
A Theory of Non-Coasean Labor Markets∗

Andrés Blanco† Andrés Drenik‡ Christian Moser§ Emilio Zaratiegui¶

October 30, 2022

Abstract

How does labor market heterogeneity affect the transmission of monetary policy? To answer

this question, we develop a theory of non-Coasean labor markets with search frictions, idiosyncratic

and aggregate shocks, sticky wages, and two-sided lack of commitment. We formulate the strategic

interaction between workers and firms as a nonzero-sum stochastic differential game with stopping

times and characterize its equilibrium. We show how to use microdata on wage changes and job

transitions to identify the economy’s unobserved latent state, namely the distribution of wage-to-

productivity ratios. Based on this distribution, we provide sufficient statistics for the aggregate

response of employment and real wages to monetary shocks.
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1 Introduction

The classical idea that inflation “greases the wheels of the labor market” (Keynes, 1936; Tobin, 1972; Card

and Hyslop, 1997) forms the bedrock of many Keynesian theories: Due to nominal wage rigidities, real

wages are inefficiently high during recessions (i.e., following the realization of a sequence of negative

productivity shocks), which creates a role for monetary policy-induced inflation to bring real wages down

toward their efficient level. But Keynesian theories are usually silent on many important labor market

phenomena. For example, which jobs are saved, destroyed, or created through inflation? What is the

relative importance of worker quits and firm layoffs in the process of inflation-induced job reallocation?

And how does the transmission of monetary policy depend on labor market inequality, specifically the

distribution of wages and unemployment?

In an attempt to answer these questions, we build a theory of non-Coasean labor markets, which is

consistent with mounting empirical evidence of wages being less than fully flexible (Bewley, 2007; Hazell

and Taska, 2020; Grigsby et al., 2021; Blanco et al., 2022a). To this end, we depart from the canonical DMP

model (Diamond, 1982; Pissarides, 1985; Mortensen and Pissarides, 1994) of search and matching by

incorporating two additional frictions into worker-firm relationships. First, wages within job spells are

sticky and unresponsive to productivity shocks. Second, neither workers nor firms can commit to their

future decisions whether to dissolve or remain in a match. The interaction between productivity shocks,

wage rigidity, and two-sided lack of commitment gives a role for monetary policy to affect real labor

market outcomes. Our contribution is to provide a theoretical characterization of such a non-Coasean labor

market and to link the efficacy of monetary policy to empirically measurable objects in this environment.

Our analysis proceeds in three steps. In the first step, we characterize the equilibrium of a non-Coasean

labor market. Both a worker’s decision to quit and a firm’s decision to fire the worker depend not only

on the current wage and productivity but also on dynamic strategic considerations, which we formulate

in a nonzero-sum stochastic differential game with stopping times. We show that an agent’s choice

to remain in a presently unprofitable match is relatively less attractive under lack of commitment. In

the second step, we show how to identify the unobserved latent state of the non-Coasean labor market from

microdata. We provide an identification result to infer the unobserved latent state of the economy, namely

the steady-state distribution of workers’ wage-to-productivity ratios, from microdata on wage changes

and worker flows between jobs. Indentification of the latent state relies on a sequence of intuitive links

between our theory and the data. For example, if the between-job wage differentials are larger in absolute

magnitude, this intuitively indicates greater deviations of wages from productivity arising during job

spells. In the third step, we analyze the macroeconomic consequences of non-Coasean features of the labor market.
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A key insight emerging from this analysis is that labor markets and the macroeconomy are tightly linked

to one another. Specifically, we find that the transmission of monetary policy to employment depends

on the prevailing inflation regime. We show that in stable economies with low trend inflation monetary

shocks do not affect aggregate employment, despite wages being allocative at the micro level. Deviations

from low and stable inflation lead to an increased responsiveness of the labor market to aggregate shocks.

We theoretically explore the mechanisms behind these effects and provide sufficient statistics for their

magnitude. Next, we describe each of the three steps in more detail.

Step 1: Characterizing the Equilibrium of a Non-Coasean Labor Market. Our study remains analyti-

cally tractabe by leveraging the powerful tools of optimal control in continuous time. The model labor

market is populated by continua of workers and firms. A worker’s income depends on their employment

state and their idiosyncratic productivity, which follows a Brownian motion with drift. Employed workers

receive a wage, while unemployed workers derive consumption from home production. Output in

both employment states depends on a worker’s productivity. Job search is directed, as in Moen (1997),

and segmented across submarkets according to the wage rate and productivity. In each submarket, a

set of homogeneous firms post vacancies to recruit workers. Existing matches become obsolete at an

exogenous Poisson rate. In addition, worker-firm relationships are characterized by two key frictions.

First, contracted wages are fixed within a match. Second, neither workers nor firms can commit to future

actions. Together, the two key frictions give rise to the distinguishing feature of our theory: endogenous

job separations that can be unilaterally initiated by either the worker or the firm.

The strategic interaction between workers and firms has three features. First, agents in a match play

a dynamic nonzero-sum game since one party’s payoffs from continuing in the match depend on the

other party’s future actions, and the joint value of a match is greater than the sum of the two agents’

outside options. Second, agents’ payoffs are stochastic due to fluctuations in worker productivity. Third,

agents’ strategies consist of stopping times, which define the stochastic arrival of unilateral job dissolution.

In summary, the strategic interaction between workers and firms can be formulated as a nonzero-sum

stochastic differential game with stopping times (Bensoussan and Friedman, 1977).

Using the theory of optimal control in continuous time, we prove the existence of a unique block

recursive equilibrium. We analytically characterize workers’ and firms’ decisions to dissolve a match,

which we show are functions of only a single state variable, namely the wage-to-productivity ratio. Agents’

optimal policy functions reflect both static and dynamic considerations. In terms of static considerations,

workers’ and firms’ respective value functions depend on their flow payoffs and flow opportunity

costs from being matched. In the special case when the discount rate tends to infinity, agents behave
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myopically. In this case, job separations occur either if the wage-to-productivity ratio falls below a

threshold that depends on the efficiency of home production, in which case the worker quits, or if the

wage-to-productivity ratio rises above unity, in which case the firm fires the worker. More generally, both

sides of a match solve a dynamic optimization problem that leads them to optimally delay job separation

beyond the stopping time dictated by static considerations. For example, firms continue in a match

beyond the time when the wage-to-productivity ratio falls below unity, either because future productivity

may increase due to its stochastic component (i.e., the option value effect) or because productivity may have

a positive drift (i.e., the anticipatory effect). Analogously, workers continue in a match either because of

the option value of productivity falling stochastically or in anticipation of productivity’s negative drift.

Surprisingly and unlike in other model contexts, these option value effects are bounded and finite due to

the match relationship being characterized by two-sided lack of commitment.

Step 2: Identifying the Unobserved Latent State of the Non-Coasean Labor Market from Microdata.

In theory, knowing the distribution of wage-to-productivity ratios is key for measuring the prevalence

of inefficient job separations through the lens of our model. In practice, although wages are commonly

available in appropriate microdata, individual workers’ productivity levels are not directly observed. To

get around this challenge, we use our model to derive a mapping between the unobserved prevalence of

inefficient job separations on one hand and observed labor market outcomes on the other hand.

To this end, we proceed in four steps. First, we recast agents’ state variable—the wage-to-productivity

ratio—in terms of the negative of the cumulative productivity shocks since the beginning of the employ-

ment spell. We show that this alternative choice of state variable delivers an equivalent representation

of both workers’ and firms’ problems. Second, we identify the parameters governing the stochastic

process of idiosyncratic productivity from data on wage changes between employment spells. To achieve

this, we exploit properties of continuous-time stochastic processes as summarized in Doob’s Optional

Stopping Theorem. Third, exploiting the structural features of the model, we recover the distribution

of cumulative productivity shocks from observed wage changes between employment spells, given

the already-identified stochastic process of idiosyncratic productivity. Fourth and finally, we derive

a Kolmogorov forward equation guiding the evolution of the distribution of cumulative productivity

shocks, which we show incorporates all the relevant information needed to quantify the prevalence of

inefficient job separations in the economy.

Step 3: Analyzing the Macroeconomic Consequences of Non-Coasean Features of the Labor Market.

Our model highlights two distinct ways in which aggregate shocks can impact the distribution of
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employment in the labor market. The first way is by changing the size of the match surplus (i.e., the

surplus channel). The second way is by changing the way the match surplus is split between workers and

firms (i.e., the redistribution channel). Because the first channel is the standard one considered in myriad

previous studies of labor markets, and also because the allocativeness of wages is our novel focus here, we

restrict attention to the effects of the redistribution channel on employment across workers. To this end,

we extend our model to a monetary economy, in which wages are nominally sticky while the aggregate

price level fluctuates. Since changes in money supply translate one-for-one into inflation and nominal

wages are rigid, monetary shocks redistribute the match surplus between workers and firms in existing

jobs by moving real wages.

In such a monetary economy, we characterize analytically the transition dynamics of aggregate

employment and the average real wage following a one-off monetary shock. On impact, a monetary shock

causes real wages of incumbent workers to fall, while the real wages of new hires from unemployment

remain constant as their nominal wages adjust one-for-one with inflation. Consequently, the labor market

undergoes an adjustment in employment driven entirely by changes in the job separation rate due to

increased quits by workers and decreased layoffs by firms. Following such an adjustment, the economy

converges back to the previous steady state, with nominal wage growth compensating for the one-off

increase in the aggregate price level.

We quantify the effect of a monetary shock on aggregate employment and real wages, relative to their

steady-state values, by computing the cumulative impulse response (CIR) as the area under the respective

impulse response function, building on the seminal work of Álvarez et al. (2016) and Alvarez et al. (2021)

in the product pricing literature. With flexible wages among new hires, the CIR of wages is linked to

the variance of cumulative productivity shocks during employment and the covariance of cumulative

productivity shocks with the tenure of employed workers. These two moments reflect both the response of

employed workers to idiosyncratic productivity shocks in the steady state and also the response of average

wages to an aggregate shock. The CIR of employment depends on the steady-state unemployment rate,

the average of cumulative productivity shocks in employment, and the average drift of productivity in

employment—three objects that with the help of our theory can be inferred from the data. We provide

economic intuition behind these results and explore special cases of the model that shed light on the

different mechanisms at play. Finally, we highlight the importance of combining theory and microdata to

tease out the prevalence of inefficient job separations under non-Coasean labor contracts, which could go

undetected in aggregate time series data.
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Related Literature. We highlight three contributions. Our first contribution is to embed a richer notion

of a labor market into a framework of aggregate fluctuations in the Keynesian tradition. This allows us to

study how inflation “greases the wheels of the labor market” (Keynes, 1936; Tobin, 1972). Previous work

by Card and Hyslop (1997) has taken a purely reduced-form approach to measuring the effects of inflation

on labor market adjustments to negative shocks. In contrast, our framework features wage setting,

hiring, quitting, and firing decisions all as equilibrium outcomes. On the other hand, Keynesian models

traditionally feature much simpler labor markets and often rely on the assumption of representative

workers (Erceg et al., 2000; Blanchard and Galí, 2010; Christiano et al., 2016; Schmitt-Grohé and Uribe,

2016). In comparison, our framework features worker productivity differences, wage inequality, and un-

employment risk. Our work complements the analysis in Hall (2005) and Shimer (2005a) by emphasizing

endogenous fluctuations in the job separation margin as a consequence of wage rigidity and aggregate

productivity shocks. In our framework, inefficient job separations arise as a result of both idiosyncratic

and aggregate shocks. In the models of staggered Nash wage bargaining by Gertler and Trigari (2009) and

Gertler et al. (2020), inefficient job separations may also occur whenever large enough aggregate shocks

take a worker-firm match’s wage out of the bargaining set. In practice, however, these papers ignore the

possibility of inefficient separations as they feature only aggregate (i.e., not idiosyncratic) shocks. In our

setting, the interaction between idiosyncratic worker productivity shocks, wage rigidity, and two-sided

lack of commitment gives rise to inefficient job separations and thus a role for monetary policy. We

show that such a framework has very different implications for the employment and output response to

aggregate shocks, compared to alternative frameworks in which all job separations are efficient.

Our second contribution is to analytically characterize the equilibrium of a frictional labor market

with aggregate and idiosyncratic shocks subject to wage rigidity. A technical challenge posed by this

environment concerns the discontinuities in agents’ value functions, and thus the inapplicability of

standard dynamic programming results such as the contraction mapping theorem, due to dynamic

strategic considerations in discrete time. To overcome this challenge, we leverage the powerful tools of

optimal control in continuous time by casting the problem as a nonzero-sum stochastic differential game

with stopping times (Bensoussan and Friedman, 1977).1 Similar continuous-time methods have recently

been employed by Bilal et al. (2021a,b) to tractably study firm dynamics with random matching and on-

the-job search. A distinguishing feature of our analysis is that it allows for the possibility of inefficient job

separations, which have been absent in previous work assuming full commitment (Moen, 1997; Acemoglu

and Shimer, 1999a,b) or one-sided lack of commitment (Shi, 2009; Menzio and Shi, 2010a,b, 2011; Schaal,

1Related models of inaction are studied by Dixit (1991) and Sheshinski and Weiss (1977) in the context of price setting and by
Bloom (2009) in the context of investment. See also the overviews contained in Dixit (2001) and Stokey (2008).
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2017; Herkenhoff, 2019; Balke and Lamadon, 2020; Fukui, 2020). While Sigouin (2004), Rudanko (2009,

2021), and Bilal et al. (2021a,b) also study environments with two-sided lack of commitment, their analysis

remains tractable precisely because their assumptions lead to a privately efficient solution (i.e., all agents’

decisions maximize the joint value of a match) of the game between workers and firms. In contrast, our

focus explicitly lies on the privately inefficient solution (i.e., some of agents’ decisions lower the joint

value of a match) under sticky wages.

Our third contribution is to import and extend the methods of sufficient statistics from heterogeneous-

agent models of inaction to a labor market setting. In the context of the product pricing literature, Álvarez

et al. (2016) link the CIR of output to monetary shocks to the ratio of the kurtosis and the frequency of price

changes. In related work, Baley and Blanco (2021a) characterize the CIR of output in terms of unobserved

steady-state objects, which they map to data on price changes. Alvarez et al. (2021) and ? extend this

theoretical result to general hazard models and multiple reset points, respectively. Before the current

paper, these tools have not been imported to the labor literature. To make this possible, we extend these

methods to tractably incorporate workers’ endogenous transitions between employment states, which are

a central feature of our labor market model.2

Outline. The rest of the paper is organized as follows. Section 2 lays out the model environment, defines

an equilibrium, and characterizes equilibrium policies. Section 3 establishes the one-to-one mapping

between the model’s unobservable state variable and data. Section 4 describes the dynamic response of

aggregate employment and real wages to a monetary shock. Finally, Section 5 concludes.

2 A Model of Non-Coasean Labor Contracts

We develop a labor market model with search and matching in the spirit of Mortensen and Pissarides

(1994) with non-Coasean labor contracts in the form of sticky wages within a job spell and two-sided

lack of commitment—i.e., neither workers nor firms can commit to future actions. Our goal is to build

a framework of non-Coasen labor markets that can be used to study the two-way interaction between

monetary policy and labor market inequality.

2While our theory is developed in the context of labor markets, our methods are generalizable to alternative settings with
endogenous transitions between a discrete set of states, including firms’ entry and exit decisions, traders sorting across segmented
asset markets, and individual mobility decisions across geographic locations.
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2.1 Environment

The economy is populated by a unit mass of workers and an endogenously determined mass of firms

who meet in a frictional labor market. Time is continuous and indexed by t.

Preferences and Technology. Both workers and firms discount the future at a common rate ρ > 0. Firms

are simply profit maximizers. Workers value an expected discounted consumption stream {Ct}∞
t=0 with

risk-neutral preferences:

E

[ˆ ∞

0
e−ρtCt dt

]
.

Without loss of generality, we assume that workers consume their flow income Yt. A worker’s flow

income depends on her employment state Et, which can be either employed (h) or unemployed (u), and

the worker’s productivity level Zt. While employed, a worker produces an amount of a homogeneous

good equal to the worker’s productivity and receives flow income equal to a real wage Wt, which we

assume is constant within a job spell. While unemployed, a worker receives flow income B(Zt) from

home production.

Henceforth, we use lower-case letters to denote the natural logarithm of variables in upper-case letters.

For example, zt denotes the log of the worker’s productivity and wt denotes the log wage.

Stochastic Process for Worker Productivity. A worker’s idiosyncratic productivity follows a Brownian

motion in logs and can be written as

dzt = γ dt + σ dW z
t ,

where γ is the drift, σ is the volatility, and W z
t is a Wiener process. For the time being, we focus on

a stationary environment in which the only shocks are to idiosyncratic worker productivity, but we

introduce aggregate shocks in Section 4.

Search Frictions. Unemployed workers search for jobs in a frictional labor market. Search is directed,

as in Moen (1997) and Menzio and Shi (2010a), and segmented across submarkets according to the log

wage w and the worker’s log productivity z. In each submarket (w, z), firms post vacancies V at cost

K(Zt). Given U unemployed workers and V vacancies in a submarket, a Cobb-Douglas matching function

with constant returns produces m(U ,V) = U αV1−α matches, where α is the elasticity of matches to the

unemployment rate. Thus, a worker’s job finding rate is f (w, z) = m(w, z)/U (w, z) = θ(w, z)1−α and a
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firm’s job filling rate is q(w, z) = m(w, z)/V(w, z) = θ(w, z)−α, where θ(w, z) = V(w, z)/U (w, z) denotes

the market tightness in submarket (w, z). Existing matches can get exogenously dissolved according to a

Poisson process with arrival rate δ,3 or they can be endogenously and unilaterally dissolved by either the

worker or the firm.

Wage Determination. We assume that entry wages are competitively set, as in Moen (1997) and Menzio

and Shi (2010a), and constant throughout a match.

Agents’ Choices. An unemployed worker’s choice of a submarket (w, z) induces a stopping time τu,

which is distributed according to a Poisson process with arrival rate f (w, z). Once matched, the worker

chooses the duration of the match before quitting, summarized by the stopping time τh, while the firm

chooses the duration of the match before firing the worker, summarized by the stopping time τ j. Given

these two choices and the exogenous stopping time τδ, the actual duration of a match is determined by

the minimum stopping time in the vector ~τm = (τh, τ j, τδ), which we denote by τm = min{τh, τ j, τδ}.

Value Functions. In what follows, we describe agents’ value functions, which depend on the worker’s

productivity z and, if matched, the match-specific wage rate w. In theory, value functions may also

depend on the aggregate state, which consists of the joint distribution of workers’ productivity, wages,

and employment states. However, we show below that our model features a unique block recursive

equilibrium, as in Shi (2009) and Menzio and Shi (2010a,b, 2011)—i.e., equilibrium objects do not depend

on the distribution of workers’ idiosyncratic states. Thus, we omit the aggregate state in all notations.

The value of an unemployed worker with productivity z is

U(z) = max
{wt}τu

t=0

E0

[ˆ τu

0
e−ρtB(ezt)dt + e−ρτu

H(wτu , zτu ,~τm(wτu , zτu))

]
. (1)

That is, an unemployed worker searches for a job in submarket (wt, zt) at time t ≤ τu, after which she

becomes employed at wage wτu and receives the value of employment H(wτu , zτu ,~τm(wτu , zτu)).

Given a vector of stopping times ~τm, the value of a worker employed at wage w with productivity z is

H(w, z,~τm) = E0

[ˆ τm

0
e−ρtew dt + e−ρτm

U(zτm)

]
. (2)

That is, an employed worker consumes a constant wage w until time τm when she either endogenously or

3This exogenous separation shock can be interpreted as a permanent shock to the productivity of the match that renders the
match unproductive forever.
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exogenously transitions to unemployment. Similarly, given a vector of stopping times ~τm, the value of a

firm matched with a worker with wage w and productivity z is

J(w, z,~τm) = E0

[ˆ τm

0
e−ρt [ezt − ew]dt

]
. (3)

That is, the match produces ezt , of which ew is paid to the worker until it gets dissolved at time τm.

Free Entry. Firms, in choosing the number of vacancies to post in each submarket, trade off the benefit

of posting a vacancy—i.e., the product of the vacancy filling rate q(w, z) and the value of a filled vacancy

J(w, z,~τm(w, z))—with the vacancy posting cost. In each submarket, firms post vacancies up to the point

at which the marginal vacancy posting cost exceeds its expected benefits. Thus, free entry requires that

K(ezt)− q(w, z)J(w, z,~τm(w, z)) ≥ 0 ∀(w, z) (4)

and θ(w, z) ≥ 0, with complementary slackness, for all (w, z).

Equilibrium Definition. Having described the agents’ problems, we are now ready to define an equi-

librium. Let T be the set of stopping times for a match with initial condition (z, w). We say that staying in

the match is a weakly dominating strategy for the worker given the state (z, w) if there exists a stopping

time τh?(z, w) ∈ T such that Pr(τh?(z, w) > 0) = 1 and

H(w, z, τh?(w, z), τ j, τδ) ≥ H(w, z, τh, τ j, τδ), ∀τh, τ j ∈ T ,

with strict inequality for some τ j. Similarly, staying in the match is a weakly dominating strategy for the

firm given the state (z, w) if there exists a stopping time τ j?(z, w) ∈ T such that Pr(τ j?(z, w) > 0) = 1 and

J(w, z, τh, τ j?(w, z), τδ) ≥ J(w, z, τh, τ j, τδ), ∀τh, τ j ∈ T ,

with a strict inequality for some τh.

Definition 1. An equilibrium consists of a set of value functions {H(w, z,~τm), J(w, z,~τm), U(z)}, a market

tightness function θ(w, z), and policy functions
{

τh∗(w, z), τ j∗(w, z), w∗(zt)
}

, such that:

1. Given U(z), (τh∗(w, z), τ j∗(w, z)) is a non-trivial Nash equilibrium with stopping times (τh, τ j) satisfying

H(w, z, τh∗(w, z), τ j∗(w, z), τδ) ≥ H(w, z, τh, τ j∗(w, z), τδ), ∀(w, z) (5)
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J(w, z, τh∗(w, z), τ j∗(w, z), τδ) ≥ J(w, z, τh∗(w, z), τ j, τδ), ∀(w, z) (6)

and Pr(τh∗(z, w) > 0) = 1 (resp. Pr(τ j∗(z, w) > 0) = 1) whenever staying in the match is a weakly

dominating strategy for the worker (resp. firm) given the state (z, w).

2. Given H(w, z,~τm∗(w, z)), U(z), and θ(w, z), {w∗(zt)}τu∗

t=0 solves equation (1).

3. Given J(w, z,~τm∗(w, z)), θ(w, z) solves the free entry condition (4).

Part 1 of Definition 1 requires that agents’ strategies form a Nash equilibrium in weakly dominating

strategies (see below the discussion of the equilibrium refinement). That is, the worker’s optimal quitting

strategy τh∗ is the best response to the firm’s firing strategy τ j∗, and vice versa—see equations (5) and (6).

Our equilibrium definition rules out the trivial Nash equilibrium, in which both the worker and the firm

choose to dissolve the match immediately. Part 2 requires that unemployed workers’ search strategies are

optimal. Finally, Part 3 requires that free entry holds.

Allocative Wages and Inefficient Job Separations. Here, we define two key concepts that play an

important role in our analysis. We refer to wages as ex-post allocative whenever they affect the expected

duration of the match, that is, whenever there exist w, w′ ∈ R such that E[~τm(w, z)] 6= E[~τm(w′, z)].

Relatedly, we refer to a job separation as inefficient whenever a match is dissolved in spite of a

positive joint match surplus S(w, z,~τm) := H(w, z,~τm)−U(z) + J(w, z,~τm). In our setting, inefficient

job separations will be a consequence of non-Coasean labor contracts, which arise due to the interaction

between idiosyncratic worker productivity shocks, wage rigidity, and the two-sided lack of commitment.

The latter is reflected by the equilibrium definition: the stopping times depend on the history of shocks

and (τ j, τh) are optimal for every history.4 It is important to highlight that the ex-post inefficiencies (i.e.,

once the match is formed) generated by lack of commitment end up affecting the unemployed worker’s

policies through H(w, z,~τm∗(w, z)) as well as the market tightness through J(w, z,~τm∗(w, z)). Therefore,

lack of commitment affects both job-finding and job separation rates in the economy.

Homotheticity. Shocks to worker productivity affect agents’ choices because they change the relative

values of three margins: wages while employed, w, home production while unemployed, B(Zt), and

vacancy posting costs, K(Zt), all relative to a worker’s productivity level Zt. In order to focus on the

margin pertaining to the relative value of wages, which is the main focus of this paper, we assume the

4Naturally, we require an agent’s stopping times to be measurable with respect to the agent’s information set (including the
entire history of shocks).
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search cost and unemployment income are homothetic in workers’ productivity (thereby abstracting from

the other two margins). That is, B(Zt) = B̃Zt for B̃ ∈ (0, 1) and K(Zt) = K̃Zt for K̃ > 0.

Equilibrium Refinement. To intuitively explain the need for an equilibrium refinement, we temporarily

assume that time is discrete and that, with probability one, the match will be dissolved in the following

period. In any period of length dt, the game’s payoff is described in Table 1. Assume that current

productivity z is such that flow payoffs in the match exceed flow payoffs from the outside options—i.e.,

(ez − ew)dt > 0 and ew dt + Ez′ [e−ρ dtU(z′)|z] > U(z). Under these assumptions, there are two Nash

equilibria: (i) one in which both agents choose to dissolve the match and (ii) one in which both players

decide to stay in the match. The first equilibrium does not survive the iterated elimination of weakly

dominated strategies: Independently of what the other agent does, it is weakly better to continue in the

match.

TABLE 1. PERIOD GAME

Worker stops Worker continues

Firm stops (0, U(z)) (0, U(z))
Firm continues (0, U(z)) ((ez − ew)dt, (ew dt + Ez′ [e−ρ dtU(z′)|z])

Notes: Discrete-time approximation of the game played between the worker and the firm under the assumption that in the next
period the probability of an exogenous separation is 1.

Finally, observe that, if we take the limit as dt → 0, we obtain the continuous-time versions of the

conditions that make continuing in the match a weakly dominating strategy. That is, if (ez − ew)dt > 0

and ew dt + Ez′ [e−ρ dtU(z′)|z] > U(z), then, as dt → 0, ez − ew > 0 and ρu(z) < ew + γ ∂u(z)
∂z + σ2

2
∂2u(z)

∂z2 ,

respectively.

Discussion of Assumptions. With the goal of giving a clear exposition of the core mechanisms at play

in models with non-Coasean labor contracts, we make several simplifying assumptions that are not

essential for our undertaking but that would matter in quantitative work: full wage rigidity within the

match, homotheticity, and the lack of richer shocks and frictions. Regarding wage rigidity, for ease of

exposition, we completely abstract from wage adjustment within the job. An extension with infrequent

wage adjustments à la Calvo (1983) would be straight-forward and preserve the main insights from our

analysis. Regarding the hometheticity assumption, a worker’s wage and productivity could in principle

affect equilibrium outcomes in each submarket (e.g., job-finding and separation rates). This assumption

implies that equilibrium outcomes depend only on the wage-to-productivity ratio and. Therefore, we

abstract away from ex-ante heterogeneity in workers’ productivity. Finally, we omit several other relevant
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features such as match-specific shocks, firm heterogeneity, and on-the-job search, among others. Our goal

is to provide the first foundational framework upon which future work can build on and incorporate

these important extensions.

2.2 Equilibrium Characterization

Let u(z), h(z; w), j(z; w), and θ(z; w) denote the values of an unemployed worker, an employed worker,

a filled vacancy, and the market tightness function evaluated at equilibrium policies, where the index

w references the constant (log) wage. We now derive necessary and sufficient conditions for a block

recursive equilibrium. Our equilibrium characterization proceeds in two steps. In the first step, which

is standard in search-and-matching models, firms post vacancies to attract workers and workers search

for jobs. This problem is characterized by the Hamilton-Jacobi-Bellman (HJB) equation for unemployed

workers,

ρu(z) = B̃ez + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 + max
w

f (w, z)[h(z; w)− u(z)], (7)

and the free entry condition for firms, which requires that the equilibrium market tightness satisfies

K(ez)− q(w, z)j(z; w) ≥ 0 ∀(w, z)

and θ(w, z) ≥ 0, with complementary slackness, for all (w, z).

In the second step, which is the novel focus of this paper, a matched worker-firm pair plays a game

that determines the duration of the match before the worker quits and the firm lays the worker off. The

strategic interaction between workers and firms has three features. First, agents play a nonzero-sum game

since the value of a match ez exceeds the value of unemployment B̃ez for B̃ < 1. Second, agents’ payoffs

are stochastic and move with productivity, which follows a Wiener process. Third, agents’ strategies

consist of stopping times. Thus, the strategic interaction between workers and firms can be formulated as

a nonzero-sum stochastic differential game with stopping times (Bensoussan and Friedman, 1977). To

characterize the equilibrium, we make use of quasi-variational inequalities—a methodological approach

that we import from the calculus of variations literature. We highlight that the application of these

state-of-the-art tools in the economics literature and the illustration of their broader value is an important

contribution of this paper.

Before stating the quasi-variational inequalities that characterize this problem, we describe the equilib-

rium conditions for a worker-firm match with the aid of Figure 1, which illustrates the equilibrium values,

outside options, and optimal policies for both agents.
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FIGURE 1. EQUILIBRIUM VALUES AND OPTIMAL POLICIES

Productivity, z

h(z; w) j(z; w) u(z) 0

z−(w) z−,wd(w) z+,wd(w) z+(w)

C j(w)

Ch(w)

0 < ez − ew0 < ew − ρu(z) + γ
∂u(z)

∂z + σ2

2
∂2u(z)

∂z2

h(z; w) > u(z) and j(z; w) > 0

Notes: The figure plots the value functions of workers and firms for a given log wage w as a function of log productivity z.
The blue and red solid lines show the value functions for the worker and the firm, respectively. The blue and red dashed lines
show the opportunity costs for the worker and the firm, respectively. The firm’s optimal job separation trigger based on weakly
dominant strategies is z−,wd(w) := w. The worker’s optimal job separation trigger under weak dominant strategies is z+,wd(w∗)
and satisfies ew∗ = B̃ez+,wd(w∗) + f (z+,wd(w∗); w∗)[h(z+,wd; w∗)− u(z+,wd)]. The optimal job separation triggers for the worker
and the firm are z+(w) := supz{z : h(z; w) > u(z)} and z−(w) := infz{z : j(z; w) > 0}, respectively. We use the following
illustrative parameter values: (γ, σ, ρ, α, K̃, δ, B̃) = (0, 0.005, 0.04, 0.5, 1, 0.021, 0.55).

The possibility that both the worker and the firm can unilaterally walk away from a match at any point

in time imposes lower bounds on the agents’ values h(z; w) and j(z; w). Formally, individual rationality of

the worker and the firm requires that

h(z; w) ≥ u(z) ∀z,

j(z; w) ≥ 0 ∀z.

Let Ch(w) denote the interior of the set of productivities for which the worker prefers to stay in the

match with wage w under our equilibrium definition. Importantly, this set is made up of two productivity

ranges: one in which both the firm and the worker opt to continue the match and one in which only the

worker prefers to continue the match (and, thus, the equilibrium refinement based on weak dominance

applies). Let C j(w) denote the analogous object for the firm.
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Agents’ Optimality Conditions. We now state the variational inequalities that characterize the worker’s

and the firm’s optimal policies for productivity levels inside and outside the other agent’s continuation

set. The HJB equation of a worker employed at log wage w with log productivity z ∈ C j(w), for which the

firm prefers to continue, is given by

ρh(z; w) = max
{

ew + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δ [u(z)− h(z; w)] , ρu(z)
}

.

This value satisfies h(·; w) ∈ C1(C j(w)) ∩C(R); i.e., it needs to be continuously once-differentiable on the

continuation set and continuous everywhere. These continuity and differentiability conditions correspond

to the value matching condition and the smooth pasting condition, respectively, in the worker’s best response.

Importantly, the smooth pasting condition needs to hold whenever the worker has the choice between

staying or leaving the match (i.e., in the firm’s continuation set). Similarly, the HJB equation of a firm

employing a worker at log wage w with log productivity z ∈ Ch(w), for which the worker prefers to

continue, is given by

ρj(z; w) = max
{

ez − ew + γ
∂j(z; w)

∂z
+

σ2

2
∂2 j(z; w)

∂z2 − δj(z; w) , 0
}

.

Again, this value must be continuous and differentiable within the worker’s continuation set: j(·; w) ∈

C1(Ch(w)) ∩C(R).

On the other hand, if any one agent chooses to dissolve the match, then the other agent receives the

value of the corresponding outside option. Therefore, the worker’s and the firm’s values of a match with

log productivity z and log wage w satisfy the following conditions:

h(z; w) = u(z) ∀z ∈ (C j(w))c, (8)

j(z; w) = 0 ∀z ∈ (Ch(w))c, (9)

where Xc := R\X. Equations (8)–(9) define the game’s value matching conditions, which imply the

continuity of one agent’s value function at the boundary of the other agent’s continuation set.

Agents’ Continuation Sets. We now characterize the continuation set of each agent. Two conditions

characterize these sets. First, the match continues whenever both agents find it strictly optimal to continue
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in the match; i.e., whenever

h(z; w) > u(z) ∀z, ,

j(z; w) > 0 ∀z.

Second, each agent prefers to continue whenever staying in the match is a weakly dominant strategy. To

explain this last condition, note that, for any worker’s policy, the firm would weakly prefer to continue

the match if flow profits are positive (i.e., ez − ew > 0). This preference results from the fact that, in this

scenario, current profits are positive and the firm’s continuation value is non-negative (because the firm

always has the option to fire the worker in the future). Therefore, the continuation set for the firm is

C j(w) := int {z ∈ R : j(z; w) > 0 or ez − ew > 0} . (10)

Similarly, the worker’s weakly dominant continuation set includes all productivity levels for which the

sum of the current wage and the capital gains from unemployment is positive—i.e.,

Ch(w) := int
{

z ∈ R : h(z; w) > u(z) or 0 < ew − ρu(z) + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2

}
. (11)

To provide the intuition behind this set, observe that from the HJB equation of the unemployed worker in

(7), we have that

0 < ew − ρu(z) + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 ⇐⇒ 0 < ew −
(

B̃ez + max
w

f (z; w)[h(z; w)− u(z)]
)

︸ ︷︷ ︸
flow opportunity cost

.

That is, if the current wage is larger than the flow value of quitting to look for a new match, then staying

in the current match strictly dominates quitting the job.5

Figure 1 describes the continuation set of each agent. The firm’s continuation set is given by C j(w) =

{z ∈ (z−(w), ∞)}. This set includes the range of productivities for which the firm makes positive flow

profits—z > z−,wd := w— and, therefore, it is weakly dominant to choose to retain the worker. Moreover,

the set C j(w) also includes the range of productivities for which both the firm and the worker find it

optimal to remain in the match despite flow profits being negative; i.e., z ∈ (z−, z−,wd). For z ∈ (z−, z−,wd),

the firm’s continuation value is positive and large enough to compensate for current loses. A similar

intuition applies to the worker’s continuation set Ch(w). We remark that the existence and uniqueness of

5See Chapter 10.1 and 10.3. in ?.
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such a threshold that characterizes the separation policy is a result that we formally show below, and not

an assumption.

Equilibrium Policies. The worker quits and the firm fires the worker at times τh and τ j, respectively.

These stopping times denote the stochastic time at which productivity falls outside of the worker’s and

the firm’s respective continuation sets. Thus, agents’ optimal stopping times are given by

τ j∗(w, z) = inf
{

t ≥ 0 : zt ∈ C j(w)c, z0 = z
}

,

τh∗(w, z) = inf
{

t ≥ 0 : zt ∈ Ch(w)c, z0 = z
}

.

The optimality of workers’ search decisions implies that the competitive entry wage satisfies

w∗(z) = arg max
w

θ(z; w)1−α [h(z; w)− u(z)] . (12)

The following lemma shows that these conditions are necessary and sufficient to characterize a block

recursive equilibrium. We relegate all proofs to the Online Appendix.

Lemma 1. The policy functions
{

τh∗, τ j∗, w∗(z)
}

together with the value functions {U(z), H(w, z,~τm), J(w, z,~τm)}

given by (1), (2) and (3), and the market tightness function θ(w, z) form a block recursive equilibrium if and only if

{u(z), h(z; w), j(z; w)} satisfy equations (7)–(12) and

u(z) = U(z),

h(z; w) = H(w, z, τh∗(w, z), τ j∗(w, z), τδ),

j(z; w) = J(w, z, τh∗(w, z), τ j∗(w, z), τδ).

Finding the State. To understand the dependence of equilibrium outcomes on the state variables, we

first note that we can recast the equilibrium conditions in terms of a reduced state space. Since the flow

income of unemployed workers and firms’ vacancy costs are both proportional to productivity, Z, it

turns out that the relevant state variable for both workers and firms is the log wage-to-productivity ratio,

ŵ := w − z. This result allows us to express agents’ values and policies as functions of the scalar ŵ

instead of the duplet (w, z). To simplify notation, we define the transformed drift γ̂ := γ + σ2 and the

transformed discount factor ρ̂ := ρ− γ− σ2/2. The equilibrium characterization is summarized in the

following Lemma.

Lemma 2. Suppose that the functions (u(z), h(z; w), j(z; w), θ(w, z)) satisfy the equilibrium conditions in (7)–
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(9), given the continuation sets Ch(w) and C j(w) defined in (10)–(11). Then, the transformed value and market

tightness functions are given by

(
Û, Ĵ(w− z), Ŵ(w− z), θ̂(w− z)

)
=

(
u(z)

ez ,
j(z; w)

ez ,
h(z; w)− u(z)

ez , θ(w, z)
)

equivalently characterize the equilibrium if the following conditions are satisfied:

1. The transformed value function of an unemployed worker, Û, satisfies

ρ̂Û = B̃ + max
ŵ

θ̂(ŵ)1−αŴ(ŵ), (13)

where the optimal choice of submarket for an unemployed worker to search in is ŵ∗ = w∗(z)− z.

2. The lower bounds of the game’s values for workers and firms are: Ŵ(ŵ) ≥ 0 and Ĵ(ŵ) ≥ 0.

3. The variational inequalities for workers and firms are satisfied: Given

Ĉh := int
{

ŵ ∈ R : Ŵ(ŵ) > 0 or 0 < eŵ − ρ̂Û
}

and Ĉ j := int
{

ŵ ∈ R : Ĵ(ŵ) > 0 or 0 < 1− eŵ} ,

the transformed value function of an employed worker, Ŵ(ŵ), and that of a filled vacancy, Ĵ(ŵ), satisfy

(ρ̂ + δ)Ŵ(ŵ) = max
{

eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) +
σ2

2
Ŵ ′′(ŵ) , 0

}
, ∀ŵ ∈ Ĉ j, (14)

(ρ̂ + δ) Ĵ(ŵ) = max
{

1− eŵ − γ̂ Ĵ′(ŵ) +
σ2

2
Ĵ′′(ŵ) , 0

}
, ∀ŵ ∈ Ĉh, (15)

with Ŵ ∈ C1(Ĉ j(w)) ∩C(R) and Ĵ ∈ C1(Ĉh(w)) ∩C(R), τ j∗ = inf{t ≥ 0 : ŵt /∈ Ĉ j, w0 = ŵ∗}. The

optimal stopping time are given by τh∗ = inf{t ≥ 0 : ŵt /∈ Ĉh, w0 = ŵ∗}.

4. The value matching conditions are satisfied: Ŵ(ŵ) = 0 ∀ŵ ∈ (Ĉ j)c, and Ĵ(ŵ) = 0 ∀ŵ ∈ (Ĉh)c.

5. The free entry condition for θ̂(ŵ) is satisfied: K̃ − θ̂(ŵ)−α Ĵ(ŵ) ≥ 0 and θ̂(ŵ) ≥ 0, with complementary

slackness.

The equilibrium conditions in Lemma 2 are transformed versions of those stated above and follow

similar intuitions. Equation (13) of Part 1 of the lemma encodes the payoff under the optimal log wage-to-

productivity ratio of newly employed workers. For an unemployed worker, the optimal wage w∗ trades

off the job finding rate θ̂(ŵ∗)1−α with the value of employment Ŵ(ŵ∗). Part 2 describes the lower bounds

on agents’ transformed values. From equations (14)–(15) of Part 3, we can infer the thresholds that render
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the worker’s and the firm’s respective transformed flow payoffs negative. If eŵ < ρ̂Û then the worker’s

wage is below the flow value of unemployment. Similarly, if eŵ > 1, then the firm’s flow profits are

negative. Part 4 states the transformed value matching conditions. Finally, Part 5 states the transformed

free entry condition.

Equilibrium Existence and Uniqueness. Equipped with the equilibrium conditions summarized in

Lemma 2, we now demonstrate the existence and uniqueness of a block recursive equilibrium.

Proposition 1. There exists a unique block recursive equilibrium.

