alog Sft] =E [ij,tfl | Xf,t=1, ‘-(,vf,tfl] .

Inference. Next, I construct sample analogs of the moment conditions in equation (28). Since the moment
conditions are valid conditional on x;-1, I am free to limit attention to the set of firms that are active in
each pair of industries j, k in year ¢t — 1. I label this set of firms by 7';kD ;_1- 1 break out the terms inside
structural residuals into two parts. The first part is pure data—involving the interaction of realized sales
growth Xy; — Xy ;-1 and demand shocks:
= = I”f;—l > AXpy AlogSp, ik, VE= (2,3},
jk,t=1 fe(]—;kD,t—l

The second part of the moment conditions involve the model-based counterpart, given by

Ef [(E[ijtléft] — E[Xfji-11&f,t-1, Xf,1-1]) Alog Ssxs | Xf,t—l] :

Closed-form expressions for sales E[Xy;¢|&¢] and sales conditional on entry E[ Xy :-1|&f,+-1, Xf,:-1] require
knowledge of & and &f;-1. A naive approach would have been to integrate over the unconditional distri-
bution G(&), but both demand shocks and the firm’s extensive margin may be correlated with underlying
firm shifters & ;1. Instead, I integrate over the conditional distribution Pr(&|xf,-1, AlogSf). T exploit
the model’s closed-form solutions for the extensive margin probability of entry to express this likelihood
analytically using Bayes’ rule. I show this over a series of steps. First, in step (i), I define a closed-form
analytical object gjx which is a function of three terms: demand shocks AlogSy; and extensive margin
presence xy,:-1 which are observable in the data, as well as unobservable profitability shifters & ;—1:

Sjk(& -1, Alog Sri, X t-1) =
Ef [(E[ijt |Ert] — BIXfj1-11&5 11, Xfe-1]) Alog Sre

5f,t—1/A10g Sft/Xf,t—l] .

This is true because under Assumption 3 (relevance), &7 ; can be computed from (&f,:-1, Alog Sf;). Over the
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next series of steps I manipulate the moment condition line by line as follows:

By [ (BIXi | &1 = BIX gyt | Epam1, xp0m1)) Alog e | a1

= Enlog ;1.0 |&k(Ef -1, 108 Spr, xf1) | Xf 1]

= Ealogsy, /g]k(§ AlogSst, xf,4-1) Pr(& | xy-1)dé ' Xft- 1}

P”()(f -1 1 8&)
= Ealog sy, /g‘k(é,AlogS , Xf,t-1) : dG(&) | xft-1
B | Je® A T Prixg e [ £)dG(E) &
[ [Tjeq Pr(xsji-118)
= Ealog sy, /g»k(é,AlogS S Xf,i-1) dG(&) | xf,t-1] .
B9 | Je® T ey Pr(xsim | £)dG(E) &

where step (ii) applies the law of iterated expectations and replaces the inner expectation term with g,
step (iii) breaks up the expectation over the joint probability distribution of Alog Sy, &f -1 in terms of
a conditional Pr(& | AlogSyt, xr,-1) = Pr(& | xf,-1) (given the conditional independence Assumption 4)
and a marginal Pr(Alog Syt | xf,t-1), left with the expectation operator Exlogs,,. Step (iv) applies Bayes’
rule to transform Pr(& | xf,:-1) into known analytical extensive margin probabilities. Finally, step (v)
exploits known properties of the Poisson arrival process where the probability of industry entry in j € J is
independent of any j € J conditional on shifters &.

I construct the sample analog of the last line above using a sample ¥ ° of simulated firms with profitability
shifters & drawn from distribution G(&;) under Assumption 3:

Bn, = Do D @imilxri-) ARji(xr i1, &, Alog Spi) Alog Sy,
|7:kt 1|f€TD7 i€eFS

where (i) A}A(]'t is model-implied expected sales growth of a firm conditional on prior-period extensive
margin xf -1, fundamental profitability {¢ ;-1 = &; and demand shocks Alog S;:

AXji(xf -1, &, Alog Sp) = B[ Xgjr | &1 - E[Xyj -1 | &, Xxf -1,

(i) next-period profitability &; evolves conditional on &; and empirical demand shocks Alog S¢; according
to Assumption 3, and (iii) Bayes probability weights w;¢_1 reflect the probability that a firm f in the data
with extensive margin xf -1 has shifters equal to &; of simulated firm i relative to that of other simulated
firms i’ € F5:

[Tjeg Pr(Xije-1 = Xfje-1 | &)
Yiers [jeg Pr(xvji—1 = xfje-1 | &)

wit-1(Xf,-1) =

Lastly, by the law of large numbers, m;i; = E¢ Emn

ikt T S ke approach the moment condition in Proposition 2:

lim lim E?kt - E‘?;ct = Ef [(ijt - éo'fjtfl) AlOg kat | Xf,t71] =0.

|7:kt 1|—>o<> |F 5|00

At true parameter values ®, as the data and simulation samples become large, |F |, || — oo, the sample
moment m;x; = 0 for any j, k and t € {2,3}.
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Table C.6: Distribution of Outcomes by Firm Scope in the Data and Model, 1997

Share of Firms (%) Share of Sales (%)