While the result stated in Proposition 1 is essential for any model with sticky wages and non-Coasean

labor contracts, it does not follow from existing results.Theorems for the existence of a block recursive

equilibrium with exogenous job separations in discrete time rely on Schauder’s fixed point theorem—

see, for instance, Menzio and Shi (2010a,b) or Schaal (2017). Two conditions are critical for Schauder’s

fixed point theorem to apply: continuity in the value functions and continuity in the mapping between

value functions characterizing the block recursive equilibrium. In the discrete-time version of our

model, idiosyncratic worker productivity shocks, wage rigidity, and two-sided lack of commitment

jointly generate endogenous job separations, which break the regularity conditions on which traditional

arguments rely. In contrast, our continuous-time setup gets around this technical challenge (e.g., value

functions are now continuous). Thus, we proceed with a new approach that leverages techniques from

the variational inequalities literature, which allows us to prove the existence and uniqueness of a block

recursive equilibrium. This is where the payoff of our continuous-time methods based on variational

inequalities lies.

2.3 Understanding the Mechanisms

Having described the equilibrium conditions, we proceed to characterize the mechanisms that drive

workers’ and firms’ equilibrium behavior.

Equilibrium Policies. Based on the transformed state variable ŵ and equilibrium conditions in Lemma

2, we can characterize agents’ equilibrium policies. Recalling the definition of the transformed state

variable ŵ := w− z, we postulate that there are exist optimal policies ŵ− < ŵ∗ < ŵ+, where ŵ− is the

worker’s optimal job separation threshold, ŵ∗ is the optimal search strategy at match formation, and

ŵ+ is the firm’s optimal job separation threshold. We define the transformed surplus of the match as

Ŝ(ŵ) := Ĵ(ŵ) + Ŵ(ŵ) and the worker’s share of the transformed surplus as η(ŵ) := Ŵ(ŵ)/Ŝ(ŵ). The
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following proposition characterizes the properties of the block recursive equilibrium in its transformed

notation.

Proposition 2. The block recursive equilibrium has the following properties:

1. The joint match surplus satisfies

Ŝ(ŵ) = (1− ρ̂Û)T (ŵ, ρ̂), (16)

where

T (ŵ, ρ̂) := E

[ˆ τm∗

0
e−ρ̂t dt|ŵ0 = ŵ

]
(17)

is the expected discounted match duration and 1 > ρ̂Û > B̃.

2. The competitive entry wage ŵ∗ coincides with the Nash bargaining solution with worker’s weight α:

ŵ∗ = arg max
ŵ

{
Ŵ(ŵ)α Ĵ(ŵ)1−α

}
= arg max

ŵ

{
η(ŵ)α(1− η(ŵ))1−αT (ŵ, ρ̂)

}
, (18)

with optimality condition

η′(ŵ∗)
(

α

η(ŵ∗)
− 1− α

1− η(ŵ∗)

)
︸ ︷︷ ︸

Share channel

= − Tŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)︸ ︷︷ ︸
Surplus channel

. (19)

3. Given η(ŵ∗) and T (ŵ∗, ρ̂), the equilibrium job finding rate f (ŵ∗) and the flow opportunity cost of employ-

ment ρ̂Û are given by

f (ŵ∗) =
[
(1− η(ŵ∗))(1− ρ̂Û)T (ŵ∗, ρ̂)/K̃

] 1−α
α , (20)

ρ̂Û = B̃ +
(

K̃α−1 (1− η(ŵ))1−α η(ŵ)α
(
1− ρ̂Û

)
T (ŵ∗, ρ̂)

) 1
α
. (21)

4. Assume γ 6= 0 or σ 6= 0. Given Û, the worker’s and the firm’s continuation sets are connected, and the

game’s continuation set is bounded; i.e.

Ĉh = {ŵ : ŵ > ŵ−} and Ĉ j = {ŵ : ŵ < ŵ+}, (22)

with −∞ < ŵ− ≤ log(ρ̂Û) < 0 ≤ ŵ+ < ∞. The worker’s and firm’s value functions satisfy smooth
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pasting conditions at ŵ− and ŵ+, respectively: Ŵ ′(ŵ−) = Ĵ′(ŵ+) = 0.

Starting with Part 1 of Proposition 2, equation (16) states that the surplus of the match is equal to

the product between the transformed flow surplus 1− ρ̂Û and the expected discounted match duration

T (ŵ, ρ̂) defined in equation (17), which depends on the entry wage ŵ∗ and the width of the match’s

continuation set (ŵ−, ŵ+). Additionally, the flow opportunity cost of employment ρ̂Û is bounded between

one (i.e., the transformed value of flow output in the match) and B̃ (i.e., the transformed value of home

production). As 1 > ρ̂Û, the joint match surplus is always strictly positive—thus, all endogenous job

separations are inefficient.

Equations (18)–(19) of Part 2 show that the competitive entry wage ŵ∗ balances a share channel

and a surplus channel. Unemployed workers search for wages that are competitively set in a way that

coincides with the Nash bargaining solution with worker’s weight α, thereby satisfying the well-known

efficiency condition due to Hosios (1990). This result obtains due to the free entry condition, which

implies that a worker’s job-finding rate is proportional to the value of a firm. A larger initial wage

increases the worker’s share by η′(ŵ∗)α/η(ŵ∗) but at the same time reduces the job finding probability

by η′(ŵ∗)(1− α)/(1− η(ŵ∗)). This trade-off is reflected in the share channel and is standard in models

with directed search (e.g., Moen, 1997; Menzio and Shi, 2010a).

With allocative wages, a novel surplus channel arises. Intuitively, the surplus channel captures

the fact that the wage set at match formation affects the expected match duration and therefore the

expected surplus. The higher the entry wage, the sooner the firm will dissolve the match in expectation.

Conversely, the lower the entry wage, the sooner the worker will dissolve the match in expectation. Only

if Tŵ(ŵ∗, ρ̂) = 0 will the worker’s share of the surplus equal η(ŵ∗) = α, as in efficient models with

nonallocative wages. These considerations are unique to our environment with allocative wages.

Part 3 characterizes the unemployed worker’s job finding rate (20) and the flow opportunity cost of

employment (21) as functions of the worker’s surplus share and the expected discounted match duration.

Part 4 shows that the continuation set of the worker and that of the firm (22) follow threshold rules

in the log wage-to-productivity ratio ŵ. Workers refrain from quitting as long as ŵ > ŵ−, while firms

refrain from firing the worker as long as ŵ < ŵ+. Thus, the continuation set for the match is given by

Ĉh ∩ Ĉ j = (ŵ−, ŵ+). These thresholds satisfy ŵ− ≤ log(ρ̂Û) and ŵ+ ≥ 0, reflecting the fact that both

parties are willing to accept flow payoffs below that from their respective outside option. Finally, the

smooth pasting conditions apply at the worker’s quitting trigger ŵ− and at the firm’s firing trigger ŵ+,

reflecting the optimality of agents’ continuation thresholds.

21



Static Considerations. Before further characterizing the original dynamic problem, it is instructive to

consider equilibrium policies when productivity is fixed—i.e., γ = σ = 0.6 The following proposition

characterizes the static considerations in this case.

Proposition 3. Assume γ = σ = 0. Then, optimal policies are given by

(ŵ−, ŵ∗, ŵ+) = log(ρ̂Û, α + (1− α)ρ̂Û, 1),

with η(ŵ∗) = α and T (ŵ∗, ρ̂) = 1/(ρ̂ + δ).

Note that ŵ− < ŵ∗ < ŵ+ and ŵ = ŵ∗ for the duration of the match, absent productivity fluctuations,

so there are no endogenous job separations. From this result, we see that lack of commitment and wage

rigidity by themselves do not generate any inefficient job separations. Absent productivity fluctuations,

agents’ behavior is privately efficient in that it maximizes the joint match surplus.

In addition to the forces outlined in this static example, two important dynamic incentives guide

workers’ and firms’ choices, namely the option value effect and the anticipatory effect.

Dynamic Considerations I: The Option Value Effect. To understand the role of productivity fluctua-

tions in creating the option value effect, we assume away, for now, the drift of worker productivity—i.e.,

γ̂ = 0. The following proposition characterizes the option value effect in this case.

Proposition 4. Assume γ̂ = 0 and α = 1/2. Then, to a first-order approximation, the optimal entry wage is given

by ŵ∗ = log
(
(1 + ρ̂Û)/2

)
and the job separation triggers satisfy ŵ± = ŵ∗ ± h(ϕ, Φ) for some function h(ϕ, Φ)

with ϕ :=
√

2(ρ + δ)/σ and Φ := (1− ρ̂Û)/(1 + ρ̂Û). The following properties apply:

1. h(ϕ, Φ) is decreasing in ϕ and increasing in Φ.

2. limϕ→0 h(ϕ, Φ) = 3Φ and limϕ→∞ h(ϕ, Φ) = Φ.

3. ϕh(ϕ, Φ) is increasing in ϕ.

Furthermore, the equilibrium surplus share is η(ŵ) = α = 1/2 and the expected discounted match duration

T (ŵ∗, ρ̂) =
1− 2

(
eϕh(ϕ,Φ) + e−ϕh(ϕ,Φ)

)−1

ρ̂ + δ
, (23)

is increasing in ϕ and Φ and satisfies Tŵ(ŵ∗, ρ̂) = 0.

Proposition 4 demonstrates that idiosyncratic volatility, by itself, does not affect the split of the match

surplus between the worker and the firm. Such an economy is symmetric in the sense that Tŵ(ŵ∗, ρ) = 0

6Observe that if γ = σ = 0, then the smooth pasting conditions do not apply.
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and η(ŵ) = α. Thus, a larger ŵ∗ reduces the match duration by increasing the likelihood of a layoff

but increases the match duration by reducing the likelihood of a quit. Weighing both forces, T (·, ρ) is

maximized at ŵ∗ = (1 + ρ̂Û)/2 and η(ŵ∗) = 1/2.

This result provides a tight characterization of the worker’s and the firm’s optimal policy functions,

which result in the continuation region of the match (ŵ−, ŵ+) being symmetrically centered around

the optimal entry wage ŵ∗. Second, the width of the continuation region is increasing in the volatility σ

and decreasing in ρ̂Û (Part 1). The width of the inaction region increases with σ due to the option value

effect: Although the worker’s productivity might be low today, the firm is willing to wait before firing the

worker in case productivity improves in the future. The width of the inaction region decreases with ρ̂Û

because a higher opportunity cost of employment makes it less attractive to delay job separations.

The option value effect naturally arises in models of inaction. However, our model features a departure

from canonical models of inaction (e.g., Dixit, 1991). In those models, the width of the continuation region

typically grows unboundedly with the level of volatility σ. Instead, in our model, the width of the

continuation region has an upper bound (Part 2). To see the intuition behind this result, consider the

problem of a firm that finds itself in a match with negative flow profits. The marginal benefit from

remaining in a currently unprofitable match is that, with some probability in the future, productivity

increases enough to make the match profitable by rendering the wage-to-productivity ratio less than

unity. At the same time, inaction on part of the firm is risky: productivity may increase by a large enough

amount for the worker to choose to quit. Given the two job separation triggers, as the volatility goes

to infinity, the probability of remaining in the profitable part of the inaction region approaches zero.

Thus, the two-sided lack of commitment imposes an upper bound on the option value associated with

remaining in a match with negative flow profits.

The inefficiency generated by the lack of commitment also manifests itself in the expected duration

of the match given by equation (23). It is easy to see that a bounded option value effect (i.e., bounded

separation thresholds), as indexed by h(ϕ, Φ), implies a lower expected duration as the volatility of

productivity shocks increases (Part 3).

Dynamic Considerations II: The Anticipatory Effect. To understand the role of a nonzero productivity

drift in generating the anticipatory effect, we assume away, for now, the volatility of worker productivity—

i.e., σ = 0—and focus on the case with weakly positive drift—i.e., γ̂ ≥ 0. The following proposition

characterizes the anticipatory effect in this case.
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Proposition 5. Assume σ = 0 and γ̂ ≥ 0. Then, ŵ− = log
(
ρ̂Û
)

and

w∗ = ŵ− + T̃
(

α + (1− α)ρ̂Û
ρ̂Û

,
ρ̂ + δ

γ
,
(1− α)(1− ρ̂Û)

ρ̂Û

)
,

where T̃(·) is increasing in the first argument and decreasing in the second argument—see equation (B.36) in the

Online Appendix for its definition. Moreover,

1. If γ̂ = 0, then
(
T̃(·), T (ŵ∗, ρ̂), η(ŵ∗)

)
→
(

log
(

α+(1−α)ρ̂Û
ρ̂Û

)
, 1

ρ̂+δ , α
)

.

2. If γ̂ → ∞, then T̃(·) → T̃limit, T (ŵ∗, ρ̂) → 0, and η(ŵ∗) → ηlimit, where T̃limit and ηlimit are implicitly

defined as

α + (1− α)ρ̂Û
ρ̂Û

=
eT̃limit − 1− (1−α)(1−ρ̂Û)

ρ̂Û

(
1− T̃limit

eT̃limit−1

)
T̃limit

,

ηlimit = α +
1− α

T̃limit

(1− ρ̂Û)ηlimit

ηlimit + ρ̂Û(1− ηlimit)
. (24)

When productivity grows at a constant rate, the job separation trigger ŵ− equals the static opportunity

cost of employment since there is no value for the worker to further delay the separation. A novel

mechanism is embedded in the entry wage ŵ∗ and, therefore, in the function T̃(·). From Proposition 5,

we can see that ŵ∗ is increasing in the Nash bargaining target and also in the drift. We refer to the latter as

the anticipatory effect: Workers anticipate higher future productivity and modify their search strategy

accordingly. Two limiting cases illustrate this point.

As γ → 0 (Part 1), the equilibrium entry wage ŵ∗ is the same as in the case without drift; thus,

η(ŵ∗) = α. As the drift increases, the workers partially compensate for it by searching for a job with a

higher entry wage. Therefore, the average wage in the economy increases above the Nash bargaining

target—recall that ŵ− remains fixed. This results from the worker internalizing the trade-off that a higher

wage implies (i) a reduced job-finding rate and (ii) a lower frequency of inefficient job separations and,

thus, a longer expected match duration. As the drift increases unboundedly (Part 2), the entry wage w∗

becomes unresponsive to the drift because the job-finding rate becomes so small that it starts to dominate

the trade-off. Finally, as we can see in (24), the anticipatory effect makes the worker’s share of the surplus

increase in the drift.

Relative to the case with no drift, the worker’s lack of commitment decreases the value of searching

for a job, which is captured by the null response of ŵ− to changes in the drift. To understand this

result, assume that the worker commits to any given ŵ− and δ→ 0. Under these assumptions, the job
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separation rate is given by s = γ̂/(w∗ − ŵ−). Thus, the worker minimizes the frequency of inefficient

job separations by increasing the size of w∗ − ŵ−, which is captured by the surplus channel. At the same

time, workers choose an entry wage that takes into account the trade-off captured by the share channel.

For a given ŵ−, the worker has only the choice of ŵ∗ to achieve two opposing objectives: increase ŵ∗ to

avoid inefficient job separations (i.e., the surplus channel) or keep ŵ∗ close to the Nash bargaining target

(i.e., the share channel). Thus, the lack of commitment distorts both the expected duration of the match

and the equilibrium job-finding rates.

3 Identifying the Microeconomic Implications of Allocative Wages

This section proceeds in two steps. First, we show that the prevalence of inefficient job separations in our

model critically depends on moments of the distribution of wage-to-productivity ratios ŵ. Second, we

demonstrate how to use microdata on wage changes and worker transitions between jobs to recover the

unobserved distribution of wage-to-productivity ratios.

Notation. Our model has a set of testable implications. First, agents’ policies imply transitions from

employment to unemployment at rate s, from unemployment to employment at rate f (ŵ∗), and a

level of aggregate employment E . Second, the model predicts a joint distribution over the duration

of completed employment spells τm, the duration of completed unemployment spells τu, and the log

wage change between consecutive job spells ∆w. We denote the joint distribution of (τm, τu, ∆w) with

l(τm, τu, ∆w) and the marginal distribution of each variable with lm(τm), lu(τu), and lw(∆w). Let D :=

{E , s, f (ŵ∗), l(τm, τu, ∆w)} summarize the model’s observable implications in the data. Finally, we

define τ := τm + τu as the time elapsed between the starting dates of two consecutive jobs, and we use

ED [·] to denote the expectation operator under the distribution l(τm, τu, ∆w) ∈ D.

Before proceeding, it will be useful to find the minimum model ingredients needed to characterize

D. In principle, we could characterize D as a function of the joint distribution of workers’ employment

states, wages, and productivities. In practice, given the parameters guiding the stochastic process of

a worker’s productivity, all that is needed to characterize D is the distribution of the negative sum of

worker productivity shocks since the beginning of a spell of employment or unemployment. We denote

this variable by ∆z and refer to it as cumulative productivity shocks. 7 Using cumulative productivity shocks

as the state variable has three advantages: (i) it is unidimensional; (ii) it is well-defined during spells of

7Formally, the negative of cumulative productivity shocks of worker i at time t are ∆zit := zit0 − zit, where t0 denotes the
beginning of the current spell of employment or unemployment. Note that this reflects the negative sum of productivity changes
since t0.
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employment and unemployment; (iii) it follows a stationary distribution. By definition of ∆z, its law of

motion is given by d∆z = −γ dt + σ dW z
t .

Let gh(∆z) and gu(∆z) be the distributions of ∆z across employed and unemployed workers, respec-

tively. The support of gh(∆z) is given by [−∆−, ∆+], where ∆− := ŵ∗ − ŵ− and ∆+ := ŵ+ − ŵ∗. We

denote by Eh[·] and Eu[·] the expectation operators under the distributions gh(∆z) and gu(∆z), respec-

tively. LetM = {gh(∆z), gu(∆z), γ, σ} denote the set of model objects sufficient to characterize D. Online

Appendix C provides the analytical mapping from model objectsM to D in the data. Here, our goal is to

linkM to the prevalence of inefficient job separations and to deduce the elements inM from objects D

that are measurable in labor market microdata.

Characterizing the Equilibrium Distributions of Cumulative Productivity Shocks gh(∆z) and gu(∆z).

The equilibrium policies (ŵ−, ŵ∗, ŵ+) together with the stochastic process guiding ∆z and the exogenous

job separation rate, determine the equilibrium distributions of cumulative productivity shocks gh(∆z)

and gu(∆z). Due to the law of motion for ∆z being independent of the worker’s employment state, the

Kolmogorov forward equations (KFEs) for employed and unemployed workers are

δgh(∆z) = γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)\{0}, (25)

f (ŵ∗)gu(∆z) = γ(gu)′(∆z) +
σ2

2
(gu)′′(∆z) ∀∆z ∈ R\{0}. (26)

Here, δ is the exogenous exit rate of employed workers and f (ŵ∗) the job finding rate of unemployed

workers. Since the entry state for a newly employed or unemployed worker is ∆z = 0, the KFEs (25)–(26)

do not hold at this point, but gh(·) and gu(·) must be continuous there.

The boundary conditions impose a zero measure of workers at the borders of the support,

gh(−∆−) = gh(∆+) = 0,

lim
∆z→−∞

gu(∆z) = lim
∆z→∞

gu(∆z) = 0.

These distributions must also be consistent with (i) a unit measure of workers, and (ii) a flow balance

equation implying constant steady-state employment:

1 =

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z, (27)
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f (ŵ∗)(1− E)︸ ︷︷ ︸
u-to-h flows

= δE + σ2

2

[
lim

∆z↓−∆−
(gh)′(∆z)− lim

∆z↑∆+
(gh)′(∆z)

]
︸ ︷︷ ︸

h-to-u flows

. (28)

In equation (27), the unit measure of workers is composed of
´ ∞
−∞ gu(∆z)d∆z = 1− E unemployed and´ ∆+

−∆− gh(∆z)d∆z = E employed workers. In equation (28), the mass of u-toh flows is f (ŵ∗)(1− E), while

the mass of h-to-u flows is δE + σ2

2

[
lim∆z↓−∆−(gh)′(∆z)− lim∆z↑∆+(gh)′(∆z)

]
—i.e., the sum of exogenous

and endogenous job separations.

To summarize, equations (25)–(28), together with continuity of gu(∆z) and gh(∆z) at ∆z = 0, constitute

the equilibrium conditions for the steady-state distributions of cumulative productivity shocks. Next, we

show that gh(∆z) incorporates all the relevant information needed to quantify the prevalence of inefficient

job separations in the economy.

The Distribution of Cumulative Productivity Shocks in Employment gh(∆z) is a Sufficient Statistic

for the Prevalence of Inefficient Job Separations. In our model, the ratio of the measure of endogenous

job separations send to the measure of all job separations s is given by

send

s
=

σ2

2E
[
lim∆z↓−∆−(gh)′(∆z)− lim∆z↑∆+(gh)′(∆z)

]
s

. (29)

The numerator on the right-hand side of equation (29) is the share of employment resulting in endogenous

job separations, which are triggered by cumulative productivity shocks hitting the boundary −∆− from

above or the boundary ∆+ from below. Recall that, by Proposition 2, the match surplus is always strictly

positive in equilibrium, which implies that all endogenous job separations are inefficient. Therefore,

this ratio summarizes the prevalence of inefficient job separations in the economy. A challenge in

operationalizing equation (29) is that the distribution of cumulative productivity shocks in employment

gh(∆z) is unobserved. Next, we show how to recover this distribution from labor market microdata.

Inferring the Distribution of Cumulative Productivity Shocks in Employment gh(∆z). A key insight

is that, given the parameters of the stochastic process guiding worker productivity, the distribution of

wage changes between jobs contains sufficient information to recover gh(∆z) and therefore the prevalence

of endogenous job separations. We guide the discussion with the aid of Figure 2, which shows the

marginal distribution of wage changes between jobs lw(∆w) (left panel) and the marginal distribution of

cumulative productivity changes in employment gh(∆z) (right panel). Each panel plots the respective

distribution for two extreme calibrations, one that renders almost all job separations endogenous (blue
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solid line) and one that renders almost all job separations exogenous (red dashed line).

If, on the one hand, most job separations are endogenous, then most separated workers experienced

cumulative productivity shocks during employment of either−∆− or ∆+. As a result, the probability mass

associated with positive wage changes between jobs is concentrated around −∆−, and the probability

mass associated with negative wage changes is concentrated around ∆+. This results in a bimodal

distribution of wage changes between jobs, with additional dispersion around the two modes caused by

cumulative productivity shocks in unemployment.

If, on the other hand, most job separations are exogenous, then most separated workers experienced

cumulative productivity shocks in employment close to zero. Because the probability of finding a job

is independent of the shocks experienced during unemployment, the shape of the distribution of wage

changes between jobs mimics the distribution of cumulative productivity shocks in employment, being

symmetric and single peaked at zero.

FIGURE 2. DISTRIBUTIONS OF WAGE CHANGES BETWEEN JOBS

AND CUMULATIVE PRODUCTIVITY SHOCKS IN EMPLOYMENT

∆w

A. Distribution of wage changes between jobs, ∆w

send/s ≈ 1
send/s ≈ 0

0
∆z

B. Distribution of cumulative productivity shocks in employment, ∆z

0

Notes: The figure plots the distribution of wage changes between jobs lw(∆w) and the distribution of cumulative worker shocks
in employment gh(∆z) for two calibrations. In the first calibration, we set (∆−, ∆+, γ, σ, δ, p(ŵ∗)) = (0.05, 0.05, 0, 0.02, 0, 0.5)
so that send/s ≈ 1 (blue solid line). In the second calibration, we set (∆−, ∆+, γ, σ, δ, p(ŵ∗)) = (0.2, 0.2, 0, 0.1, 0.04, 0.05) so that
send/s ≈ 0 (red dashed line).

With this intuition in mind, we formalize the argument for the identification of gh(∆z) in three steps.

First, we infer the drift γ and volatility σ of worker productivity from microdata on wage changes and

worker transitions between jobs. Second, we measure the job finding rate f (ŵ∗) and marginal distribution

of wage changes between jobs lw(∆w) in order to deduce the CDF of cumulative productivity shocks
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conditional on a job separation event Ḡh(∆z). Third, we recover gh(∆z) along with gu(∆z).

Step 1: Identifying the Parameters of the Stochastic Process Guiding Worker Productivity. A chal-

lenge in recovering the drift γ and volatility σ of the stochastic process guiding worker productivity lies

in the endogenous job separation of workers into unemployment. The following lemma shows how to

recover γ and σ from observables D by use of Doob’s Optional Stopping Theorem.

Lemma 3. The drift γ and volatility σ of the stochastic process guiding cumulative productivity shocks can be

recovered from D with

γ =
ED [∆w]

ED [τ]
, (30)

σ2 =
ED [(∆w− γτ)2]

ED [τ]
. (31)

Lemma 3 provides a mapping between the drift γ and volatility σ of worker productivity and

measurable labor market objects. Equation (30) states that the drift of productivity γ simply equals the

mean wage change between jobs ED [∆w] divided by the mean time elapsed between the starting dates of

two consecutive jobs ED [τ]. Equation (31) shows that the volatility of productivity σ equals the dispersion

of wage changes around the expected wage change between jobs ED [(∆w− γτ)2] divided by the mean

time elapsed between the starting dates of two consecutive jobs ED [τ].

Step 2: Identifying the Distribution of Cumulative Productivity Shocks Conditional on Job Transi-

tions. Having identified (γ, σ), we next characterize the distribution of cumulative productivity shocks

conditional on a job separation event Ḡh(∆z). To understand how to identify this distribution, we first

turn to the dynamics of h-to-u and u-to-h worker flows. Consider a worker who at time t0 starts a job

with wage wt0 , at time t0 + τm separates, and at time t0 + τm + τu finds a new job with wage wt0+τm+τu .

This worker’s wage change between jobs is given by

∆w = wt0+τm+τu − wt0 , (32)

= wt0+τm+τu − zt0+τm+τu︸ ︷︷ ︸
= ŵ∗

− (wt0 − zt0)︸ ︷︷ ︸
= ŵ∗

+ zt0+τm+τu − zt0 ,︸ ︷︷ ︸
= ∆z after h-u-h transition

(33)

= ŵ∗ − ŵ∗︸ ︷︷ ︸
= 0

+ zt0+τm − zt0︸ ︷︷ ︸
∆z|h-u transition starting from zt0

+ zt0+τm+τu − zt0+τm .︸ ︷︷ ︸
∆z|u-h transition starting from zt0+τm

(34)

Equation (32) applies the definition of ∆w. Equation (33) adds and subtracts zt0+τh+τu − zt0 before

grouping terms into the wage-to-productivity ratio in the old job, the wage-to-productivity ratio in the
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new job, and the cumulative productivity shocks between the starting dates of the old and new jobs.

Finally, equation (34) adds and subtracts zt0+τm before applying the definition of ŵ∗ and that of ∆z. In

summary, equations (32)–(34) show that the wage change across jobs is equal to the sum of three random

variables: (i) the difference of entry wage-to-productivity ratios across jobs, which equals zero, (ii) ∆z

conditional on a job separation starting from productivity zt0 , and (iii) ∆z conditional on finding a new

job, which is independent of the productivity zt for t in(t0 + τm, t0 + τm + τu). Based on these arguments,

we derive the following proposition.

Proposition 6. The distribution of ∆z conditional on a job separation is given by

Ḡh(∆z) =
σ2

2 f (ŵ∗)
dlw(−∆z)

dz
− γ

f (ŵ∗)
lw(−∆z)− [1− Lw(−∆z)] , (35)

where Lw(∆w) denotes the cumulative distribution function (CDF) corresponding to the marginal distribution

lw(∆w).

Step 3: Identifying the Distribution of Cumulative Productivity Shocks in Employment. Given the

distribution of cumulative productivity shocks conditional on a job separation event Ḡh(∆z) and ḡh(∆z),

we can recover the steady-state cross-sectional distribution of wage-to-productivity ratios in employment.

Proposition 7. Assume γ 6= 0. The distribution of cumulative productivity shocks gh(∆z) is given by

gh(∆z) =
sE
γ

[ˆ ∆z

−∆−

(
1− e

2γ

σ2 (y−∆z)
)

ḡh(y)dy + Ḡh(−∆−)
[
1− e−

2γ

σ2 (∆z+∆−)
]]

. (36)

Proposition 7 provides the functional equation (36) that, when combined with equation (35), maps

lw(∆w) into gh(∆z). Depending on the application, one needs to compute specific moments of the

distribution gh(∆z). For example, the next section shows that the response of aggregate job separations

after a monetary shocks depends only on average tenure—which is directly measurable in the data—and

Eh[∆z]. Online Appendix D.5 shows how to recover the required moments of the distribution gh(∆z)

using moments of the observed distribution of ∆w.

We conclude this section with a brief discussion of the assumptions underlying the method described

in Propositions 6 and 7. The first assumption is the threshold nature of job separation policies, according

to which the job separation rate is equal to δ for ∆z ∈ [−∆−, ∆+] and infinite for ∆z ∈ {−∆−, ∆+}. This

assumption is not crucial, and it can be replaced with a general job separation hazard as in Álvarez et al.

(2020). The second assumption is the lack of other types of wage adjustments, such as those arising from

job-to-job transitions or wage adjustments within a job spell. This assumption could be relaxed following
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the methodology in Baley and Blanco (2021b). Finally, while we assume a particular stochastic process

for d∆zt, this assumption can be empirically tested and adjusted if deemed necessary, as in Baley and

Blanco (2021a). For example, it would be straightforward to make the parameters of the productivity

process depend on the worker’s employment state. The critical assumption behind Propositions 6 and

7 is that we have sufficient information about ḡu(∆z), the distribution of productivity changes during

unemployment. Given our model assumptions, this is indeed the case, as the lack of selection in job

finding and the pre-identified stochastic process for ∆z together yield the strong identification result.

4 Analyzing the Macroeconomic Consequences of Allocative Wages

How does the interaction between productivity shocks, wage rigidity, and two-sided lack of commitment—

which gives rise to inefficient job separations—matter for the transmission of monetary shocks? To answer

this question, we add money as a numeraire to the economic environment.

4.1 A Monetary Economy

We modify the baseline model in four dimensions. First, we introduce preferences over real money

holdings:

E0

[ˆ ∞

t=0
e−ρt

(
cit + µ log

(
M̂it

Pt

))
dt
]

, (37)

where M̂it denotes a worker’s money holdings, Pt is the relative price of the good in terms of money, and

µ is a preference weight on real money holdings.

Second, workers face a budget constraint that reflects access to complete financial markets and

ownership of firms’ profits. Given a history of labor market decisions regarding job search, acceptance,

and dissolution, lmt
i := {lmit′}t

t′=0, a worker’s private income is y(lmt
i), which equals the nominal value

of the wage while employed and the nominal value of home production while unemployed. In addition,

each worker receives transfers of Tit from the government and profits of a fully diversified portfolio claims

on the individual firms. On the spending side, a worker pays for consumption expenditures Ptcit and

the opportunity cost of holding money it M̂it at a given interest rate it ≥ 0. Letting Qt denote the time-0

Arrow-Debreu price under complete markets, the worker’s budget constraint is

E0

[ˆ ∞

t=0
Qt
(

Ptcit + it M̂it − y(lmt
i)− Tit

)
dt
]
≤ Mi0. (38)

The worker’s problem is to choose a consumption stream {ct}∞
t=0, labor market decisions {lmt}∞

t=0, and
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money holdings {M̂it}∞
t=0 to maximize utility (37) subject to the budget constraint (38) at time 0.

Third, the economy is subject to shocks to the aggregate money supply Mt. We assume that the log of

the aggregate money supply mt follows a Brownian motion with drift π and volatility ζ:

dmt = π dt + ζ dWm
t ,

whereWm
t is a Wiener process. Because the aggregate money supply moves stochastically over time,

fluctuations in mt constitute aggregate shocks to the economy.

Fourth and finally, we assume that the vacancy posting cost K(Zt) and the value of home production

B(ZT) are both denominated in real terms.

Given these modifications, the market-clearing conditions for goods and money, respectively, are

ˆ 1

i=0
cit + θit1[Eit = u]K(Zit)di =

ˆ 1

i=0
Zit1[Eit = h] + B(Zit)1[Eit = u]di, (39)

ˆ 1

i=0
M̂it di = Mt, (40)

where 1[·] is an indicator function that takes a logical expression as its argument. Equation (39) states that

the sum of real consumption and recruiting expenses must equal the total market and home production

of the good. Equation (40) states that the total demand of nominal money holdings across workers equals

the aggregate money supply.

The following proposition characterizes the worker’s problem in this monetary economy.

Proposition 8. Let Q0 = 1 be the numéraire and assume µ = ρ + π − ζ2/2. Then, Pt = Mt and the value of a

worker at time 0 is

V0 = max
{lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt y(lmt

i)

Pt
dt
]
+ k,

where k is a constant independent of the worker’s choices and the present discounted value of financial wealth.

Proposition 8 shows that the price level is equal to the aggregate money supply and that maximizing

(37) subject to (38) is equivalent to maximizing expected discounted real income. The result relies

on the following assumptions: (i) markets are complete, (ii) workers have quasi-linear preferences in

consumption, and (iii) the log of aggregate money supply follows a random walk with drift. The first

two assumptions imply a constant marginal value of nominal wealth, which combined with the last

assumption leads to a constant real interest rate and a one-for-one pass-through of money shocks to

inflation.

The introduction of a monetary economy requires minor adjustments to our previous solution ap-
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proach. Given fluctuations in the log price level p, the relevant state variable becomes the real wage-to-

productivity ratio ŵ := w− z− p. Similarly, we keep track of the negative of a worker’s cumulative shocks

to revenue productivity z + p since the beginning of the current employment or unemployment spell, which

we denote by ∆z.8 By definition, ŵ = ŵ∗ + ∆z and the law of motion for ∆z is

∆z = − (γ + π)dt + σ dW z
t + ξ dWm

t .

All policies (ŵ+, ŵ∗, ŵ−) are expressed in real terms. Since productivity growth γ and trend inflation π

symmetrically affect revenue productivity, without loss of generality, we set π = 0. Finally, let Gh(z, a)

denote the steady-state joint distribution of cumulative revenue productivity shocks z and tenure a of a

job spell. For any integers k, l ∈N, we define the moments of this distribution as

Eh(∆zkal) ≡
ˆ

∆z

ˆ
a

∆zkal dGh(∆z, a).

4.2 Monetary Multipliers for Aggregate Employment and Real Wages

Starting from the steady state without aggregate shocks, so that ζ = 0, we consider a small, unantici-

pated, one-standard-deviation shock ζ > 0 to aggregate money supply at time t = 0—i.e., log(M0) =

limt↑0 log(Mt) + ζ. The shock leads to a one-for-one increase in the price level. We are interested in the

economy’s impulse response function (IRF) and cumulative impulse response (CIR) of aggregate employment

and real wages to such a monetary shock.9

An Illustration. Figure 3 shows the distribution of real wage-to-productivity ratios ŵ before and after

the monetary shock together with the IRFs of average real per capita wages w̄t :=
´ 1

0 (1[Eit = h]wit −

Eh[ŵ∗ + ∆z])di, the job-finding rate ft − fss, and aggregate employment Et − Ess.

After the initial increase in the price level, the distribution of real wage-to-productivity ratios shifts to

the left (Panel A), leading to a sudden decrease in the aggregate log real wage (Panel B). Consequently,

the monetary shock affects both the endogenous job separation rate and aggregate employment (Panel

D). Given that the wages of new matches are critical for the job-finding rate (Pissarides, 2009), we study

two separate cases: flexible entry wages and sticky entry wages. With flexible entry wages, we assume

that unemployed workers fully adjust their search behavior to incorporate the higher price level, so that

8We choose this notation to avoid defining new objects. Below, we set π = 0; thus, steady-state moments of cumulative
productivity shocks are equal to the corresponding moments of revenue productivity.

9By the certainty equivalence principle, the impulse response function following a money shock departing from the steady-
state with steady-state policies is equivalent to the solution based on a first-order perturbation of the model with business cycles
fluctuations.
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FIGURE 3. IMPULSE RESPONSE FUNCTIONS OF LABOR MARKET VARIABLES

A. Dist’n of real wage-to-productivity ratios, ŵ

steady state after ζ-shock

ŵ− ŵ+ Time

B. Real wages per capita , w̄t

Time

C. Job finding rate, ft− f (ŵ∗)

Time

D. Aggregate employment, Et− Ess

Flexible Entry Wage

Sticky Entry Wage

Notes: Panel A shows the distribution of real wage-to-productivity ratios ŵ := log(Wit/(ZitPt)) in the steady state and after a
monetary shock of size ζ. Panels B, C, and D show the impulse response functions of the average log real per capita wage w̄t, the
job-finding rate ft − fss, and aggregate employment Et − Ess, respectively. We use the following illustrative parameter values:
(γ, π, σ, ρ, α, K̃, δ, B̃) = (0, 0.001, 0.007, 0.03, 0.5, 1, 0.005, 0.4).

ŵ∗ remains at its steady-state level. Thus, the real entry wage and the job-finding probability remain

constant (Panel C). The aggregate log real wage is affected by the shock only because the nominal wages

of workers already employed at t = 0 are rigid. Since entry wages adjust one-for-one with the price level,

the firm’s real value of a filled vacancy is unaffected, so that both vacancy-filling and job-finding rates

remain at their steady-state levels. Therefore, the employment effects are only driven by the effects of the

aggregate shock on endogenous job separations.

In the sticky entry wage case, we assume that unemployed workers do not adjust their search behavior

to incorporate the higher price level. In this case, the real entry wage reverts to its steady-state level

following the worker’s first job separation after the shock. Thus, after the shock, the real entry wage also

decreases, which induces firms to post more vacancies and the job-finding rate to increase (Panel C). As a

consequence, employment dynamics are driven by both the job-separation and job-finding rates. The

assumption of sticky entry wages is motivated by the empirical evidence in Grigsby et al. (2021), which

documents that new hire wages evolve similarly to incumbent workers within a firm at business cycle
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frequencies, and Hazell and Taska (2020), which shows that wages for new hires rarely change between

successive vacancies at the same job. Micro-founding this assumption is outside the scope of this paper.

Nevertheless, observe that since the steady-state entry wage is optimal, any perturbation around that level

has a second-order welfare effect on the worker. Thus, any first-order cost of wage adjustment would

replace this assumption as a result. There is abundant literature that provides a plethora of alternative

models to think about imperfect knowledge about aggregate shocks—we chose a simple one to focus on

our contribution.10 For alternative models of rigid entry wages, see Fukui (2020) and Menzio (2022).

Defining IRFs and CIRs. Our goal is to characterize the effects of a monetary shock on aggregate

employment E and aggregate real wages w̄. To this end, we denote by IRFx(ζ, t) the IRF for variable

x ∈ {E , w̄} at time t relative to its steady-state value, following a monetary shock ζ at time 0. The IRF for

aggregate employment is

IRFE (ζ, t) = Et − Ess,

where Ess is the steady-state employment rate. Analogously, the IRF for aggregate real wages is

IRFw̄(ζ, t) =
ˆ ŵ+

ŵ−
ŵ[dGt(ŵ)− dGss(ŵ)], (41)

where Gt(ŵ) is the CDF of real log wage-to-productivity ratios at time t and Gss(ŵ) is its steady-state

counterpart. It is worth noting that equation (41) implicitly makes use of the fact that the IRF of the

mean log real wage w̄ is identical to that of the mean log real wage-to-productivity ratio ŵ, given that the

process governing a worker’s productivity is unresponsive to the monetary shock.

Following Álvarez et al. (2016), we define the CIR of a variable x ∈ {E , w̄} to a monetary shock ζ as

CIRx(ζ) =

ˆ ∞

0
IRFx(ζ, t)dt,

which measures the area under the IRFx(ζ, t) curve for t ∈ [0, ∞). The CIR summarizes the response

on impact and the persistence of the response of the labor market to the monetary shock in a single

scalar. Therefore, the CIR can be interpreted as a monetary multiplier. To illustrate the logic behind the CIR,

suppose that there are no nominal rigidities so that nominal wages of both newly hired and incumbent

workers respond one-for-one to the price level. In this case, IRFx(ζ, t) = 0 for all t and thus CIRx(ζ) = 0

for x ∈ {E , w̄}, reflecting the fact that there are no real consequences of inflation. With nominal rigidities,

10A few examples are sticky information in Mankiw and Reis (2002), rational inattention in Woodford (2009) and Maćkowiak
and Wiederholt (2009), dispersed knowledge in Hellwig et al. (2014), level-k reasoning in Farhi and Werning (2017), among many
others.
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an inflationary shock affects both employment and wages, the magnitude of which is reflected in the CIR.

Characterizing the CIR of employment. Now, we characterize the CIR of aggregate employment. The

first proposition relates the CIR to a perturbation of two Bellman equations describing future employment

fluctuations for initially employed and unemployed workers. The idea behind the proof is to exchange

the order of integration; we first integrate over time for a given worker and then integrate across workers.