Number of Industries Data Model Data Model
1 80.99 80.15 26.13 25.00
2 13.01 13.54 10.80 15.74
3 3.32 3.29 7.34 9.43
4 1.33 1.07 5.51 6.33
5 0.61 0.44 4.08 5.48
6 0.28 0.23 2.89 5.76
7 0.14 0.15 3.54 6.71
8 0.08 0.10 3.63 4.05
9+ 0.25 1.03 36.05 21.49

Notes: The distribution of outcomes by firm scope, in the data and in the model (with the six estimated parameters,
0, yp,v1). Sales of firms with 9 or more industries could not be simulated via brute force due to memory issues
when simulating the discrete Poisson process. Instead, it is backed out from the fact that the share of sales by firms
with one industry was set to equal 25% in the estimation.

C.3 Nested Fixed Point Estimation Algorithm
I combine a search over both micro and macro parameters of the model. Estimation proceeds over five steps:

1. Simulate a set of 2000 firms i € F5 with fixed draws of ij, Ci from standard normal distributions. I
use stratified sampling to over-weigh firms with higher C;.

Guess a starting @, 70, 71, then repeat Steps 3-5 until convergence.
Compute {&;};css given Py, 71 from Assumption 3 and baseline draws (; 7, Ci.

Use {&i}iess and O to compute &, By, Z; via equation (21) and Table 4.

S I

Compute the sample moment conditions in Proposition 2, stack the moments according to the four
groups as described above, and use a bounded Nelder-Mead simplex search algorithm to adjust the
guess of ©, 7, 1 given the change in the objective value.

C.4 External Validity

Table C.6 displays the distribution of firms and sales over firm scope behind Figure 3. Unlike estimation,
which requires only simulated values of firm profitability shifters &;, these outcomes are computed by
simulating the actual outcomes of firms in the model.

D Quantitative Appendix

D.1 General Equilibrium Definition

I introduce some more notation used to characterize the open economy equilibrium. Take the perspective
of US as the domestic economy (denoted ) trading with foreign countries denoted d € DF. Let D denote
US net exports of non-manufacturing goods vis-a-vis the rest of the world (also equal to the manufacturing
trade deficit). Let Yd,]» denote the total market size faced by US firms in each industry j in a foreign

66



destination d € DF, and suppose that all firms are common exporters.® Let P_Xd]' represent indices of price
competitiveness in foreign market d by allnon-US firms. Let PM; represent indices of price competitiveness
in the US market by foreign firms from d. For example, an increase in PMch,m,j indicates that prices of
Chinese goods in the US have been lowered (become more competitive).

The equilibrium set-up in Definition 1 renders wages w fixed in response to manufacturing-sector shocks.
I assume that the foreign residual demand curve for US exports in non-manufacturing is completely elastic,
so wages are pinned down by world prices of the non-manufacturing good and all adjustment loads on D. I
solve for equilibrium in the paper under this assumption so as to prevent wage changes from contaminating
cross-industry impacts.

Definition 1 (General Equilibrium) Let PD; denote domestic price competitiveness in an industry j € J:

1—(7j

PD; = pl-g EN/E[pfj ] dG(&).

Let w = 1 be the numeraire. Given total labor L, a mass of firms N, exogenous foreign price competitiveness abroad
and at home, {PX4;, PMg;} je deDF, foreign expenditures {Ya} je denF, and other parameters of the model, general
equilibrium is described by either the tuple of net exports of non-manufacturing goods, manufacturing labor share, and
industry price competitiveness {D,np, PD} such that the following equilibrium conditions and related definitions
hold:

(i) Total industry expenditures in the US is given by

Y = Z PrjXi + prjwl, Vi€ J,
keg

where X; stands for domestic industry gross output, By; is the share of gross output of industry k expensed on
inputs from industry j, and B ; is the share of final consumption spent on industry j.

(ii) Goods market clearing yields a system of | J | equations in | J | industry profitability levels B: output produced
over all firms has to equal total domestic industry output, which has to equal output consumed at home plus
output exported to foreign markets:

Xj=N / E[X;;; B]dG(&)

4 — + Yjj———=—, VjeJ
] ] 7 7
PDj + DdenrF PMdj d;F PD]-+PXd]-

(iii) Domestic competitiveness PD can be related to industry profitability B by combining equation (29) with an
open-economy version of equation (12):

B = (1 AR A Vj 30
i=( —Cj)g—j P_D] , Vied, (30)

%My paper does not consider the selection-into-exporting margin. But in fact, the common-exporter assumption is
not extreme. It suffices that firms have common ex-ante expectations of exporting. One micro-foundation, for example,
would be if each capital allocated to industry j has a probability of being used at the same time for export market
production. A firm then enters into exporting if and only if it has a non-zero amount of capital adaptable for export
markets. Despite this common probability of exporting, empirically larger firms would be more likely to export because
of a higher chance of having at least some capital be adapted for export markets.
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where c; stands for the unit price index of a bundle of production inputs assembled using a homothetic Cobb-

cj = whr n P,[jjk,

keJ

Douglas technology:

where ﬁjllﬁjk denote expenditures of industry j on labor value-added 1 or input k € | as a share of total
expenditures on production inputs (not to be confused with B = B jkGj, which are shares over gross output),
and the domestic consumption price index P; (for both final and intermediate consumption) is:

Pl o _

7 =PD;j+ ) PMy;. (31)

deDF

(iv) Balance in overall trade requires that the consumption value of manufacturing imports (less any tariffs T
collected) equal manufacturing exports plus net exports in the non-manufacturing sectot, denoted D (also the
manufacturing trade deficit):

PMg;
3y, Zacor PMay D+ Y 3 Vy——I— (32)
£4PD; + Syepr PMy; 44 o4 PD; +de]

(v) The residual non-manufacturing sector is produced with constant returns to scale using labor under perfect
competition. Domestic value-added and output in the residual sector is given by

(1 - nM)wL =D+II+T+ ‘BF,NMZUL,
Br,nMm is the share of final consumption by private households on the non-manufacturing sector, and I1 is net

profits in the manufacturing sector given by equation (17).

(vi) Manufacturing sector payroll is the sum of factor payments in stage I production and stage I capital accumulation:

nuwl = > {1= > Bry | Xe — 1.

ke jeg

D.2 Aggregate Economies of Scale and Scope

I supplant Proposition 3 in the main text with Lemma 3, a more general version that allows for arbitrary
input-output linkages (use of inputs in the second-stage) across manufacturing industries.

I group together different types of exogenous shocks into two terms: (i) changes to market size faced by
US producers, dlog$, and (ii) changes to prices of foreign goods in the US, dlog PS (while this is also a
market size shifter, I single it out here because import prices are a cost shifter in the supply-side equation):

dlog$; = AXAX. dlogL + Z Y dlog¥,, - Z K- AY) dlog PX (33)
deDF deDF

dlogPS; = - Z )\g.M dlog PM;,
deDF

where /\{%M is the share of home country’s consumption originating from country d.
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Lemma 3 (Aggregate Consequences of Joint Production and Input-Output Linkages) In the open economy
equilibrium in Definition 1, domestic producer price indices dlogP respond to exogenous shocks to market size
dlog S according to:

- -1 4
dlog P = diag (ﬁ) (]1 — QS diag(AM) + W (]1 - QD) dmg()\cpf)) X W (11 - QD) dlogs,  (34)

where (i) Lis the identity matrix, (ii) W is a macro joint production matrix containing inverse cross-industry supply-side
elasticities Y for the ‘average’ firm:

W]k = 0j1 - )Y jx — 1=,
[Y]jk = Z (Pm - Qm)zjm ﬁjmk + 1j:k Z Om ij: Vj/k €J, (35)
meM meM

where industry allocation shares [k indicate the average propensity for capital of type m to be allocated to industry
k (relative to other industries k') among firms that produce in j, and input utilization shares )_\]-m indicate the average
profit-contribution to industry j of capital m (relative to other capital types m’):

E[X71A fjm
L dG(&), . —— )4, dG(&),
JEX 1A pjm G © 4 / / E[Xfl dG(‘?) ©

ﬁjmk =

(i) Q°, QP are matrices containing external input-output coefficients Bjk that reflect the share of industry j gross
output expensed on production inputs from industry k:

Brj Xk
Y e BeiXe’

S1. = Oj D X
[Q ]jk=ﬁjkak_1, [Q7 ik = A5;(1 - /\ r)
where /\]).fp is the share of final use among all expenditures on industry j, /\;(]. is the share of US firms’ sales exported to
d, and (iv) AP" reflects the potential for US firms to gain market share from foreign competitors:

cpt _ X M .
APP= Y a%a-Al)  vied,

de{u,DF}

where )\3;[ is the share of country d’s consumption originating from US firms.

Proof of Lemma 3 (and Proposition 3). I log-differentiate the system of equations in Definition 1
to express endogenous equilibrium variables (domestic price competitiveness, sales, etc) as a function
of changes in exogenous variables (changes to domestic scale L, foreign demand ¥;, and foreign price
competitiveness PX, PM).

It is convenient to solve for the equilibrium impact on endogenous variables through their effect on
domestic producer price competitiveness PD (an inverse price term introduced in Definition 1). Equation
(29) is a market clearing condition that equates supply with demand. The first line describes the supply-
side relationship between domestic producer price competitiveness PD and market output X such that
firm production incentives are sustained under monopolistic competition. The second line describes a
downward-sloping industry demand-curve: the higher is domestic price competitiveness PD; (the lower
are producer prices), the greater is the value of market output. In autarky, this demand curve would be
unit-elastic because both final demand and intermediate demand is Cobb-Douglas. In the open economy
setup assumed here, demand is more than unit-elastic due to an additional foreign-market-share-stealing
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effect.
Demand-side. Log-differentiating the second line of equation (29) yields the following demand-side
equilibrium relationship between sales X and domestic competitiveness PD, in matrix algebra:

-1
dlogX = (]I - QD) (diag(A?")dlog PD + dlog$ + diag(A}) dlog PS), (36)

where /\]C.p ' measures the potential for US firms to gain market share from foreign competitors in each market

d:
cpt _ X _ M
A=Y Aka-a
de{u,DF}

/\;(]. is the share of the home country’s sales going to d, A%.I is the share of country d’s consumption originating

from the home country, the matrix QP contains external input-output coefficients denoting the extent to
which changes in gross output in other industries k” affect gross output in j:

Brj Xk

QP _/\X 1A ) ——F
S it ]’F)Zk'ejﬁk'jxk'

where /\])fF is the share of final use among all domestic consumption of industry j.