Proposition 9. Given steady-state policies (ŵ−, ŵ∗, ŵ+) and distributions (gh(∆z), gu(∆z)), the CIR is given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z︸ ︷︷ ︸

CIRE of initially employed workers

+

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z︸ ︷︷ ︸

CIRE ofinitially unemployed workers

,

where the value functions mE ,h(∆z) and mE ,u(∆z, ζ) are defined as:

mE ,h(∆z) = E

[ˆ τm

0
(1− Ess)dt + mE ,u(∆z, 0)

∣∣∣∣∣∆z0 = ∆z

]
, (42)

mE ,u(∆z, ζ) = E

[ˆ τu(ζ)

0
(−Ess)dt + mE ,h(−ζ)

∣∣∣∣∣∆z0 = ∆z

]
. (43)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z, 0)gu(∆z)d∆z. (44)

with τu(ζ) being distributed according to a Poisson process with arrival rate f (ŵ∗ − ζ).

The proposition shows that to characterize the CIR, we need to keep track of future employment

dynamics of initially employed and unemployed workers. When the shock arrives, the real wages of

initially employed workers decrease (since ∆z0 = limt↑0 ∆zt − ζ, we have that the starting point is given

by the distribution gh(∆z + ζ)) affecting their future employment spells, which is captured by mE ,h(∆z).

During employment, the employed worker’s value function accumulates positive deviations from the

steady-state level (1− Ess), and the unemployed worker’s value function accumulates negative deviations

from the steady-state level (−Ess). Thus, mE ,h(∆z) measures the cumulative deviations of employment

from its steady-state level conditional on being initially employed at revenue productivity ∆z. Similarly,

mE ,u(∆z, ζ) measures the cumulative employment deviations from the steady-state level conditional

on being initially unemployed at revenue productivity ∆z and search for a job in submarket ŵ∗ − ζ.

Searching in submarket ŵ∗− ζ increases the job-finding probability f (ŵ∗− ζ) and also changes the wages

of new hires. Finally, since the Bellman equations (42) and (43) lack discounting (i.e., they simply count

non-discounted deviations), it is easy to show that they have infinitely many solutions. The unique

relevant solution is pinned down by equation (44), which requires that an economy that departs from the
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steady-state and experiences no shock must have a null CIRE—i.e., CIRE (0) = 0.

Next, we characterize up to first order the CIR of aggregate employment as a set of measurable objects

in labor market microdata. Specifically, we argue that certain moments of the joint distribution of tenure

and wages in steady-state are informative of the CIR. The key insight below is that the CIR of aggregate

employment, which is a summary statistic of its dynamic response, can be characterized only in terms

of steady-state cross-sectional moments. The intuition behind this result is that changes in a worker’s

idiosyncratic productivity and changes in the aggregate price level affect the real wage-to-productivity

ratio Wit/(ZitPt) of a match in symmetric ways. Therefore, the response of a match to productivity

changes in the steady-state is informative of the aggregate effects of changes in the price level.

CIR of employment with flexible entry wages. To facilitate the exposition of the analysis, we first

present the case with flexible entry wages. Proposition 10 characterizes the CIR up to first order.11

Proposition 10. Assume flexible entry wages. Up to first order, the CIR of employment is given by:

CIRE (ζ)
ζ

= −(1− Ess)
γEh[a] + Eh[∆z]

σ2 + o(ζ). (45)

The conventional wisdom in macroeconomics is that fluctuations in the job separation rate are not the

main driver of aggregate employment dynamics (e.g., Shimer, 2005b). In the context of a monetary shock,

equation (45) points to conditions under which aggregate employment fluctuations due to endogenous

job separations can be small. More importantly, it also highlights the conditions for these effects to be

large. This new result, combined with Corollary 1 below, provides a guide to verify those conditions in

the data.

In light of this conventional wisdom, one might also be tempted to conclude that sticky wages cannot

lead to inefficiencies at the micro-level. However, equation (45) allows for a small CIR of aggregate

employment to a monetary shock despite the presence of allocative wages and inefficient job separations.

Thus, aggregate time-series data on job flows cannot be used as model discrimination devices between

theories of the allocativeness of wages or in assessing the prevalence of inefficient job separations at the

micro-level.

To build the intuition behind this result, we first consider the implications of equation (45) under

zero productivity drift, γ = 0. In two cases do the job separation rate and aggregate employment not

respond to aggregate shocks. In the first case, all job separations are exogenous and, therefore, the IRF

of the job separation rate is zero. In the second case, all job separations are endogenous but the mass of

11That is, CIRx(ζ) = CIRx(0) + (CIRx)′(0)ζ + o(ζ2), where CIRx(0) = 0.
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additional worker quits due to lower real wages is exactly compensated by the mass of workers who

would have been fired by firms in the absence of the monetary shock. In both cases, the key sufficient

statistic referenced by equation (45) is Eh[∆z] = 0.

Importantly, the sufficient statistic in equation (45) captures more than the on-impact response of

endogenous quits and layoffs. Rather, it measures the response at all times along the IRF. Therefore, the

relative mass of workers near the two job separation triggers is not a sufficient statistic for characterizing

the CIR of aggregate employment. To illustrate this, consider the following example in which all endoge-

nous separations are quits, but nevertheless, the CIR is zero. Suppose γ > 0 and σ ↓ 0 in this environment.

The equilibrium approaches a situation in which workers quit because wages lag behind productivity

growth, and firms do not have incentives to fire any worker. Then, ∆zit + γait = σW z
t → 0 and, therefore,

γEh[a] + Eh[∆z] = 0. Intuitively, the increase in worker quits on impact is exactly offset by a reduction in

future worker quits, resulting in a null net effect as captured by the CIR.

The sufficient statistic in equation (45) also points to scenarios in which inefficient job separations

matter for aggregate employment dynamics. For example, if trend inflation π is large in magnitude,

then—all else equal—the rate of inefficient job separations will be more responsive to an inflationary

shock. Alternatively, following an unexpected sequence of negative productivity shocks, an inflationary

shock reduces the incidence of inefficient job separations due to firings.12 Furthermore, if it is easy for

workers to quit but costly for firms to fire workers or vice versa—for example, due to the presence of

mandatory severance pay or unemployment insurance programs—then inflationary shocks can interact

with such asymmetries in job separation policies leading to inefficient job separations.

Finally, notice that the CIR is scaled by the steady-state unemployment rate, 1− Ess. This is because

the steady-state unemployment rate is informative of workers’ steady-state job finding rate f (ŵ∗). When

this rate is high, relative to the separation rate, then a monetary shock causes temporary unemployment

fluctuations but those workers quickly become matched again with new firms. Consequently, aggregate

employment remains relatively stable, resulting in a relatively small CIR of aggregate employment to an

inflationary shock.

Next, we leverage the mapping from the data to the model provided in Section 3 to express the response

of aggregate employment to an inflation shock in terms of observable moments of the distribution of wage

changes and tenure. Here, we focus and explain the case with no drift, i.e., γ = 0. See Online Appendix

Section E.4 for the case with non-zero drift, i.e., γ 6= 0. While the required moments to measure the CIR

are different in the case with non-zero drift, they reflect similar economic mechanisms.

12See also Blanco et al. (2022b) for empirical evidence consistent with this theoretical result.
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Corollary 1. Assume γ = 0. Up to first order, the CIRE (ζ) can be expressed in terms of data moments as follows:

CIRE (ζ)
ζ

=
1

f (ŵ∗)︸ ︷︷ ︸
avg. u dur.

1
VarD [∆w]︸ ︷︷ ︸

dispersion

1
3

ED

[
∆w

∆w2

ED [∆w2]

]
︸ ︷︷ ︸

asymmetries

+ o(ζ). (46)

Equation (46) shows that, for zero drift, the effect of an inflationary shock on aggregate employment is

determined by three statistics: (i) the average duration of unemployment spells, (ii) the inverse of the

dispersion of wage changes, and (iii) a measure of the asymmetry of the wage change distribution. Each

statistic in turn determines the persistence, initial absolute size, and sign of the effect.

The steady-state average duration of unemployment spells naturally amplifies the CIR as it captures

how quickly a separated worker recovers from unemployment. Larger unemployment duration is

indicative of larger search frictions, which makes the on-impact effect on employment more persistent. A

similar result has been found in price-setting models (Álvarez et al., 2016) and investment models with

inaction (Baley and Blanco, 2021a).

In an environment with zero drift, a larger dispersion of wage changes is indicative of a wider inaction

region and the presence of more resilient matches to idiosyncratic shocks. A large dispersion arises when

the pool of workers experiencing wage changes not only includes previously endogenously separated

workers (with large but similar absolute wage changes) but also many exogenously separated ones (with

smaller but more dispersed absolute wage changes). Thus, the larger this dispersion, the smaller the share

of endogenous separations and the smaller the propagation of shocks.

Finally, the CIR is also affected by the degree of asymmetry of the distribution of wage changes, as

captured by the last term in brackets in (46), which is a weighted average of wage changes that puts more

weight on larger changes. When the drift is zero, this term captures how asymmetric the policies ŵ− and

ŵ+ are around the entry wage ŵ∗. While the previous two statistics capture the degree of amplification

of the monetary shock, the asymmetry of the distribution will determine the direction of the effect. A

negatively skewed distribution has a longer left tail and the mass concentrated on the right, which

reflects a larger fraction of workers quitting to obtain a wage increase relative to the number of workers

experiencing a wage cut due to layoffs. Thus, the increase in the price level and the fall in real wages

make a large mass of workers quit and the CIR is negative. The opposite holds when the distribution of

wage changes is positively skewed.13 Instead, a symmetric distribution of wages chances is indicative of

13When the distribution is positively skewed (i.e., with a longer right tail and the mass concentrated on the left), there is a
large mass of workers experiencing wage cuts, which signals a relatively high layoff risk. Thus, higher inflation reduces real
wages and increases the firms’ incentives to keep their workers; as a result, aggregate employment increases.
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symmetric policies when the drift is zero, and monetary shocks do not affect employment.

CIR of employment with sticky entry wages. With the understanding of employment dynamics when

entry wages are flexible, we now characterize the case with sticky entry wages.

Proposition 11. Assume sticky entry wages. Up to first order, the CIR of employment is given by:

CIRE (ζ)
ζ

= (1− Ess)

− [γEh[a] + Eh[∆z]]
σ2 +

1
f (ŵ∗) + s

η′(ŵ∗)
η(ŵ∗)

+
T ′ŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)︸ ︷︷ ︸
job finding effect on E

− T ′ŵ(ŵ∗, 0)
T (ŵ∗, 0)︸ ︷︷ ︸

separation effect on E


+ o(ζ).

Proposition 11 characterizes the new mechanisms affecting employment dynamics when entry

wages are sticky. The elasticity of the worker’s share of the surplus with respect to the entry wage

(i.e., η′(ŵ∗)/η(ŵ∗)) together with the elasticity of the expected discounted duration of the match (i.e.,

T ′ŵ(ŵ∗, ρ̂)/T (ŵ∗, ρ̂)) captures the effect of the increase in the job-finding probability following the de-

crease in the real entry wage. A drop in the real entry wage increases the firm’s share and their incentive

to post vacancies. On top of this standard mechanism in search and matching models, a drop in the real

entry wage could also change the expected duration and, therefore, the total surplus of the match. This

new effect also shapes firms’ incentives to post vacancies for a given share. These first two mechanisms

affect aggregate employment through changes in the job-finding rate. The last term, which is also new,

captures the effect of a lower real entry wage on aggregate employment that arises from fluctuations in

the job separation rate of initially unemployed workers.

We now characterize the elasticity of the discounted duration of the match to an increase in the entry

wage by focusing on two dimensions: (i) how the equilibrium policies determine this elasticity and (ii)

how we can discipline this elasticity with data on gh(∆z).

Proposition 12. The following properties hold for T ′ŵ(ŵ∗, ρ̂)/T (ŵ∗, ρ̂).

1. Assume that ∆− = ∆+ and γ = 0. Then, T ′ŵ(ŵ∗, ρ̂) = 0 and, up to a 3rd order approximation of T (ŵ, ρ̂)

around ŵ = ŵ∗,

T (ŵ∗, ρ̂) =
1

ρ̂ + δ + (σ/∆+)2 .
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2. Up to a 2nd order approximation of T (ŵ, ρ̂) around ŵ = ŵ∗,

T ′ŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
=

∆+ − ∆−

∆+∆−
.

3. If ρ̂ = 0, then

T ′ŵ(ŵ∗, 0)
T (ŵ∗, 0)

=
1

σ2gh(0)

[
send

(
Ess − 2Gh(0)

)
+

σ2

2

(
lim

∆z↑∆+
(gh)′(∆z) + lim

∆z↓−∆−
(gh)′(∆z)

)]
. (47)

4. If ρ̂ > 0, then

T ′ŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
=
T (ŵ∗, 0)
T (ŵ∗, ρ̂)Ess

[
−ρ̂

γEh[a] + Eh[∆z]
σ2 +

σ2

4

[
lim

∆z↓∆−
− lim

∆z↑∆+

]
d2[T (ŵ∗ + ∆z, ρ̂)gh(∆z)

]
d∆z2

]
+ o(ρ̂2),

with

lim
∆z↓∆−

d2[T (ŵ∗ + ∆z, ρ̂)gh(∆z)
]

d∆z2 = lim
∆z↓−∆−

2
(gh)′(∆z)2

gh(0)
H−(gh, ρ̂, T (ŵ∗, ρ̂), T (ŵ∗, 0))

lim
∆z↑∆+

d2[T (ŵ∗ + ∆z, ρ̂)gh(∆z)
]

d∆z2 = lim
∆z↑∆+

2
(gh)′(∆z)2

gh(0)
H+(gh, ρ̂, T (ŵ∗, ρ̂), T (ŵ∗, 0))

where H−(·) and H+(·) are described equation (E.41) of the Online Appendix.

Items 1 and 2 of Proposition 12 characterize an approximation of the elasticity of the discounted

duration with respect to the entry wage as a function of the separation triggers (−∆−, ∆+) and model

parameters. The proof is based on a Taylor approximation of T (ŵ, ρ̂) around ŵ∗ and the HJB equation

and border conditions that characterize T (ŵ, ρ̂). In symmetric economies—i.e., zero drift and symmetric

separation triggers—the elasticity of the expected duration with respect to the entry wage is zero. In-

tuitively, an increase in the entry wage lowers the probability of a quit but increases the probability of

a layoff in a similar proportion. Surprisingly, in asymmetric economies, the only mechanism affecting

the elasticity of expected duration is the asymmetry of the separation triggers; thus, it is independent

of (ρ, δ, γ, σ) conditional on ∆− and ∆+. For example, a higher discount factor ρ̂ decreases the expected

discounted duration and, at the same time, it decreases the effect of the initial wage ŵ∗ on the expected

duration. Thus, the ratio T ′ŵ(ŵ∗, ρ̂)/T (ŵ∗, ρ̂) is independent of ρ̂.

While items 1 and 2 show the elasticity of the expected duration with respect to the entry wage and
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the mechanisms that shape it, items 3 and 4 show how to discipline these mechanisms with information

about the distribution of ∆z for the cases with ρ̂ = 0 and ρ̂ > 0. Mechanically, the steady-state distribution

of ∆z is proportional to the time workers spend at productivity ∆z; thus, up to a normalization, T (ŵ∗, 0)

could be obtained from gh(∆z). Equation (47) shows the two conditions that generate a positive effect

on duration. If the quit rate ( σ2

2 lim∆z↓−∆−(gh)′(∆z)) is larger than the firing rate (− σ2

2 lim∆z↓∆+(gh)′(∆z)),

then a higher entry wage increases expected match duration; if these rates are equal, then this term is zero.

Similarly, the product between endogenous separations and the CDF of ∆z evaluated at 0 also determines

the duration elasticity since it measures the asymmetries of the distribution within the separation triggers.

While these two statistics measure the effect of asymmetries in the distribution of ∆z among employed

workers, its effect on expected duration at the entry wage is obtained by re-scaling the statistic by

1/(σ2gh(0)).

Finally, when ρ̂ > 0, the elasticity of expected duration with respect to the entry wage depends on: (i)

the product between ρ̂ and the negative of the CIR with flexible entry wages and, (ii) the product between

the curvature of the expected discounted duration and the mass of workers at the separation triggers. The

main reason the CIR shows up in the elasticity of discounted duration is that a marginal increase in the

entry wage has a similar effect on quits and layoffs, and therefore on marginal duration, as a lower price

level (once the effect of discounting is properly accounted for).

To finish understanding the role of allocative wages for aggregate fluctuations, we characterize their

effect on the elasticity of a worker’s share of the surplus. The worker’s share is given by the ratio of two

Bellman equations—one for the worker’s value and the other for the surplus of the match. The first step

is to show that their ratio also satisfies a Bellman equation, once properly adjusted due to the endogenous

duration of the match. Proposition 13 shows this result.

Proposition 13. Define

τend = inf{t ≥ 0 : Γt /∈ (ŵ−, ŵ+)}

where (ŵ−, ŵ+) is a Nash equilibrium. Then, the worker’s share η(ŵ) satisfies the following Bellman equation

η(ŵ) = E

[ˆ τend

0
e−(ρ̂+δ)t(ρ̂ + δ)

eΓt − ρ̂Û
1− ρ̂Û

dt + e−(ρ̂+δ)τend
1[∆zτend = ∆+]|Γ0 = ŵ

]
(48)

with

dΓt = (ρ̂ + δ)(−γ̂T (Γt, ρ̂) + σ2T ′ŵ(Γt, ρ̂))dt + σ
√
T (Γt, ρ̂)(ρ̂ + δ)dW z

t
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Before discussing this proposition, some properties are important to mention.14 First, observe that

limŵ↓ŵ− η(ŵ) = 0 and limŵ↑ŵ+ η(ŵ) = 1. In other words, if the wage is close to the quitting trigger,

then the worker’s share of the surplus is zero; if the wage is close to the firing trigger, then the worker’s

share is one. Second, the flow payoff (ρ̂ + δ) eΓt−ρ̂Û
1−ρ̂Û

is equal to the ratio between the flow value of being

employed at the option value-adjusted wage Γt and the annuity value of the surplus when all separations

are exogenous. Therefore, Γt and its law of motion encode both the share channel and the surplus channel

of a higher ŵ on the worker’s share η(ŵ).

To understand the new state variable Γt, suppose that the inaction region is infinitely large so that all

separations are exogenous. Then, T (Γt, ρ̂) = 1/(ρ̂ + δ) and T ′ŵ(Γt, ρ̂) = 0. Because the law of motion of Γt

simplifies to dΓt = dŵt = −γ dt + σ dWt, we have that Γt = ŵt and η(ŵ) is the average share of the flow

surplus. In the other extreme scenario, when the inaction region is bounded and Γ0 = ŵ is sufficiently

close to a separation trigger, then the law of motion for Γt incorporates the net effect of a higher ŵ: It

redistributes part of the surplus to the worker, but also changes the expected duration of the match. To

illustrate the relative strength of these forces, suppose that Γ0 = ŵ is very close to the upper Ss band ŵ+.

Then, T (Γt, ρ̂) ≈ 0 and T ′ŵ(Γt, ρ̂) < 0—the expected duration is small and a higher wage further reduces

it. Therefore, dΓt < 0 and the marginal increase in the worker’s share is decreasing in ŵ—i.e., the share is

concave in ŵ because a higher ŵ increases the layoff risk. Alternatively, suppose that Γ0 = ŵ is very close

to the lower Ss band ŵ−. Then, T (Γt, ρ̂) ≈ 0, but now T ′ŵ(Γt, ρ̂) > 0 and dΓt > 0—i.e., the share is convex

in ŵ because a higher ŵ reduces the likelihood of quits.

From Proposition 13, we can characterize the elasticity of the share in symmetric economies.

Proposition 14. The following properties hold:

1. If (ŵ−, ŵ)→ (−∞, ∞), then

dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=

[
α + (1− α)ρ̂Û

]
α(1− ρ̂Û)

. (49)

2. Assume that γ = 0, ∆+ = ∆−, and ∆+ is small enough, then

dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=
1

α(∆+ + ∆−)
=

√
send

2ασ
. (50)

We explain Proposition 14 with the help of Figure 4, which is computed in two steps. First, we set δ = 0

and calibrate the model to match the average job-finding and separation rates in the US economy, together

14For the Bellman equation (48) to describe the worker’s share, (ŵ−, ŵ+) must be a Nash equilibrium of the game between the
firm and the worker. This guarantees that (48) properly characterizes a share η(ŵ) ∈ [0, 1].
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with a replacement ratio for new employed workers of 0.46. We choose α such that T ′ŵ(ŵ∗, ρ̂) = 0. Second,

we compute the function σ(δ) that keeps T (ŵ∗, ρ̂), and therefore the aggregate separation rate, constant.

What the function σ(δ) does is to keep, by construction, the opportunity cost ρ̂Û and the duration of the

match constant, but change the share of endogenous separations from 0 to 1. Figure 4-Panels A and B

show σ(δ) and dlog(η(ŵ))/ dŵ|ŵ=ŵ∗ , respectively.

As a starting point, assume the case with δ = sdata and send/s = 0. Equation (49) characterize this

limit. In this case, all separations are exogenous, and a marginal increase in the entry wage increases the

worker’s share since wages during the match are higher. Equation (49) also shows the well-known result

that, in this limiting case, the elasticity of the share is proportional to the inverse of flow surplus 1− ρ̂Ũ

(Shimer, 2005a).

When the share of inefficient separations increases, the elasticity of the worker’s share to the entry

wage decreases. In this case, a new mechanism that reduces the elasticity arises. With a higher entry

wage, the probability that the worker gets fired increases, and the probability that the worker chooses to

quit decreases. By construction, the expected duration of the match does not change; thus, the match’s

joint surplus—i.e., the denominator in the worker’s share—does not change. In addition, by the envelope

condition, the change in the probability of quitting does not affect the worker’s value. Nevertheless, up to

a first-order approximation, the increase in the probability of being laid off reduces the worker’s value

since she did not choose this separation trigger. This mechanism reduces the elasticity of the worker’s

share to the entry wage whenever the ratio of endogenous to total separation increases. In the limit,

equation (50) disciplines this elasticity as a function of observables.

FIGURE 4. dlog(η(ŵ))/ dŵ|ŵ=ŵ∗ FOR DIFFERENT (δ, σ) AND CONSTANT T (ŵ∗, ρ̂)
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Notes: Panel A shows the level set of T (ŵ∗, ρ̂) for different values of (δ, σ). Panels B shows the elasticity of the worker’s
share with the entry wage and two theoretical limits when δ = s and δ = 0, respectively. The parameter values for δ = 0
are (γ, π, σ, ρ, α, K̃, δ, B̃) = (0, 0, 0.02, 0.0033, 0.45, 2.2, 0, 0.45). The steady-state targets for this calibration are: ( f (ŵ∗), s) =

(0.45, 0.032) with a replacement ratio of 0.46 and T ′ŵ(ŵ∗, ρ̂) = 0.
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Discussion. We relegate several additional results to the Online Appendix F. There, we present the CIR

for large shocks by characterizing the CIR of employment up to a second-order approximation. We also

characterize the CIR for average real per capita wages when entry wages are flexible.

5 Conclusion

There is mounting empirical evidence of wages being less than fully flexible. To understand the conse-

quences of wage rigidity at the micro and macro levels, we developed a theory of labor markets with

allocative wages. The realistic ingredients of this theory included fluctuations in individual output (i.e.,

productivity shocks), fixed pay within jobs (i.e., wage rigidity), and the possibility that workers can quit

and firms can dissolve jobs at any point in time (i.e., two-sided lack of commitment). Our theory embed-

ded these ingredients in an environment with search frictions, which are central to many macroeconomic

analyses of labor markets.

We demonstrated that this theory is useful because it enables us to study the prevalence of inefficient

job separations by first identifying the microeconomic implications and then analyzing the macroeconomic

consequences of allocative wages. Our study remains analytically tractable by leveraging the powerful

tools of optimal control in continuous time. We establish that both a worker’s decision to quit and a

firm’s decision to dissolve a job can be formulated as a nonzero-sum stochastic differential game with

stopping times. This formulation allows us to prove the existence of a unique block recursive equilibrium

and provide a sharp characterization of agents’ equilibrium policies. We show that our theory also has

empirical content, as it can be inverted to identify the unobserved distribution of an appropriately defined

state variable from microdata on wage changes and worker flows between jobs. The identified model

allows us to study the monetary multipliers for aggregate employment and real wages through the use of

sufficient statistics, which we show are closely linked to the prevalence of inefficient job separations.

Our work points to several interesting avenues for future research. Possible extensions to our frame-

work include the introduction of on-the-job search, wage renegotiations subject to adjustment frictions à la

Rotemberg (1982) or Calvo (1983), a notion of a firm, and alternative types of idiosyncratic and aggregate

shocks. While we have abstracted from these features, integrating them into a unified model would make

possible a rich, quantitative analysis of labor markets and the macroeconomy.
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A Auxiliary Theorems

We use the following mathematical notation in this appendix.

1. Hl(R): Sobolev space; i.e., Hl(R) ⊂ L2(R) and its weak derivatives up to order l have a finite Lp norm.

2. Characteristic operator A: Given a function f : R→ R and a diffusion process {xt}, the characteristic operator of X is

given by

A f = lim
U↓x

E[ f (XτU |x0 = x]− f (x)]
E[τU |x0 = x]

3. Let u, v : R→ R, (u, v) =
´

R u(x)v(x)dx and ||u|| =
(´

u(x)2 dx
)1/2 .

4. a(u, v) is a bilinear continuous form. We say a(u, v) is coercive if a(u, u) ≥ α||u||2.

Proposition A.1. Let A be the characteristic operator of {Xt} with Xt ∈ Rn. Let f : Rn → R be a twice differentiable function with

compact (i.e., bounded and closed in R) support (support( f ) = {x : f (x) 6= 0}). If τ is a stopping time with Ex[τ] < ∞, then

Ex[ f (xτ)] = f (x) + Ex

[ˆ τ

0
A f (Xt)dt

]
. (A.1)

Moreover, if τ is the first exit time of a bounded set, then (A.1) holds for any twice differentiable function.

Proof. This is Dynkin’s formula, the proof of which can be found in ?.

Proposition A.2. Let xt be a strong Markov process, τ be a stopping time measurable with the filtration generated by xt, and τδ a

exponential random variable independent of τ. Then

E

[ˆ τ∧τδ

0
e−ρt f (xt)dt + e−ρ(τ∧τδ)g(xτ∧τδ )

∣∣∣∣∣ x0 = x

]
= E

[ˆ τ

0
e−(ρ+δ)t[ f (xt) + δg(xt)]dt + e−(ρ+δ)τ g(xτ)

∣∣∣∣ x0 = x
]

.

Proposition A.3. Let V be a Hilbert space and P a closed convex cone of V satisfying

P = {x ∈ V : (x, y) ≥ 0 ∀y ∈ P}.

Let T be an increasing map from V to itself such that there exists a x, x ∈ V

x ≤ x, x ≤ T(x), T(x) ≤ x.

Then, the subset of fixed points x∗ of T satisfying x ≤ x∗ ≤ x is non-empty and has a larger and smallest element.

Proof. See the proof of Proposition 2 of Chapter 15 on page 539 of Aubin (2007).

Proposition A.4. Let V be a Hilbert space and P a closed convex set. Assume that a(u, v) with u, v ∈ V is a coercive bilinear continuous

form. Then, there exists a unique solution to

a(u, v− u) ≥ ( f , v− u), ∀v ∈ P, u ∈ P,

where f belongs to the dual of V.

Proof. See Lions and Stampacchia (1967).
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B Proofs for Section 2: A Model of Non-Coasean Labor Contracts

B.1 Proof of Lemma 1

To simplify the exposition, we divide the proof into a sequence of lemmas. Define the equilibrium conditions

ρu(z) = B̃ez + γ
∂u(z)

∂z
+

σ2

2
∂2u(z)

∂z2 + max
w

f (w, z)[h(z; w)− u(z)], ∀z ∈ R (B.1)

0 =
[
K̃ez − q(w, z)j(z; w)

]+
θ(w, z) ∀(w, z) ∈ R2 (B.2)

h(z; w) ≥ u(z), ∀z ∈ R, (B.3)

j(z; w) ≥ 0, ∀z ∈ R (B.4)

If z ∈ (Ch(w))c ⇒ j(z; w) = 0, (B.5)

If z ∈ (C j(w))c ⇒ h(z; w) = u(z), (B.6)

0 = max{u(z)− h(z; w),Ahh(z; w) + ew}, ∀z ∈ C j(w), h(·; w) ∈ C1(C j(w)) ∩C(R), (B.7)

0 = max{−j(z; w),Aj j(z; w) + ez − ew}, ∀z ∈ Ch(w), j(·; w) ∈ C1(Ch(w)) ∩C(R), (B.8)

Ch(w) := int
{

z ∈ R : h(z; w) > u(z) or Ahu(z) + ew > 0
}

, (B.9)

C j(w) := int {z ∈ R : j(z; w) > 0 or ez − ew > 0} , (B.10)

Ah( f (z)) := −ρ f + δ(u(z)− f (z)) + γ
∂ f (z)

∂z
+

σ2

2
∂2 f (z)

∂z2

Aj( f (z)) := −ρ f + δ(0− f (z)) + γ
∂ f (z)

∂z
+

σ2

2
∂2 f (z)

∂z2

Proposition B.1. Let x := (w, z). If there exist two functions h(z; w), j(z; w) satisfying (B.3), (B.4), (B.5), (B.6), (B.7) and (B.8) given

the continuation sets (B.9) and (B.10), then

τh∗(x) = inf
{

t ≥ 0 : zt /∈ Ch(w)
}

τ j∗(x) = inf
{

t ≥ 0 : zt /∈ C j(w)
}

form a non-trivial Nash equilibrium and

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ), j(z; w) = J(x, τh∗(x), τ j∗(x), τδ).

Moreover, if (τh∗(x), τ j∗(x)) is a non-trivial Nash equilibrium, then

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ), j(z; w) = J(x, τh∗(x), τ j∗(x), τδ).

satisfy (B.3) to (B.8).

B1



Proof. Quasi-variational inequalities as sufficient conditions. First, we prove that if h(z; w), j(z; w) satisfy (B.3) to (B.8), then

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ) ≥ H(x, τh(x), τ j∗(x), τδ)

for any τh ∈ T . The proof of the statement

j(z; w) = J(x, τh∗(x), τ j∗(x), τδ) ≥ J(x, τh∗(x), τ j(x), τδ),

for any τ j ∈ T , follows the same arguments.

Step 1: Here, we show that h(z; w) ≥ H(x, τh(x), τ j∗(x), τδ). Let τh be any stopping time (not necessarily the optimal).

Without loss of generality, we restrict the attention to τh ≤ τ(−∞,a), where τ(−∞,a) = inf{t > 0 : zt /∈ (−∞, a)}. Intuitively,

it is never optimal for the worker to stay in the job at wage w when productivity is sufficiently large. Let Uk ⊂ R be an

increasing sequence of bounded sets s.t. ∪∞
k=1Uk = R. Let τk = inf {(zt) : zt /∈ Uk}. Since each Uk is bounded, we do not

need to assume compact support of the function to apply Proposition A.1. Applying Dynkin’s Lemma to the stopping time

τh
k = τh ∧ τ j∗ ∧ τδ ∧ τk,

E[e−ρτh
k h(xτh

k
)|z0 = z] = h(z; w) + E

[ˆ τh
k

0
Ahh(zt; w)dt|z0 = z

]
.

Using condition (B.3), since h(z; w) ≥ u(z) for all z, we have that E[e−ρτh
k h(zτh

k
; w)|z0 = z] ≥ E[e−ρτh

k u(zτh
k
)|z0 = z]. Thus,

E[e−ρτh
k u(zτh

k
)|z0 = z]−E

[ˆ τh
k

0
Ahh(zt; w)dt|z0 = z

]
≤ h(z; w).

From condition (B.7) , we have Ahh(z; w) + ew ≤ 0 for all z. Thus,

E

[ˆ τh
k

0
e−ρtew dt|z0 = z

]
≤ −E

[ˆ τh
k

0
Ahh(z; w)dt|z0 = z

]
.

Using this result

E

[
e−ρτh

k u(zτh
k
) +

ˆ τh
k

0
e−ρtew dt|z0 = z

]
≤ h(z; w)

Now, we take the limit k→ ∞. It is easy to see that
´ τh∧τ j∗∧τδ∧τk

0 e−ρt+w dt ≤ 1
ρ ew a.e., so using the dominated convergence

theorem limk→∞ E
[´ τh∧τ j∗∧τδ∧τk

0 e−ρt+w dt|z0 = z
]
= E

[´ τh∧τ j∗∧τδ

0 e−ρt+w dt|z0 = z
]
.

As we show below, u(z) ∝ ez and since ezt ≤ ea for all t ≤ τh ≤ τ(−∞,a), we have that 0 ≤ e−ρtu(zt) ≤ ea. Applying the

monotone convergence theorem again, we have that

lim
k→∞

E
[
e−ρ(τh∧τ j∗∧τδ∧τk)u(zτh∧τ j∗∧τδ∧τk

)|z0 = z
]
= E

[
e−ρ(τh∧τ j∗∧τδ)u(zτh∧τ j∗∧τδ )|z0 = z

]
.

Therefore, taking the limit k→ ∞, we finally obtain

h(z; w) ≥ H(x, τh(x), τ j∗(x), τδ).

Step 2: Now, we show that h(z; w) = H(x, τh∗(x), τ j∗(x), τδ). Applying Lemma A.1 to the stopping time τh∗
k = τh∗ ∧ τ j∗ ∧
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τk ∧ τδ

E[e−ρτh∗
k h(zτh∗

k
; w)|z0 = z] = h(z; w) + E

[ˆ τh∗
k

0
Ahh(zt; w)dt|z0 = z

]
.

For all t < τh∗
k , we have that u(z) < h(z; w). Therefore, by (B.7), Ahh(z; w) + ew = 0 for all z. Thus,

E

[
e−ρτh∗

k h(zτh∗
k

; w) +

ˆ τh∗
k

0
e−ρtew dt|z0 = z

]
= h(z; w).

Taking the limit k→ ∞ and following similar arguments as above, we obtain

E

[
e−ρ(τh∗∧τ j∗∧τδ)h(zτh∗∧τ j∗∧τδ ; w) +

ˆ τh∗∧τ j∗∧τδ

0
e−ρtew dt|z0 = z

]
= h(z; w).

which, given Proposition A.2, is equivalent to

E

[
e−(ρ+δ)(τh∗∧τ j∗)h(zτh∗∧τ j∗ ; w) +

ˆ τh∗∧τ j∗

0
e−(ρ+δ)t(δu(zt) + ew)dt|z0 = z

]
= h(z; w).

Since zτh∗∧τ j∗ ∈ ∂(Ch(w∗(z)) ∩ C j(w∗(z))) and h(·; w) is continuous, we have that

E

[
e−(ρ+δ)(τh∗∧τ j∗)u(zτh∗∧τ j∗ ; w) +

ˆ τh∗∧τ j∗

0
e−(ρ+δ)t(δu(zt) + ew)dt|z0 = z

]
= h(z; w).

and h(z; w) = H(x, τh∗(x), τ j∗(x), τδ).

Quasi-variational inequalities as necessary conditions. Now, we prove that if τh∗(x) and τ j∗(x) is a Non-trivial Nash

equilibrium, then h(z; w), j(z; w) satisfy (B.3) to (B.10). It is easy to show that in a Nash equilibrium, the stopping time is

Markovian—if any agent chooses to stop, then the game finishes. By definition, we have that

h(z; w) = max
τh

E

[ˆ τh∧τ j∗∧τδ

0
e−ρt+w dt + e−ρ(τh∧τ j∗∧τδ)u(zτh∧τ j∗∧τδ ; w)dt|z0 = z

]
. (B.11)

• Condition (B.3): We show it by contradiction. Assume that h(z; w) < u(z). Then τh(x) = 0, implies

u(z) > h(z; w) ≥ H(w, z, 0, τ j∗(x), τδ) = E0

[ˆ 0

0
e−ρtew dt + e−ρτm

u(z0)|z0 = z

]
= u(z),

so we have a contradiction.

• Condition (B.6): If z ∈ (C j(w))c, then τ j∗(x) = 0 and Pr[min{τh∗(x), τ j∗(x), τδ(x)} ≤ τ j∗(x)] = 1, and h(z; w) = u(z).

• Condition (B.7): Observe that this condition is the best response of the worker, given that the firm continues. See ? and

Brekke and Øksendal (1990) for a discussion of the necessity of the smooth pasting condition.

• Condition (B.9): To show this, we need to characterize the continuation set in the Nash equilibrium that survives

the iterated elimination of weakly dominated strategies. First, from the problem (B.11), if Pr(τ j∗(x) > 0) = 1, then

Pr(τh∗(x) > 0) = 1 if and only if

int {z ∈ R : h(z; w) > u(z)} .
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Second, we show that staying in the match weakly dominates leaving it if

0 < e−w +Ahu(z), (B.12)

for all z. Take any stopping time τ such that Pr(τ > 0|z0 = z) = 1. Then, applying Dynkin’s Lemma (and using similar

arguments as in Step 1), we obtain

E
[
e−ρτu(zτ)|z0 = z

]
= u(z) + E

[ˆ τ

0
Au(zt)dt|z0 = z

]
.

Using the inequality in (B.12),

u(z) = E
[
e−ρτu(zτ)|z0 = z

]
−E

[ˆ τ

0
Au(zt)dt|z0 = z

]
< E

[
e−ρτu(zτ)|z0 = z

]
+ E

[ˆ τ

0
e−ρt+w dt|z0 = z

]
.

Thus, staying in the match strictly dominates dissolving the match.

Proposition B.2. Define

w∗(z) = arg max
w

θ(x)1−α(h(z; w)− u(z)).

and τu∗ = inf{t ≥ 0 : ∆N f (w∗(zt),zt)
t = 1} where N f (w∗(zt),zt)

t is a Poisson counter with arrival rate f (w∗(zt), zt). The function u(z)

satisfies u(z) ∈ C2(R) and (B.1) if and only if

u(z) = max
{wt}τu

t=0

E

[ˆ τu

0
e−ρtB(zt)dt + e−ρτu

h(zτu ; w)

]
.

Proof. The proof is the standard optimality conditions in the HJB (see ?).

Lemma 1. Assume u(z), h(z; w), j(z; w), θ(z; w) satisfy (B.2)—(B.8) given the continuation sets (B.9). Then
{

τh∗, τ j∗, {w∗t }τu

t=0

}
constructed with

τh∗(x) = inf
{

t ≥ 0 : zt /∈ Ch(w)
}

τ j∗(x) = inf
{

t ≥ 0 : zt /∈ C j(w)
}

w∗(z) = arg max
w

θ(x)1−α(h(z; w)− u(z)).

is a block recursive equilibrium with

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ),

j(z; w) = J(x, τh∗(x), τ j∗(x), τδ),

u(z) = U(z).

If {H(w, z,~τm), J(w, z,~τm), U(z)}, market tightness θ(w, z), and policy functions
{

τh∗(w, z), τ j∗(w, z), w∗(zt)
}

is a block recursive

equilibrium with

h(z; w) = H(x, τh∗(x), τ j∗(x), τδ),
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j(z; w) = J(x, τh∗(x), τ j∗(x), τδ),

u(z) = U(z).

then u(z), h(z; w), j(z; w), θ(z; w) satisfy (B.2)—(B.8) given the continuation sets (B.9).

Proof. The proof is a combination of Results B.1 and B.2.

B.2 Proof of Lemma 2

For the next proof, it will be useful to define the normalized equilibrium conditions

ρ̂Û = B̃ + max
ŵ∗

θ̂(ŵ∗)1−αŴ(ŵ∗), (B.13)

0 =
[
K̃− θ̂(ŵ)−α Ĵ(ŵ)

]+
θ̂(ŵ), (B.14)

Ŵ(ŵ) ≥ 0, (B.15)

Ĵ(ŵ) ≥ 0, (B.16)

i f ŵ ∈ (Ĉh)c ⇒ Ĵ(ŵ) = 0, (B.17)

i f ŵ ∈ (Ĉ j)c ⇒ Ŵ(ŵ) = 0, (B.18)

0 = max{−Ŵ(ŵ), ÂŴ(ŵ) + eŵ − ρ̂Û}, ∀ŵ ∈ Ĉ j, Ŵ ∈ C1(Ĉ j) ∩C(R) (B.19)

0 = max{− Ĵ(ŵ), Â Ĵ(ŵ) + 1− eŵ}, ∀ŵ ∈ Ĉh, Ĵ ∈ C1(Ĉh) ∩C(R) (B.20)

Ĉh := int
{

ŵ ∈ R : Ŵ(ŵ) > 0 or (eŵ − ρ̂Û) > 0
}

, (B.21)

Ĉ j := int
{

ŵ ∈ R : Ĵ(ŵ) > 0 or
(

1− eŵ
)
> 0

}
, (B.22)

Â( f ) := −(ρ̂ + δ) f − γ̂
∂ f (ŵ)

∂ŵ
+

σ2

2
∂2 f (ŵ)

∂ŵ2 ,

where ŵ = w− z, ρ̂ = ρ− γ− σ2/2 and γ̂ = γ + σ2.