Note that when the home country is in autarky, A’ = 0, there is no demand-side adjustment of industry
output with respect to prices (given the unit-elastic demand curve).

Supply-side. I next turn to the supply-side relationship between market size (industry profitability)
and prices. The first line of equation (29) can be log-differentiated (switching the order of summation across
inputs, industries, and firms) to yield

Y !'dlogX = dlogB,

where Y is the aggregate matrix of supply-side elasticities given by equation (35). I solve out for dlogB
in this expression. I log-differentiate the expression for industry profitability B; in equation (30), open up
the production input cost index ¢; to reflect intermediate input purchases from manufacturing industries to
yield,

1
dlogB; = o Zﬁ]kdlong+ - )(dlogX dlog PD)), (37)
kej

and using equation (31) to replace Py with PDy and exogenous foreign cost shocks PM j; and combining
the previous two equations yields

WdlogX = - (1-0° diag (A})) dlog PD - @ dlog Ps, (38)
where W is an inverse matrix of supply elasticities with terms given by
W]k = 0j(1 - )Y ik — L=k,

and Q° is matrix of external input-output price-related coefficients given by

s1. =g,
9] = By

Equations (38) and (36) represent two systems of equations in two vectors of unknowns (X and PD)—
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aggregate industry-level demand and supply curves. I combine them to express the impact on equilibrium
domestic price competitiveness PD changes in terms of arbitrary external shocks collected in dlog PS and
dlog$:

» =
dlog PD = — (I - QSdiag(AM) + W (11 - QD) diag(ACpt)) x

-1 -1
x (\p (1-0°)  dlogs+ (QS +w(1-QP)  diag(a ) dlogPS) . (39)
Lemma 3 follows the fact that the PPI is defined as (1 — 0;)dlog®; = dlogPD; and from setting
dlog PS = 0 in the above expression (so that the only exogenous shock is to market size). Proposition 3 is a
special case of Lemma 3 when Q° = QP = 0, i.e., there is no input-output structure in stage II of production.

D.3 Other Results in General Equilibrium

Proposition 3 describes how domestic producer prices dlog % respond to exogenous shifters of market
size dlog$. This relationship depends on both demand-side and supply-side elasticities. I focus on the
relationship between dlog# and dlog$ because they are useful for directly evaluating the impact of a
range of counterfactual shocks. For example, market size shifters dlog S include not only demand shocks
such as changes in the labor force (a conventional scale shock), but also other shocks that shift the residual
demand curve of the firm in an open economy, such as changes in foreign competitiveness.

Note that this relationship in Proposition 3 is generally neither (i) the elasticity of the PPI to gross output
nor (ii) the elasticity of the PPI to aggregate quantities (price-elasticity of supply). Only in the special case
under autarky when industry demand is unit-elastic is condition (i) true (that dlog S = dlog X). However,
the proof laid out in the prior subsection is more than sufficient for computing other elasticities of interest.
For example, the elasticity of output dlogX with respect to exogenous shocks dlog S can be computed by
combining equations (36) and (38) to solve out for dlog PD.

I present two additional Corollaries of Proposition 3 that are of interest. For the sake of brevity I focus
on the economy under autarky (and, in the case of Corollary 1, without input-output linkages), although
the open-economy and input-output versions are straightforward to derive.

Corollary 1 focuses on the supply-side relationship and characterizes aggregate price-elasticities of
supply in the economy. Suppose that there is an industry-wide composite good, Q;, defined as a homothetic
CES aggregator over individual quality-adjusted quantities q¢; provided by monopolistically competitive
firms (who operate joint production functions as described in our model):

o4
U/*l

Q= (N [a; ace@

Uj—l

, Vjied.

The price index dual to this aggregator is the domestic PPI, #; in each industry j.

With this representation I define aggregate economies of scale and scope in terms of own and cross-
industry elasticities of prices $ with respect to composite quantities Q. Locally, there are industry-
level economies of scale if own-price elasticities are negative, and pairwise economies of scope (cost-
complementarities) if cross-price elasticities are negative between j, k. To derive these partial-equilibrium
supply-side elasticities I take equation (38) and replace dlogX = dlogQ + dlog%. Rearranging terms
yields the following result.
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Corollary 1 (Aggregate Price Elasticities of Supply) Under autarky without input-output linkages, the partial-
equilibrium supply-side elasticity of prices to composite quantities is given by

dlog® = — (W - diag(c — 1)) Wdlog Q.

In general, off-diagonals in the joint production matrix W generate non-zero cross-price elasticities. Note,
however, that because W appears twice and contain the inverse cross-industry matrix of sales responses to
demand shocks for the average firm, Y, the sign of pairwise industry responses within the firm (as measured
in Section 1) is neither sufficient nor necessary for inferring economies of scope. In general equilibrium
percolation effects across all industries need to be considered.