Lemma 2. Assume that (h(z; w), j(z; w), u(z), θ(x), w∗(z)) satisfy conditions (B.1) to (B.10), then

(
Û, Ĵ(w− z), Ŵ(w− z), θ̂(w− z), ŵ∗

)
=

(
u(z)

ez ,
j(z; w)

ez ,
h(z; w)− u(z)

ez , θ(w, z), w∗(z)− z
)

.

satisfy (B.13) to (B.22). Moreover, if
(
Û, Ĵ(w− z), Ŵ(w− z), θ̂(w− z)

)
satisfy (B.13) to (B.22), then

(u(z), j(z; w), h(z; w), θ(w, z), w∗(z)) =
(
Ûez, Ĵ(w− z)ez, (Ŵ(w− z) + Û)ez, θ̂(w− z), ŵ∗ + z

)
satisfy (B.1) to (B.10).

Proof. The general idea for the proof is to use a guess-and-verify strategy for each equilibrium condition.

Condition (B.1) holds if and only if (B.13) is satisfied: Using Û = u(z)
ez , we have that

Ûez = u′(z) and Ûez = u′′(z).
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Using this result and the fact that θ(w, z) = θ̂(w− z), and Ŵ(w− z) = h(z;w)−u(z)
ez ,

ρu(z) = B̃ez + γu′(z) +
σ2

2
u′′(z) + max

w(z)
θ(x)1−α[h(z; w)− u(z)] ⇐⇒

ρÛez = B̃ez + γÛez +
σ2

2
Ûez + max

w(z)
θ̂ (w− z)1−α [Ŵ(w− z)ez] ⇐⇒(

ρ− γ− σ2

2

)
Ûez = B̃ez + ez max

ŵ
θ̂ (ŵ)1−α Ŵ (ŵ) ⇐⇒ ρ̂Û = B̃ + max

ŵ
θ̂ (ŵ)1−α Ŵ (ŵ) .

Condition (B.2) holds if and only if (B.14) is satisfied: Using that Ĵ(w− z) = j(z;w)
ez , θ(w, z) = θ̂(w− z), and the assumption

K(z) = K̃ez, we have that

[
K̃ez − q(θ(x))j(z; w)

]+
θ(x) = 0 ⇐⇒

[
K̃ez − q(θ(x)) Ĵ(w− z)ez]+ θ(x) = 0

⇐⇒
[
K̃− q(θ̂(ŵ)) Ĵ(ŵ)

]
θ̂(ŵ) = 0.

Since q(θ(x)) = q(θ̂(ŵ)), we have the result.

Condition (B.7) holds if and only if (B.19) is satisfied: Assume h(z; w) satisfies (B.7). Then, for all z ∈ C j(w)

0 = max{u(z)− h(z; w),−ρh(z; w) + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δ(u(z)− h(z; w)) + ew}

Using that Û = u(z)
ez and Ŵ(w− z) = h(z;w)−u(z)

ez , we have that h(z; w) = Ŵ(w− z)ez + Ûez, ∂h(z;w)
∂z = Ŵ(w− z)ez − Ŵ ′(w−

z)ez + Ûez, and ∂2h(z;w)
∂z2 = Ŵ(w− z)ez − 2Ŵ ′(w− z)ez + Ŵ ′′(w− z)ez + Ûez. Thus, since ez > 0

0 = max
{

u(z)− h(z; w),−ρh(z; w) + γ
∂h(z; w)

∂z
+

σ2

2
∂2h(z; w)

∂z2 + δ(u(z)− h(z; w)) + ew
}

= max{−Ŵ(w− z)ez,−(Ŵ(w− z)ez + Ûez) + γ(Ŵ(w− z)ez − Ŵ ′(w− z)ez + Ûez) . . .

+
σ2

2
(Ŵ(w− z)ez − 2Ŵ ′(w− z)ez + Ŵ ′′(w− z)ez + Ûez)− δŴ(w− z)ez + ew}

= max{−Ŵ(w− z),−(ρ− γ− σ2/2 + δ)Ŵ(w− z)− (γ + σ2)Ŵ ′(w− z) +
σ2

2
Ŵ ′′(w− z)−

(
ρ− γ− σ2/2

)
Û + ew−z}

= max
{
−Ŵ(ŵ),−(ρ̂ + δ)Ŵ(ŵ)− γ̂Ŵ ′(ŵ) +

σ2

2
Ŵ ′′(ŵ)− ρ̂Û + eŵ

}
.

The equivalence between (B.8) and (B.20) can be established following similar steps.

Condition (B.9) holds if and only if (B.21) is satisfied: Assume z ∈ Ch(w). Then,

h(z; w) > u(z) or − ρu(z) + γu′(z) +
σ2

2
u′′(z) + ew > 0

Using that Û = u(z)
ez and Ŵ(w− z) = h(z;w)−u(z)

ez , with ez > 0

Ŵ(w− z) > 0 or − ρÛez + γÛez +
σ2

2
Ûez + ew > 0 ⇐⇒

Ŵ(w− z) > 0 or ew−z − (ρ− γ− σ2/2)Û > 0 ⇐⇒

Ŵ(ŵ) > 0 or eŵ − ρ̂Û > 0

Thus, z ∈ Ch(w) if and only if w− z ∈ Ĉh. The equivalence between (B.10) and (B.22) can be established following similar steps.
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Remaining conditions: The equivalence between equations (B.3), (B.4), (B.5), (B.6) and equations (B.15), (B.16), (B.17), and

(B.18) is trivially established.

B.3 Proof of Proposition 1

Proposition 1. Let Ŵ(ŵ), Ĵ(ŵ), θ̂(ŵ) be bounded functions with compact support. Then, there exists a unique solution to

ρ̂Û = B̃ + max
ŵ∗

θ̂(ŵ∗)1−αŴ(ŵ∗),

0 =
[
K̃− θ̂(ŵ)−α Ĵ(ŵ)

]+
θ̂(ŵ),

Ŵ(ŵ) ≥ 0, (B.23)

Ĵ(ŵ) ≥ 0, (B.24)

i f ŵ ∈ (Ĉh)c ⇒ Ĵ(ŵ) = 0, (B.25)

i f ŵ ∈ (Ĉ j)c ⇒ Ŵ(ŵ) = 0, (B.26)

0 = max{−ρŴ(ŵ), ÂŴ(ŵ) + eŵ − ρ̂Û}, ∀ŵ ∈ Ĉ j, Ŵ ∈ C1(Ĉ j) ∩C(R) (B.27)

0 = max{−ρ Ĵ(ŵ), Â Ĵ(ŵ) + 1− eŵ}, ∀ŵ ∈ Ĉh, Ĵ ∈ C1(Ĉh) ∩C(R) (B.28)

Ĉh := int
{

ŵ ∈ R : Ŵ(ŵ) > 0 or (eŵ − ρ̂Û) > 0
}

, (B.29)

Ĉ j := int
{

ŵ ∈ R : Ĵ(ŵ) > 0 or
(

1− eŵ
)
> 0

}
, (B.30)

Â( f ) := −(ρ̂ + δ) f − γ̂
∂ f (ŵ)

∂ŵ
+

σ2

2
∂2 f (ŵ)

∂ŵ2 ,

The proof uses results from the mathematics literature that, in general, a well-trained economist has not used or seen before.

For this reason, before going over the proof, we provide some intuition about the steps we show below. In a nutshell, there

are two steps in the proof. First, we need to show that, for a given value of unemployment Û, there is a unique non-trivial

Nash equilibrium of the game played by the matched worker-firm pair. To understand the intuition behind this step, define

ŵ+(ŵ−; ρÛ) as the best response function of the firm in terms of its layoff threshold, and ŵ−(ŵ+; ρÛ) as the best response

function of the worker in terms of her quit threshold. It is easy to show that optimal policies are given by wage-to-productivity

thresholds. ŵ+(ŵ−; ρÛ) is the solution to the differential equation

(ρ̂ + δ) Ĵ(ŵ) = 1− eŵ − γ̂ Ĵ′(ŵ) +
σ2

2
Ĵ′′(ŵ),

with border conditions Ĵ(ŵ+) = Ĵ(ŵ−) = Ĵ′(ŵ+) = 0. In the same way, ŵ−(ŵ+; ρÛ) is the solution to the differential equation

(ρ̂ + δ)Ŵ(ŵ) = eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) +
σ2

2
Ŵ ′′(ŵ),

with border conditions Ŵ(ŵ+) = Ŵ(ŵ−) = Ŵ ′(ŵ−) = 0. Let Ŵ(ŵ; ρÛ) and Ĵ(ŵ; ρÛ) be the values associated with the

non-trivial equilibrium policies.

Second, we need to find a solution to the unemployment value. The equilibrium value of unemployment satisfies

P(ρ̂Û) = B̃ + max
ŵ

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û).

Figure B1-Panel A shows the composition of Q(ŵ) := ŵ+(ŵ−(ŵ; ρ̂Û)) and Figure B1-Panel B shows P(ρ̂Û). As we can see in
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the figure, the composition of the best responses shows two properties: (i) monotonicity (i.e., Q′(ŵ) > 0) and (ii) concavity (i.e.,

Q′′(ŵ) < 0). Intuitively, the monotonicity property arises from the fact that if one agent prefers to wait more, then the other

agent also prefers to wait more. Concavity arises from the fact that there is a decreasing value of waiting. As the figure clearly

shows, a unique non-trivial Nash Equilibrium exists under these two properties. Equipped with the values of the non-trivial

Nash Equilibrium as a function of Û, we can then characterize the decision problem of the unemployed worker. The mapping

P(ρ̂Û) satisfies three properties: (i) P(B̃) > B̃ with P(1) = B̃, (ii) it is continuous and (iii) it is decreasing. Intuitively, if the flow

value of unemployment is equal to B̃, then the surplus of the match is positive, and the unemployed worker obtains a positive

continuation value from searching for a job. If, instead, the flow value of unemployment equals the value of (normalized) output,

then the surplus is zero, and the unemployed worker does not benefit from finding a job. Also, the larger the unemployment

value, the lower the value of the match, and, therefore, the value of searching for a job. As the figure clearly shows, a unique

equilibrium exists under these three properties of P(ρ̂Û).

FIGURE B1. INTUITION

A- Best response function B- Unemployment flow value

Notes: The figure illustrates the properties of the policy and value functions. Panel A shows the composition of Q(ŵ) :=
ŵ+(ŵ−(ŵ; ρ̂Û)) and the 45 degree line. The non-trivial Nash Equilibrium is given by the intersection between these two lines.
Panel B shows the composition of the individual best response and the fixed point in the equilibrium P(ρ̂Û).

Proof. We divide the proof into four steps.

Step 1 shows the existence of a non-trivial Nash equilibrium for a given Û. In this step, we show the existence of a solution

to conditions (B.23) to (B.30). To simplify the exposure, we divide step 1 into three propositions. Proposition B.3 shows the

equivalence between the equilibrium conditions and the quasi-variational inequalities. Proposition B.4 shows the existence

and uniqueness of the agents’ best responses. Proposition B.5 shows the existence of equilibrium by invoking Proposition A.3
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(Tartar’s fixed point theorem). Observe that we restrict the functions Ŵ(ŵ) and Ĵ(ŵ) to have bounded support. This property is

without loss of generality since it is a result of Proposition 2—i.e., the match’s continuation region is bounded.

Step 2 shows the uniqueness of the solution to conditions (B.23) to (B.30). We divide this proof into two propositions.

Proposition B.6 shows that the operator defined in step 1 is strong order concave. Using concavity and techniques in the spirit of

Marinacci and Montrucchio (2019) applied to our own problem, we show uniqueness in proposition B.7.

Step 3 shows that value functions are continuous and decreasing. We divide this step into two propositions. First, we show

in proposition B.8 that the value associated with the worker’s “best response" is continuous and decreasing in Û. Proposition B.9

shows these properties for the non-trivial Nash equilibrium. Finally, step 4 proves the uniqueness of the equilibrium by showing

the existence of the unique fixed point in the unemployed worker’s value Û.

Step 1. We start by defining a continuous bilinear form in a more general space of functions. Let V = H1
0(R)—where H1

0(R)

is a Sobolev space of order 1—be a Hilbert space and define the bilinear continuous form a : V ×V → R

a(v1, v2) :=
σ2

2

ˆ
R

dv1
dŵ

dv2
dŵ

dŵ + γ̂

ˆ
R

dv1
dŵ

v2(ŵ)dŵ + (ρ̂ + δ)

ˆ
R

v1(ŵ)v2(ŵ)dŵ

Proposition B.3. Define Kh( Ĵ) and K j(Ŵ) as

Kh( Ĵ) :=
{

Ŵ ∈ V : Ŵ(ŵ) ≥ 0 & i f Ĵ(ŵ) = 0 and ŵ ≥ 0⇒ Ŵ(ŵ) = 0
}

,

K j(Ŵ) :=
{

Ĵ ∈ V : Ĵ(ŵ) ≥ 0 & i f Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û)⇒ Ĵ(ŵ) = 0
}

,

Then (i) Ŵ(ŵ) ∈ C1(Ĉ j) ∩C(R) and Ĵ(ŵ) ∈ C1(Ĉh) ∩C(R) bounded with compact support, where Ĉh and Ĉ j are constructed with Ŵ

and Ĵ following (B.29) and (B.30); (ii) Ŵ(ŵ) and Ĵ(ŵ) solve

Ŵ ∈ Kh( Ĵ), Ĵ ∈ K j(Ŵ)

a( Ĵ, v− Ĵ) ≥
ˆ

R

(
1− eŵ

) (
v− Ĵ

)
dŵ, ∀ v ∈ K j(Ŵ)

a(Ŵ, v− Ŵ) ≥
ˆ

R

(eŵ − ρ̂Û)
(
v− Ŵ

)
dŵ, ∀ v ∈ Kh( Ĵ).

if and only if Ŵ(ŵ) and Ĵ(ŵ) solve (B.23), (B.24), (B.25), (B.26), (B.27), and (B.28).

Proof of Step 1 - Proposition B.3. We verify conditions (B.23), (B.24), (B.25), (B.26), (B.27), and (B.28) focusing on the firm (the

worker’s conditions are verified following similar steps). It is easy to show the converse.

Conditions (B.23) and (B.24) are satisfied. Since Ĵ ∈ K j(Ŵ), we have that Ĵ(ŵ) ≥ 0.

Conditions (B.25) and (B.26) are satisfied. Define Ĉh with Ŵ. Then, (Ĉh)c is equal to

(Ĉh)c = cl{ŵ ∈ R : Ŵ(ŵ) ≤ 0 and (eŵ − ρ̂Û) ≤ 0}.

Since Ŵ(ŵ) ≥ 0, we have that

(Ĉh)c = cl{ŵ ∈ R : Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û)}.

Since Ĵ ∈ K j(Ŵ), if ŵ ∈ (Ĉh)c, then Ĵ(ŵ) = 0.

Conditions (B.27) and (B.28) are satisfied. Take any v ∈ K j(Ŵ). Then, if ŵ ∈ (Ĉh)c, we have that Ĵ(ŵ) = 0. Therefore, we
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have that for every v ∈ K j(Ŵ)

a( Ĵ, v− Ĵ) ≥
ˆ

R

(1− eŵ)
(
v− Ĵ

)
⇐⇒

σ2

2

ˆ
(Ĉh)c

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ + γ̂

ˆ
(Ĉh)c

d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ + (ρ̂ + δ)

ˆ
(Ĉh)c

Ĵ(ŵ)(v(ŵ)− Ĵ(ŵ)))dŵ+

σ2

2

ˆ
Ĉh

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ + γ̂

ˆ
Ĉh

d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ + (ρ̂ + δ)

ˆ
Ĉh

Ĵ(ŵ)(v(ŵ)− Ĵ(ŵ))dŵ ≥
ˆ
Ĉh
(1− eŵ)

(
v(ŵ)− Ĵ(ŵ)

)
dŵ +

ˆ
(Ĉh)c

(1− eŵ)
(
v(ŵ)− Ĵ(ŵ)

)
dŵ ⇐⇒

σ2

2

ˆ
Ĉh

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ + γ̂

ˆ
Ĉh

d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ + (ρ̂ + δ)

ˆ
Ĉh

Ĵ(ŵ)(v(ŵ)− Ĵ(ŵ))dŵ ≥
ˆ
Ĉh
(1− eŵ)

(
v(ŵ)− Ĵ(ŵ)

)
dŵ.

Using integration by parts, we obtain

σ2

2

ˆ
Ĉh

d Ĵ(ŵ)

dŵ
d(v(ŵ)− Ĵ(ŵ))

dŵ
dŵ

=(1) σ2

2
d Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))

∣∣∣∣
ŵ∈∂∈Ĉh︸ ︷︷ ︸

=0

−σ2

2

ˆ
Ĉh

d2 Ĵ(ŵ)

dŵ
(v(ŵ)− Ĵ(ŵ))dŵ.

In (1), there could be two cases. The first case is a finite limit of integration. In this case, we use continuity and the fact that if

ŵ→ ∂Ĉh (Ĉh is open) , then ŵ→ (Ĉh)c and, therefore, Ĵ(ŵ) = 0. The second case is an infinite limit of integration. In this case,

the assumption of bounded support implies Ĵ(ŵ) = 0 for sufficiently large or small ŵ, thus Ĵ′(ŵ) = 0.

In conclusion, ˆ
Ĉh

(
Â Ĵ(ŵ) + (1− eŵ)

)
(v(ŵ)− Ĵ(ŵ))dŵ ≤ 0

Before continue, we remark that the previous equality holds for all v(ŵ) ∈ K j(Ŵ). Let O be an open ball in Ĉh that cover an

arbitrary point ŵ ∈ Ĉh. Then, we can find a family of smooth functions index by n with oŵ(n) ∈ [0, 1], s.t. oŵ(n) = 0 outside Ĉh,

oŵ(n)→ 1 in O, and oŵ(n)→ 0 outside O. Since Ĵ(ŵ) + θŵ(n) ≥ 0, Ĵ(ŵ) + oŵ(n) ∈ K j(Ŵ) and

ˆ
O

(
Â Ĵ(ŵ) + (1− eŵ)

)
oŵ(n)dŵ +

ˆ
Ĉh/O

(
Â Ĵ(ŵ) + (1− eŵ)

)
oŵ(n)dŵ ≤ 0.

Taking the limit n→ ∞, we have that ˆ
O

(
Â Ĵ(ŵ) + (1− eŵ)

)
dŵ ≤ 0.

Since O is arbitrary, Â Ĵ(ŵ) + 1− eŵ ≤ 0 a.e. in Ĉh. Since Ĵ(ŵ) ∈ C1(Ĉh) , then Â Ĵ(ŵ) + 1− eŵ ≤ 0 for all ŵ whenever the

second derivative is defined. To obtain the other inequality, take Ĵ(ŵ)(1− oŵ(n)) + 0oŵ(n) ∈ K j(Ŵ) and we have that

−
ˆ
O

(
Â Ĵ(ŵ) + 1− eŵ)

)
Ĵ(ŵ)oŵ(n)dŵ−

ˆ
Ĉh/O

(
Â Ĵ(ŵ) + (1− eŵ)

)
Ĵ(ŵ)oŵ(n)dŵ ≤ 0

Taking the limit n → ∞, we have that
´
O
(
Â Ĵ(ŵ) + (1− eŵ)

)
(− Ĵ(ŵ))dŵ ≤ 0 a.e.. Since Ĵ(ŵ) ∈ C1(Ĉh), we have that for all

ŵ ∈ Ĉh (
Â Ĵ(ŵ) + (1− eŵ)

)
(− Ĵ(ŵ)) ≤ 0.

Since Ĵ(ŵ) ≥ 0 and
(
Â Ĵ(ŵ) + (1− eŵ)

)
≤ 0, we have that

(
Â Ĵ(ŵ) + (1− eŵ)

)
(− Ĵ(ŵ)) ≥ 0. Thus,

(
Â Ĵ(ŵ) + 1− eŵ) (− Ĵ(ŵ)) =
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0 or written more compactly

0 = max{− Ĵ(ŵ), Â Ĵ(ŵ) + 1− eŵ}, ∀ŵ ∈ Ĉh,

with Ĵ(ŵ) ∈ C1(Ĉh) ∩C(R).

Proposition B.4. Define the value functions that are obtained from the best responses as BRh : H1(R)→ H1(R) and BRj : H1(R)→
H1(R) such that

BRh( Ĵ) = {Ŵ ∈ H1(R) : a(Ŵ, v− Ŵ) ≥ (eŵ − ρ̂Û, v− Ŵ), ∀ v ∈ Kh( Ĵ), Ŵ ∈ Kh( Ĵ)},

BRj(Ŵ) = { Ĵ ∈ H1(R) : a( Ĵ, v− Ĵ) ≥ (1− eŵ, v− Ĵ), ∀ v ∈ K j(Ŵ), Ĵ ∈ K j(Ŵ)}.

Then, BRh( Ĵ) and BRj(Ŵ) exist and unique.

Proof of Step 1 - Proposition B.4. Here, we show that the value functions that are obtained from the best responses are well-defined.

For this, we need to verify the conditions in Proposition A.4. Basically, we need to show that K j(Ŵ) is closed and convex, and

that a(·, ·) is coercive.

Kj(Ŵ) is closed and convex. First, we show that K j(Ŵ) is closed. Take a sequence Ĵn ∈ K j(Ŵ) s.t. Ĵn converges to some Ĵ∗.

Since Ĵn ∈ K j(Ŵ),

Ĵn ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵn = 0

for all n. Taking the limit,

Ĵ∗ ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵ∗ = 0

where we use the fixed domain in the second limit. Thus, K j(Ŵ) is closed.

To show that K j(Ŵ) is convex, take Ĵ1, Ĵ2 ∈ K j(Ŵ), then

Ĵ1 ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵ1 = 0,

Ĵ2 ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≤ log(ρ̂Û), then Ĵ2 = 0.

Taking the convex combination with λ ∈ [0, 1]

λ Ĵ1 + (1− λ) Ĵ2 ≥ 0, if Ŵ(ŵ) = 0 and ŵ ≥ 0, then λ Ĵ1 + (1− λ) Ĵ2 = 0.

Thus, K j(Ŵ) is convex.

a(u, v) is coercive. Operating over the bilinear operator

a(v, v) =
σ2

2

ˆ
R

dv(ŵ)

dŵ
dv(ŵ)

dŵ
dŵ + γ̂

ˆ
R

dv(ŵ)

dŵ
v(ŵ)dŵ + (ρ̂ + δ)

ˆ
R

v(ŵ)2dŵ

=(1) σ2

2

ˆ
R

(
dv(ŵ)

dŵ

)2
dŵ︸ ︷︷ ︸

≥0

+γ̂ v(ŵ)2
∣∣∣∞
−∞︸ ︷︷ ︸

=0

+(ρ̂ + δ)

ˆ
R

v(ŵ)2dŵ

≥(2) (ρ̂ + δ)

ˆ
R

v(ŵ)2dŵ

= (ρ̂ + δ)||v||2

Step (1) integrates
´

R
dv(ŵ)

dŵ v(ŵ)dŵ = v(ŵ)2
∣∣∞
−∞ and uses compact support. Step (2) uses the non-negativity of the squared
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derivative term.

With the properties verified, we can apply Proposition A.4. Thus, the best response exists, and it is unique.

Proposition B.5. Define Q(Ŵ) = (BRh ◦ BRj)(Ŵ), then there exists a fixed point Q(Ŵ∗) = Ŵ∗ and Ĵ∗ = BRj(Ŵ∗). The set of fixed

points is bounded above and below by

0 ≤ Ŵ ≤ Ŵ∗ ≤ Ŵ,

0 ≤ Ĵ ≤ Ĵ∗ ≤ Ĵ,

where

a(Ŵ, v− Ŵ) ≥ (eŵ − ρ̂Û, Ŵ), ∀ v ∈ Ksmall , Ŵ ∈ Ksmall ,

a( Ĵ, v− Ĵ) ≥ (1− eŵ, Ĵ), ∀ v ∈ Ksmall , Ĵ ∈ Ksmall ,

a(Ŵ, v− Ŵ) ≥ (eŵ − ρ̂Û, Ŵ), ∀ v ∈ Kbig, Ŵ ∈ Kbig,

a( Ĵ, v− Ĵ) ≥ (1− eŵ, Ĵ), ∀ v ∈ Kbig, Ĵ ∈ Kbig,

with

Ksmall :=
{

v ∈ V : v(ŵ) ≥ 0 & i f ŵ /∈ (− log(ρ̂Û), 0)⇒ v(ŵ) = 0
}

,

Kbig := {v ∈ V : v(ŵ) ≥ 0} ,

with a maximum and minimum element.

Proof of Step 1 - Proposition B.5. The first step consists in showing that the function Q(W) is monotonically increasing—i.e., if

Ŵ1 ≥ Ŵ2, then Q(Ŵ1) ≥ Q(Ŵ2). To show this result, first, we need to prove that K j(Ŵ) is increasing—i.e., if Ŵ1 ≥ Ŵ2, then

K j(Ŵ2) ⊂ K j(Ŵ1). Take Ĵ2 ∈ K j(Ŵ2), then

Ĵ2 ≥ 0, & i f Ŵ2(ŵ) = 0 and ŵ ≤ log(ρ̂Û)⇒ Ĵ2(ŵ) = 0.

Since Ŵ2(ŵ) ≥ 0, we have that

Ĵ2 ≥ 0, & Ĵ2(ŵ) = 0 ∀ŵ ∈ {ŵ : Ŵ2(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}.

Now, we show that {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)} ⊂ {ŵ : Ŵ2(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}. Take ŵ ∈ {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤
log(ρ̂Û)}. Then Ŵ1(ŵ) ≤ 0 and since Ŵ1(ŵ) ≥ Ŵ2(ŵ), we have that Ŵ2(ŵ) ≤ 0. Since {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)} ⊂ {ŵ :

Ŵ2(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}, the previous condition holds for the larger set, so it will also hold for the smaller set

Ĵ2 ≥ 0, & Ĵ2(ŵ) = 0, ∀ŵ ∈ {ŵ : Ŵ1(ŵ) ≤ 0 & ŵ ≤ log(ρ̂Û)}.

Thus, Ĵ2 ∈ K j(W1) and K j(Ŵ2) ⊂ K j(W1).

Now, let Ŵ1 ≥ Ŵ2. We need to show that Ĵ1 = BRj(Ŵ1) ≥ BRj(Ŵ2) = Ĵ2. Since K j(Ŵ) is increasing—i.e., K j(Ŵ2) ⊂
K j(Ŵ1)— Ĵ1, Ĵ2 ∈ K j(Ŵ1) and the envelope max{ Ĵ1, Ĵ2} ∈ K j(Ŵ1). Now, we show that min{ Ĵ1, Ĵ2} ∈ K j(Ŵ2). Since Ĵ1, Ĵ2 ≥ 0,
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we have that min{ Ĵ1, Ĵ2} ≥ 0. Moreover, take a ŵ s.t. Ŵ2(ŵ) ≤ 0 and ŵ ≤ log(ρ̂Û), then 0 = Ĵ2 = min{ Ĵ2, Ĵ1}. Thus,

min{ Ĵ1, Ĵ2} ∈ K j(Ŵ2). In conclusion, we can use max{ Ĵ1, Ĵ2} as a test function for K j(Ŵ1) and min{ Ĵ1, Ĵ2} as a test function for

K j(Ŵ2):

min{ Ĵ1, Ĵ2} = Ĵ2 −max{ Ĵ2 − Ĵ1, 0} for test function for K j(Ŵ2)

max{ Ĵ1, Ĵ2} = Ĵ1 + max{ Ĵ2 − Ĵ1, 0} for test function for K j(Ŵ1)

Using the quasi-variational inequality

a( Ĵ2,−max{ Ĵ2 − Ĵ1, 0}) ≥ (1− eŵ,−max{ Ĵ2 − Ĵ1, 0})

a( Ĵ1, max{ Ĵ2 − Ĵ1, 0}) ≥ (1− eŵ, max{ Ĵ2 − Ĵ1, 0}).

Thus,

−a( Ĵ2, max{ Ĵ2 − Ĵ1, 0}) ≥ −(1− eŵ, max{ Ĵ2 − Ĵ1, 0})

a( Ĵ1, max{ Ĵ2 − Ĵ1, 0}) ≥ (1− eŵ, max{ Ĵ2 − Ĵ1, 0}).

Summing these two equalities, we obtain

a( Ĵ1, max{ Ĵ2 − Ĵ1, 0})− a( Ĵ2, max{ Ĵ2 − Ĵ1, 0}) ≥ 0

or equivalently,

a( Ĵ2, max{ Ĵ2 − Ĵ1, 0})− a( Ĵ1, max{ Ĵ2 − Ĵ1, 0}) ≤ 0.

Next, we show that the previous inequality implies a(max{ Ĵ2 − Ĵ1, 0}, max{ Ĵ2 − Ĵ1, 0}) ≤ 0. Define the set X = {x : Ĵ2 > Ĵ1}.
Then,

a( Ĵ2, max{ Ĵ2 − Ĵ1, 0})− a( Ĵ1, max{ Ĵ2 − Ĵ1, 0})

=
σ2

2

(ˆ
X

d Ĵ2(ŵ)

dŵ
d( Ĵ2 − Ĵ1)

dŵ
dŵ−

ˆ
X

d Ĵ1(ŵ)

dŵ
d( Ĵ2 − Ĵ1)

dŵ
dŵ +

ˆ
R/X

0 dx
)

· · ·+ γ̂

(ˆ
X

d Ĵ2(ŵ)

dŵ
( Ĵ2 − Ĵ1)dŵ−

ˆ
X

d Ĵ1(ŵ)

dŵ
( Ĵ2 − Ĵ1)dŵ +

ˆ
R/X

0 dx
)

· · ·+ (ρ̂ + δ)

(ˆ
X

Ĵ2( Ĵ2 − Ĵ1)dŵ−
ˆ

X

Ĵ1( Ĵ2 − Ĵ1)dŵ +

ˆ
R/X

0 dŵ
)

=
σ2

2

ˆ
X

(
d( Ĵ2 − Ĵ1)

dŵ

)2

dŵ + γ̂

ˆ
X

d( Ĵ2(ŵ)− Ĵ1)

dŵ
( Ĵ2 − Ĵ1)dŵ + (ρ̂ + δ)

(ˆ
X

( Ĵ2 − Ĵ1)
2 dŵ

)
= a(max{ Ĵ2 − Ĵ1, 0}, max{ Ĵ2 − Ĵ1, 0}).

In conclusion, since a(·, ·) is a coercive bilinear form, 0 ≥ a(max{ Ĵ2 − Ĵ1, 0}, max{ Ĵ2 − Ĵ1, 0}) ≥ K||max{ Ĵ2 − Ĵ1, 0}||2. Thus,

Ĵ1 ≥ Ĵ2 a.e., and by continuity Ĵ1 ≥ Ĵ2 for all ŵ. Applying similar arguments to BRh( Ĵ), we have that if Ŵ1 ≥ Ŵ2, then

Q(Ŵ1) ≥ Q(Ŵ2), so by Proposition A.3, there exists a fixed point. Moreover, the set of fixed points has a maximum and a

minimum, i.e.,

{Ŵ ∈ H1
0(R) : Ŵ = Q(Ŵ)}
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has a Ŵmin and Ŵmax s.t. Ŵmin ≤ Ŵ∗ ≤ Ŵmax for all Ŵ∗ ∈ {Ŵ ∈ H1
0(R) : Ŵ = Q(Ŵ)}. To find the upper and lower bound,

observe that we can write the non-trivial Nash equilibrium policies as

Ĵ∗(w) = max
{τ j∈T :τ j≤τh∗}

E

[ˆ τ j

0
e−(ρ̂+δ)t(1− eŵt )dt|ŵ0 = ŵ

]
.

Since ∞ > τh∗ ≥ τ(log(ρ̂Û,0)),
15 we have that

0 ≤ Ĵ = max
{τ j∈T :τ j≤τ(log(ρ̂Û,0))}

E

[ˆ τ j

0
e−(ρ̂+δ)t(1− eŵt )dt|ŵ0 = ŵ

]

≤ max
{τ j∈T :τ j≤τh∗}

E

[ˆ τ j

0
e−(ρ̂+δ)t(1− eŵt )dt|ŵ0 = ŵ

]
= Ĵ∗(w)

≤ max
{τ j∈T }

E

[ˆ τ j

0
e−(ρ̂+δ)t(1− eŵt )dt|ŵ0 = ŵ

]
= Ĵ.

Step 2. This step proves the uniqueness of the fixed point. The first proposition shows that Q : H1
0(R)→ H1

0(R) is concave.

Since the Q operator is only defined for non-negative functions, we assume that the domain is restricted to non-negative

functions without loss of generality. Since the game’s continuation region is bounded, flow payoffs are bounded. Therefore, the

equilibrium value functions are also bounded. For these reasons, without loss of generality, we restrict the Q : A → A operator

in

A = {v ∈ H1
0(R) : v(ŵ) ∈ [0, v], ∀ŵ}

Observe that A order convex; i.e., if a, b ∈ A with a ≤ c ≤ b, then c ∈ A.

Define the operator α : A×A → A, where

α(Ŵ ′, Ŵ ′′) = α(ŵ)Ŵ ′(ŵ) + (1− α(ŵ))Ŵ ′′(ŵ),

with α(ŵ) ∈ [0, 1].

Proposition B.6. Q : A → A is strongly order concave; i.e.,

Q(α(Ŵ ′, Ŵ ′′)) ≥ α(Q(Ŵ ′), Q(Ŵ ′′))

for all Ŵ ′ ≤ Ŵ ′′.

Proof of Step 2 - Proposition B.6. Take Ŵ ′ ≤ Ŵ ′′. The proof has three arguments. First, we show that K j(α(Ŵ ′, Ŵ ′′)) = K j(Ŵ ′′).

Then, with this result in hand, we show that the BRj(α(Ŵ ′, Ŵ ′′)) ≥ α(BRj(Ŵ ′), BRj(Ŵ ′′)). Finally, we show that Q(α(Ŵ ′, Ŵ ′′)) ≥
α(Q(Ŵ ′), Q(Ŵ ′′)).

To see that K j(α(Ŵ ′, Ŵ ′′)) = K j(Ŵ ′′), observe that since α(Ŵ ′, Ŵ ′′) ≤ Ŵ ′′ and since K(Ŵ ′) is increasing, we have that

15τ(log(ρ̂Û,0)) := inf
{

t ≥ 0 : ŵt /∈ (log(ρ̂Û, 0))
}

.
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K j(αŴ ′ + (1− α)Ŵ ′′) ⊂ K j(Ŵ ′′). Now, we show that K j(Ŵ ′′) ⊂ K j(α(Ŵ ′, Ŵ ′′)). Take any Ĵ ∈ K j(Ŵ ′′). Then,

Ĵ ≥ 0, & i f Ŵ ′′(ŵ) = 0 and ŵ ≤ log(ρ̂Û)⇒ Ĵ(ŵ) = 0.

If Ŵ ′′(ŵ) = 0, then Ŵ ′′(ŵ) ≥ Ŵ ′(ŵ) = 0, which is then also true for any convex combination. Thus, α(Ŵ ′, Ŵ ′′) ≤ Ŵ ′′ = 0 and

Ĵ ≥ 0, & i f α(Ŵ ′, Ŵ ′′) = 0 and ŵ ≤ log(ρ̂Û)⇒ Ĵ(ŵ) = 0.

In conclusion, Ĵ ∈ K j(α(Ŵ ′, Ŵ ′′)) and K j(Ŵ ′′) ⊂ K j(α(Ŵ ′, Ŵ ′′)). Therefore, we have that K j(α(Ŵ ′, Ŵ ′′)) = K j(Ŵ ′′).

Since the constraint set—i.e., Ŵ and any test function v in K j(·)—is the same for α(Ŵ ′, Ŵ ′′) and Ŵ ′′, we have that

BRj(α(Ŵ ′, Ŵ ′′)) = BRj(Ŵ ′′),

= α(BRj(Ŵ ′′), BRj(Ŵ ′′)),

≥ α(BRj(Ŵ ′), BRj(Ŵ ′′)),

where we used the monotonicity of BRj(Ŵ) in the last inequality. A similar property holds for BRh( Ĵ). In conclusion, BRj(Ŵ)

and BRh( Ĵ) are increasing and strongly order concave. Using this result, for Ŵ ′ ≤ Ŵ ′′, we have

Q(α(Ŵ ′, Ŵ ′′)) = BRh(BRj(α(Ŵ ′, Ŵ ′′)))

≥(1) BRh(α(BRj(Ŵ ′), BRj(Ŵ ′′)))

≥(2) α(BRh(BRj(Ŵ ′)), BRh(BRj(Ŵ ′′)))

= α(Q(Ŵ ′), Q(Ŵ ′′)).

Step (1) uses the monotonicity of BRh( Ĵ) and the strongly order concavity of BRj(Ŵ). Step (2) uses the strongly order concavity

of BRh( Ĵ).

Proposition B.7. Q : A → A has a unique fixed point.

Proof of Step 2 - Proposition B.7. We have shown that Q(Ŵ) is monotone and order concave defined in an order convex set. Now,

we prove the result by contradiction. Let Ŵ be the minimum fixed point and let Ŵ∗ be another fixed point with Ŵ∗ > Ŵ. Then,

we can write Ŵ = α∗(0, Ŵ∗) for some α∗(ŵ) function, where zero is the lower bound in the domain. Importantly, it is easy to see

that α∗(ŵ) ∈ (0, 1) for all ŵ ∈ (log(ρ̂Û, 0)). Thus,

Ŵ =(1) Q(Ŵ)

=(2) Q(α∗(0, Ŵ∗))

≥(3) α∗(Q(0), Q(Ŵ∗))

=(4) α∗(Q(0), Ŵ∗)

>(5) α∗(0, Ŵ∗)

=(6) Ŵ

Step (1) uses the fact that Ŵ is a fixed point and step (2) uses the fact that Ŵ = α∗(0, Ŵ∗). Step (3) uses the strongly order

concavity of Q. Step (4) uses the fact that Ŵ∗ is a fixed point. Step (5) uses that Q(0) > 0 for all ŵ ∈ (log(ρ̂Û), 0). Since it cannot
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be that Ŵ > Ŵ, we have a contradiction.

Step 3. Let Ŵ∗(ŵ; ρ̂Û) and Ĵ∗(ŵ; ρ̂Û) be the value functions from the unique non-trivial Nash equilibrium. We now show

that they are continuous and decreasing in Û.

Proposition B.8. Fix Ĵ. Let Ŵ(ŵ; ρ̂Û) = BRh( Ĵ; ρ̂Û) be the solution of

a(Ŵ, v− Ŵ) ≥ (1− ρ̂Û, v− Ŵ), ∀v ∈ Kh( Ĵ), Ŵ ∈ Kh( Ĵ)

Then, Ŵ(ŵ; ρ̂Û) is continuous and decreasing in ρ̂Û.

Proof of Step 3 - Proposition B.8. First, we prove continuity. Take Û1 and Û2 and define Ŵ1 = BRh( Ĵ; ρ̂Û1) and Ŵ2 = BRh( Ĵ; ρ̂Û2).

Then,

a(Ŵ1, v− Ŵ1) ≥ (1− ρ̂Û1, v− Ŵ1), (B.31)

a(Ŵ2, v− Ŵ2) ≥ (1− ρ̂Û2, v− Ŵ2). (B.32)

Let Ŵ2 be the test function for (B.31) and let Ŵ1 be the test function for (B.32). Summing both equations

a(Ŵ1, Ŵ2 − Ŵ1) + a(Ŵ2, Ŵ1 − Ŵ2) ≥ (1− ρ̂Û1, Ŵ2 − Ŵ1) + (1− ρ̂Û2, Ŵ1 − Ŵ2)

or equivalently

a(Ŵ1 − Ŵ2, Ŵ2 − Ŵ1) ≥ (ρ̂(Û2 − Û1), Ŵ2 − Ŵ1).

Multiplying by -1 on both sides and under the observation that (ρ̂(Û2 − Û1), Ŵ2 − Ŵ1) = ρ̂(Û2 − Û1)(1, Ŵ2 − Ŵ1), we obtain

a(Ŵ2 − Ŵ1, Ŵ2 − Ŵ1) ≤ ρ̂(Û1 − Û2)(1, Ŵ2 − Ŵ1).

Given that the operator is coercive and that

(1, Ŵ2 − Ŵ1) =

ˆ
R

(
Ŵ(ŵ; ρ̂Û2)− Ŵ(ŵ; ρ̂Û1)

)
dŵ ≤

(ˆ
R

(
Ŵ(ŵ; ρ̂Û2)− Ŵ(ŵ; ρ̂Û1)

)2 dŵ
)1/2

,

we have that

β||Ŵ2 − Ŵ1||2 ≤ a(Ŵ2 − Ŵ1, Ŵ2 − Ŵ1) ≤ ρ̂(Û1 − Û2)(1, Ŵ2 − Ŵ1) ≤ ρ̂|Û1 − Û2|||Ŵ2 − Ŵ1||

for some β > 0. Thus,

||Ŵ2 − Ŵ1|| ≤
ρ̂

β
|Û1 − Û2|

With this inequality, we can verify the continuity of Ŵ(ŵ; ρ̂Û). Let ε > 0 and choose |Û1 − Û2| < ε
β
ρ̂ . Then

||Ŵ2 − Ŵ1|| < ε.

Thus, Ŵ(ŵ; ρ̂Û) is continuous.

Now, we prove that Ŵ(ŵ; ρ̂Û) is decreasing in the second argument. Let Û1 > Û2 and define Ŵ1 = BRh( Ĵ; ρ̂Û1) and
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Ŵ2 = BRh( Ĵ; ρ̂Û2). Observe that Ŵ1, Ŵ2 ∈ Kh( Ĵ). Thus, min{Ŵ1, Ŵ2} and max{Ŵ1, Ŵ2} ∈ Kh( Ĵ). Therefore, we can use

min{Ŵ1, Ŵ2} = Ŵ1 −max{Ŵ1 − Ŵ2, 0} as a test function with Û1 and max{Ŵ1, Ŵ2} = Ŵ2 + max{Ŵ1 − Ŵ2, 0} as a test

function with Û1. Therefore,

−a(Ŵ1, max{Ŵ1 − Ŵ2, 0}) ≥ −(1− ρ̂Û1, max{Ŵ1 − Ŵ2, 0}),

a(Ŵ2, max{Ŵ1 − Ŵ2, 0}) ≥ (1− ρ̂Û2, max{Ŵ1 − Ŵ2, 0}).

Adding both inequalities, we obtain

a(Ŵ2 − Ŵ1, max{Ŵ1 − Ŵ2, 0}) ≥ ρ̂
(
Û1 − Û2

)
(1, max{Ŵ1 − Ŵ2, 0}).

Multiplying by -1 and under the observation that a(Ŵ1 − Ŵ2, max{Ŵ1 − Ŵ2, 0}) = a(max{Ŵ1 − Ŵ2, 0}, max{Ŵ1 − Ŵ2, 0}) ≥
β||max{Ŵ1 − Ŵ2, 0}||2 for some β > 0, we have that

||max{Ŵ1 − Ŵ2, 0}||2 ≤ ρ̂

β

(
Û2 − Û1

)
(1, max{Ŵ1 − Ŵ2, 0}).

Since Û1 > Û2, we have that Û2 − Û1 < 0. Assume, by contradiction, that Ŵ1 > Ŵ2, then(1, max{Ŵ1 − Ŵ2, 0}) > 0. Operating,

0 < ||max{Ŵ1 − Ŵ2, 0}||2 ≤ ρ̂

β

(
Û2 − Û1

)
(1, max{Ŵ1 − Ŵ2, 0}) < 0.

Thus, we have a contradiction. In conclusion, Ŵ(ŵ; ρ̂Û) is decreasing in the second argument. Observe that Ĵ(ŵ) = BRj(Ŵ) is

independent of ρ̂Û.

Proposition B.9. Let Ŵ∗(ŵ; ρ̂Û) be the non-trivial Nash Equilibrium, then it is continuous and decreasing in the second argument.

Proof of Step 3 - Proposition B.9. First, we show that the value function from the non-trivial Nash equilibrium is decreasing in Û.

If Û1 > Û2, we have, by the previous step, that

Q(Ŵ, ρ̂Û1) ≤ Q(Ŵ, ρ̂Û2).

Define recursively Qn(Ŵ, ρ̂Û1) = Q ◦Qn−1(Ŵ, ρ̂Û1). By monotonicity,

Qn(Ŵ, ρ̂Û1) ≤ Qn(Ŵ, ρ̂Û2)

also holds for all n. By Theorem 18 of Marinacci and Montrucchio (2019)

Qn(Ŵ, ρ̂Û1)→ Ŵ∗(ŵ; ρ̂Û1) and Qn(Ŵ, ρ̂Û2)→ Ŵ∗(ŵ; ρ̂Û2).

Thus,

Ŵ∗(ŵ; ρ̂Û1) ≤ Ŵ∗(ŵ; ρ̂Û2).

In conclusion, the non-trivial Nash equilibrium is decreasing in Û.

Now, we show continuity. Take Ûn ↑ Û∗ (resp. Ûn ↓ Û∗). Then, it is easy to see that Ŵ∗(ŵ; ρ̂Ûn) is monotonic, and by

completeness, it is easy to see that Ŵ∗(ŵ; ρ̂Ûn) is a convergent series. Thus, Ŵ∗(ŵ; ρ̂Û) is continuous in the second element.
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Step 4. We now show the existence of the unique fixed point in ρ̂Û. Using the free entry condition, we can define the value of

the unemployed worker as

P(ρ̂Û) := B̃ + max
ŵ

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û).

We now show two propositions: (i) we show some properties of P(ρ̂Û), (ii) we use these properties to show the existence of

a unique fixed point P(ρ̂Û∗) = ρ̂Û∗.

Proposition B.10. The following properties hold for P(ρ̂Û):

• P(ρ̂Û) exists and is unique.

• P(ρ̂Û) is continuous.

• P : [B̃, P̄]→ [B̃, P̄] and it is decreasing.

Proof of Step 4 - Proposition B.10. From Proposition 2, we have that Ĉh ∩ Ĉ j is bounded, thus

max
ŵ

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û) = max
ŵ∈cl{C j∩Ch}

1
K̃1/α

Ĵ(ŵ; ρ̂Û)
1−α

α Ŵ(ŵ; ρ̂Û).

Since Ĵ(·; ρ̂Û) and Ŵ(·; ρ̂Û) are continuous and the optimization is conducted over a compact support, by the extreme value

theorem there exists a maximum and, clearly, is unique. By Proposition 2, we have that P̄ =: P(B̃) > B̃. Since Ĵ(ŵ; ρ̂Û) and

Ŵ(ŵ; ρ̂Û) are continuous in both arguments, by the maximum theorem, the maximal value is continuous. Let ŵ∗(ρ̂Û) be the

solution to the optimization problem. Then, if Û < Û′,

1
K̃1/α

Ĵ(ŵ∗(ρ̂Û); ρ̂Û)
1−α

α Ŵ(ŵ∗(ρ̂Û); ρ̂Û) ≥(1) 1
K̃1/α

Ĵ(ŵ∗(ρ̂Û′); ρ̂Û)
1−α

α Ŵ(ŵ∗(ρ̂Û′), ρ̂Û)

≥(2) 1
K̃1/α

Ĵ(ŵ∗(ρ̂Û′), ρ̂Û′)
1−α

α Ŵ(ŵ∗(ρ̂Û′), ρ̂Û′).

Step (1) uses the optimality of ŵ∗(ρ̂Û) and step (2) uses the fact that Ĵ and Ŵ are decreasing in the second argument. Thus,

P(ρ̂Û) is decreasing. Since P(ρ̂Û) ≥ B̃ ( Ĵ(·) and Ŵ(·) are non-negative), we have that P : [B̃, P̄]→ [B̃, P̄].

Proposition B.11. P(ρ̂Û) has a unique fixed point.

Proof of Step 4 - Proposition B.11. The existence of the fixed point follows directly from Brouwer’s fixed point theorem. To show

uniqueness, observe that if there were two fixed points Û1 < Û2, by definition, we would have that P(ρ̂Û1) = ρ̂Û1 < ρ̂Û2 =

P(ρ̂Û2) and P(ρ̂Û) would be strictly increasing. By Step 4-Proposition B.10, this is a contradiction.

B.4 Proof of Proposition 2

Proposition 2. The recursive block equilibrium has the following properties:

1. The joint match surplus satisfies

Ŝ(ŵ) = (1− ρ̂Û)T (ŵ, ρ̂),

where

T (ŵ, ρ̂) := E

[ˆ τm∗

0
e−ρ̂t dt|ŵ0 = ŵ

]
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is the expected discounted match duration and 1 > ρ̂Û > B̃.

2. The competitive entry wage ŵ∗ coincides with the Nash bargaining solution with worker’s weight α:

ŵ∗ = arg max
ŵ

{
Ŵ(ŵ)α Ĵ(ŵ)1−α

}
= arg max

ŵ

{
η(ŵ)α(1− η(ŵ))1−αT (ŵ, ρ̂)

}
,

with optimality condition

η′(ŵ∗)
(

α

η(ŵ∗)
− 1− α

1− η(ŵ∗)

)
︸ ︷︷ ︸

Share channel

= − Tŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)︸ ︷︷ ︸
Surplus channel

.

3. Given η(ŵ∗) and T (ŵ∗, ρ̂), the equilibrium job finding rate f (ŵ∗) and the flow opportunity cost of employment ρ̂Û are given by

f (ŵ∗) =
[
(1− η(ŵ∗))(1− ρ̂Û)T (ŵ∗, ρ̂)/K̃

] 1−α
α ,

ρ̂Û = B̃ +
(

K̃α−1 (1− η(ŵ))1−α η(ŵ)α
(
1− ρ̂Û

)
T (ŵ∗, ρ̂)

) 1
α
.

4. Given Û, the worker’s and the firm’s continuation sets are connected, and the game’s continuation set is bounded, i.e.

{ŵ : ŵ > ŵ−} = Ĉh,

{ŵ : ŵ < ŵ+} = Ĉ j.

with −∞ < ŵ− ≤ log(ρ̂Û) < 0 ≤< ŵ+ < ∞ if ρ̂ + δ + γ̂− σ2/2 > 0.

Proof. Now, we prove each equilibrium property.

1. Using free entry condition and By the equilibrium conditions, for all ŵ we have that θ̂(ŵ) ≥ 0 and Ŵ(ŵ) ≥ 0; thus, the

product is also non-negative in ŵ∗

ρ̂Û = B̃ + max
ŵ∗

θ̂(ŵ∗)1−αŴ(ŵ∗) ≥ B̂ ⇐⇒ ρ̂U ≥ B̃

Using the recursive definition of the value function, we have that

Ŵ(ŵ) = Eŵ

[ˆ τm∗

0
e−ρ̂t(eŵt − ρ̂Û)dt

]

Ĵ(ŵ) = Eŵ

[ˆ τm∗

0
e−ρ̂t(1− eŵt )dt

]

where τm∗ is the Nash equilibrium in the math with the exogenous separations. Summing up the previous two equations

Ŝ(ŵ) = Ŵ(ŵ) + Ĵ(ŵ) = Eŵ

[ˆ τm∗

0
e−ρ̂t(1− ρ̂Û)dt

]
= (1− ρ̂Û)Eŵ

[ˆ τm∗

0
e−ρ̂t dt

]
.

Since Ŵ(ŵ), Ĵ(ŵ) ≥ 0, Ŝ(ŵ) ≥ 0 and

0 ≤ Ŝ(ŵ∗) = (1− ρ̂Û) T (ŵ∗, ρ̂)︸ ︷︷ ︸
>0

⇐⇒ 0 ≤ 1− ρ̂Û ⇐⇒ 1 ≥ ρ̂Û.
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So, 1 ≥ ρ̂Û ≥ B̃.

Now, we show the strict inequality by contradiction. Assume that ρ̂Û = B̃. Then ∀ŵ, we have that 0 = θ̂(ŵ) = Ŵ(ŵ) =

Ŝ(ŵ) = (1− B̃)T (ŵ, ρ̂). Thus, ∀ŵ, T (ŵ, ρ̂) = 0 which breaks the non-trivial Nash equilibrium. Assume that ρ̂Û = 1.

Then B̃ + maxŵ∗ θ̂(ŵ∗)1−αŴ(ŵ∗) = B̂ < 1, and we have the contradiction.

2. To show this property, first we show that Ĵ(ŵ) > 0 for all ŵ ∈ (ρ̂Û, 0). Define

τ(w− ,0) = inf
t
{t : ŵt /∈ (ρ̃Ũ, 0)}.

By optimality of the firm,

Ĵ(ŵ) = Eŵ

[ˆ τm∗

0
e−(ρ̂+δ)t(1− eŵt )dt

]
≥ Eŵ

[ˆ min{τ(ρ̃Ũ,0) ,τ
m∗}

0
e−(ρ̃+δ)t(1− eŵt )dt

]
> 0.

Thus, there is an open set s.t. Ĵ(ŵ) > 0, θ̂(ŵ) > 0, and Ĵ(ŵ)− K̂θ̂(ŵ)α = 0. Therefore,

arg max
ŵ

{
p(θ̂(ŵ))Ŵ(ŵ)

}
= arg max

ŵ


(

Ĵ(ŵ)

K̃

) 1−α
α

Ŵ(ŵ)

 = arg max
ŵ

{
Ĵ(ŵ)1−αŴ(ŵ)α

}
.

Since Ŵ(ŵ) = η(ŵ)Ŝ(ŵ) and Ĵ(ŵ) = (1− η(ŵ))Ŝ(ŵ) and Ŝ(ŵ) = (1− ρ̂Û)T (ŵ, ρ̂),

arg max
ŵ

{
p(θ̂(ŵ))Ŵ(ŵ)

}
= arg max

ŵ

{
Ĵ(ŵ)1−αŴ(ŵ)α

}
= arg max

ŵ

{
(1− η(ŵ))1−αη(ŵ)αT (ŵ, ρ̂)

}
.

Taking first order conditions

η′(ŵ∗)
(

α

η(ŵ∗)
− 1− α

1− η(ŵ∗)

)
= −
T ′ŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
.

3. This step comes directly from the optimality conditions.

4. Now, we show the property. To show that Ĉh and Ĉj are connected, assume they are not. Without loss of generality,

assume that (Ĉh)c = {ŵ : ŵ > ŵ−} ∪ (a, b) with a < b < w−. Then, since ŵ− ≤ ρ̃Ũ, it must be the case that for all

ŵ ∈ (a, b) , we have (eŵ − ρ̃Ũ) < 0 for all ŵ ∈ (a, b), and W̃(x) = Ex

[´ τ
(Sh )c∩(Sj )c

0 e−(ρ̃+δ)t(ewt − ρ̃Ũ)dt
]
< 0 for all

x ∈ (a, b) due to continuity of Brownian motions. Since Ŵ(x) ≥ 0, we have a contradiction. A similar argument holds for

the firm’s continuation set.

We prove that −∞ < ŵ− by contradiction. Assume that −∞ = ŵ−, then

Ŵ(ŵ, ŵ+) = E

[ˆ τ(−∞,ŵ+)

0
e−ρ̂t

(
eŵt − ρ̂Û

)
dt
]

.

Then, since ρ̂Û < eŵ+
, it is easy to show s

Ŵ(ŵ) = E

[ˆ τ(−∞,ŵ+)∧τδ

0
e−ρ̂t

(
eŵt − ρ̂Û

)
dt|ŵ0 = ŵ

]

≤ E

[ˆ ∞

0
e−(ρ̂+δ)t

(
eŵt − ρ̂Û

)
dt|ŵ0 = ŵ

]
=

ew0

ρ̂ + δ + γ̂− σ2/2
− ρ̂Û

ρ̂ + δ
.

Thus, there exists a small enough ŵ0 s.t. Ŵ(ŵ) < 0 and we have a contradiction. A similar argument holds for the firm’s
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separation threshold.

B.5 Proof of Propositions 3, 4, and 5

Define Ĉ = (ŵ−, ŵ+). From proposition 2 and , we can work with the following HJB conditions

(ρ̃ + δ)W̃(ŵ) = eŵ − ρ̃Ũ − γ̂W̃ ′(ŵ) +
σ2

2
W̃ ′′(ŵ) ∀ŵ ∈ R̃ (B.33)

(ρ̃ + δ) J̃(ŵ) = 1− eŵ − γ̂ J̃′(ŵ) +
σ2

2
J̃′′(ŵ) ∀ŵ ∈ R̃ (B.34)

ρ̃Ũ = B̃ + κ1−α−1
J̃(ŵ∗)

1−α
α W̃(ŵ∗)

(1− α)
dlog J̃(ŵ∗)

dŵ
= −α

dlog W̃(ŵ∗)
dŵ

,

with the value matching

W̃(ŵ−) = J̃(ŵ−) = W̃(ŵ+) = J̃(ŵ+) = 0;

and smooth pasting conditions

W̃ ′(ŵ−) = J̃′(ŵ+) = 0.

Proposition 3. Assume γ̂ = σ = 0. Then, the optimal policies are given by

(ŵ−, ŵ∗, ŵ+) = log(ρ̂Û, α + (1− α)ρ̃Ũ, 1),

with η(ŵ) = α and Tŵ(ŵ∗, ρ̂) = (ρ̂ + δ)−1.

Proof. If γ̂ = σ = 0, conditions (B.33) and (B.34) imply

Ŵ(ŵ) =
eŵ − eŵ−

ρ̂ + δ
; Ĵ(ŵ) =

eŵ+ − eŵ

ρ̂ + δ
.

The variation inequalities imply

(ρ̂ + δ)Ŵ(ŵ) = max{0, eŵ − ρ̂Û}, ∀ŵ ∈ C̃ j,

(ρ̂ + δ) J̃(ŵ) = max{0, 1− eŵ}, ∀ŵ ∈ C̃h, .

Thus, W̃(ŵ−) = J̃(ŵ+) = 0 and

ŵ+ = 0 ; ŵ− = log
(
ρ̃Ũ
)

.

Since

T (ŵ, ρ̂) =

 (ρ̂ + δ)−1 if ŵ ∈ [ŵ−, ŵ+]

0 Otherwise

Since Tŵ(ŵ∗, ρ̂) = 0, we have that η(ŵ) = α.
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Proposition 4. Assume γ̂ = 0, α = 1/2 and a first-order approximation of the flow payoffs around ŵ∗. Then ŵ± = ŵ∗ ± h(ϕ, Φ)

eŵ∗ =
1 + ρ̃Ũ

2
and k(ϕ, Φ) = ω(2ϕΦ)Φ

with ϕ =
√

2(ρ + δ)/σ, Φ =
1−ρ̃Ũ
1+ρ̃Ũ . The following properties hold for ω: (i) ω(z) decreases for all z ∈ (0, ∞), (ii) limz→0 ω(z) = 3, (iii)

limz→∞ ω(z) = 1, (iv) ω(2ϕΦ)Φ is increasing in Φ, and (v) ϕω(2ϕΦ) increasing. η(ŵ) = α and

T (ŵ∗, ρ̂) =
1− sech(ϕk(ϕ, Φ))

ρ̃ + δ

increasing in ϕ and Φ.

Proof. Let us guess and verify the following solution w∗ = log
(

1+ρ̂Û
2

)
and ŵ− = ŵ∗ − k and ŵ+ = ŵ∗ + k for a given k. Using

a Taylor approximation over the flow profits around w∗

eŵ − ρ̂Û ≈ eŵ∗ (1 + (ŵ− ŵ∗))− ρ̃Ũ =
1− ρ̃Ũ

2
+ eŵ∗ (ŵ− ŵ∗),

1− eŵ ≈ 1− eŵ∗ (1 + (ŵ− ŵ∗)) =
1− ρ̃Ũ

2
− eŵ∗ (ŵ− ŵ∗).

We can write the optimality conditions as

(ρ̃ + δ)W̃(ŵ) =
1− ρ̃Ũ

2
+ eŵ∗ (ŵ− ŵ∗) +

σ2

2
W̃ ′′(ŵ), ∀ŵ ∈ (w∗ − k, w∗ + k)

(ρ̃ + δ) J̃(ŵ) =
1− ρ̃Ũ

2
− eŵ∗ (ŵ− ŵ∗) +

σ2

2
J̃′′(ŵ), ∀ŵ ∈ (w∗ − k, w∗ + k)

with the border conditions

Ŵ(ŵ∗ − k) = Ĵ(ŵ∗ − k) = Ŵ(ŵ∗ + k) = Ĵ(ŵ∗ + k) = 0,

Ŵ ′(ŵ∗ − k) = Ĵ′(ŵ∗ + k) = 0.

Now, we show that we can transform J(x) =
Ĵ(x+ŵ∗)− 1−ρ̃Ũ

2(ρ̃+δ)

ew∗ . A similar argument applies to the value function of the worker.

Making the following transformation J(x) =
Ĵ(x+ŵ∗)− 1−ρ̃Ũ

2(ρ̃+δ)

ew∗ , and using (B.34)

(ρ̃ + δ)J(x) = (ρ̃ + δ)

 Ĵ(x + ŵ∗)− 1−ρ̃Ũ
2(ρ̃+δ)

ew∗

 ,

= −x +
σ2

2
1

ew∗ Ĵ′′(x + ŵ∗),

= −x +
σ2

2
J′′(x).

Thus,

(ρ̃ + δ)W(x) = x +
σ2

2
W ′′(x) ∀x ∈ (−k, k)

(ρ̃ + δ)J(x) = −x +
σ2

2
J′′(x) ∀x ∈ (−k, k)
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Defining

Φ =
1−ρ̃Ũ

2
ew∗ =

1− ρ̃Ũ
1 + ρ̃Ũ

> 0,

it is easy to show

W(k) = J(k) = W(−k) = J(−k) = − Φ
ρ̃ + δ

; W ′(−k) = J′(k) = 0.

Thus, W(x) = J(−x). Given that this problem symmetric, we verify the guess of symmetry of the Ss bands and 1
2 W ′(0) =

− 1
2 J(−0). The latter property, implies that w∗ satisfies the Nash bargaining solution.

Now, we show that k = ω(ϕ)Φ with ϕ =
√

2ρ + δ/σ. Note that W(x) = J(−x). Thus, we can only focus on W(x) using the

smooth pasting condition over −k. The solution to this system of differential equations is given by

W(x) = Aeϕx + Be−ϕx +
x

ρ̃ + δ

W(k) = W(−k) = − Φ
ρ̃ + δ

and W ′(−h) = 0

with ϕ =
√

2(ρ̃ + δ)/σ2. Writing the value matching conditions

Aeϕk + Be−ϕk +
k

ρ̃ + δ
= − Φ

ρ̃ + δ

Ae−ϕk + Beϕk − k
ρ̃ + δ

= − Φ
ρ̃ + δ

Taking the difference and the sum

A
(

eϕk + e−ϕk
)
+ B

(
e−ϕk + eϕk

)
= −2

Φ
ρ̃ + δ

A
(

eϕk − e−ϕk
)
+ B

(
e−ϕk − eϕkh

)
= −2

k
ρ̃ + δ

Therefore

A =
−2 Φ

ρ̃+δ

(
e−ϕk − eϕk

)
+ 2 h

ρ̃+δ

(
e−ϕk + eϕk

)
(
eϕk + e−ϕk

) (
e−ϕk − eϕk

)
−
(
e−ϕk + eϕk

) (
eϕk − e−ϕk

)
=

e−ϕk
(
− Φ

ρ̃+δ + h
ρ̃+δ

)
+ eϕk

(
h

ρ̃+δ + Φ
ρ̃+δ

)
(
eϕk + e−ϕk

) (
e−ϕk − eϕk

)
= − 1

ρ̃ + δ

e−ϕk (−Φ + k) + eϕk (k + Φ)

e2ϕk − e−2ϕk

B =
−2 h

ρ̃+δ

(
eϕk + e−ϕk

)
+ 2 Φ

ρ̃+δ

(
eϕk − e−ϕk

)
(
eϕk + e−λk

) (
e−ϕk − eϕk

)
−
(
e−ϕk + eϕk

) (
eϕk − e−ϕk

)
= −

eϕk
(
− Φ

ρ̃+δ + h
ρ̃+δ

)
+ e−ϕk

(
h

ρ̃+δ + Φ
ρ̃+δ

)
(
eϕk + e−ϕk

) (
e−λk − eλk

)
=

1
ρ̃ + δ

eϕk (−Φ + k) + e−ϕk (k + Φ)

e2ϕk − e−2ϕk

Therefore

W(x) = − 1
ρ̃ + δ

e−ϕk (−Φ + k) + eϕk (k + Φ)

e2ϕk − e−2ϕk eλx +
1

ρ̃ + δ

eϕk (Φ + k) + e−ϕk (k−Φ)

e2ϕk − e−2ϕk e−λx +
x

ρ̃ + δ
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Taking the derivative and evaluating in x = −k

W ′(−h) = − e−ϕk (−Φ + k) + eϕk (k + Φ)

e2ϕk − e−2ϕk ϕe−ϕk − eϕk (−Φ + k) + e−ϕk (k + Φ)

e2ϕk − e−2ϕk ϕeϕk + 1 = 0

or equivalently

−Φ(e−2ϕk + e2ϕk − 2) =
1
ϕ
(e2ϕk − e−2ϕk)− 1

2ϕ
2ϕk

(
e2ϕk + e−2ϕk + 2

)
(B.35)

It would be useful to express equation (B.35) using sinh(x) = ex−e−x

2 and cosh(x) = ex+e−x

2 . Using the hyperbolic functions

−Φ2 (cosh(2ϕk)− 1) =
2 sinh(2ϕk)

ϕ
− 2k (cosh(2ϕk) + 1)

Multiplying both sides by ϕ

−Φ2ϕ (cosh(2ϕk)− 1) = 2 sinh(2ϕk)− ϕ2k (cosh(2ϕk) + 1)

While in principle k(ϕ, Φ), we can change variables with x ≡ 2ϕk and x as the implicit solution of

−Φ2ϕ (cosh(x)− 1) + x (cosh(x) + 1) = 2 sinh(x).

Thus, k =
x(Φ2ϕ)

2ϕ . Let b = Φ2ϕ > 0, then we can express the function x(·) as the solution of

b = −2 sinh(x(b))− x(b) (cosh(x(b)) + 1)
(cosh(x(b))− 1)

Notice that if we define

f (x) = −2 sinh(x)− x (cosh(x) + 1)
(cosh(x)− 1)

The following properties hold over f (x)

1. limx→0 f (x) = 0 and limx→∞ f (x) = ∞.

2. f (x) is increasing and convex, with limx→0 f ′(x) = 1/3 and limx→∞ f (x) = 1.

3. dlog( f (x))
dlog(x) > 1.

Given these properties, we can write k(ϕ, Φ) =
f−1(2ϕΦ)

2ϕ and show the following properties over k(ϕ, Φ)

1. k(ϕ, Φ) is increasing in Φ: Since f−1(·) is increasing ,we have the result.

2. k(ϕ, Φ) is decreasing in ϕ: Taking derivative of k(ϕ, Φ) =
f−1(2ϕΦ)

2ϕ with ϕ and operating

∂k(ϕ, Φ)

∂ϕ
=

d f−1(x)
dx

∣∣∣∣∣
x=2ϕΦ

2Φ
2ϕ
− f−1(2ϕΦ)

2ϕ2

=
f−1(2ϕΦ)

2ϕ2

 d f−1(x)
dx

∣∣∣∣∣
x=2ϕΦ

2ϕΦ
f−1(2ϕΦ)

− 1


=

f−1(2ϕΦ)

2ϕ2

[
dlog(x)

dlog( f (x))

∣∣∣∣
x=2ϕΦ

2ϕΦ
f−1(2ϕΦ)

− 1

]
< 0.
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3. limϕ↓0 k(ϕ, Φ) = 3Φ and limϕ→∞ k(ϕ, Φ) = Φ : Applying L’hospital and using the derivative of the inverse property

lim
ϕ→∞

k(ϕ, Φ) = lim
ϕ→∞

f−1(2ϕΦ)

2ϕ
= lim

ϕ→∞

1
f ′(2ϕΦ)

Φ = Φ

lim
ϕ↓0

k(ϕ, Φ) = lim
ϕ↓0

f−1(2ϕΦ)

2ϕ
= lim

ϕ↓0

1
f ′(2ϕΦ)

Φ = 3Φ

4. k(ϕ, Φ) = ω(2ϕΦ)Φ: Define ω(z) = f−1(z)
z , then it is easy to see that h(ϕ, Φ) = ω(2ϕΦ)Φ. Moreover, from property 2

and 3, ω(z) is decreasing with limz↓0 ω(z) = 3 and limz→∞ ω(z) = 1. Moreover, with similar argument, it is easy to show

that ω(2ϕΦ)Φ is increasing in Φ and ω(2ϕΦ)ϕ increasing in ϕ.

Now, we can compute η(ŵ∗) and T (ŵ∗, ρ̂). Note that we can define T(x) = T (ŵ− ŵ∗, ρ̂), which solves

(ρ̂ + δ)T(x) = 1 +
σ2

2
T′′(x), with T(±k(ϕ, Φ)) = 0.

The solution to this differential equation is given by

T(x) =
− eϕx+e−ϕx

eϕk+e−ϕk + 1

ρ̃ + δ
.

Thus, T′(0) = 0 and η(ŵ∗) = α

T (ŵ∗, ρ̂) =
− eϕx−e−ϕx

eϕk−e−ϕk + 1

ρ̃ + δ

Using the property that sech(x) = 2
ex+e−x , we have

T (ŵ∗, ρ̂) =
1− sech(ϕω(2ϕΦ)Φ)

ρ̃ + δ
.

Proposition 5. Assume σ = 0 and γ̂ ≥ 0. Then ŵ− = log
(
ρ̃Ũ
)

and

w∗ = ŵ− + T̃
(

α + (1− α)ρ̂Û
ρ̂Û

,
ρ̂ + δ

γ̂
,
(1− α)(1− ρ̂Û)

ρ̂Û

)
.

T̃ (·) is defined as

a = eT̃(a,b,c) 1− e−(1+b)T̃(a,b,c)

1− e−bT̃(a,b,c)

b
b + 1

− cb
e−bT̃(a,b,c)

1− e−bT̃(a,b,c)

[
1− b + 1

b
1− a−bT̃(a,b,c)

eT̃(a,b,c) − e−bT̃(a,b,c)

]
(B.36)

where T̃(·) is increasing in the first argument and decreasing in the second argument. The expected discounted duration and worker’s share

satisfies:

T (ŵ∗, ρ̂) =
1− e−

ρ̂+δ
γ̂ T̃(·)

ρ̂ + δ

η(ŵ∗) =
eT̃(·) 1−e

−
(

1+ ρ̂+δ
γ̂

)
T̃(·)

1−e−
ρ̂+δ

γ̂ T̃(·)

ρ̂+δ
ρ̂+δ+γ̂ − 1

1− ρ̂Û
ρ̂Û

Moreover,
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1. If γ̂ = 0, then

(
T̃(·), T (ŵ∗, ρ̂), η(ŵ∗)

)
→
(

log
(

α + (1− α)ρ̂Ũ
ρ̂Ũ

)
,

1
ρ̂ + δ

, α

)
.

2. If γ̂→ ∞, then T̃(·)→ T̃limit where

α + (1− α)ρ̂Ũ
ρ̂Ũ

=
eT̃limit − 1− (1−α)(1−ρ̂Ũ)

ρ̂Ũ

(
1− T̃limit

eT̃limit−1

)
T̃limit ,

T (ŵ∗, ρ̂)→ 0 and η(ŵ∗)→ ηlimit

ηlimit = α +
1− α

T̃limit
(1− ρ̂Ũ)ηlimit

ηlimit + ρ̂Ũ(1− ηlimit)

Proof. Now, we take the σ ↓ 0. The equilibrium conditions in this case are

(ρ̃ + δ)W̃(ŵ) = eŵ − ρ̃Ũ − γ̂W̃ ′(ŵ) ∀ŵ ∈ Ĉ

(ρ̃ + δ) J̃(ŵ) = 1− eŵ − γ̂ J̃′(ŵ) ∀ŵ ∈ Ĉ

(1− α)
dlog J̃(ŵ∗)

dŵ
= −α

dlog W̃(ŵ∗)
dŵ

with VM and SP

W̃(ŵ−) = J̃(ŵ−) = W̃(ŵ+) = J̃(ŵ+) = 0 ; W̃ ′(ŵ−) = J̃′(ŵ+) = 0.

Without idiosyncratic shocks and γ > 0 the upper Ss band is not active. Thus, we discard the optimality condition for this

ŵ+. The stopping time is a deterministic function in this case, hence, it is easier to work in the sequential formulation.

W̃(ŵ) = max
T

ˆ T

0
e−(ρ̃+δ)s

(
eŵ−γ̂s − ρ̂Ũ

)
ds

J̃(ŵ) =

ˆ T(w)

0
e−(ρ̂+δ)s

(
1− eŵ−γ̂s

)
ds. (B.37)

In equation (B.37), T(ŵ) is the optimal policy of the worker. Taking the first order conditions with T(ŵ)

eŵ−γ̂T(ŵ) = ρ̂Û.

Solving the previous equation

T(ŵ) =
ŵ− log

(
ρ̂Û
)

γ̂
.

Thus, if ŵ = ŵ∗ we have that ŵ∗ − γ̂T(ŵ∗) = ŵ− satisfies

ŵ− = log(ρ̂Ũ).

Taking the derivatives of W̃(ŵ) and J̃(ŵ), and using the envelope condition for W̃ ′(ŵ), we have that

W̃ ′(ŵ) =

ˆ T(w)

0
e−(ρ̂+δ)s

(
eŵ−γ̂s

)
ds, (B.38)

J̃′(ŵ) = −
ˆ T(w)

0
e−(ρ̂+δ)s

(
eŵ−γ̂s

)
ds + e−(ρ̂+δ)T(ŵ)

(
1− eŵ−γ̂T(ŵ)

)
T′(ŵ)︸ ︷︷ ︸
=1/γ̂

. (B.39)
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From equations (B.38) and (B.39), we get the Nash bargaining solution

−α

´ T∗
0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds´ T∗

0 e−(ρ̂+δ)s
(
eŵ∗−γ̂s − ρ̂Ũ

)
ds

= (1− α)

[
−
´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds + e−(ρ̂+δ)T∗ (1−ρ̂Ũ)
γ̂

]
´ T∗

0 e−(ρ̂+δ)s (1− eŵ∗−γ̂s)ds
(B.40)

Define

Ω(a, T∗) :=
1− e−aT∗

a

Z :=
e−(ρ̂+δ)T∗ (1− ρ̂Ũ)

γ̂
´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds

Operating

α

ˆ T∗

0
e−(ρ̂+δ)s

(
1− eŵ∗−γ̂s

)
ds = (1− α)

ˆ T∗

0
e−(ρ̂+δ)s

(
eŵ∗−γ̂s − ρ̂Ũ

)
ds [1−Z ] ⇐⇒

α
[
Ω(ρ̂ + δ, T∗)− eŵ∗Ω(ρ̂ + δ + γ̂, T∗)

]
= (1− α)

[
eŵ∗Ω(ρ̂ + δ + γ̂, T∗)− ρ̂ŨΩ(ρ̂ + δ, T∗)

]
×

. . .

[
1− e−(ρ̂+δ)T∗ (1− ρ̂Ũ)

γ̂eŵ∗Ω(ρ̂ + δ + γ̂, T∗)

]
⇐⇒

(
α + (1− α)ρ̂Ũ

)
Ω(ρ̂ + δ, T∗) = eŵ∗Ω(ρ̂ + δ + γ̂, T∗) + . . .

. . . (1− α)
[
eŵ∗Ω(ρ̂ + δ + γ̂, T∗)− ρ̂ŨΩ(ρ̂ + δ, T∗)

] e−(ρ̂+δ)T∗ (1− ρ̂Ũ)

γ̂eŵ∗Ω(ρ̂ + δ + γ̂, T∗)
⇐⇒

(
α + (1− α)ρ̂Ũ

)
Ω(ρ̂ + δ, T∗) = eŵ∗Ω(ρ̂ + δ + γ̂, T∗)− (1− α)e−(ρ̂+δ)T∗ (1− ρ̂Ũ)

γ̂

[
1− ρ̂Ũ

Ω(ρ̂ + δ, T∗)
eŵ∗Ω(ρ̂ + δ + γ̂, T∗)

]
The policy (T∗, ŵ∗) solves

eŵ∗−γ̂T∗ = ρ̂Ũ(
α + (1− α)ρ̂Ũ

)
Ω(ρ̂ + δ, T∗) = eŵ∗Ω(ρ̂ + δ + γ̂, T∗)− (1− α)e−(ρ̂+δ)T∗ (1− ρ̂Ũ)

γ̂

[
1− ρ̂Ũ

Ω(ρ̂ + δ, T∗)
eŵ∗Ω(ρ̂ + δ + γ̂, T∗)

]

Define T̃ = γ̂T∗ and Ω(a, T∗) := 1−e−aT∗

a = γ̂−1Ω( a
γ̂ , T̃). Then

eŵ∗−T̃ = ρ̂Ũ

(
α + (1− α)ρ̂Ũ

)
γ̂−1Ω

(
ρ̂ + δ

γ̂
, T̃
)
= eŵ∗ γ̂−1Ω

(
ρ̂ + δ

γ̂
+ 1, T̃

)
− (1− α)e−

ρ̂+δ
γ̂ T̃(1− ρ̂Ũ)

γ̂

1− ρ̂Ũ
Ω
(

ρ̂+δ
γ̂ , T̃

)
eŵ∗Ω

(
ρ̂+δ

γ̂ + 1, T̃
)


Therefore, the optimal stopping is given by

α + (1− α)ρ̂Ũ
ρ̂Ũ

Ω
(

ρ̂+δ
γ̂ , T̃

)
Ω
(

ρ̂+δ
γ̂ + 1, T̃

) = eT̃ −
(1− α)(1− ρ̂Ũ)

[
1− ρ̂+δ

γ̂ Ω
(

ρ̂+δ
γ̂ , T̃

)]
ρ̂ŨΩ

(
ρ̂+δ

γ̂ + 1, T̃
)

1−
Ω
(

ρ̂+δ
γ̂ , T̃

)
eT̃Ω

(
ρ̂+δ

γ̂ + 1, T̃
)


or

α + (1− α)ρ̂Ũ
ρ̂Ũ

= eT̃
Ω
(

ρ̂+δ
γ̂ + 1, T̃

)
Ω
(

ρ̂+δ
γ̂ , T̃

) −
(1− α)(1− ρ̂Ũ)

[
1− ρ̂+δ

γ̂ Ω
(

ρ̂+δ
γ̂ , T̃

)]
ρ̂ŨΩ

(
ρ̂+δ

γ̂ , T̃
)

1−
Ω
(

ρ̂+δ
γ̂ , T̃

)
eT̃Ω

(
ρ̂+δ

γ̂ + 1, T̃
)

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Now, we show the property over the T̃
(

α+(1−α)ρ̂Ũ
ρ̂Ũ , ρ̂+δ

γ̂ , (1−α)(1−ρ̂Ũ)
ρ̂Ũ

)
. Let us define the following function:

f (a, b, c) := ea 1− e−(1+b)a

1− e−ba
b

b + 1
− c

[
1− b 1−e−ba

b
1−e−ba

b

] [
1− 1− e−ba

1− e−(1+b)a
b + 1
bea

]

= ea 1− e−(1+b)a

1− e−ba
b

b + 1
− c

[
b

1− e−ba − b
] [

b(ea − e−ba)− (1− e−ba)(b + 1)
b(ea − e−ba)

]

= ea 1− e−(1+b)a

1− e−ba
b

b + 1
− cb

e−ba

1− e−ba

[
bea − (b + 1) + e−ba ± be−ba

b(ea − e−ba)

]

= ea 1− e−(1+b)a

1− e−ba
b

b + 1
− cb

e−ba

1− e−ba

[
b(ea − e−ba)− (b + 1) + (1 + b)e−ba

b(ea − e−ba)

]

= ea 1− e−(1+b)a

1− e−ba
b

b + 1
− cb

e−ba

1− e−ba

[
1− b + 1

b
1− a−ba

ea − e−ba

]
.

Observe that with this function:

α + (1− α)ρ̂Ũ
ρ̂Ũ

= f
(

T̃
(

α + (1− α)ρ̂Ũ
ρ̂Ũ

,
ρ̂ + δ

γ̂
,
(1− α)(1− ρ̂Ũ)

ρ̂Ũ

)
,

ρ̂ + δ

γ̂
,
(1− α)(1− ρ̂Ũ)

ρ̂Ũ

)
.

The following properties are easy to show:

1. f (a, b, c) is increasing in a.

2. If a, c > 0, b→ ∞, then f (a, b, c)→ ea : To see this property, taking the limit

= lim
a>0,b→∞,c∝b

[
ea 1− e−(1+b)a

1− e−ba
b

b + 1
− cb

e−ba

1− e−ba

[
1− b + 1

b
1− e−ba

ea − e−ba

]]

= ea lim
a>0,b→∞

1− e−(1+b)a

1− e−ba︸ ︷︷ ︸
=1

lim
a>0,b→∞

b
b + 1︸ ︷︷ ︸

=1

− lim
a>0,b→∞

cb
e−ba

1− e−ba︸ ︷︷ ︸
=0

1− lim
b→∞

b + 1
b︸ ︷︷ ︸

=1

lim
a>0,b→∞

1− e−ba

ea − e−ba︸ ︷︷ ︸
=e−a


= ea.

3. If a, c > 0 and b→ 0 then f (a, b, c)→ ea−1−c(1− a
ea−1 )

a : To see this property, taking the limit

= lim
a>0,b→0

[
ea 1− e−(1+b)a

1− e−ba
b

b + 1
− cb

e−ba

1− e−ba

[
1− b + 1

b
1− e−ba

ea − e−ba

]]

= ea(1− e−a) lim
a>0,b→0

b
1− e−ba︸ ︷︷ ︸

=1/a

−c lim
a>0,b→0

b
1− e−ba︸ ︷︷ ︸

=1/a

1− 1
ea − 1

lim
b→∞

1− e−ba

b︸ ︷︷ ︸
=a



=
ea − 1− c

(
1− a

ea−1

)
a

.

4. ea ≥ f (a, b, c) ≥ ea−1−c(1− a
ea−1 )

a where the upper bound is reach when b→ ∞ and the lower bound when b ↓ 0.