Under the special case of nonjoint production (i.e. p,; = 6, for all capital inputs m), the off-diagonals
of W are zero and we recover certain well-known cases. When there are constant returns to scale in stage II
production y; = 1, itis easy to check thatas p,, = p — oo, we reach the limit where d log #; = —gl]_ dlogQ;,so
that (replacing Q; with X;/P;) industry-level returns to scale reaches its maximum, dlog#; = - # dlog X;.
On the other hand as p,, = p — 1, there are overall constant returns to scale over both stages I and II and so
dlog®; = 0dlogQ;.

Next, in Corollary 2 I show that productivity (TFP) shocks operate differently from demand shocks in
a monopolistically competitive environment. Define TFP shocks as industry-wide shifts to the & fj terms in
the stage II physical production function (equation 1). Under the special case of autarky and Cobb-Douglas
demand, Corollary 2 shows that joint production parameters do not affect the propagation of industry-wide
cost shocks in the economy. Intuitively, firms are driven by profit incentives and industry-level changes in
the cost structure do not affect profits at all in monopolistically competitive equilibrium. Cost savings are
passed-through fully to the consumer, and due to unit-elastic industry-level demand there is no adjustment
in industry-level expenditures. In the absence of input-output linkages (when Q° = 0) industry-level TFP
shocks are contained within the industry of origin and do not propagate.

Corollary 2 (Propagation of Cost Shocks under Joint Production) Underautarky, the general equilibrium elas-
ticity of prices with respect to profitability shocks dlog & in the firm’s physical production function (in equation 1) is
given by

-1 ~
dlog P = diag (ﬁ) (11 - QS) diag (o — 1) dlogé.

Proof. The proof operates in similar fashion to the supply-side part of the proof of Proposition 3. Starting,
again, with the supply-side equation (29) but this time accounting for industry-level changes in & £j yields
o-1

o(1

Y !'dlogX = dlogB + diag ( 3

) dlogé&.
Substituting in for dlog B using equation (37) and rearranging terms and noting that dlog X = 0 on the
demand side in autarky (unit-elastic industry demand curve) yields the result. m

A final remark is that Corollary 2 is close to the result in Hulten (1978) with the exception of wedges o;
created by monopolistic competition (in the outer sandwich diagonal matrices and also ¢;/(ox — 1) in the
input-output matrix Q). In the limit as 0; = 0 — oo, Hulten’s theorem holds for evaluating the impact of
industry-level TFP shocks. I leave the evaluation of the impact of firm-level TFP shocks to future work.

D.4 Calibration to US Manufacturing Sector

Notation: DF = {c, r} refer to China and the rest-of-the-world composite respectively.
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Data in the Initial Equilibrium. These equilibrium definitions allow me to impute consumption expen-
diture shares §;, the manufacturing deficit D, all price competitiveness indices, and foreign expenditures
?C,]-, 1_/,,; given US and world trade and industry level data in 2017. I use the following publicly available
data in 2017:

1. Data on gross output by manufacturing industry, X; come from the BEA in 2017.

2. T'hold the number of total manufacturing firms, N, fixed, at 318,000.

3. Data on B and ¢, come from the 2012 BEA 1/O tables (the 2017 tables are not yet available).?”
4

. Trade data in 2017 on US imports and exports by country and industry (after mapping HS10 to BEAX)
come from the US Census Bureau (made available by Schott (2008)).%

5. World trade data in 2017 by industry and country come from BACI Comtrade.

Variables in the Model. Using the trade data, I compute A;(], as the share of US firms’ total sales in
industry j going to destinationd € {u,r, c}, and /\2;.1 as the share of consumption in destinationd € {u,r,c}’s
in industry j on goods sold by the US. I express all the ratios of price competitiveness in Definition 1 as
XX

AM g
uj
Using the estimated micro parameters, I repeat the same macro inversion steps as in the structural

functions of these observable trade shares. I compute industry gross expenditures as Y; =

estimation to estimate macro variables &, B, Z in 2017. I use 1997 expenditure shares on knowledge inputs
categories m € M by each industry j combined with 2017 output data to impute expenses on knowledge
inputs M;,, used in the inversion. With these macro variables on hand I compute net profits in the
manufacturing sector IT integrating equation (17) over G(&).
I compute the manufacturing deficit as the difference between total consumption and total output:
D =Yg Yj = Xjeg Xj. Inormalize the wage w to 1 by choosing an appropriate unit in which to measure
efficiency-adjusted labor, so that
L=GDP-T],

where GDP is 19.4 trillion in 2017. The share of consumption on non-manufacturing is then given by:

Zieq (Y = Xk BriXr)
- .

1-BrNMm =
I compute final consumption shares in manufacturing, r k, as:

Yie — 2 Brj Xk
3 .

BEx =

Foreign demand in the model is given by Yr,j)\%l = EX\rj where EX,;; is US exports to destination r in

industry j. An identical expression pins down Y, i

D.5 Quantifying the Impact of Joint Production

I use the calibrated model and Proposition 3 to quantify the impact of small shocks on equilibrium producer
price indices. I compute the proportional increase in export demand in each industry j as dlog$; =

%There are a few industries where implied input-output use shares are so large that final use is predicted to be
negative. I adjust input-output shares downward by a proportional factor for that industry until final use is at least 2%
of gross consumption.