5. Duration of the match: It is simple to show that

T (ŵ∗, ρ̂) =
1− e−

ρ̂+δ
γ̂ T̃(·)

ρ̂ + δ
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6. Worker’s share:

η(ŵ∗) =
eγ̂T∗(·)+log(ρ̂Û)

´ T∗
0 e−(ρ̂+δ+γ̂)t dt− ρ̂Û

´ T∗
0 e−(ρ̂+δ)t dt

(1− ρ̂Û)
´ T∗

0 e−(ρ̂+δ)t dt

=

eT̃(·) 1−e
−
(

1+ ρ̂+δ
γ̂

)
T̃(·)

1−e−
ρ̂+δ

γ̂ T̃(·)

ρ̂+δ
ρ̂+δ+γ̂ − 1

1− ρ̂Û
ρ̂Û

With these properties, we can proof the equilibrium policies:

1. T̃( α+(1−α)ρ̂Ũ
ρ̂Ũ , ρ̂+δ

γ̂ , (1−α)(1−ρ̂Ũ)
γ̂ρ̂Ũ ) is increasing in the first argument.

2. If γ̂→ 0, then ρ̂+δ
γ̂ → ∞

lim
(ρ̂+δ)/γ̂→∞

T̃(·) = log
(

α + (1− α)ρ̂Ũ
ρ̂Ũ

)
The expected discounted duration in the limit is equal to

lim
γ̂→0
T (ŵ∗, ρ̂) =

1
ρ̂ + δ

The worker’s share in the limit is equal to

η(ŵ∗) =
eT̃(·) 1−e

−
(

1+ ρ̂+δ
γ̂

)
T̃(·)

1−e−
ρ̂+δ

γ̂ T̃(·)

ρ̂+δ
ρ̂+δ+γ̂ − 1

1− ρ̂Û
ρ̂Û =

eT̃(·) − 1
1− ρ̂Û

ρ̂Û =

α+(1−α)ρ̂Ũ
ρ̂Ũ − 1

1− ρ̂Û
ρ̂Û = α

3. If γ̂ → ∞, then ρ̂+δ
γ̂ → 0, which provides the same T̃(·) as ρ̂ + δ → 0. As we have shown before, under this limit, T̃(·)

converges to the implicit solution given by

α + (1− α)ρ̂Ũ
ρ̂Ũ

=
eT̃(·) − 1− (1−α)(1−ρ̂Ũ)

ρ̂Ũ

(
1− T̃(·)

eT̃(·)−1

)
T̃(·)

.

Given the converge, we now show the limit for η(ŵ∗) since clearly T (ŵ∗, ρ)→ 0. Let us depart from equation (B.40)

−α

´ T∗
0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds´ T∗

0 e−(ρ̂+δ)s
(
eŵ∗−γ̂s − ρ̂Ũ

)
ds

= (1− α)

[
−
´ T∗

0 e−(ρ̂+δ)s (eŵ∗−γ̂s)ds + e−(ρ̂+δ)T∗ (1−ρ̂Ũ)
γ̂

]
´ T∗

0 e−(ρ̂+δ)s (1− eŵ∗−γ̂s)ds

Taking the limit ρ̂ + δ→ 0

α

ˆ T∗

0
(1− ewt )dt = (1− α)

ˆ T∗

0

(
ewt − ρ̂Ũ

)
dt− (1− α)(1− ρ̂Ũ)

γ̂

´ T∗
0
(
ewt − ρ̂Ũ

)
dt´ T∗

0 ewt dt
.

Operating and using the occupancy measure

α + (1− α)ρ̂Ũ +
(1− α)(1− ρ̂Ũ)

γ̂T∗

´ T∗
0 ewt dt

T∗ − ρ̂Ũ´ T∗
0 ewt dt

T∗

=

´ T∗
0 ewt dt

T∗

It is easy to check that

α + (1− α)ρ̂Ũ +
1− α

γ̂T∗
E[eŵ]− ρ̂Û

E[eŵ]
(1− ρ̂Ũ) = E[eŵ].
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Since whenever ρ̂ + δ→ 0, we have that η(ŵ∗) = E[eŵ ]−ρ̂Ũ
1−ρ̂Ũ . Using this result

α + (1− α)ρ̂Ũ +
1− α

γ̂T∗
E[eŵ]− ρ̂Û

E[eŵ]
(1− ρ̂Ũ) = E[eŵ] ⇐⇒

α + (1− α)ρ̂Ũ +
1− α

γ̂T∗
(1− ρ̂Ũ)η(ŵ∗)

(1− ρ̂Ũ)η(ŵ∗) + ρ̂Ũ
(1− ρ̂Ũ) = (1− ρ̂Ũ)η(ŵ∗) + ρ̂Ũ ⇐⇒

α(1− ρ̂Ũ) +
1− α

γ̂T∗
(1− ρ̂Ũ)η(ŵ∗)

(1− ρ̂Ũ)η(ŵ∗) + ρ̂Ũ
(1− ρ̂Ũ) = (1− ρ̂Ũ)η(ŵ∗)

η(ŵ∗) = α +
1− α

T̃
(1− ρ̂Ũ)η(ŵ∗)

η(ŵ∗) + ρ̂Ũ(1− η(ŵ∗))
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C Proofs for Section 3: Identifying the Microeconomic Implications of Al-

locative Wages

C.1 Proof of Lemma 3

Lemma 3. The drift γ and volatility σ of the stochastic process guiding cumulative productivity shocks can be recovered from D with

γ =
ED [∆w]

ED [τ]
,

σ2 =
ED [(∆w− γτ)2]

ED [τ]
.

Proof. From the law of motion dzt = γ dt + σ dW z
t and the fact that at the beginning of a new job spell wt0 − zt0 = ŵ∗, we have

that

∆w = −∆zτ = γτ + σW z
τ . (C.1)

Drift: Taking expectation on both sides conditional on a h-to-u-to-h transition, we have that σE[W z
τ ] = ED [∆w]− γED [τ].

SinceW z
t is a martingale, by Doob’s Optional Stopping Theorem (OST),W z

τ is a martingale, and E[W z
τ ] = E[W z

0 ] = 0. Thus,

γ =
ED [∆w]

ED [τ]
.

Idiosyncratic volatility: Let us define Yt = (∆zt + γt)2. We apply Itô’s Lemma to Yt and obtain

dYt = 2 (∆zt + γt) (d∆zt + γ dt) +
1
2

2(d∆zt)
2 = 2σ (∆zt + γt)dW z

t + σ2 dt

Integrating the previous equation between 0 and τ and using condition (C.1), we obtain

(∆w− γτ)2 = 2σ

ˆ τ

0
(∆zt + γt)dW z

t + σ2τ.

Since
´ t

0 (∆zt + γt)dW z
t is a martingale, by the OST,

´ τ
0 (∆zt + γt)dW z

t is a martingale and E[
´ τ

0 (∆zt + γt)dW z
t ] = 0. Thus,

ED [(∆w− γτ)2] = 2σE

[ˆ τ

0
(∆zt + γt)dW z

t ,
]
+ σ2ED [τ] = σ2ED [τ]

which completes the proof of Lemma 3.

C.2 Proof of Proposition 6

Proposition 6. The distribution of ∆z conditional on a job separation is given by

Ḡh(∆z) =
σ2

2 f (ŵ∗)
dlw(−∆z)

dz
− γ

f (ŵ∗)
lw(−∆z)− [1− Lw(−∆z)] . (C.2)

where Lw(∆w) denotes the cumulative distribution function (CDF) corresponding to the marginal distribution lw(∆w).

Proof. The objective in this proof is to use the non-differentiability of the distribution of ḡs(∆z) for s = {h, u} at ∆z = 0 to
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express the distribution of ∆z conditional on a separation. Observe that

Lw(a) = Prlw
(∆w ≤ a)

=(1) PrḠh ,Ḡu
(−(∆zh + ∆zu) ≤ a)

=(2) PrḠh ,Ḡu
(∆zh + ∆zu ≥ −a)

=(3) 1− Pr(∆zh + ∆zu ≤ −a)

=(4) 1−
ˆ ∞

−∞
Ḡh(−a− y)ḡu(y)dy.

Here, in step (1) we use the definition of ∆w, and steps (2) to (4) operate and use the independence of Ḡh(·) and ḡu(·). From

Proposition D.1, we have

ḡu(∆z) = Gu

 eβ2( f (ŵ∗))∆z if ∆z ∈ (−∞, 0]

eβ1( f (ŵ∗))∆z if ∆z ∈ [0, ∞)

and

Lw(∆w) = 1− C1(∆w)− C2(∆w), (C.3)

where

C1(∆w) = Gu

ˆ ∞

0
Ḡh(−∆w− u)eβ1( f (ŵ∗))u du,

C2(∆w) = Gu

ˆ 0

−∞
Ḡh(−∆w− u)eβ2( f (ŵ∗))u du.

Departing from Lw(∆w) = 1−
´ ∞
−∞ Ḡh(−∆w− y)ḡu(y)dy and doing the change of variable x = −∆w− y with dx = −dy, we

obtain

Lw(∆w) = 1−
ˆ ∞

−∞
Ḡh(x)ḡu(−∆w− x)dx.

Taking the derivative on both sides with respect to ∆w we obtain

lw(∆w) =

ˆ ∞

−∞
Ḡh(x) (ḡu)′ (−∆w− x)dx.

Reverting the change of variables and using the fact that ḡu(−∆w− x) is non-differentiable at 0, we obtain

lw(∆w) =

ˆ ∞

−∞
Ḡh(−∆w− u)(ḡu)′(u)du

=

ˆ 0

−∞
Ḡh(−∆w− u)Guβ2( f (ŵ∗))eβ2( f (ŵ∗))u du +

ˆ ∞

0
Ḡh(−∆w− u)Guβ1( f (ŵ∗))eβ1( f (ŵ∗))u du

= β1( f (ŵ∗))C1(∆w) + β2( f (ŵ∗))C2(∆w).

Thus,

lw(∆w) = β1( f (ŵ∗))C1(∆w) + β2( f (ŵ∗))C2(∆w). (C.4)

To obtain the last condition, observe that

C1(∆w) =

ˆ ∞

0
Ḡh(−∆w− u)Gueβ1( f (ŵ∗))u du,
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= −Gu

ˆ −∞

−∆w
Ḡh(y)eβ1( f (ŵ∗))(−∆w−y) dy,

= Gu

ˆ −∆w

−∞
Ḡh(y)eβ1( f (ŵ∗))(−∆w−y) dy.

and

C2(∆w) =

ˆ 0

−∞
Ḡh(−∆w− u)Gueβ2( f (ŵ∗))u du.

= −Gu

ˆ −∆w

∞
Ḡh(y)eβ2( f (ŵ∗))(−∆w−y) dy,

= Gu

ˆ ∞

−∆w
Ḡh(y)eβ2( f (ŵ∗))(−∆w−y) dy.

Taking the derivative with respect to ∆w and using the Leibniz rule, we obtain

C′1(∆w) = −GuḠh(−∆w)− β1( f (ŵ∗))Gu

ˆ −∆w

−∞
Ḡh(y)eβ1( f (ŵ∗))(−∆w−y) dy,

= −GuḠh(−∆w)− β1( f (ŵ∗))C1(∆w) (C.5)

C′2(∆w) = GuḠh(−∆w)− β2( f (ŵ∗))C2(∆w). (C.6)

Taking derivative of (C.4),

(lw)′(∆w) = β1( f (ŵ∗))C′1(∆w) + β2( f (ŵ∗))C′2(∆w)

and using conditions (C.5) and (C.6),

(lw)′(∆w) = Ḡh(−∆w)Gu[β2( f (ŵ∗))− β1( f (ŵ∗))]− β1( f (ŵ∗))2C1(∆w)− β2( f (ŵ∗))2C2(∆w). (C.7)

Equations (C.3), (C.4), and (C.7) provide the following system of three functional equations with three unknowns

1− Lw(∆w) = C1(∆w) + C2(∆w),

lw(∆w) = β1( f (ŵ∗))C1(∆w) + β2( f (ŵ∗))C2(∆w),

(lw)′(∆w) = Ḡh(−∆w)Gu[β2( f (ŵ∗))− β1( f (ŵ∗))]− β1( f (ŵ∗))2C1(∆w)− β2( f (ŵ∗))2C2(∆w).

Operating over the system of functional equations

(lw)′(∆w) + [β2( f (ŵ∗)) + β1( f (ŵ∗))] lw(∆w) + β1( f (ŵ∗))β2( f (ŵ∗)) [1− Lw(∆w)] = Ḡh(−∆w)Gu[β2( f (ŵ∗))− β1( f (ŵ∗))],

with

Gu =
(

β2( f (ŵ∗))−1 − β1( f (ŵ∗))−1
)−1

β1( f (ŵ∗)) =
−γ−

√
γ2 + 2σ2 f (ŵ∗)

σ2 ,

β2( f (ŵ∗)) =
−γ +

√
γ2 + 2σ2 f (ŵ∗)

σ2 .
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Gu[β2( f (ŵ∗))− β1( f (ŵ∗))] =
β2( f (ŵ∗))− β1( f (ŵ∗))

β2( f (ŵ∗))−1 − β1( f (ŵ∗))−1 ,

= −β1( f (ŵ∗))β2( f (ŵ∗)),

= −
(
−γ−

√
γ2 + 2σ2 f (ŵ∗)

σ2

)(
−γ +

√
γ2 + 2σ2 f (ŵ∗)

σ2

)

=
2 f (ŵ∗)

σ2

β2( f (ŵ∗)) + β1( f (ŵ∗))
Gu[β2( f (ŵ∗))− β1( f (ŵ∗))]

=
β2( f (ŵ∗)) + β1( f (ŵ∗))

β1( f (ŵ∗))β2( f (ŵ∗))
,

=

(
−γ−
√

γ2+2σ2 f (ŵ∗)−γ+
√

γ2+2σ2 f (ŵ∗)
σ2

)
2 f (ŵ∗)

σ2

= − γ

f (ŵ∗)
.

β1( f (ŵ∗))β2( f (ŵ∗))
Gu[β2( f (ŵ∗))− β1( f (ŵ∗))]

= −1.

Therefore the differential equation is given by (C.2).

C.3 Proof of Proposition 7

Proposition 7. Assume γ 6= 0. The distribution of cumulative productivity shocks gh(∆z) is given by

gh(∆z) =
sE
γ

[ˆ ∆z

−∆−

(
1− e

2γ

σ2 (y−∆z)
)

ḡh(y)dy + Ḡh(−∆−)
[

1− e−
2γ

σ2 (∆z+∆−)
]]

.

Proof. During employment, the distribution of cumulative productivity shocks satisfies the following KFE and the boundary

conditions

δgh(∆z) = γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)/{0}

gh(−∆−) = gh(∆+) = 0, Gh(∆+) = E ,

gh(∆z) ∈ C.

The distribution of cumulative productivity shocks conditional on a job separation satisfies

Ḡh(∆z) =


1 if ∆z ∈ [∆+, ∞)

1
sE

[
σ2

2 lim∆z↓−∆− (gh)′(∆z) + δ
´ ∆z
−∆− gh(x)dx

]
if ∆z ∈ [−∆−, ∆+)

0 if ∆z ∈ (−∞,−∆−).

Combining these two conditions, we obtain

sE ḡh(∆z) = γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)/{0}

gh(−∆−) = gh(∆+) = 0, Gh(∆+) = E .
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Multiplying both sides of the first equation by e
2γ

σ2 ∆z we get

sE e
2γ

σ2 ∆z ḡh(∆z) = γe
2γ

σ2 ∆z(gh)′(∆z) +
σ2

2
e

2γ

σ2 ∆z(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)/{0}

=
σ2

2
d(e

2γ

σ2 ∆z(gh)′(∆z))
d∆z

.

Integrating both sides from −∆− to ∆z, we obtain

sE
ˆ ∆z

−∆−
e

2γ

σ2 x ḡh(x)dx =
σ2

2

[
e

2γ

σ2 ∆z(gh)′(∆z)− lim
x↓−∆−

e
2γ

σ2 x(gh)′(x)
]

,

=
σ2

2
e

2γ

σ2 ∆z(gh)′(∆z)− sE e−
2γ

σ2 ∆− Ḡh(−∆−),

where the last equation uses the value of Ḡh(∆z) evaluated at ∆z = −∆−. Solving for (gh)′(∆z),

2sE
σ2

[ˆ ∆z

−∆−
e

2γ

σ2 (x−∆z) ḡh(x)dx + e−
2γ

σ2 (∆
−+∆z)Ḡh(−∆−)

]
= (gh)′(∆z).

Integrating this equation from −∆− to ∆z, we obtain

ˆ ∆z

−∆−
(gh)′(x)dx = gh(∆z)− gh(−∆−)︸ ︷︷ ︸

= 0

=
2sE
σ2

ˆ ∆z

−∆−

[ˆ x

−∆−
e

2γ

σ2 (y−x) ḡh(y)dy + e−
2γ

σ2 (∆
−+x)Ḡh(−∆−)

]
dx

=
2sE
σ2

[ˆ ∆z

−∆−

ˆ x

−∆−
e

2γ

σ2 (y−x) ḡh(y)dy dx +
σ2

2γ
Ḡh(−∆−)

[
1− e−

2γ

σ2 (∆z+∆−)
]]

=
2sE
σ2

[ˆ ∆z

−∆−

ˆ ∆z

y
e

2γ

σ2 (y−x) ḡh(y)dx dy +
σ2

2γ
Ḡh(−∆−)

[
1− e−

2γ

σ2 (∆z+∆−)
]]

=
2sE
σ2


ˆ ∆z

−∆−

[ˆ ∆z

y
e

2γ

σ2 (y−x) dx

]
︸ ︷︷ ︸
= σ2

2γ

(
1−e

2γ

σ2 (y−∆z)
)

ḡh(y)dy +
σ2

2γ
Ḡh(−∆−)

[
1− e−

2γ

σ2 (∆z+∆−)
]


=
sE
γ

[ˆ ∆z

−∆−

(
1− e

2γ

σ2 (y−∆z)
)

ḡh(y)dy + Ḡh(−∆−)
[

1− e−
2γ

σ2 (∆z+∆−)
]]

.
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D Additional Results for Section 3: Identifying the Microeconomic Impli-

cations of Allocative Wages

D.1 Characterization of gh(∆z) and gu(∆z)

Proposition D.1. Assume δ > 0. Then, gh(∆z) and gu(∆z) are given by

gh(∆z) = EGh


eβ1(δ)(∆z+∆− )−eβ2(δ)(∆z+∆− )

eβ1(δ)∆
−−eβ2(δ)∆

− if ∆z ∈ (−∆−, 0]
eβ1(δ)(∆z−∆+)−eβ2(δ)(∆z−∆+)

e−β1(δ)∆
+−e−β2(δ)∆

+ if ∆z ∈ [0, ∆+)

gu(∆z) = (1− E)Gu

 eβ2( f (ŵ∗))∆z if ∆z ∈ (−∞, 0]

eβ1( f (ŵ∗)∆z if ∆z ∈ [0, ∞)

where

β1(x) =
−γ−

√
γ2 + 2σ2x
σ2 , β2(x) =

−γ +
√

γ2 + 2σ2x
σ2 ,

E =
f (ŵ∗)

f (ŵ∗) + δ + σ2

2 Gh

[
β1(δ)−β2(δ)

eβ1(δ)∆
−−eβ2(δ)∆

− − β1(δ)−β2(δ)

e−β1(δ)∆
+−e−β2(δ)∆

+

] ,

Gh =

 eβ1(δ)∆
−−1

β1(δ)
− eβ2(δ)∆

−−1
β2(δ)

eβ1(δ)∆− − eβ2(δ)∆−
+

1−e−β1∆+

β1(δ)
− 1−e−β2∆+

β2(δ)

e−β1(δ)∆+ − e−β2(δ)∆+

−1

,

Gu =
[
−β1( f (ŵ∗))−1 + β2( f (ŵ∗))−1

]−1
.

Proof. Let us write the KFE and border conditions:

δgh(∆z) = γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z) ∀∆z ∈ (−∆−, ∆+)/{0} (D.1)

gh(−∆−) = gh(∆+) = 0, (D.2)

f (ŵ∗)gu(∆z) = γ(gu)′(∆z) +
σ2

2
(gu)′′(∆z) ∀∆z ∈ (−∞, ∞)/{0}, (D.3)

lim
∆z→−∞

gu(∆z) = lim
∆z→∞

gu(∆z) = 0, (D.4)

1 =

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z, (D.5)

f (ŵ∗)(1− E) = δE + σ2

2

[
lim

∆z↓−∆−
(gh)′(∆z)− lim

∆z↑∆+
(gh)′(∆z)

]
, (D.6)

gh(∆z), gu(∆z) ∈ C.

We guess and verify the proposed solution. Substituting the guess for gh(∆z) in (D.1) for ∆z < 0, we have

0 = −δEGh
eβ1(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆−
+ γβ1(δ)EGh

eβ1(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆−
+ EGh

σ2

2
β1(δ)

2 eβ1(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆−
⇐⇒

0 = −δ + γβ1(δ) +
σ2

2
β1(δ)

2,

mutatis mutandis for the terms that include β2(δ). Given the definition of β1(δ), the guess satisfies (D.1). A similar argument
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applies when (D.1) is evaluated at ∆z > 0. It is easy to verify that the boundary conditions (D.2) are satisfied and that gh(∆z)

is continuous at ∆z = 0. Following the same steps for gu(∆z), we verify conditions (D.3) and (D.4). Next, we verify condition

(D.5):

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z

= (1− E)Gu

[ˆ 0

−∞
eβ2( f (ŵ∗))∆z d∆z +

ˆ ∞

0
eβ1( f (ŵ∗))∆z d∆z

]
+ . . .

. . . EGh

[ˆ 0

−∆−

eβ1(δ)(∆z+∆−) − eβ2(δ)(∆z+∆−)

eβ1(δ)∆− − eβ2(δ)∆−
d∆z +

ˆ ∆+

0

eβ1(δ)(∆z−∆+) − eβ2(δ)(∆z−∆+)

e−β1(δ)∆+ − e−β2(δ)∆+ d∆z

]

= (1− E)Gu

[
1− lim∆z→−∞ eβ2( f (ŵ∗))∆z

β2( f (ŵ∗))
+

lim∆z→∞ eβ1( f (ŵ∗))∆z − 1
β1( f (ŵ∗))

]
+ . . .

. . . EGh

 eβ1(δ)∆
−−1

β1(δ)
− eβ2(δ)∆

−−1
β2(δ)

eβ1(δ)∆− − eβ2(δ)∆−
+

1−e−β1∆+

β1(δ)
− 1−e−β2∆+

β2(δ)

e−β1(δ)∆+ − e−β2(δ)∆+


= (1− E) + E = 1.

Finally, combining condition (D.6) with the definition of gh(∆z), the employment rate is

E =
f (ŵ∗)

f (ŵ∗) + δ + σ2

2E
[
lim∆z↓−∆− (gh)′(∆z)− lim∆z↑∆+ (gh)′(∆z)

] ,

=
f (ŵ∗)

f (ŵ∗) + δ + σ2

2 Gh

[
β1(δ)−β2(δ)

eβ1(δ)∆
−−eβ2(δ)∆

− − β1(δ)−β2(δ)

e−β1(δ)∆
+−e−β2(δ)∆

+

] .

D.2 Characterization of the job finding rate f (ŵ∗) and job separation rate s

Proposition D.2. The job finding rate f (ŵ∗) and the job separating rate s are given by

f (ŵ∗) =
σ2

2(1− E)

[
lim
∆z↑0

(gh)′(∆z)− lim
∆z↓0

(gh)′(∆z)
]

,

s =
σ2

2E

[
lim
∆z↑0

(gu)′(∆z)− lim
∆z↓0

(gu)′(∆z)
]

.

The ratio of endogenous send to total job separations s is given by

send

s
=

σ2

2E

[
lim∆z↓−∆− (gh)′(∆z)− lim∆z↑∆+ (gh)′(∆z)

]
s

and δ = s− send.

Proof. The proof comes directly from the equilibrium conditions described in Section 3.
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D.3 Characterization of lu(τu) and lm(τm)

Proposition D.3. Let ∆+− := ∆+ + ∆−. The distributions of τu and τm are given by

lu(τu) = f (ŵ∗)e− f (ŵ∗)τu
,

lm(τm) = e−δτm

[
δ +

∞

∑
n=1
A(n)

(
e−B(n)τ

m − δ

B(n)

(
1− e−B(n)τ

m
))]

. (D.7)

with

A(n) = πσ2n(−1)n−1

∆2
+−

[
sin
(

πn
∆−

∆+−

)
e−

γ

σ2 ∆+

+ sin
(

πn∆+

∆+−

)
e

γ

σ2 ∆−
]

,

B(n) = 1
2

(
n2π2σ2

∆2
+−

+
γ2

σ2

)
.

Proof. The distribution lu(τu) is the exponential distribution that arises from a Poisson process with arrival rate f (ŵ∗). Next, we

derive the formula for lm(τm). Since τm = min{τδ, τh∗, τ j∗}, we have that

Pr(τm ≤ T) = Pr(min{τh∗, τ j∗} ≤ T|τδ ≥ T)Pr(τδ ≥ T) + Pr(τδ ≤ T)

= Pr(min{τh∗, τ j∗} ≤ T|τδ ≥ T)[1−Pr(τδ ≤ T)] + Pr(τδ ≤ T)

= Pr(min{τh∗, τ j∗} ≤ T)[e−δT ] + [1− e−δT ],

where the last equation uses the fact that τδ is distributed according to an exponential distribution with rate δ. Taking the

derivative with respect to T, we obtain

lm(T) = e−δT

[
dPr(min{τh∗, τ j∗} ≤ T)

dT
− δPr(min{τh∗, τ j∗} ≤ T) + δ

]
. (D.8)

From Kolkiewicz (2002), we have that

dPr(min{τh∗, τ j∗} ≤ T)
dT

=
πσ2

(ŵ+ − ŵ−)2

∞

∑
n=1

n(−1)n−1e
− n2π2σ2

2(ŵ+−ŵ− )2
T
[

sin
(

πn
ŵ∗ − ŵ−

ŵ+ − ŵ−

)
e−

γ

2σ2 (2(ŵ
+−ŵ∗)+γT) + sin

(
πn

ŵ+ − ŵ∗

ŵ+ − ŵ−

)
e−

γ

2σ2 (2(ŵ
−−ŵ∗)+γT)

]

=
πσ2

∆2
+−

∞

∑
n=1

n(−1)n−1e
−
(

n2π2σ2

2∆2
+−

+ γ2

2σ2

)
T
[

sin
(

πn∆−

∆+−

)
e−

γ

σ2 ∆+

+ sin
(

πn∆+

∆+−

)
e

γ

σ2 ∆−
]

=
∞

∑
n=1
A(n)e−B(n)T . (D.9)

Combining (D.8) and (D.9), we obtain (D.7).

D.4 Characterization of lw(∆w)

Proposition D.4. The distribution of log nominal wage changes satisfies

lw(∆w) = Gu

[
β2( f (ŵ∗))e−β2( f (ŵ∗))∆wΓ2(∆w) + β1( f (ŵ∗))e−β1( f (ŵ∗))∆wΓ1(∆w)

]
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with

(Γ1(c), Γ2(c)) =
(ˆ −c

−∞
e−β1( f (ŵ∗)))xḠh(x)dx,

ˆ ∞

−c
e−β2( f (ŵ∗))xḠh(x)dx

)
.

Proof. Fix a date t0 and focus on a newly hired worker. Then, the distribution of wage changes between two new jobs is given by

Pr(∆w ≤ c) = Pr(wt0+τm+τu − wt0 ≤ c)

=(1) Pr(wt0+τm+τu − zt0+τm+τu − (wt0 − zt0 ) + (zt0+τm+τu − zt0 ) ≤ c)

=(2) Pr(ŵ∗ − ŵ∗ + (zt0+τm+τu − zt0 ) ≤ c)

=(3) Pr(−(∆zh + ∆zu) ≤ c),

where ∆zh and ∆zu denote cumulative productivity shocks during completed employment and unemployment spells, respec-

tively. Here, step (1) adds and subtracts productivity at the beggining of both job spells. In step (2), we use the result that ŵ∗ is

constant across jobs. Steps 3 uses the facts that τu and the Brownian motion increments are independent of the filtration Fτu .

Therefore, the distributions of cumulative productivity shocks for completed employment and unemployment spells are given

by

Ḡh(∆z) =


1 if ∆z ∈ [∆+, ∞)

1
sE

[
σ2

2 lim∆z↓−∆− (gh)′(∆z) + δ
´ ∆z
−∆− gh(x)dx

]
if ∆z ∈ [−∆−, ∆+)

0 if ∆z ∈ (−∞,−∆−)

ḡu(∆z) = Gu

 eβ2( f (ŵ∗))∆z if ∆z ∈ (−∞, 0]

eβ1( f (ŵ∗))∆z if ∆z ∈ [0, ∞)

Thus,

Pr(∆w ≤ c)

= Pr(−(∆zu + ∆zh) ≤ c)

= 1− Pr(∆zu + ∆zh ≤ −c)

=(1) 1−
ˆ ∞

−∞
Ḡh(−(c + ∆z))ḡu(∆z)d∆z

=(2) 1− Gu

[ˆ 0

−∞
eβ2( f (ŵ∗))∆zḠh(−(c + ∆z))d∆z +

ˆ ∞

0
eβ1( f (ŵ∗))∆zḠh(−(c + ∆z))d∆z

]

=(3) 1 + Gu

[ˆ −c

∞
e−β2( f (ŵ∗))(c+x)Ḡh(x)dx +

ˆ −∞

−c
e−β1( f (ŵ∗))(c+x)Ḡh(x)dx

]
=(4) 1− Gu

[
e−β2( f (ŵ∗))c

ˆ ∞

−c
e−β2( f (ŵ∗))xḠh(x)dx + e−β1( f (ŵ∗))c

ˆ −c

−∞
e−β1( f (ŵ∗))xḠh(x)dx

]
.

In step (1), we use the independence of ∆zu and ∆zh. In step (2), we use the definition of ḡu(∆z). In step (3), we integrate by

substituting x = −c− ∆z and in step (4), we use the properties of an integral. The last step involves defining

(Γ1(c), Γ2(c)) =
(ˆ −c

−∞
e−β1( f (ŵ∗))xḠh(x)dx,

ˆ ∞

−c
e−β2( f (ŵ∗))xḠh(x)dx

)
.
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D.5 Characterization of Eh[∆zn]

We denote by Ēh[·] and Ēu[·] the expectation operators under the distributions ḡh(∆z) and ḡu(∆z), respectively.

Proposition D.5. Define the weights ωhn(∆z) = ∆zn

Ēh [∆zn ]
with the property that

Ēh

[
ωhn(∆z)

]
= 1.

If γ = 0, then Eh[(∆z)n] can be recovered from

Eh[(∆z)n] =
2E

(n + 1)(n + 2)
Ēh

[
(∆z)nωh2(∆z)

]
. (D.10)

If γ 6= 0, then Eh[(∆z)n] can be recovered recursively from

Eh[(∆z)n] =
E

n + 1
Ēh[(∆z)nωh1(∆z)] +

σ2n
2γ

Eh[(∆z)n−1]. (D.11)

The moments Ēh

[
(∆z)nωhk(∆z)

]
=

Ēh[(∆z)n+k]
Ēh [(∆z)k ]

can be recovered from the following linear system of equations:

ED [∆wn] = (−1)n
n

∑
i=0

 n

i

 Ēh[∆zi]Ēu[∆zn−i],

Ēu[(∆z)n−i] =
(n− i)!

Ln−i
1

(
L2 + L−1

2

) (L−(n−i+1)
2 − (−L2)

(n−i+1)
)

,

where

L1 =

√
2 f (ŵ∗)

σ2 and L2 =

√
γ +

√
γ2 + 2σ2 f (ŵ∗)

−γ +
√

γ2 + 2σ2 f (ŵ∗)
.

Proof. We divide the proof into 3 steps.

Step 1. We first show that

Eh[(∆z)n] =
E

n + 1
Ēh[(∆z)nωh1(∆z)]− σ2n

2γ
Eh[(∆z)n−1].

when γ 6= 0. For the case with γ = 0, see Baley and Blanco (2021a).

Let us define Yt = (∆zt)
n. The law of motion for ∆zt is given by d∆zt = −γ dt + σ dW z

t . Applying Itô’s Lemma, we obtain

dYt = n(∆zt)
n−1 d∆zt +

1
2

n(n− 1)(∆zt)
n−2(d∆zt)

2

=

[
−γn(∆zt)

n−1 +
σ2

2
n(n− 1)(∆zt)

n−2
]

dt + nσ(∆zt)
n−1 dW z

t

Thus,

(∆zτm )n = −γn
ˆ τm

0
(∆zt)

n−1 dt +
σ2

2
n(n− 1)

ˆ τm

0
(∆zt)

n−2 dt + n
ˆ τm

0
(∆zt)

n−1σ dW z
t .

Following the same arguments as in the proof of Lemma 3 and using the Renewal Principle to have ED [τ
m] = 1/s, we obtain

Ēh[(∆z)n] = −γnED [τ
m]

Eh[(∆z)n−1]

E +
σ2n(n− 1)

2s
Eh[(∆z)n−2]

E
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or equivalently

Eh[(∆z)n] = − E
γED [τm]

Ēh[(∆z)n+1]

n + 1
+

σ2n
2γ

Eh[(∆z)n−1].

From Lemma 3, we have that γED [τ
m] = −Ēh[(∆z)] and Ēh [(∆z)n+1]

Ēh [(∆z)] = Ēh[(∆z)nωh1(∆z)]. Thus,

Eh[(∆z)n] =
E

n + 1
Ēh[(∆z)nωh1(∆z)] +

σ2n
2γ

Eh[(∆z)n−1].

Step 2. Here we show that

ED [∆wn] = (−1)n
n

∑
i=0

 n

i

 Ēh[∆zn]Ēu[∆zn−i].

Using the independence of cumulative productivity shocks during employment and unemployment, we obtain

ED [∆wn] = Ē[(−∆zh − ∆zu)n],

=
n

∑
i=0

 n

i

 Ē[(−∆zh)i(−∆uu)n−i],

=
n

∑
i=0

 n

i

 Ēh[(−∆z)i]Ēu[(−∆z)n−i],

= (−1)n
n

∑
i=0

 n

i

 Ēh[∆zi]Ēu[∆zn−i],

Step 3. Here we show that

Ēu[(∆z)n−i] =
(n− i)!

Ln−i
1

(
L2 + L−1

2

) (L−(n−i+1)
2 − (−L2)

(n−i+1)
)

.

Let us depart from the definition of ḡu(∆z), which is given by

ḡu(∆z) =
[
−β1( f (ŵ∗))−1 + β2( f (ŵ∗))−1

]−1

 eβ2( f (ŵ∗))∆z if ∆z ∈ (−∞, 0]

eβ1( f (ŵ∗)∆z if ∆z ∈ [0, ∞)

where β1(x) = −γ−
√

γ2+2σ2x
σ2 and β2(x) = −γ+

√
γ2+2σ2x

σ2 . This step consist of showing that ḡu(∆z) is an asymmetric Laplace

distribution with parameters

L1 =

√
2 f (ŵ∗)

σ2 and L2 =

√
γ +

√
γ2 + 2σ2 f (ŵ∗)

−γ +
√

γ2 + 2σ2 f (ŵ∗)

The ratio between L1 and L2 is

L1
L2

=

√
2 f (ŵ∗)

σ2
−γ +

√
γ2 + 2σ2 f (ŵ∗)

γ +
√

γ2 + 2σ2 f (ŵ∗)

=

√√√√√2 f (ŵ∗)
σ2 (−γ +

√
γ2 + 2σ2 f (ŵ∗))

−γ +
√

γ2 + 2σ2 f (ŵ∗)(√
γ2 + 2σ2 f (ŵ∗)

)2
− γ2

= (−γ +
√

γ2 + 2σ2 f (ŵ∗))

√
2 f (ŵ∗)

σ2
1

2σ2 f (ŵ∗)
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=
−γ +

√
γ2 + 2σ2 f (ŵ∗)

σ2 = β2( f (ŵ∗)).

The product between L1 and L2 is

−L1L2 = −

√
2 f (ŵ∗)

σ2
γ +

√
γ2 + 2σ2 f (ŵ∗)

−γ +
√

γ2 + 2σ2 f (ŵ∗)

= −

√√√√√2 f (ŵ∗)
σ2 (γ +

√
γ2 + 2σ2 f (ŵ∗))

γ +
√

γ2 + 2σ2 f (ŵ∗)

−γ2 +
(√

γ2 + 2σ2 f (ŵ∗)
)2

= −(γ +
√

γ2 + 2σ2 f (ŵ∗))

√
2 f (ŵ∗)

σ2
1

2σ2 f (ŵ∗)

= −γ +
√

γ2 + 2σ2 f (ŵ∗)
σ2 = β1( f (ŵ∗)).

Therefore, we can write ḡu(∆z)

ḡu(∆z) =
L1

L2 + L−1
2

 e
L1
L2

∆z if ∆z ∈ (−∞, 0]

e−L1L2∆z if ∆z ∈ [0, ∞),

which is the probability distribution function of an asymmetric Laplace distribution. It is a standard result that the n-th moment

for an asymmetric Laplace distribution is given by

Ēu[(∆z)n] =
n!

Ln
1

(
L2 + L−1

2

) (L−(n+1)
2 − (−L2)

(n+1)
)

.
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E Proofs for Section 4: Analyzing the Macroeconomic Consequences of Al-

locative Wages

E.1 Proof of Proposition 8

Proposition 8. Let Q0 = 1 be the numéraire and assume µ = ρ + π − ζ2

2 . Then, Pt = Mt and the worker’s optimal value solves

V0 = max
{lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt y(lmt

i )

Pt
dt

]
+ k,

where k is a constant independent of a worker’s policy.

Proof. Let V0 be the present discounted value of the optimal plan. The worker’s value is given by

V0 = max
{cit ,M̂it ,lmit}∞

t=0

E0

[ˆ ∞

t=0
e−ρt

(
cit + µ log

(
M̂it
Pt

))
dt
]

,

subject to

E0

[ˆ ∞

t=0
Qt
(

Ptcit + it M̂it − y(lmt
i )− Tit

)
dt
]
≤ Mi0. (E.1)

The first-order conditions for consumption and money holdings, combined with the definition of the nominal interest rate,

are given by

e−ρt = ΛiQtPt, (E.2)

µ
e−ρt

M̂it
= ΛiQtit, (E.3)

E[dQt] = −itQt dt. (E.4)

Here, Λi is the Lagrange multiplier of (E.1) for each worker. Equation (E.2) shows that Λi = Λ for all i. Taking integrals over

(E.3), we can replace M̂ti = Mt. With these results, we guess and verify the following equilibrium outcomes

Pt = Ap Mt,

it = Ai, (E.5)

Qt =
AQe−ρt

Mt
.

given a set of constants Ap, Ai, and AQ. Using the guess in (E.2) and (E.3)

1 = ΛAQ AP, (E.6)

µ = ΛAQ Ai. (E.7)

Equations (E.6) and (E.7) provide the equilibrium values for AQ and AP given Ai. Applying Ito’s lemma and using the guess

over (E.4)

dQt = AQ d
(

e−ρt

elog(Mt)

)
,
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= −ρAQ
(

e−ρt

elog(Mt)

)
dt− AQ e−ρt

elog(Mt)
dlog(Mt) + AQ e−ρt

2elog(Mt)
(dlog(Mt))

2,

= −ρQt dt− πQt dt− ζQt dWm
t +

ζ2

2
Qt dt.

Thus, using the guess (E.5) and E[dWm
t ] = 0

E[dQt] = −
(

ρ + π − ζ2

2

)
︸ ︷︷ ︸

=Ai

Qt dt.

If we take as numéraire Q0 = 1, then we verify the guess with µ = ρ + π − ζ2

2 :

AQ = M0,

Ai = ρ + π − ζ2

2
= µ,

Λ =
µ

M0(ρ + π − ζ2/2)
=

1
M0

,

AP =
ρ + π − ζ2/2

µ
= 1.