%There are a few industries where US exports is higher than measures of gross output in BEA data. I harmonize the
two data sources by adjusting gross output, Xj, to be at least 1% higher than gross exports.
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D deDF )\é(j dlog Yd/- and express the impact on prices as:
dlog® = Edlogs,

where E is a transmission matrix defined below, taking on different values across the scenarios described in
the main body of text.

-1 -1 -1
E = diag (%) (11 — Q%diag(AM) + W (1[ - QD) diag()\c”t)) v (11 - QD)

For each scenario (associated with a different transmission matrix Z), I decompose Z into own-diagonal and

cross-diagonal elements:

OWN + ECROSS'

[

—
==

The values of /\]X = X;/X are shares of industry j output among total manufacturing output X. I use these
shares to average industry-level changes in PPI dlog #; into a change in the aggregate manufacturing PPL
I compute, for example, the own-industry impact of a proportional change in foreign market size across all
industries J on the PPI as:

dlog PPIOWN = A%y x BOWN x (AX + AX), (40)

ECROSS matrix above instead of E°"YN, and where d log PPICWN +

and equivalently for d log PPIRO5S using the
dlog PPIROSS = dlog PPI.

Table D.7 describes the numbers behind Figure 5. I compute the effects of a 1% proportional rise in
foreign demand (across all industries) on the manufacturing PPI and gross output. To compute the effect
on industry gross output, I solve out for the demand and supply equations (38) and (36) to express dlog X
in terms of exogenous shocks dlogS. The change in manufacturing sector gross output is computed using
the same /\]X—weighted average over industry-level changes. In Table D.7 I show positive cross-industry
impacts separately from negative impacts, to emphasize that the majority of gross cross-industry elasticities
are negative, price-decreasing.

Table D.8 presents results for the industry-level counterfactual, scenario (b), when foreign demand
shocks occur industry-by-industry rather than manufacturing sector-wide. I compute the net cross-industry
PPI impact as a share of the total PPI impact. I list in the table the top ten and bottom ten industries in
terms of this cross-industry share. Note that the top industries listed do not indicate the industries where
demand shocks generate the highest total PPI change, nor industries where the total elasticity of PPI to gross
output is highest. The top five industries by total aggregate returns to scale (greatest elasticity in the overall
PPI with respect to change in output) are aircraft manufacturing, petroleum refineries, other motor vehicle
parts, light truck and utility vehicles, and broadcast and wireless communications equipment. These results
as well as the full ranking of industries are available upon request.

D.5.1 Robustness to Alternative values of o

I explore the sensitivity of the results in Table D.7 to alternative values of o}, against the benchmark where
I calibrate 0; to match estimates of sector-level increasing returns from Bartelme et al. (2019). Recall that in
the benchmark scenario, I first generate a mapping from BEAX to the two-digit manufacturing sectors in
Table 1 of Bartelme et al. (2019), denoted by s. I allow for as many differences across o; as there are sectors
s, so all o; is the same within a sector but different across sectors. I then solve for the values of o, that
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Table D.7: Effect of a 1% Increase in Foreign Demand on Manufacturing PPI and Output

Scenario (@) (b) (c) (d)
Change in PPI (%) -0.066 -0.082 -0.636 -1.410
Own-Industry -0.066 -0.066 -0.067 -0.134
Negative Cross-Industry 0 -0.018 -0.526 -1.275
Positive Cross-Industry 0 0.002 0 0.000
Change in Gross Output (%) 0387 0416 1976 3.922
Own-Industry 0387 0392 0515 0.581
Positive Cross-Industry 0 0.032 1460 3.342
Negative Cross-Industry 0 -0.003 0 0.000
Elasticity of PPI with respect to Gross Output -0.17  -020 -032 -0.36
Share due to joint production / 0.20 / 0.55

Notes: This table depicts the change in manufacturing PPI and output in the US due to a proportional 1% foreign
demand shock across all industries. The sub-rows decompose the total impact into those accruing due to own-industry
versus cross-industry responses. The four columns depict four scenarios corresponding to different versions of the
underlying economy: (a) nonjoint production, (b) joint production, (c) nonjoint production with external I/O linkages,
(d) joint production with external I/O linkages. The bars displayed in Figure 5 correspond to own versus cross-industry
components of the PPI impact scaled by the total change in gross output. Altogether they sum to the elasticity of total
PPI with respect to gross output, the penultimate row. The last row, ‘share due to joint production’, operates across
scenarios. I compute this as the difference in the PPI response between (b) and (a) divided by the output response in (b).
I do the analogous computation for scenario (d) by comparing to (c).

would generate the following relationship between sectoral price indices and sectoral size (from combining
equations 40 and 38):

b'
dlog PPI; BCDR A
_— = - = — \\

dlog X Vs Z 1-o0s Z Jke v,

jes kes

where ySBCDR are estimates of scale elasticities in Table 1 of Bartelme et al. (2019).3 Table D.9 shows the

calibrated estimates of ¢; by broad (3-digit) sector under this benchmark strategy.

I consider two alternative calibration strategies. First, I consider different constant values of 0; = ¢
across all industries. Figure D.1 shows how the elasticity of the inverse PPI with respect to gross output
varies with values of o € (3, 10), decomposing the total PPI impact into own and cross-industry components.
While the own-industry (and overall) effect decreases as expected with the value of ¢}, the cross-industry
effect does so at a much slower pace, contributing between 3 and 5 percentage points to the elasticity of the
PPI to gross output across the entire range of values of o.

Next, I allow o; to vary across industries j by assuming that profit shares (gross operating profits) in
each industry are equal to gl/ (as would be true in a case with constant returns to scale, monopolistically
competitive firms, and sunk entry costs paid in some pre-period). While this assumption is ad-hoc (and
not consistent with the model), the values of o; nevertheless serve as a useful benchmark as they appear in
other papers.

Table D.10 displays how the baseline results in Table D.7 change with respect to the two different
calibrations, both with and without I/O linkages. The different calibrations with heterogeneous ¢; do not
alter the main quantitative message that cross-industry price impacts due to joint production are large. In

%Note that this procedure does (correctly) attribute the cross-industry impacts within a sector to sectoral economies
of scale. The only PPI impacts that would be missed in BCDR occur across sectors s.
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Table D.8: List of top and bottom industries by level of economies of scope

Industry  Description Cross-industry contribution to aggregate scale elasticity
334300 Audio and video equipment manufacturing -0.17
334118 Computer terminals and other computer peripheral equipment manufacturing -0.14
339910 Jewelry and silverware manufacturing -0.13
33461X  Manufacturing and reproducing magnetic and optical media -0.10
334514 Totalizing fluid meter and counting device manufacturing -0.10
33141X  Nonferrous Metal (except Aluminum) Smelting and Refining -0.09
336991 Motorcycle, bicycle, and parts manufacturing -0.09
333242 Semiconductor machinery manufacturing -0.09
33641A  Propulsion units and parts for space vehicles and guided missiles -0.09
33451B  Watch, clock, and other measuring and controlling device manufacturing -0.08
331313 Alumina refining and primary aluminum production -0.01
314110 Carpet and rug mills -0.01
326160 Plastics bottle manufacturing -0.01
311514 Dry, condensed, and evaporated dairy product manufacturing -0.01
337215 Showcase, partition, shelving, and locker manufacturing -0.01
312140 Distilleries -0.01
311221 Wet corn milling -0.01
327992 Ground or treated mineral and earth manufacturing -0.00
33142X  Copper rolling, drawing, extruding and alloying -0.00
311930 Flavoring syrup and concentrate manufacturing 0.01

Notes: This table depicts the top and bottom ten industries in terms of the level of economies of scope induced by a marginal

demand shock in that industry. Economies of scope (last column) are measured as the net cross-industry component of
the manufacturing PPI change divided by the total change in manufacturing output. These effects are computed using
equation (24); the numbers here correspond to y-axis values in the scatterplot in Figure 6.

Table D.9: Calibrated Demand Elasticities aj

BCDR sector NAICS sectors BCDR scale elasticity ¢ under Joint Production
Food, Beverage, Tobacco 311, 312 0.16 5.7
Textiles 313, 314, 316 0.12 6.6
Wood Products 321 0.11 7.0
Paper Products 322,323 0.11 6.5
Coke Petroleum 324 0.07 10.7
Chemicals 325 0.20 45
Rubber and Plastics 326 0.25 41
Mineral Products 327 0.10 6.1
Basic Metals 331 0.11 5.7
Fabricated Metals 332 0.13 5.8
Mach and Equipment 333 0.13 6.0
Computers 334 0.09 6.0
Electrical Machinery 335 0.09 7.4
Transport 336 0.15 6.1
All Other 337,339 0.13 5.7

Notes: This table depicts the values of o; assigned to each BCDR sector in my baseline quantitative results. For example,
industry 311930 and 311221 are both assigned g; = 5.7 as they belong to the same BCDR sector Food, Beverage, and Tobacco.
These values of ¢; are calibrated so my joint production model yields the exact same within-sector increasing returns to
scale as Bartelme et al. (2019). Under joint production own-sector scale elasticities are comprised of both within-industry
and across-industry price declines among all industries that fall within each given BCDR sector.

76



Figure D.1: Elasticity of PPI to Gross Output under alternative common values of ¢

Elasticity of PPl wrt Gross Output

= Own-Industry

Cross-Industry

04 I I I I 1 1
3 4 5 6 7 8 9 10

Common value of ¢ across industries

Notes: This graph reports the sensitivity of the results in Figure 5 (where o; = 5 Vj) to alternative common values of o
across industries. It decomposes the elasticity of the PPI to output in scenario (b) (no I/O linkages) into own-industry
impacts denoted in blue versus cross-industry impacts denoted in orange.

the benchmark model set-up without input-output links (b), internal cross-industry elasticities arising from
joint production accounts for between 19% (scenario (i), Profit Share) and 23% (scenario (ii), BCDR) of the
total elasticity of PPI with respect to gross output. Whereas direct, own-industry effects under scenario (b)
of the BCDR calibration generate an aggregate scale elasticity of 0.13 (=0.050/0.395), accounting for joint
production raises this to 0.16 (=0.064/0.395).