Using the budget constraint (E.1)

E0

[ˆ ∞

0
Qt
(

Ptcit + it M̂it − y(lmt
i )− Tit

)
dt
]
= Mi0 ⇐⇒

E0

[ˆ ∞

0

M0e−ρt

Mt

(
Mtcit + µMt − y(lmt

i )− Tit
)

dt
]
= Mi0 ⇐⇒

M0E0

[ˆ ∞

0
e−ρtcit dt

]
= Mi0 + M0E0

[ˆ ∞

0
e−ρt y(lmt

i )

Mt

]
+ M0E0

[ˆ ∞

0
e−ρt Tit

Mt
dt
]
− M0

ρ
µ ⇐⇒

E0

[ˆ ∞

0
e−ρtcit dt

]
= E0

[ˆ ∞

0
e−ρt y(lmt

i )

Mt

]
+ ki

where ki is a constant independent of the worker’s policies. Thus,

V0 = max
{cit ,M̂it ,lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt

(
cit + µ log

(
M̂it
Pt

))
dt
]

,

= max
{cit ,lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt

(
cit + µ log

(
µ

ρ + π − ζ2/2

))
dt
]

,

= max
{cit ,lmit}∞

t=0

E0

[ˆ ∞

0
e−ρtcit dt

]
,

= max
{lmit}∞

t=0

E0

[ˆ ∞

0
e−ρt y(lmt

i )

Mt

]
+ ki.
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E.2 Proof of Proposition 9: CIR of employment

Proposition 9. Given steady-state policies (ŵ−, ŵ∗, ŵ+) and distributions (gh(∆z), gu(∆z)), the CIR is given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z,

where the value functions mE ,h(∆z) and mE ,u(∆z, ζ) are defined as:

mE ,h(∆z) = E

[ˆ τm

0
(1− Ess)dt + mE ,u(0, 0)

∣∣∣∣∣∆z0 = ∆z

]
, (E.8)

mE ,u(∆z, ζ) = E

[ˆ τu(ζ)

0
(−Ess)dt + mE ,h(−ζ)

∣∣∣∣∣∆z0 = ∆z

]
. (E.9)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z, 0)gu(∆z)d∆z.

with τu(ζ) being distributed according to a Poisson process with arrival rate f (ŵ∗ − ζ).

Proof. We define the cumulative impulse response of aggregate employment to a monetary shock as

CIRE (ζ) =
ˆ ∞

0

ˆ ∞

−∞

(
gh(∆z, ζ, t)− gh(∆z)

)
d∆z dt

Note that Et =
´ ∞
−∞ gh(∆z, ζ, t)d∆z is a function of ζ since aggregate shocks affect the entry rate to employment. The proof

proceeds in three steps. Step 1 rewrites the CIR as the integral over time of two value functions, one for employed and

unemployed workers, up to a finite time T . Step 2 expresses the CIR as T → ∞. Step 3 uses the equivalence of the combined

Dirichlet-Poisson problem (i.e., the mapping from the sequential problem and the corresponding HJB equations and boundary

conditions).

Step 1. Here, we follow a recursive representation for the CIR. The CIR satisfies

CIRE (ζ) =
ˆ ∞

−∞
lim
T →∞

[
mE ,h(∆z, T )gh(∆z + ζ) + mE ,u(∆z, T )gu(∆z + ζ)

]
d∆z

where we defined

mE ,h(∆z0, T ) :=
ˆ T

0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h))

]
d∆z dt

]
(E.10)

mE ,u(∆z0, ζ, T ) :=
ˆ T

0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
d∆z dt

]
(E.11)

Proof of Step 1. Starting from the definition of the CIR, (1) adds and subtracts employment in t; (2) operates over the integral; (3)

and (4) use the fact that the integral operator is a linear operator; (5) applies the definition of a conditional expectation, where

gh(∆z, t|∆z0, h)d∆z is the probability of a worker being in the state ∆z at time t when the initial productivity is ∆z0 and the

initial employment state is h (mutatis mutandis if the initial employment state is u); (5) uses the fact that conditional on being

initially employed, the transition probabilities are independent of ζ; (6), (7) and (8) apply Fubini’s theorem and the definition of

the limit of an integral, (8) relabels the resulting terms.

CIRE (ζ) =
ˆ ∞

0

ˆ ∞

−∞

(
gh(∆z, ζ, t)− gh(∆z)

)
d∆z dt
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=(1)
ˆ ∞

0

ˆ ∞

−∞

(
gh(∆z, ζ, t)− gh(∆z)(Et + 1− Et)

)
d∆z dt

=(2)
ˆ ∞

0

[ˆ ∞

−∞
gh(∆z, ζ, t)d∆z− Ess

(ˆ ∞

−∞
gh(∆z, ζ, t)d∆z +

ˆ ∞

−∞
gu(∆z, ζ, t)d∆z

)]
dt

=(3)
ˆ ∞

0

ˆ ∞

−∞
(1− Ess) gh(∆z, ζ, t)d∆z dt +

ˆ ∞

0

ˆ ∞

−∞
(−Ess)gu(∆z, ζ, t)d∆z dt

=(4)
ˆ ∞

0

ˆ ∞

−∞

[
(1− Ess) gh(∆z, ζ, t) + (−Ess)gu(∆z, ζ, t)

]
d∆z dt

=(5)
ˆ ∞

0

ˆ ∞

−∞

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h))

]
gh(∆z0, 0)d∆z0 d∆z dt

]
. . .

· · ·+
ˆ ∞

0

ˆ ∞

−∞

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
gu(∆z0, 0)d∆z0 d∆z dt

]
=(6)

ˆ ∞

−∞

ˆ ∞

0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h))

]
d∆z dt

]
gh(∆z0 + ζ)d∆z0 . . .

· · ·+
ˆ ∞

−∞

ˆ ∞

0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
d∆z dt

]
gu(∆z0 + ζ)d∆z0

=(7)
ˆ ∞

−∞
lim
T →∞

ˆ T
0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h))

]
d∆z dt

]
︸ ︷︷ ︸

mE ,h(∆z0,T )

gh(∆z0 + ζ)d∆z0 . . .

· · ·+
ˆ ∞

−∞
lim
T →∞

ˆ T
0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
d∆z dt

]
︸ ︷︷ ︸

mE ,u(∆z0,ζ,T )

gu(∆z0 + ζ)d∆z0

=(8)
ˆ ∞

−∞
lim
T →∞

mE ,h(∆z, T )gh(∆z + ζ)d∆z +
ˆ ∞

−∞
lim
T →∞

mE ,u(∆z, ζ, T )gu(∆z + ζ)d∆z (E.12)

where we define

mE ,h(∆z0, T ) ≡
ˆ T

0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h)

]
d∆z dt

]
mE ,u(∆z0, ζ, T ) ≡

ˆ T
0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, ζ, t|∆z0, u) + (−Ess)gu(∆z, ζ, t|∆z0, u)

]
d∆z dt

]
.

Step 2. The CIR satisfies

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z

and the value functions mE ,h(∆z0) and mE ,u(∆z0, ζ) satisfy the following HJB and border conditions:

0 = 1− Ess − γ
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ(mE ,u(0, 0)−mE ,h(∆z)), (E.13)

0 = −Ess − γ
dmE ,u(∆z, ζ)

d∆z
+

σ2

2
d2mE ,u(∆z, ζ)

d∆z2 + f (ŵ∗ − ζ)(mE ,h(−ζ)−mE ,u(∆z, ζ)) (E.14)

mE ,u(0, 0) = mE ,h(∆z), for all ∆z /∈ (−∆−, ∆+)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ)

d∆z
= lim

∆z→∞

dmE ,u(∆z, ζ)

d∆z
(E.15)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z, 0)gu(∆z)d∆z. (E.16)

Proof of Step 2. We divide this proof in steps a to d.
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a. We show that limT →∞ mE ,h(∆z, T ) = mE ,h(∆z) and limT →∞ mE ,u(∆z, ζ, T ) = mE ,u(∆z, ζ): This property holds due to the

convergence of the distribution of ∆z over time to its ergodic distribution for any initial condition (Stokey, 1989).

b. We show that 0 =
´ ∞
−∞ mE ,h(∆z, T )gh(∆z)d∆z +

´ ∞
−∞ mE ,u(∆z, 0, T )gu(∆z)d∆z: The logic of the proof is to repeat the steps

behind (E.12) in the reverse order. Departing from the definition,

ˆ ∞

−∞
mE ,h(∆z0, T )gh(∆z0)d∆z0 +

ˆ ∞

−∞
mE ,u(∆z0, 0, T )gu(∆z0)d∆z0

=(1)
ˆ ∞

−∞

ˆ T
0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h))

]
d∆z dt

]
gh(∆z0)d∆z0

· · ·+
ˆ ∞

−∞

ˆ T
0

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, 0, t|∆z0, u) + (−Ess)gu(∆z, 0, t|∆z0, u)

]
d∆z dt

]
gu(∆z0)d∆z0

=(2)
ˆ T

0

ˆ ∞

−∞

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, t|∆z0, h) + (−Ess)gu(∆z, t|∆z0, h))

]
gh(∆z0)dz0 d∆z

]
dt

· · ·+
ˆ T

0

ˆ ∞

−∞

[ˆ ∞

−∞

[
(1− Ess) gh(∆z, 0, t|∆z0, u) + (−Ess)gu(∆z, 0, t|∆z0, u)

]
gu(∆z0) d∆z0 d∆z

]
dt

=(3)
ˆ T

0

ˆ ∞

−∞

(1− Ess)

ˆ ∞

−∞
gh(∆z, 0, t|∆z0)g(∆z0)d∆z0︸ ︷︷ ︸

= gh(∆z)

d∆z + (−Ess)

ˆ ∞

−∞
gu(∆z, 0, t|∆z0)g(∆z0)d∆z0︸ ︷︷ ︸

= gu(∆z)

d∆z

dt

=(4)
ˆ T

0
(1− Ess) Ess dt +

ˆ T
0

(−Ess) (1− Ess)dt

= 0

In (1), we apply the definitions (E.10) and (E.11); (2) applies Fubini’s theorem; (3) uses the steady-state conditions for gh(·)
and gu(·), and the definition g(∆z) = gh(∆z) + gu(∆z); and (4) computes the integral using the definitions of aggregate

employment and unemployment.

c. We show that 0 =
´ ∆+

−∆− mE ,h(∆z)gh(∆z)d∆z +
´ ∆+

−∆− mE ,u(∆z, 0)gu(∆z)d∆z: See ?.

d. We show that the CIR satisfies (E.12) with mE ,h(∆z0) and mE ,u(∆z0, ζ) satisfying (E.13)–(E.16): Writing the HJB for mE ,h(∆z0, T )
and mE ,u(∆z0, ζ, T ), we have that

0 = 1− Ess −
dmE ,h(∆z, T )

dT − γ
dmE ,h(∆z, T )

d∆z
+

σ2

2
d2mE ,h(∆z, T )

d∆z2 + δ(mE ,u(0, 0, T )−mE ,h(∆z, T )),

0 = −Ess −
dmE ,u(∆z, ζ, T )

dT − γ
dmE ,u(∆z, ζ, T )

d∆z
+

σ2

2
d2mE ,u(∆z, ζ, T )

d∆z2 + f (ŵ∗ − ζ)(mE ,h(−ζ, T )−mE ,u(∆z, ζ, T ))

mE ,u(0, 0, T ) = mE ,h(∆z, T ), for all ∆z /∈ (−∆−, ∆+)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ, T )
d∆z

= lim
∆z→∞

dmE ,u(∆z, ζ, T )
d∆z

0 =

ˆ ∆+

−∆−
mE ,h(∆z, T )gh(∆z)d∆z +

ˆ ∆+

−∆−
mE ,u(∆z, 0, T )gu(∆z)d∆z.

The border condition for mE ,u(∆z, ζ, T ) is implied from the fact that the job finding rate f (ŵ∗) is independent of ∆z, so

the function mE ,u(∆z, ζ, T ) is constant in the entire domain. Taking the limit T → ∞ and using point-wise convergence of

mE ,h(∆z0, T ) and mE ,u(∆z0, ζ, T ), we have the desired result.
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Step 3. The solution of the differential equations (E.13) to (E.15) satisfy (E.8) and (E.9).

Proof of Step 3. This is just an application of ?, Chapter 9.

E.3 Proof of Proposition 10: Flexible Entry Wages

Proposition 10 relates the CIR to a perturbation of two Bellman equations describing future employment fluctuations for

initially employed and unemployed workers. Before starting with the proof, we summarize the conditions that characterize this

distribution.

Steady-State Cross-Sectional Distribution ∆z

δgh(∆z) = γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z) for all ∆z ∈ (−∆−, ∆+)/{0}, (E.17)

f (ŵ∗)gu(∆z) = γ(gu)′(∆z) +
σ2

2
(gu)′′(∆z) for all ∆z ∈ (−∞, ∞)/{0}.

gh(∆z) = 0, for all ∆z /∈ (−∆−, ∆+)

lim
∆z→−∞

gu(∆z) = lim
∆z→∞

gu(∆z) = 0.

1 =

ˆ ∞

−∞
gu(∆z)d∆z +

ˆ ∆+

−∆−
gh(∆z)d∆z,

f (ŵ∗)(1− E) = δE + σ2

2

[
lim

∆z↓−∆−
(gh)′(∆z)− lim

∆z↑∆+
(gh)′(∆z)

]
,

gh(∆z), gu(∆z) ∈ C, C1({0}), C2({0})

Proposition 10. Assume flexible entry wages. Up to first order, the CIR of employment is given by:

CIRE (ζ)
ζ

= −(1− Ess)
γEh[a] + Eh[∆z]

σ2 + o(ζ).

Proof. The proof proceeds in three steps. Step 1 computes the value function for an unemployed worker mE ,u(∆z) (when entry

wages are flexible, the job-finding rate and this value function are independent of the shock ζ, so we omit this argument). Step 2

computes the value for the employed worker at ∆z = 0—i.e., mE ,h(0). Step 3 characterizes the CIR as a function of steady-state

aggregate variables and moments.

Step 1. The CIR is given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

(
− Ess

f (ŵ∗)
+ mE ,h(0)

)
(1− Ess),

with

0 = 1− Ess − γ
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ

(
− Ess

f (ŵ∗)
+ mE ,h(0)−mE ,h(∆z)

)
,

− Ess

f (ŵ∗)
+ mE ,h(0) = mE ,h(∆z), for all ∆z /∈ (−∆−, ∆+)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

(
− Ess

f (ŵ∗)
+ mE ,h(0)

)
(1− Ess). (E.18)
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Proof of Step 1. To show this result, observe that the solution to (E.14) and (E.15) is

mE ,u(∆z) = mE ,u(0), for all ∆z

Thus,

0 = −Ess + f (ŵ∗)(mE ,h(0)−mE ,u(0)) ⇐⇒ mE ,u(0) = −
Ess

f (ŵ∗)
+ mE ,h(0). (E.19)

Replacing (E.19) into the CIR, we have the result.

Step 2. We show that mE ,h(0) =
Ess

f (ŵ∗) − (1− Ess)Eh[a], where Eh[a] is the cross-sectional expected age of the match or the

worker’s tenure.

Proof of Step 2. Observe that mE ,h(∆z) satisfies the following recursive representation

mE ,h(∆z) = E

[ˆ τm

0
(1− Ess)dt +

(
− Ess

f (ŵ∗)
+ mE ,h(0)

)∣∣∣∣∣∆z0 = ∆z

]
.

Define the following auxiliary function

Ψ(∆z|ϕ) = E

[ˆ τm

0
eϕt(1− Ess)dt + eϕτm

(
− Ess

f (ŵ∗)
+ mE ,h(0)

)∣∣∣∣∣∆z0 = ∆z

]
. (E.20)

and note that Ψ(∆z|0) = mE ,h(∆z). The auxiliary function Ψ(∆z|ϕ) satisfies the following HJB and border conditions:

−ϕΨ(∆z|ϕ) + δ

(
Ψ(∆z|ϕ)−

(
− Ess

f (ŵ∗)
+ mE ,h(0)

))
= (1− Ess)− γ

∂Ψ(∆z|ϕ)
∂∆z

+
σ2

2
∂2Ψ(∆z|ϕ)

∂∆z2 , (E.21)

Ψ(∆z, ϕ) =

(
− Ess

f (ŵ∗)
+ mE ,h(0)

)
for all ∆z /∈ (−∆−, ∆+).

Taking the derivative with respect to ϕ in (E.21), we have that

(δ− ϕ)
∂Ψ(∆z|ϕ)

∂ϕ
−Ψ(∆z|ϕ) = −γ

∂2Ψ(∆z, ϕ)

∂∆z∂ϕ
+

σ2

2
∂3Ψ(∆z|ϕ)

∂∆z2∂ϕ
,

∂Ψ(∆z|ϕ)
∂ϕ

= 0 for all ∆z /∈ (−∆−, ∆+).

Using the Schwarz’s theorem to exchange partial derivatives, evaluating at ϕ = 0, and using Ψ(∆z|0) = mE ,h(∆z), we obtain

δ
∂Ψ(∆z|0)

∂ϕ
−mE ,h(∆z) = −γ

∂

∂∆z

(
∂Ψ(∆z|0)

∂ϕ

)
+

σ2

2
∂2

∂∆z2

(
∂Ψ(∆z|0)

∂ϕ

)
, (E.22)

∂Ψ(−∆−|0)
∂ϕ

=
∂Ψ(∆+|0)

∂ϕ
= 0. (E.23)

Equations (E.22) and (E.23) correspond to the HJB and border conditions of the function ∂Ψ(∆z|0)
∂ϕ = E

[´ τm

0 mE ,h(∆zt)dt
∣∣∣∆z0 = ∆z

]
.

Evaluating ∂Ψ(∆z|0)
∂ϕ at ∆z = 0, using the occupancy measure and result (E.18), we write the previous equation as:

∂Ψ(0|0)
∂ϕ

= E

[ˆ τm

0
mE ,h(∆zt)dt

∣∣∣∆z0 = 0

]

= ED [τ
m]

´ ∞
−∞ mE ,h(∆z)gh(∆z)d∆z

Ess
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= ED [τ
m]

(
Ess

f (ŵ∗)
−mE ,h(0)

)
(1− Ess)

Ess
, (E.24)

where ED [·] is the mean duration of completed employment spells (the subscript highlights that the moment can be easily

computed from the data). From (E.20), we also have that

∂Ψ(0|0)
∂ϕ

= E

[ˆ τm

0
s (1− Ess)ds + τm

(
− Ess

f (ŵ∗)
+ mE ,h(0)

)∣∣∣∣∣∆z0 = 0

]

= ED [τm]

[
(1− Ess)

Eh[a]
Ess

+

(
− Ess

f (ŵ∗)
+ mE ,h(0)

)]
, (E.25)

Combining (E.24) and (E.25), and solving for mE ,h(0) we obtain:

mE ,h(0) =
Ess

f (ŵ∗)
− (1− Ess)Eh[a]

Step 3. Up to a first-order approximation, the CIR is given by:

CIRE (ζ) = −(1− Ess)
γEh[a] + Eh[∆z]

σ2 ζ + o(ζ2).

Proof of Step 3. To help the reader, we summarize below the conditions used in this step of the proof.

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

(
− Ess

f (θ∗)
+ mE ,h(0)

)
(1− Ess) (E.26)

with

δmE ,h(∆z) = 1− Ess − γ
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δmE ,u(0), (E.27)

mE ,u(0) = mE ,h(∆z) for all ∆z /∈ (−∆−, ∆+) (E.28)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z + mE ,u(0)(1− Ess). (E.29)

1. Zero-order: If ζ = 0, condition (E.29) implies

CIRE (0) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

(
− Ess

f (θ∗)
+ mE ,h(0)

)
(1− Ess) = 0.

2. First-order: Taking the derivative of (E.26) we obtain

CIR′E (ζ) =
ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z + ζ)d∆z,

which evaluated at ζ = 0 becomes

CIR′E (0) =
ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z.

Using condition (E.17) to replace δ =
γ(gh)′(∆z)+ σ2

2 (gh)′′(∆z)
gh(∆z) into equation (E.27), we obtain

γ(gh)′(∆z) + σ2

2 (gh)′′(∆z)
gh(∆z)

mE ,h(∆z) = 1− Ess − γm′E ,h(∆z) +
σ2

2
m′′E ,h(∆z) +

γg′(∆z) + σ2

2 g′′(∆z)
g(∆z)

mE ,u(0).
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Multiplying both sides by gh(∆z)∆z and integrating between −∆− and ∆+,

0 = (1− Ess)Eh[∆z]− γT1 +
σ2

2
T2 + mE ,u(0)T3 (E.30)

T1 =

ˆ ∆+

−∆−
∆z
[
m′E ,h(∆z)gh(∆z) + mE ,h(∆z)(gh)′(∆z)

]
d∆z

T2 =

ˆ ∆+

−∆−
∆z
[
m′′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′′(∆z)

]
d∆z

T3 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

)
d∆z.

Next, we operate on the terms T1, T2, and T3. The term T1 is equal to

T1 =

ˆ ∆+

−∆−
∆z
[
m′E ,h(∆z)gh(∆z) + mE ,h(∆z)(gh)′(∆z)

]
d∆z (E.31)

=(1)
ˆ 0

−∆−
∆z
[
m′E ,h(∆z)gh(∆z) + mE ,h(∆z)(gh)′(∆z)

]
d∆z +

ˆ ∆+

0
∆z
[
m′E ,h(∆z)gh(∆z) + mE ,h(∆z)(gh)′(∆z)

]
d∆z

=(2)
ˆ 0

−∆−
∆z

d
(

mE ,h(∆z)gh(∆z)
)

d∆z
d∆z +

ˆ ∆+

0
∆z

d
(

mE ,h(∆z)gh(∆z)
)

d∆z
d∆z

=(3) ∆zmE ,h(∆z)gh(∆z)
∣∣∣0
−∆−

+ ∆zmE ,h(∆z)gh(∆z)
∣∣∣∆+

0︸ ︷︷ ︸
= 0

· · · −
[ˆ 0

−∆−
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∆+

0
mE ,h(∆z)gh(∆z)d∆z

]

=(4) −
ˆ ∆+

−∆−
mE ,h(∆z)gh(∆z)d∆z

=(5) mE ,u(0)(1− Ess).

Here, (1) divides the integral at the discontinuity point of gh(∆z); (2) uses the property of the derivative of a product of

functions; (3) integrates and uses the border conditions for gh(∆z) ; (4) uses the continuity of mE ,h(∆z)gh(∆z); and (5)

uses (E.29).

The term T2 satisfies

T2 =

ˆ ∆+

−∆−
∆z
[
m′′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′′(∆z)

]
d∆z (E.32)

=(1)
ˆ 0

−∆−
∆z
[
m′′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′′(∆z)

]
d∆z +

ˆ ∆+

0
∆z
[
m′′E ,h(∆z)g(∆z)−mE ,h(∆z)(gh)′′(∆z)

]
d∆z

=(2) ∆z
[
m′E ,h(∆z)gh(∆)−mE ,h(∆z)(gh)′(∆z)

]∣∣∣0
−∆−

+ ∆z
[
m′E ,h(∆z)gh(∆)−mE ,h(∆z)(gh)′(∆z)

]∣∣∣∆+

0

· · · −
[ˆ 0

−∆−

[
m′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′(∆z)

]
d∆z +

ˆ ∆+

0

[
m′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′(∆z)

]
d∆z

]

=(3) ∆z
[
m′E ,h(∆z)gh(∆)−mE ,h(∆z)(gh)′(∆z)

]∣∣∣∆+

∆−︸ ︷︷ ︸
= −mE ,u(0) ∆z(gh)′(∆z)|∆

+

∆−

· · · −
[ˆ 0

−∆−

[
m′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′(∆z)

]
d∆z +

ˆ ∆+

0

[
m′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′(∆z)

]
d∆z

]
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=(4) −mE ,u(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
−
ˆ ∆+

∆−
m′E ,h(∆z)gh(∆z)d∆z +

ˆ ∆+

∆−
mE ,h(∆z)(gh)′(∆z)d∆z

=(5) −mE ,u(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
−

mE ,h(∆z)gh(∆z)
∣∣∣∆+

∆−︸ ︷︷ ︸
= 0

−
ˆ ∆+

∆−
mE ,h(∆z)(gh)′(∆z)d∆z

+

ˆ ∆+

∆−
mE ,h(∆z)(gh)′(∆z)d∆z

= −mE ,u(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
+ 2
ˆ ∆+

∆−
mE ,h(∆z)g′(∆z)d∆z.

Here, (1) divides the integral at the discontinuity point of gh(∆z); (2) uses the equality m′′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′′(∆z)

=
d[m′E ,h(∆z)gh(∆z)−mE ,h(∆z)(gh)′(∆z)]

d∆z and integrates by parts; (3) uses conditions (E.28) and the border conditions of gh(∆z);

and (4)-(5) integrate by parts and operate.

Finally, the term T3 is equal to

T3 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

)
d∆z (E.33)

=(1) γ

[ˆ 0

−∆−
∆z(gh)′(∆z)d∆z +

ˆ ∆+

0
∆z(gh)′(∆z)d∆z

]
+

σ2

2

[ˆ 0

∆−
∆z(gh)′′(∆z)d∆z +

ˆ ∆+

0
∆z(gh)′′(∆z)d∆z

]

=(2) γ

∆zgh(∆z)
∣∣∣0
−∆−

+ ∆zgh(∆z)
∣∣∣∆+

0︸ ︷︷ ︸
= 0

−
ˆ ∆+

−∆−
gh(∆z)d∆z︸ ︷︷ ︸
= Ess


· · ·+ σ2

2

[
∆z(gh)′(∆z)

∣∣∣0
−∆−

+ ∆z(gh)′(∆z)
∣∣∣∆+

0
−
ˆ ∆+

−∆−
(gh)′(∆z)d∆z

]

=(3) −γEss +
σ2

2

∆z(gh)′(∆z)
∣∣∣∆+

∆−
− gh(∆z)

∣∣∣∆+

∆−︸ ︷︷ ︸
= 0


=(4) −γEss +

σ2

2

[
∆z(gh)′(∆z)

∣∣∣∆+

∆−

]

Here, (1) divides the integral at the discontinuity point of gh(∆z); (2) integrates by parts; and (3)-(4) use the border

conditions of gh(∆z).

Combining results (E.30), (E.31), (E.32), (E.33) and those in Step 2, we obtain

0 = (1− Ess)Eh[∆z]− γT1 +
σ2

2
T2 + mE ,u(0)T3

= (1− Ess)Eh[∆z]− γmE ,u(0)(1− Ess) +
σ2

2

[
−mE ,u(0) ∆z(gh)′(∆z)

∣∣∣∆+

−∆−
+ 2
ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z

]

· · ·+ mE ,u(0)
[
−γEss +

σ2

2

[
∆z(gh)′(∆z)

∣∣∣∆+

−∆−

]]
= (1− Ess)Eh[∆z]− γmE ,u(0) + σ2

ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z,
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which implies

ˆ ∆+

−∆−
mE ,h(∆z)(gh)′(∆z)d∆z =

γ
(
− Ess

f (θ∗) +
Ess

f (θ∗) − (1− Ess)Eh[a]
)
− (1− Ess)Eh[∆z]

σ2 ,

= −(1− Ess)
[γEh[a] + Eh[∆z]]

σ2 .

E.4 Proof of Corollary 1: Flexible entry wages

Corollary 1. Up to first order, the CIRE (ζ) can be expressed in terms of data moments as follows:

(i) If γ = 0,

CIRE (ζ)
ζ

=
1

f (ŵ∗)︸ ︷︷ ︸
avg. u dur.

1
VarD [∆w]︸ ︷︷ ︸

dispersion

1
3

ED

[
∆w

∆w2

ED [∆w2]

]
︸ ︷︷ ︸

asymmetries

+ o(ζ).

(ii) If γ 6= 0,

CIRE (ζ)
ζ

=
1

f (ŵ∗)︸ ︷︷ ︸
avg. u dur.

1

VarD
[(

∆w− ED [∆w]
ED [τ]

τ
)]

︸ ︷︷ ︸
dispersion

×

ED [∆w]

Ess

CovD
[
∆̃w, ∆̃w− τ̃

]
+

VarD [τ̃]− EssVarD
[
τ̃m
]

2

+ (1− Ess)

VarD
[
∆̃w
]
− 1

2


︸ ︷︷ ︸

asymmetries

+ o(ζ).

Proof. The goal is to express the sufficient statistics of the CIR, Eh[a] and Eh[∆z], in terms of moments of the distribution of ∆w

and (τu, τm). We do so separately for the case with γ = 0 and γ 6= 0. Let x̃ ≡ x/ED [x] denote random variable x relative to its

mean in the data.

Proposition D.5 expresses moments of the wage distribution as a linear combination of moments of the distribution of

productivity changes among completed employment an unemployment spells:

ED [∆w] = − [Ēu [∆z] + Ēh [∆z]]

ED
[
∆w2

]
=
[
Ēu

[
∆z2

]
+ 2Ēh [∆z] Ēu [∆z] + Ēh

[
∆z2

]]
ED

[
∆w3

]
= −

[
Ēu

[
∆z3

]
+ 3Ēh [∆z] Ēu

[
∆z2

]
+ 3Ēh

[
∆z2

]
Ēu [∆z] + Ēh

[
∆z3

]]
,

where Ēh[·] and Ēu[·] denote the expectation operators under the distributions ḡh(∆z) and ḡu(∆z), respectively (see Proposition

6). Using results from the same Proposition, we can express the moments of productivity changes for completed unemployment

spells in terms of model parameters:

Ēu [∆z] =

(
L−1

2 −L2

)
L1
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Ēu

[
∆z2

]
=

2
(
L−2

2 + L2
2 − 1

)
L2

1

Ēu

[
∆z3

]
=

6
(
−L3

2 + L2 −L−1
2 + L−3

2

)
L3

1
,

where

L1 =

√
2 f (ŵ∗)

σ2 and L2 =

√
γ +

√
γ2 + 2σ2 f (ŵ∗)

−γ +
√

γ2 + 2σ2 f (ŵ∗)
.

From these two sets of equations, we solve for the moments of productivity changes for completed employment spells and

obtain

Ēh [∆z] = −


(
L−1

2 −L2

)
L1

−ED [∆w]

Ēh

[
∆z2

]
= ED

[
∆w2

]
+ 2ED [∆w]


(
L−1

2 −L2

)
L1

− 2
L2

1

Ēh

[
∆z3

]
= −ED

[
∆w3

]
− 3ED

[
∆w2

]
(
L−1

2 −L2

)
L1

+
6
L2

1
ED [∆w] .

The remaining steps are case-specific.

Case I: γ = 0. To obtain Eh[∆z], evaluate (D.10) at m = 1, use the fact that L2 = 1, ED [∆w] = 0 and ED [τ
u ]

ED [τ]
= Ess, and

substitute σ2 from Lemma 3:

Eh [∆z] =
Ess

3
Ēh
[
∆z3]

Ēh [∆z2]

=
Ess

3

−ED
[
∆w3]+ ED [∆w] 6

L2
1

ED [∆w2]− 2
L2

1


= −Ess

3

(
ED

[
∆w3]

ED [∆w2]− σ2ED [τu]

)

= −
ED

[
∆w3]

3ED [∆w2]
.

Finally, replace this expression into (45):

CIRE (ζ)
ζ

= − (1− Ess)
Eh [∆z]

σ2

= (1− Ess)

ED [∆w3]
3ED [∆w2]

ED [∆w2]
ED [τ]

=
1

f (ŵ∗)
ED

[
∆w3]

3ED [∆w2]
2

=
1

f (ŵ∗)
1

VarD [∆w2]

1
3

ED

[
∆w

∆w2

ED [∆w2]

]
.
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Case II: γ 6= 0. To obtain Eh[∆z], evaluate (D.11) at m = 1, use the result that
(
L−1

2 −L2

)
/L1 = −γ/ f (ŵ∗) and

ED [τ
u ]

ED [τ]
= Ess, and substitute γ and σ2 from Lemma 3:

Eh [∆z] =
Ess

2
Ēh
[
∆z2]

Ēh [∆z]
− σ2

2γ

=
Ess

2

ED
[
∆w2]− 2 ED [∆w]2ED [τ

u ]
ED [τ]

− σ2ED [τ
u]

−ED [∆w]
(

1− ED [τu ]
ED [τ]

)
− σ2

2γ

= −1
2

ED [∆w]

(
ED

[
∆̃w

2]− 2
ED [τ

u]

ED [τ]

)
+

1
2

σ2

ED [∆w]
(ED [τ

u]−ED [τ])

= −1
2

ED [∆w]

(
ED

[
∆̃w

2]− 2
ED [τ

u]

ED [τ]

)
+

1
2

ED [(∆w− γτ)2]

ED [τ]ED [∆w]
(ED [τ

u]−ED [τ])

= −ED [∆w]

(
1
2

(
ED

[
∆̃w

2]− 2
ED [τ

u]

ED [τ]

)
+

1
2

ED [(∆̃w− τ̃)2]

(
1− ED [τ

u]

ED [τ]

))
= −ED [∆w]

(
1
2

(
varD

[
∆̃w
]
− 1
)
+ Ess

(
1 +

1
2

varD [(∆̃w− τ̃)]

))
.

The average cross-sectional age of a job spell is obtained from from the occupancy measure:

Eh[a] = Ess
E[
´ τm

0 t dt|ŵ0 = ŵ∗]
E[τm|ŵ0 = ŵ∗]

=
Ess

2
ED [τ

m2]

ED [τm]
,

where we solve the Reimann integral.

Finally, we replace these expressions into (45):

CIRE (ζ)
ζ

= − (1− Ess)
Eh [∆z] + γE[a]

σ2

= −ED [τ
u]

ED [τ]
ED [τ]

ED
[(

∆w− ED [∆w]
ED [τ]

τ
)

2
] (−ED [∆w]

(
1
2

(
VarD

[
∆̃w
]
− 1
)
+ Ess

(
1 +

1
2

(
VarD [∆̃w− τ̃]

)))
+ γE[a]

)

=
ED [∆w]

f (ŵ∗)VarD
[(

∆w− ED [∆w]
ED [τ]

τ
)] (1

2

(
VarD

[
∆̃w
]
− 1
)
+ Ess

(
1 +

1
2

(
VarD [∆̃w− τ̃]

))
− 1

ED [τ]
E[a]

)

=
ED [∆w]

f (ŵ∗)VarD
[(

∆w− ED [∆w]
ED [τ]

τ
)] (1

2

(
VarD

[
∆̃w
]
− 1
)
(1− Ess + Ess) + Ess

(
1 +

1
2

(
VarD [∆̃w− τ̃]

))
− 1

ED [τ]
E[a]

)

=
ED [∆w]

2 f (ŵ∗)VarD
[(

∆w− ED [∆w]
ED [τ]

τ
)] ((VarD

[
∆̃w
]
− 1
)
(1− Ess) + Ess

(
1 +

(
VarD [∆̃w− τ̃]

)
+ VarD

[
∆̃w
])
− 2

ED [τ]
E[a]

)

=
ED [∆w]

2 f (ŵ∗)VarD
[(

∆w− ED [∆w]
ED [τ]

τ
)] ((VarD

[
∆̃w
]
− 1
)
(1− Ess) + Ess

(
1 +

(
VarD [∆̃w− τ̃]

)
+ VarD

[
∆̃w
])
− Ess

ED [τ
m]

ED [τ]
ED [τ̃m2

]

)

=
ED [∆w]

2 f (ŵ∗)VarD
[(

∆w− ED [∆w]
ED [τ]

τ
)] ((VarD

[
∆̃w
]
− 1
)
(1− Ess) + Ess

(
1 +

(
VarD [∆̃w− τ̃]

)
+ VarD

[
∆̃w
]
− EssED [τ̃m2

]
))

=
ED [∆w]

f (ŵ∗)VarD
[(

∆w− ED [∆w]
ED [τ]

τ
)]

(

VarD
[
∆̃w
]
− 1
)

2
(1− Ess) + Ess

(
CovD

[
∆̃w, ∆̃w− τ̃

]
+

VarD [τ̃]− EssVarD [τ̃m2
]

2

) .
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E.5 Proof of Proposition 11

Proposition 11. Assume sticky entry wages. Up to first order, the CIR of employment

CIRE (ζ)
ζ

= (1− Ess)

[
− [γEh[a] + Eh[∆z]]

σ2 +
1

f (ŵ∗) + s

[
η′(ŵ∗)
η(ŵ∗)

+
T ′ŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
−
T ′ŵ(ŵ∗, 0)
T (ŵ∗, 0)

]]
+ o(ζ). (E.34)

Proof. We divide the proof in two steps. Step 1 characterizes mE ,u(∆z, ζ). Steps 2 uses the equilibrium conditions to show (E.34).

Let us depart from the CIR for employment given by

CIRE (ζ) =
ˆ ∞

−∞
mE ,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mE ,u(∆z, ζ)gu(∆z + ζ)d∆z

with

0 = 1− Ess − γ
dmE ,h(∆z)

d∆z
+

σ2

2
d2mE ,h(∆z)

d∆z2 + δ(mE ,u(0, 0)−mE ,h(∆z)), for all ∆z ∈ (−∆−, ∆+) (E.35)

0 = −Ess − γ
dmE ,u(∆z, ζ)

d∆z
+

σ2

2
d2mE ,u(∆z, ζ)

d∆z2 + f (ŵ∗ − ζ)(mE ,h(−ζ)−mE ,u(∆z, ζ)) (E.36)

mE ,u(0, 0) = mE ,h(∆z), for all ∆z /∈ (−∆−, ∆+)

0 = lim
∆z→−∞

dmE ,u(∆z, ζ)

d∆z
= lim

∆z→∞

dmE ,u(∆z, ζ)

d∆z
(E.37)

0 =

ˆ ∞

−∞
mE ,h(∆z)gh(∆z)d∆z +

ˆ ∞

−∞
mE ,u(∆z)gu(∆z)d∆z

The key differences between the CIR with flexible wages and the CIR with sticky wages are found in the HJB equation at

the moment of the shock. With sticky entry wages, the job-finding probability is given by f (ŵ∗ − ζ), since now the real entry

wage is lower. As a consequence, we need to evaluate mE ,h(∆z) at ∆z = −ζ because conditional on finding a job, the real entry

wage is lower. Observe that following the first job separation, the monetary shock is fully absorbed (see the term mE ,u(0, 0) in

equation (E.35)).

Step 1. The value function mE ,u(∆z, ζ) is independent of ∆z and satisfies

mE ,u(∆z, ζ) = − Ess

f (ŵ∗ − ζ)
+ mE ,h(−ζ).

Proof of Step 1. We guess and verify that mE ,u(∆z, ζ) = mE ,u(0, ζ) for all ∆z. From the equilibrium conditions (E.36) and (E.37),

0 = −Ess + f (ŵ∗ − ζ)(mE ,h(−ζ)−mE ,u(0, ζ)).

Thus,

mE ,u(0, ζ) = mE ,u(∆z, ζ) = − Ess

f (ŵ∗ − ζ)
+ mE ,h(−ζ).

Step 2. Up to a first-order approximation, the CIR is given by:

CIRE (ζ) = −(1− Ess)
γEh[a] + Eh[∆z]

σ2 ζ +
(1− Ess)

f (ŵ∗) + s

(
η′(ŵ∗)
η(ŵ∗)

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
− T

′(ŵ∗, 0)
T (ŵ∗, 0)

)
ζ + o(ζ2).
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Proof of Step 2. From Step 1, we have that

CIR′E (0) =
ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z)d∆z +

(
−Ess f ′(ŵ∗)

f (ŵ∗)2 −m′E ,h(0)
)
(1− Ess).

Since
´ ∞
−∞ mE ,h(∆z)(gh)′(∆z)d∆z satisfies the same system of functional equations as the CIR with flexible entry wages charac-

terized in Online Appendix E.3,

ˆ ∞

−∞
mE ,h(∆z)(gh)′(∆z)d∆z = −(1− Ess)

γEh[a] + Eh[∆z]
σ2 . (E.38)

Observe that we can write

mE ,h(∆z) = E

[ˆ τm

0
(1− Ess)dt + mE ,u(∆z, 0)

∣∣∣∣∣∆z0 = ∆z

]
,

= (1− Ess)T (ŵ∗ + ∆z, 0)− Ess

f (ŵ∗)
+ mE ,h(0).

Taking the derivative with respect to ∆z, evaluating it at ∆z = 0, and using s = 1/T (ŵ∗, 0) from the Renewal Principle, we have

that

m′E ,h(0) = (1− Ess)T ′ŵ(ŵ∗, 0) =
s

f (ŵ∗) + s
T ′ŵ(ŵ∗, 0) =

1
f (ŵ∗) + s

T ′(ŵ∗, 0)
T (ŵ∗, 0)

. (E.39)

From the free entry condition

f (ŵ∗) =
(

Ĵ(ŵ∗)
K̃

) 1−α
α

,

and the definition (1− η(ŵ∗)) = Ĵ(ŵ∗)/Ŝ(ŵ∗), we can compute the elasticity of the job finding rate with respect to the entry

wage:

f ′(ŵ∗)
f (ŵ∗)

=

1−α
α

(
Ĵ(ŵ∗)

K̃

) 1−α
α −1 Ĵ′(ŵ∗)

κ̃(
Ĵ(ŵ∗)

K̃

) 1−α
α

,

=
1− α

α

Ĵ′(ŵ∗)
Ĵ(ŵ∗)

,

=
1− α

α

[
− η′(ŵ∗)
(1− η(ŵ∗))

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]
.