D.6 Counterfactuals: The Impact of Large Shocks

D.6.1 Tariff Shocks

The model accommodates different types of counterfactual shocks. I show how to evaluate the impact of
new tariffs imposed by the US on imports from China, denoted by 7.,;, as well as import tariffs imposed
by China on imports from the US, denoted by 7,.; (although the main exercise in the body of the paper
considers only the former). I model tariffs T > 1 as ad-valorem, so that

1—0'/'

1. The change in Chinese price competitiveness in the US is PM, = Teuj -

: , o . . = —1 :
2. The change in US price competitiveness in China can be modeled as PX,; = TZJC i Tariffs also cause
take-home revenues of firms to fall to %j of tax-inclusive sales. This can be reflected by a change in

-1
Ye; = Ty
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Table D.10: Effect of a 1% Increase in Foreign Demand on Manufacturing PPI and Output:
Robustness under different values of o; and input-output structures

Calibrated values of o;: Common o =5 Profit Share BCDR
Input-output links in Stage-II production: No Yes No Yes No Yes
Change in PPI (%) -0.082  -1.410 -0.085 -0.417 -0.064 -1.073
Own-Industry -0.066 -0.134 -0.069 -0.094 -0.050 -0.101
Negative Cross-Industry -0.018  -1.275 -0.018 -0.323 -0.016 -0.972
Positive Cross-Industry 0.002  0.000 0.002  0.000 0.002  0.000
Change in Gross Output (%) 0.416  3.922 0.408 1.639 0395 3.299
Own-Industry 0.387  0.581 0372 0.454 0.365 0.524
Positive Cross-Industry 0.032  3.342 0.039 1.185 0.032  2.775
Negative Cross-Industry -0.003  0.000 -0.004  0.000 -0.003  0.000
Elasticity of PPI w.r.t. Gross Output -0.20 -0.36 -0.21  -0.25 -0.16  -0.33
share due to joint production 0.20 0.55 0.19 0.43 0.23 0.52

Notes: This table explores the sensitivity of results in Table D.7 and Figure 5 to alternative calibrations of o; that vary
across industries. Over the rows of each column I compute the change in PPI and output due to a proportional 1% foreign
demand shock (across all industries). The sub-rows decompose the total change into own-industry versus cross-industry
impacts. The last row, ‘share due to joint production’, operates across scenarios. Across the columns, I alter the values of
o and whether or not the model is solved with input-output linkages as observed in the BEA 1/0O tables.

3. US import tariff revenues are given by

T = Z TCM]' - 1’[’176]./\U4M130j71
Tonyeul i

I assume that pre-existing tariffs on Chinese imports are zero. If they are non-zero, the new tariffs
change infra-marginal tariff revenues and the calculation needs to be revised. I assume that Chinese
tariffs on US goods are taken out of the system and do not go towards increasing market demand Y, ;.

D.6.2 Solving for the Model’s Variables in Exact Changes

For any set of counterfactual exogenous shocks, the system of equations admits a new solution for PD; and
w. 1 solve the system of equations in terms of exact hat changes. Specifically, for any guess of PD jand @, I
can compute

where (; is given by

and 13]' is the change in the domestic consumption price index given by

Al=0j _ 57 UM 3 um 3 um
P = PDAYM + PMAIM + PM, A UM,
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and X; is given by
G]‘—l Oj—l
row,j’

S _vip M B9l L v S b aMb v v P MDD
X]X] = Y]PD]AM,]PJI + YC,]YC,]PD]}\C]P .+ Yy,]Yr,]PD]Ar]P

chn,j

and P,4q, j is the change in the rest-of-world consumption price index given by

"1—0']‘

M 3 M
Pl = PDiAM + X1 - AM),

row,j

A

Pcpp,j is the change in the consumption price index in China given by

’\1—0'/'

_phaM L ps M
P = PDJAY + PXei(1 - AY),

and finally the new vector of gross expenditures Yj’ can be inverted from
Y]{ = Z ‘Bk]' ()A(ka) + ‘BF,]‘Z’{\)LLA,
k

where T’ is tariff revenues defined above.

To evaluate the guess I use a system of | J| equations equal to deviations between industry sales as

computed above, X]’., and the implied industry sales (by solving the firm’s problem) given by equation (29)

under the new B;.. I also use the trade balance condition:

DY =D+ ) RiX;,
7 7

to either pin down D’ when @ = 1 (foreign demand for non-manufacturing goods is assumed to be perfectly

elastic), or to solve for @ when D is held exogenous (as is more typical in trade counterfactuals). I find that

a gradient based optimization algorithm works very well with this system of equations.

Equilibrium Changes. Throughout counterfactuals presented in Table 6, I compute several changes in

macroeconomic variables of interest:

1. The change in the manufacturing CPI (consumer price index) is

17[ ﬁfn]’

2. The change in the manufacturing CPI excluding the domestic response of productivity is

1™

]

where

uj

A~ 1-0; 2 2
(BETF) ™ = AUM 4 PAMAUM + P2 UM,

3. Expressions for the change in imports, US output and US exports in each industry, tariff revenues and

the deficit can also be computed directly given the equations above.
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