Finally, combining this result with the fact that Ess =
f (ŵ∗)

f (ŵ∗)+s , s = 1
T (ŵ∗ ,0) , η′(ŵ∗)

(
α

η(ŵ∗) −
1−α

1−η(ŵ∗)

)
= − T

′(ŵ∗ ,ρ̂)
T (ŵ∗ ,ρ̂) , and operating,

we obtain

−Ess f ′(ŵ∗)
f (ŵ∗)2 = − Ess

f (ŵ∗)
f ′(ŵ∗)
f (ŵ∗)

=
1

f (ŵ∗) + s

[
−1− α

α

[
− η′(ŵ∗)
(1− η(ŵ∗))

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]]
=

1
f (ŵ∗) + s

[
− 1

α

[
− η′(ŵ∗)(1− α)

(1− η(ŵ∗))
+ (1− α)

T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]]
=

1
f (ŵ∗) + s

[
− 1

α

[
− η′(ŵ∗)α

η(ŵ∗)
− α
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]]
=

1
f (ŵ∗) + s

[
η′(ŵ∗)
η(ŵ∗)

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)

]
. (E.40)
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Combining results in equations (E.38), (E.39), and (E.40), we obtain the desired result:

CIR′E (0) = −(1− Ess)
[γEh[a] + Eh[∆z]]

σ2 +
1− Ess

f (ŵ∗) + s

[
η′(ŵ∗)
η(ŵ∗)

+
T ′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
− T

′(ŵ∗, 0)
T (ŵ∗, 0)

]
.

E.6 Proof of Proposition 12

Proposition 12. The following properties hold for T ′ŵ(ŵ∗, ρ̂)/T (ŵ∗, ρ̂).

a. Assume that ∆− = ∆+ and γ = 0. Then, T ′ŵ(ŵ∗, ρ̂) = 0 and, up to a 3rd order approximation of T (ŵ, ρ̂) around ŵ = ŵ∗,

T (ŵ∗, ρ̂) =
1

ρ̂ + δ + (σ/∆+)2 .

b. Up to a 2nd order approximation of T (ŵ, ρ̂) around ŵ = ŵ∗,

T ′ŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
=

∆+ − ∆−

∆+∆−
.

c. If ρ̂ = 0, then

T ′ŵ(ŵ∗, 0)
T (ŵ∗, 0)

=
1

σ2gh(0)

[
send

(
Ess − 2Gh(0)

)
+

σ2

2

(
lim

∆z↑∆+
(gh)′(∆z) + lim

∆z↓−∆−
(gh)′(∆z)

)]
.

d. If ρ̂ > 0, then

T ′ŵ(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
=
T (ŵ∗, 0)
T (ŵ∗, ρ̂)Ess

−ρ̂
γEh[a] + Eh[∆z]

σ2 +
σ2

4

[
lim

∆z↓∆−
− lim

∆z↑∆+

] d2
[
T (ŵ∗ + ∆z, ρ̂)gh(∆z)

]
d∆z2

+ o(ρ̂2),

where T (ŵ∗ + ∆z, ρ̂) solves, up to a first-order approximation around ρ̂ = 0, the 2-step procedure given by

T (ŵ∗ + ∆z, ρ̂) =
gh(∆z)
gh(0)

T (ŵ∗, ρ̂)e
γ2
σ2 ∆z +

2gh(0)
σ2


´ 0

∆z e
γ2
σ2 (∆z−s) ´ s

−∆−
(1+ρ̂T (ŵ∗+x,0))gh(x)

gh(s)2 dx ds if ∆z < 0´ ∆z
0 e

γ2
σ2 (∆z−s) ´ ∆+

s
(1+ρ̂T (ŵ∗+x,0))gh(x)

gh(s)2 dx ds if ∆z > 0

 .(E.41)

with

lim
∆z↓∆−

d2
[
T (ŵ∗ + ∆z, ρ̂)gh(∆z)

]
d∆z2 = lim

∆z↓−∆−
2
(gh)′(∆z)2

gh(0)

[
T̃ (0, ρ̂)e−

γ2
σ2 ∆− +

2gh(0)
σ2

ˆ 0

−∆−
e

γ2
σ2 (−∆−−s)

ˆ s

−∆−

(1 + ρ̂T (ŵ∗ + x, 0))gh(x)
gh(s)2 dx ds

]

lim
∆z↑∆+

d2
[
T (ŵ∗ + ∆z, ρ̂)gh(∆z)

]
d∆z2 = lim

∆z↑∆+
2
(gh)′(∆z)2

gh(0)

[
T̃ (0, ρ̂)e

γ2
σ2 ∆+

+
2gh(0)

σ2

ˆ ∆+

0
e

γ2
σ2 (∆

+−s)
ˆ ∆+

s

(1 + ρ̂T (ŵ∗ + x, 0))gh(x)
gh(s)2 dx ds

]

Proof. We proceed to prove items a-d of the Proposition. To show these properties, it would be useful to change the state variable
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of T (ŵ, ρ̂) from ŵ to ∆z. Define T̃ (∆z, ρ̂) := T (ŵ∗ + ∆z, ρ̂). Then, applying Itô’s Lemma, we obtain

δT̃ (∆z, ρ̂) = 1− ρ̂T̃ (∆z, ρ̂)− γT̃ ′∆z(∆z, ρ̂) +
σ2

2
T̃ ′′∆z2 (∆z, ρ̂) ∀ ∆z ∈ (−∆−, ∆+), (E.42)

T̃ (∆z, ρ̂) = 0 ∀ ∆z /∈ (−∆−, ∆+). (E.43)

a. Assume that ∆− = ∆+ and γ = 0. Then, it is easy to show that T̃ (∆z, ρ̂) = T̃ (−∆z, ρ̂), and by definition of a derivative,

T̃ ′∆z(0, ρ̂) = lim
ε↓0

T̃ (ε, ρ̂)− T̃ (−ε, ρ̂)

2ε︸ ︷︷ ︸
= 0

= 0.

A similar argument applies to T̃ ′′′∆z3 (0, ρ̂). Thus, T̃ ′∆z(0, ρ̂) = T̃ ′′′∆z3 (0, ρ̂) = 0. Applying a third-order Taylor approximation to

T̃ (∆z, ρ̂) around ∆z = 0,

T̃ (∆z, ρ̂) = T̃ (0, ρ̂) +
1
2
T̃ ′′∆z2 (0, ρ̂)∆z2 + O(∆z4).

From the HJB equation in (E.42),

T̃ (0, ρ̂) =
1 + σ2

2 T̃ ′′∆z2 (0, ρ̂)

ρ̂ + δ
.

Combining the Taylor approximation with the border conditions in (E.43), we obtain (we omit the term O(∆z4) to save on

notation)

T̃ (0, ρ̂) = −1
2
T̃ ′′∆z2 (0, ρ̂)(∆+)2.

Using these results, we have that

−1
2
T̃ ′′∆z2 (0, ρ̂)(∆+)2 =

1 + σ2

2 T̃ ′′∆z2 (0, ρ̂)

ρ̂ + δ
⇐⇒ T̃ ′′∆z2 (0, ρ̂) = − 1

ρ̂ + δ

(
(∆+)2

2
+

σ2

2(ρ̂ + δ)

)−1

and

T̃ (0, ρ̂) = T (ŵ∗, ρ̂) =
1

ρ̂ + δ +
(

σ
∆+

)2 ; T̃ ′∆z(0, ρ̂) = T ′ŵ∗ (ŵ∗, ρ̂) = 0.

b. Now, we let γ 6= 0 and ∆+ 6= ∆−. In this case, we proceed with a second-order Taylor approximation of T̃ (∆z, ρ̂) around

∆z = 0,

T̃ (∆z, ρ̂) = T̃ (0, ρ̂) + T̃ ′∆z(0, ρ̂)∆z +
1
2
T̃ ′′∆z2 (0, ρ̂)∆z2 + O(∆z3).

From the border conditions in (E.43), we obtain (we omit the term O(∆z3) to save on notation)

T̃ (0, ρ̂) + T̃ ′∆z(0, ρ̂)∆+ +
1
2
T̃ ′′∆z2 (0, ρ̂)(∆+)2 = 0, (E.44)

T̃ (0, ρ̂) + T̃ ′∆z(0, ρ̂)(−∆−) +
1
2
T̃ ′′∆z2 (0, ρ̂)(∆−)2 = 0.

Taking the difference

T̃ ′∆z(0, ρ̂)(∆+ + ∆−) = −1
2
T̃ ′′∆z2 (0, ρ̂)

(
(∆+)2 − (∆−)2

)
⇐⇒ T̃ ′∆z(0, ρ̂) = −1

2
T̃ ′′∆z2 (0, ρ̂)

(
∆+ − ∆−

)
.

Replacing this last equation into the HJB equation in (E.42) evaluated at ∆z = 0 and into (E.44), we obtain

T̃ (0, ρ̂) =
1 +

(
σ2+γ(∆+−∆−)

2

)
T̃ ′′∆z2 (0, ρ̂)

ρ̂ + δ
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T̃ (0, ρ̂) = −1
2
T̃ ′′∆z2 (0, ρ̂)

(
(∆+)2 − ∆+ (∆+ − ∆−

))
.

Combining these equations and solving for T̃ (0, ρ̂), we have

T̃ (0, ρ̂) =
1

ρ̂ + δ + σ2+γ(∆+−∆−)
(∆+)2−∆+(∆+−∆−)

,

T̃ ′∆z(0, ρ̂) =
(∆+ − ∆−)

(ρ̂ + δ) ((∆+)2 − ∆+(∆+ − ∆−)) + σ2 + γ(∆+ − ∆−)
,

T̃ ′′∆z2 (0, ρ̂) = − 2
(ρ̂ + δ) ((∆+)2 − ∆+(∆+ − ∆−)) + σ2 + γ(∆+ − ∆−)

.

and
T̃ ′∆z(0, ρ̂)

T̃ (0, ρ̂)
=
T ′ŵ∗ (ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
=

∆+ − ∆−

∆+∆−
.

c. Set ρ̂ = 0. Using (E.17), (E.42), and (E.43)

0 = gh(∆z)− γ
(
(gh)′(∆z)T̃ (∆z, 0) + gh(∆z)T̃ ′∆z(∆z, 0)

)
+

σ2

2

(
T̃ ′′∆z2 (∆z, 0)gh(∆z)− T̃ (∆z, 0)(gh)′′(∆z)

)
Integrating between −∆− and ∆z < 0,

0 = Gh(∆z)− γ

ˆ ∆z

−∆−

(
(gh)′(x)T̃ (x, 0) + gh(x)T̃ ′∆z(x, 0)

)
dx +

σ2

2

ˆ ∆z

−∆−

(
T̃ ′′∆z2 (x, 0)gh(x)− T̃ (x, 0)(gh)′′(x)

)
dx

= Gh(∆z)− γ

ˆ ∆z

−∆−

d
(

gh(x)T̃ (x, 0)
)

dx
dx +

σ2

2

ˆ ∆z

−∆−

d
(
T̃ ′∆z(x, 0)gh(x)− T̃ (x, 0)(gh)′(x)

)
dx

dx,

= Gh(∆z)− γgh(∆z)T̃ (∆z, 0) +
σ2

2
(T̃ ′∆z(∆z, 0)gh(∆z)− T̃ (∆z, 0)(gh)′(∆z)).

In the last step, we use the fact that lim∆z↓−∆− gh(∆z) = lim∆z↓−∆− T̃ (∆z, 0) = 0. Applying similar steps to integrate from

∆z > 0 to ∆+, we have that

0 = Ess − Gh(∆z) + γgh(∆z)T̃ (∆z, 0)− σ2

2
(T̃ ′∆z(∆z, 0)gh(∆z)− T̃ (∆z, 0)(gh)′(∆z)).

Thus, T̃ (∆z, 0) satisfies the following first order differential equation, once we write it as a function of gh(∆z):

T̃ ′∆z(∆z, 0) =


− 2

σ2
Gh(∆z)
gh(∆z) +

(
(gh)′(∆z)

gh(∆z) + 2γ
σ2

)
T̃ (∆z, 0) if ∆z ∈ (−∆−, 0)

2
σ2
Ess−Gh(∆z)

gh(∆z) +
(
(gh)′(∆z)

gh(∆z) + 2γ
σ2

)
T̃ (∆z, 0) if ∆z ∈ (0, ∆+)

(E.45)

Integrating the Kolmogorov forward equation (E.17) from 0 to ∆+ and from −∆− to 0, we obtain

− 2
σ2

[
δ
(
Ess − Gh(0)

)
− σ2

2
lim

∆z↑∆+
(gh)′(∆z) + γgh(0)

]
= lim

∆z↓0
(gh)′(∆z), (E.46)

2
σ2

[
δGh(0) +

σ2

2
lim

∆z↓−∆−
(gh)′(∆z)− γgh(0)

]
= lim

∆z↑0
(gh)′(∆z), (E.47)

respectively. Next, we sum the limits of (E.45) as ∆z→ 0 from the left and right, use the continuity of Gh(∆), gh(∆), T̃ ′(∆z, 0)
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together with (E.46) and (E.47) to obtain

2T̃ ′∆z(0, 0) =
2

σ2
Ess − 2Gh(0)

gh(0)
+

(
lim∆z↓0(gh)′(∆z) + lim∆z↑0(gh)′(∆z)

gh(0)
+

4γ

σ2

)
T̃ (0, 0),

=
2

σ2
Ess − 2Gh(0)

gh(0)

[
1− δT̃ (0, 0)

]
+

lim∆z↓−∆− (gh)′(∆z) + lim∆z↑∆+ (gh)′(∆z)
gh(0)

T̃ (0, 0),

=
2

σ2
Ess − 2Gh(0)

gh(0)

[
1− sexo

s

]
︸ ︷︷ ︸

= send/s

+
lim∆z↓−∆− (gh)′(∆z) + lim∆z↑∆+ (gh)′(∆z)

gh(0)
T̃ (0, 0),

where the last equation uses s = 1/T̃ (0, 0). Operating the last expression, we obtain

T̃ ′∆z(0, 0)
T̃ (0, 0)

=
T ′ŵ∗ (ŵ∗, 0)
T (ŵ∗, 0)

=
1

σ2

[
send Ess − 2Gh(0)

gh(0)
+

σ2

2
lim∆z↑∆+ (gh)′(∆z) + lim∆z↓−∆− (gh)′(∆z)

gh(0)

]
.

d. Now, we study the case with ρ̂ > 0. Let Ψ(∆z, ρ̂) := T̃ ′∆z(∆z, ρ̂). Differentiating the HJB in (E.42), we obtain a new HJB

δΨ(∆z, ρ̂) = −ρ̂T̃ ′∆z(∆z, ρ̂)− γΨ′∆z(∆z, ρ̂) +
σ2

2
Ψ′′∆z2 (∆z, ρ̂), ∀ ∆z ∈ (−∆−, ∆+)

with new border conditions for Ψ(∆z, ρ̂)

T̃ ′∆z(−∆−, ρ̂) = Ψ(−∆−, ρ̂) ; T̃ ′∆z(∆
+, ρ̂) = Ψ(∆+, ρ̂).

Thus,

Ψ(∆z, ρ̂) = E

[ˆ τm

0
−ρ̂T̃ ′∆z(∆zt, ρ̂)dt + T̃ ′∆z(∆zτm , ρ̂)1[∆zτm = ∆+ or ∆zτm = −∆−]|∆z0 = ∆z

]
.

Evaluating at zero and using the occupancy measure,

Ψ(0, ρ̂) = −ρ̂
Eh[T̃ ′∆z(∆z, ρ̂)]

Ess
T̃ (0, 0) +

σ2

2

[
lim

∆z↓−∆−
T̃ ′∆z(∆z, ρ̂)

(gh)′(∆z)
sEss

− lim
∆z↑∆+

T̃ ′∆z(∆z, ρ̂)
(gh)′(∆z)

sEss

]

Using the fact that s = 1
T̃ (0,0)

, we have that

T̃ ′∆z(0, ρ̂)

T̃ (0, ρ̂)
=
T̃ (0, 0)
T̃ (0, ρ̂)Ess

[
−ρ̂Eh[T̃ ′∆z(∆z, ρ̂)] +

σ2

2

[
lim

∆z↓−∆−
T̃ ′∆z(∆z, ρ̂)(gh)′(∆z)− lim

∆z↑∆+
T̃ ′∆z(∆z, ρ̂)(gh)′(∆z)

]]

Notice that for small ρ̂, we can apply a 1st-order approximation to ρ̂Eh[T̃ ′∆z(∆z, ρ̂)] around ρ̂ = 0:

ρ̂Eh[T̃ ′∆z(∆z, ρ̂)] =

Eh[T̃ ′∆z(∆z, 0)] + ρ̂Eh

[
∂T̃ ′∆z

∂ρ̂
(∆z, 0)

]
︸ ︷︷ ︸

= 0

 ρ̂ + o(ρ̂2) = Eh[T̃ ′∆z(∆z, 0)]ρ̂ + O(ρ̂2).

Thus,

T̃ ′∆z(0, ρ̂)

T̃ (0, ρ̂)
=
T̃ (0, 0)
T̃ (0, ρ̂)Ess

[
−ρ̂Eh[T̃ ′∆z(∆z, 0)] +

σ2

2

[
lim

∆z↓−∆−
T̃ ′∆z(∆z, ρ̂)(gh)′(∆z)− lim

∆z↑∆+
T̃ ′∆z(∆z, ρ̂)(gh)′(∆z)

]]
+ O(ρ̂2).
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Next, we show that Eh[T̃ ′∆z(∆z, 0)] = γEh [a]+Eh [∆z]
σ2 :

Eh[T̃ ′∆z(∆z, 0)] =
ˆ ∆+

−∆−
T̃ ′∆z(∆z, 0)gh(∆z)d∆z,

=(1) T (∆z, 0)gh(∆z)
∣∣∣∆+

−∆−
−
ˆ ∆+

−∆−
T (∆z, 0)(gh)′(∆z)d∆z,

=(2) −
ˆ ∆+

−∆−

[
mE ,h(∆z)
1− Ess

−
mE ,u(0, 0)

1− Ess

]
(gh)′(∆z)d∆z,

=(3) mE ,u(0)
1− Ess

gh(∆z)
∣∣∣∆+

−∆−
−
ˆ ∆+

−∆−

mE ,h(∆z)
1− Ess

(gh)′(∆z)d∆z,

=(4) [γEh[a] + Eh[∆z]]
σ2 .

Step (1) applies integration by parts; step (2) uses the border conditions for gh(∆z); step (3) uses the recursive definition of

mE ,h(∆z) = (1− Ess)T̃ (∆z) + mE ,u(0, 0); and step (4) uses the results in Subsection E.3. Thus,

T̃ ′∆z(0, ρ̂)

T̃ (0, ρ̂)
=
T̃ (0, 0)
T̃ (0, ρ̂)Ess

[
−ρ̂

[γEh[a] + Eh[∆z]]
σ2 +

σ2

2

[
lim

∆z↓−∆−
T̃ ′∆z(∆z, ρ̂)(gh)′(∆z)− lim

∆z↑∆+
T̃ ′∆z(∆z, ρ̂)(gh)′(∆z)

]]
+ o(ρ̂2).

To further operate on the limits, observe that

d2(T̃ (∆z, ρ̂)(gh)(∆z))
d∆z2 = T̃ ′′∆z2 (∆z, ρ̂)gh(∆z) + 2T̃ ′∆z(∆z, ρ̂)(gh)′(∆z) + T̃ (∆z, ρ̂)(gh)′′(∆z)

The limits of this expression as ∆z ↓ −∆− and ∆z ↓ ∆+ are given by

[
lim

∆z↓−∆−
− lim

∆z↑∆+

]
d2(T̃ (∆z, ρ̂)(gh)(∆z))

d∆z2 =

[
lim

∆z↓−∆−
− lim

∆z↑∆+

]
2T̃ ′∆z(∆z, ρ̂)(gh)′(∆z). (E.48)

Replacing this expression into (E.48), we obtain

T ′ŵ∗ (ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
=
T (ŵ∗, 0)
T (ŵ∗, ρ̂)Ess

−ρ̂
γEh[a] + Eh[∆z]

σ2 +
σ2

4

[
lim

∆z↓−∆−
− lim

∆z↑∆+

] d2
[
T (ŵ∗ + ∆z, ρ̂)gh(∆z)

]
d∆z2

+ O(ρ̂2).

Finally, we characterize the marginal duration at the separation triggers as a function of gh(∆z). Using (E.17), (E.42), and

(E.43)

0 = gh(∆z)− ρ̂T̃ (∆z, ρ̂)gh(∆z)−γ
(
(gh)′(∆z)T̃ (∆z, ρ̂) + gh(∆z)T̃ ′∆z(∆z, ρ̂)

)
+

σ2

2

(
T̃ ′′∆z2 (∆z, ρ̂)gh(∆z)− T̃ (∆z, ρ̂)(gh)′′(∆z)

)
.

After applying a similar first-order approximation to ρ̂T̃ (∆z, ρ̂)gh(∆z) around ρ̂ = 0, we obtain

0 = gh(∆z)− ρ̂T̃ (∆z, 0)gh(∆z)−γ
(
(gh)′(∆z)T̃ (∆z, ρ̂) + gh(∆z)T̃ ′∆z(∆z, ρ̂)

)
+

σ2

2

(
T̃ ′′∆z2 (∆z, ρ̂)gh(∆z)− T̃ (∆z, ρ̂)(gh)′′(∆z)

)
+O(ρ̂2).

To save on notation, we omit the term O(ρ̂2). Define

Φ−(∆z) =
ˆ ∆z

−∆−
(1− ρ̂T̃ (x, 0))gh(x)dx

Φ+(∆z) =
ˆ ∆+

∆z
(1− ρ̂T̃ (x, 0))gh(x)dx.
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Then, after applying similar steps as in item c, T̃ (∆z, ρ̂) satisfies a first order differential equation, once we write it as a function

of gh(∆z):

T̃ ′∆z(∆z, 0) =

 −
2
σ2

Φ−(∆z)
gh(∆z) +

(
(gh)′(∆z)

gh(∆z) + 2γ
σ2

)
T̃ (∆z, 0) if ∆z ∈ (−∆−, 0)

2
σ2

Φ+(∆z)
gh(∆z) +

(
(gh)′(∆z)

gh(∆z) + 2γ
σ2

)
T̃ (∆z, 0) if ∆z ∈ (0, ∆+)

Guessing and verifying the solution, it is easy to see that the solution is given by

T̃ (∆z, ρ̂) = T̃ (0, ρ̂)
gh(∆z)
gh(0)

e
2γ

σ2 ∆z +


2g(∆z)

σ2

´ 0
∆z e

2γ

σ2 (∆z−s) Φ−(s)
gh(s)2 ds if ∆z < 0

2g(∆z)
σ2

´ ∆z
0 e

2γ

σ2 (∆z−s) Φ+(s)
gh(s)2 ds if ∆z > 0

=
gh(∆z)
gh(0)

T̃ (0, ρ̂)e
2γ

σ2 ∆z +
2g(0)

σ2


´ 0

∆z e
2γ

σ2 (∆z−s) Φ−(s)
gh(s)2 ds if ∆z < 0´ ∆z

0 e
2γ

σ2 (∆z−s) Φ+(s)
gh(s)2 ds if ∆z > 0


Next, we characterize the marginal duration. Taking the derivative of the solution, and using L’Hopital’s rule, lim∆↓−∆−

(
Gh(∆z)
gh(∆z) , Gh(∆z)

gh(∆z)2

)
=

(0, 1), when ∆z ↓ −∆−

T̃ (0, ρ̂)

g(0)
e

2γ

σ2 ∆z
[

g′(∆z) +
2γ

σ2 g(∆z)
]
→ T̃ (0, ρ̂)

g(0)
e−

2γ

σ2 ∆− g′(−∆−),

2g′(∆z)
σ2

ˆ 0

∆z
e

2γ

σ2 (∆z−s) Φ−(s)
gh(s)2 ds→ 2g′(−∆−)

σ2

ˆ 0

−∆−
e

2γ

σ2 (∆z−s) Φ−(s)
gh(s)2 ds,

2g(∆z)
σ2

2γ

σ2

ˆ 0

∆z
e

2γ

σ2 (∆z−s) gh(s)
gh(s)2 ds +

2g(∆z)
σ2

2γ

σ2
Gh(∆z)
gh(∆z)2 ds→ 0.

Combining these results, we obtain

lim
∆z↓−∆−

T̃ ′∆z(∆z, ρ̂) = lim
∆z↓−∆−

(gh)′(∆z)
gh(0)

[
T̃ (0, ρ̂)e−

2γ

σ2 ∆− +
2gh(0)

σ2

ˆ 0

−∆−
e

2γ

σ2 (−∆−−s) Φ−(∆z)
gh(s)2 ds

]

and

lim
∆z↑∆+

T̃ ′∆z(∆z, ρ̂) = lim
∆z↑∆+

(gh)′(∆z)
g(0)

[
T̃ (0, ρ̂)e

2γ

σ2 ∆+

+
2gh(0)

σ2

ˆ ∆+

0
e

2γ

σ2 (∆
+−s) Φ+(∆z)

gh(s)2 ds

]
.

Therefore,

lim
∆z↓∆−

d2
[
T (ŵ∗ + ∆z, ρ̂)gh(∆z)

]
d∆z2 = lim

∆z↓−∆−
2
(gh)′(∆z)2

gh(0)

[
T̃ (0, ρ̂)e−

2γ

σ2 ∆− +
2gh(0)

σ2

ˆ 0

−∆−
e

2γ

σ2 (−∆−−s) Φ−(∆z)
gh(s)2 ds

]

lim
∆z↑∆+

d2
[
T (ŵ∗ + ∆z, ρ̂)gh(∆z)

]
d∆z2 = lim

∆z↑∆+
2
(gh)′(∆z)2

gh(0)

[
T̃ (0, ρ̂)e

2γ

σ2 ∆+

+
2gh(0)

σ2

ˆ ∆+

0
e

2γ

σ2 (∆
+−s) Φ+(∆z)

gh(s)2 ds,

]

which proves the result.

E.7 Proof of Proposition 13

Proposition 13. Define

τend = inf{t ≥ 0 : Γt /∈ (ŵ−, ŵ+)}
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where (ŵ−, ŵ+) is a Nash equilibrium. Then, the worker’s share η(ŵ) satisfies the following Bellman equation

η(ŵ) = E

[ˆ τend

0
e−(ρ̂+δ)t(ρ̂ + δ)

eΓt − ρ̂Û
1− ρ̂Û

dt + e−(ρ̂+δ)τend
1[∆zτend = ∆+]|Γ0 = ŵ

]

with

dΓt = (ρ̂ + δ)(−γ̂T (Γt, ρ̂) + σ2T ′ŵ(Γt, ρ̂))dt + σ
√
T (Γt, ρ̂)(ρ̂ + δ)dW z

t .

Proof. The HJB equations for the worker’s value and the surplus of the match are

(ρ̂ + δ)Ŵ(ŵ) = eŵ − ρ̂Û − γ̂Ŵ ′(ŵ) +
σ2

2
Ŵ ′′(ŵ) ∀ŵ ∈ (ŵ−, ŵ+)

(ρ̂ + δ)Ŝ(ŵ) = 1− ρ̂Û − γ̂Ŝ′(ŵ) +
σ2

2
Ŝ′′(ŵ) ∀ŵ ∈ (ŵ−, ŵ+),

respectively. Replacing the definition of the worker’s share η(ŵ) = Ŵ(ŵ)/Ŝ(ŵ) into the worker’s value function, we obtain

(ρ̂ + δ)(η(ŵ)Ŝ(ŵ)) = eŵ − ρ̂Û − γ̂
(
η(ŵ)Ŝ′(ŵ) + η′(ŵ)Ŝ(ŵ)

)
+

σ2

2
(
η(ŵ)Ŝ′′(ŵ) + 2η′(ŵ)Ŝ′(ŵ) + η′′(ŵ)Ŝ(ŵ)

)
∀ŵ ∈ (ŵ−, ŵ+).

Using the HJB equation of the surplus to replace (ρ̂ + δ)Ŝ(ŵ) on the left hand side,

(1− ρ̂Û)η(ŵ) = eŵ − ρ̂Û + η′(ŵ)(−γ̂Ŝ(ŵ) + σ2Ŝ′(ŵ)) + η′′(ŵ)
σ2

2
Ŝ(ŵ) ∀ŵ ∈ (ŵ−, ŵ+).

Since Ŝ(ŵ) = (1− ρ̂Û)T (ŵ, ρ̂),

η(ŵ) =
eŵ − ρ̂Û
1− ρ̂Û

+ η′(ŵ)(−γ̂T (ŵ, ρ̂) + σ2T ′ŵ(ŵ, ρ̂)) + η′′(ŵ)
σ2

2
T (ŵ, ρ̂) ∀ŵ ∈ (ŵ−, ŵ+).

Multiplying by (ρ̂ + δ), we arrive at

(ρ̂ + δ)η(ŵ) = (ρ̂ + δ)
eŵ − ρ̂Û
1− ρ̂Û

+ η′(ŵ)(ρ̂ + δ)(−γ̂T (ŵ, ρ̂) + σ2T ′ŵ(ŵ, ρ̂)) + η′′(ŵ)
σ2

2
(ρ̂ + δ)T (ŵ, ρ̂) ∀ŵ ∈ (ŵ−, ŵ+).

Finally, recall the value matching conditions

Ŵ(ŵ−) = Ĵ(ŵ−) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0,

and the smooth pasting conditions

Ŵ ′(−∆−) = Ĵ′(∆+) = 0.

The L’Hôpital’s rule implies

lim
ŵ↓ŵ−

η(ŵ) = lim
ŵ↓ŵ−

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ↓ŵ−
Ŵ ′(ŵ)

Ĵ′(ŵ)
= 0

lim
ŵ↑ŵ+

η(ŵ) = lim
ŵ↑ŵ+

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ↑ŵ+

Ŵ ′(ŵ)

Ŵ ′(ŵ)
= 1,
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which are the boundary values for the worker’s share at the separation triggers.

Finally, the equivalence of the combined Dirichlet-Poisson problem (i.e., the mapping from the corresponding HJB equations

and boundary conditions of η(ŵ) to the sequential formulation) gives us the following Bellman equation

η(ŵ) = E

[ˆ τend

0
e−(ρ̂+δ)t(ρ̂ + δ)

eΓt − ρ̂Û
1− ρ̂Û

dt + e−(ρ̂+δ)τend
1[∆zτend = ∆+]|Γ0 = ŵ

]
,

where

τend = inf{t ≥ 0 : Γt /∈ (ŵ−, ŵ+)}

and

dΓt = (ρ̂ + δ)(−γ̂T (Γt, ρ̂) + σ2T ′ŵ(Γt, ρ̂))dt + σ
√
T (Γt, ρ̂)(ρ̂ + δ)dW z

t .

E.8 Proof of Proposition 14

Proposition 14. The following properties hold:

1. If (ŵ−, ŵ)→ ∞, then
dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=

[
α + (1− α)ρ̂Û

]
α(1− ρ̂Û)

.

2. Assume γ = 0, ∆+ = ∆−, and ∆+ small enough, then

dlog(η(ŵ))

dŵ

∣∣∣∣
ŵ=ŵ∗

=
1

α(∆+ + ∆−)
=

√
send

2ασ
.

Proof. Below, we prove each property.

1. If (ŵ−, ŵ+)→ (−∞, ∞), then T (ŵ, ρ̂) =
´ ∞

0 e−(ρ̂+δ)t dt = 1
ρ̂+δ . The optimality condition for ŵ∗ implies

0 = −T
′(ŵ∗, ρ̂)

T (ŵ∗, ρ̂)
= η′(ŵ∗)

(
α

η(ŵ∗)
− 1− α

1− η(ŵ∗)

)
⇐⇒ α = η(ŵ∗).

Therefore, by definition of η(ŵ)

α = η(ŵ∗) =
E
[´ τm

0 e−ρ̂t+ŵt dt|ŵ0 = ŵ∗
]
− ρ̂ÛT (ŵ, ρ̂)

(1− ρ̂Û)T (ŵ, ρ̂)
⇐⇒

[
α + (1− α)ρ̂Û

]
T (ŵ, ρ̂) = E

[ˆ τm

0
e−ρ̂t+ŵt dt|ŵ0 = ŵ∗

]
.

Since, T (ŵ, ρ̂) is constant, the HJB equation of the worker’s share η(ŵ) is given by

(ρ̂ + δ)η(ŵ) = (ρ̂ + δ)
eŵ − ρ̂Û
1− ρ̂Û

− γ̂η′(ŵ) + η′′(ŵ)
σ2

2
∀ŵ ∈ (−∞, ∞). (E.49)

Taking the derivative of (E.49) with respect to ŵ yields

(ρ̂ + δ)η′(ŵ) = (ρ̂ + δ)
eŵ

1− ρ̂Û
− γ̂η′′(ŵ) + η′′′(ŵ)

σ2

2
∀ŵ ∈ (−∞, ∞).
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This expression corresponds to the HJB of the function η′(ŵ), which can be expressed as

η′(ŵ∗) = (ρ̂ + δ)
E
[´ τm

0 e−ρ̂t+ŵt dt|ŵ0 = ŵ∗
]

1− ρ̂Û

Combining all these results, we finally obtain

η′(ŵ∗)
η(ŵ∗)

=
η′(ŵ∗)

α
= (ρ̂ + δ)

E
[´ τm

0 e−ρ̂t+ŵt dt|ŵ0 = ŵ∗
]

α(1− ρ̂Û)
= (ρ̂ + δ)

[
α + (1− α)ρ̂Û

]
T (ŵ, ρ̂)

α(1− ρ̂Û)
=

[
α + (1− α)ρ̂Û

]
α(1− ρ̂Û)

.

2. If γ = 0 and ∆+ = ∆−, then T ′ŵ(ŵ∗, ρ̂) = 0 and η(ŵ∗) = α (see the proof of Proposition 12, item a). If (∆+ + ∆−) is small

enough, then we can use a second order approximation of η′(ŵ) around ŵ = ŵ∗ to characterize η′(ŵ∗) only using the

border conditions. The approximation is given by

η(ŵ) = η(ŵ∗) + η′(ŵ∗)(ŵ− ŵ∗) +
1
2

η′′(ŵ∗)(ŵ− ŵ∗)2 + O((ŵ− ŵ∗)3).

Evaluating this expression at ŵ− and ŵ+, and omiting any terms of the order O((ŵ− ŵ∗)3), we obtain

η(ŵ∗) + η′(ŵ∗)(ŵ− − ŵ∗) +
1
2

η′′(ŵ∗)(ŵ− − ŵ∗)2 = 0,

η(ŵ∗) + η′(ŵ∗)(ŵ+ − ŵ∗) +
1
2

η′′(ŵ∗)(ŵ+ − ŵ∗)2 = 1,

respectively. The difference between both equations is given by

η′(ŵ∗) =
1

∆+ + ∆−
.

From the proof of Proposition 12 item b, we know that T̃ (0, 0) = 1/s = 1/(δ + (σ/∆+)2)⇒ send = (σ/∆+)2. Replacing

this result in the previous equation, we obtain,

η′(ŵ∗) =
1

∆+ + ∆−
=

√
send

2ασ
.
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F Additional Results for Section 4: Analyzing the Macroeconomic Conse-

quences of Allocative Wages

F.1 Characterization of CIR employment as a function of CIR job-separations and job-finding

Proposition F.1. Define

IRFE (ζ, t) = Et − Ess, IRFs(ζ, t) = st − sss, IRFp(ζ, t) = ft − fss

and

CIRx(ζ) =

ˆ ∞

0
IRFx(ζ, t)dt, with x ∈ {E , s, f },

Assume that E0(0)
dζ = 0 and limt→∞ Et(ζ) = Ess. Then

CIRE (ζ)
ζ

= (1− Ess)Ess

(
fss

CIR f (0)
dζ

− sss
CIRs(0)

dζ

)
+ o(ζ)

Proof. Since (Et(0), pt(0), st(0)) = (Ess, pss, sss) a first order Taylor approximation over ζ

Et(ζ) = Ess +
dEt(0)

dζ
ζ + ot(ζ

2),

ft(ζ) = fss +
d ft(0)

dζ
ζ + ot(ζ

2),

st(ζ) = sss +
dst(0)

dζ
ζ + ot(ζ

2).

and the law of motion

dEt = (−stEt + ft(1− Et))dt , E0(ζ) = Ess + o(ζ2).

Using the first order Taylor approximation over ζ in the law of motion of employment

dEt ≈ d(Ess +
dEt(0)

dζ
ζ) + ot(ζ

2),

= d
(

dEt(0)
dζ

)
ζ

= (−stEt + ft(1− Et))dt,

≈

−sssEss + (1− Ess)︸ ︷︷ ︸
=0

+(1− Ess)
d ft(0)

dζ
− Ess

dst(0)
dζ

− ( fss + sss)
dEt(0)

dζ

dtζ.

Canceling ζ from both sizes

d

(
dÊt(0)

dζ

)
=

(
(1− Ess)

d ft(0)
dζ

− Ess
dst(0)

dζ
− ( fss + sss)

dEt(0)
dζ

)
dt.

Taking the integral between 0 and T

ˆ T

0
d
(

dEt(0)
dζ

)
= (1− Ess)

ˆ T

0

d ft(0)
dζ

dt− Ess

ˆ T

0

dst(0)
dζ

dt− ( fss + sss)

ˆ T

0

dÊt(0)
dζ

dt.
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Since
´ T

0 d
(

dEt(0)
dζ

)
= dÊt(0)

dζ − dÊ0(0)
dζ = dÊt(0)

dζ , we have that

dEt(0)
dζ

= (1− Ess)

ˆ T

0

d ft(0)
dζ

dt− Ess

ˆ T

0

dst(0)
dζ

dt− ( fss + sss)

ˆ T

0

dEt(0)
dζ

dt.

Taking the limit, since limt→∞ Et(ζ) = Ess, we have that limT→∞
dÊt(0)

dζ = 0 and

ˆ ∞

0

dEt(0)
dζ

dt =
(1− Ess)

( fss + sss)

ˆ ∞

0

d f̂t(0)
dζ

dt− Ess

( fss + sss)

ˆ ∞

0

dŝt(0)
dζ

dt.

Since

dCIRE (0)
dζ

=

ˆ ∞

0

dÊt(0)
dζ

dt,

dCIR f (0)
dζ

=

ˆ ∞

0

d f̂t(0)
dζ

dt,

dCIRs(0)
dζ

=

ˆ ∞

0

dŝt(0)
dζ

dt.

Using the previous result and Ess =
pss

sss+ fss
,

dCIRE (0)
dζ

= (1− Ess)Ess

(
fss

dCIR f (0)
dζ

− sss
dCIRs(0)

dζ

)
.

Since CIRE (ζ) = CIRE (0) +
dCIRE (0)

dζ ζ + o(ζ2), we have

CIRE (ζ)
ζ

= (1− Ess)Ess

(
fss

CIR f (0)
dζ

− sss
CIRs(0)

dζ

)
+ o(ζ)

F.2 Second-Order Approximation of the CIR of Employment with Flexible Wages

Proposition F.2. Up-to-second order appromation

(CIRE )′′(0) =
(1− Ess)Ess − γ(CIRE )′(0)

σ2 − 1
2

(
∆zm′E ,h(∆z)(gh)′(∆z)

)∣∣∣∆+

−∆−

+
1
2

(
(gh)′(0−)− (gh)′(0+)

) (
mE ,u(0)−mE ,h(0)

)
.

Proof. Taking the second derivative of (E.26) we obtain

CIR′′E (ζ) = − lim
∆z→−ζ

mE ,h(∆z)(gh)′(∆z + ζ) + lim
∆z→−∆−−ζ

mE ,h(∆z)(gh)′(∆z + ζ) +

ˆ −ζ

−∆−−ζ
mE ,h(∆z)(gh)′′(∆z + ζ)d∆z

− lim
∆z→∆+−ζ

mE ,h(∆z)(gh)′(∆z + ζ) + lim
∆z→−ζ

mE ,h(∆z)(gh)′(∆z + ζ) +

ˆ ∆+−ζ

−ζ
mE ,h(∆z)(gh)′′(∆z + ζ)d∆z,

which evaluated at ζ = 0 becomes

CIR′′E (0) = − mE ,h(∆z)(gh)′(∆z) |0−∆− +

ˆ 0

−∆−
mE ,h(∆z)(gh)′′(∆z)d∆z.
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− mE ,h(∆z)(gh)′(∆z) |∆+

0 +

ˆ ∆+

0
mE ,h(∆z)(gh)′′(∆z)d∆z.

Differentiating condition (D.1) to replace δ =
γ(gh)′′(∆z)+ σ2

2 (gh)′′′(∆z)
(gh)′(∆z) into equation (E.27) we obtain

γ(gh)′′(∆z) + σ2

2 (gh)′′′(∆z)
(gh)′(∆z)

mE ,h(∆z) = 1− Ess − γm′E ,h(∆z) +
σ2

2
m′′E ,h(∆z) +

γg′′(∆z) + σ2

2 g′′′(∆z)
(gh)′(∆z)

mE ,u(0).

Multiplying by (gh)′(∆z)∆z and taking the integral between −∆− and ∆+

0 = (1− Ess) T1 − γT2 +
σ2

2
T3 + mE ,u(0)T4 (F.1)

T1 =

ˆ ∆+

−∆−
∆z(gh)′(∆z)d ∆z

T2 =

ˆ ∆+

−∆−
∆z
[
mE ,h(∆z)(gh)′′(∆z) + m′E ,h(∆z)(gh)′(∆z)

]
d ∆z

T3 =

ˆ ∆+

−∆−
∆z
[
m′′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′′(∆z)

]
d ∆z

T4 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z.

T1 is equal to

T1 =

ˆ ∆+

−∆−
∆z(gh)′(∆z)d ∆z (F.2)

=

ˆ 0

−∆−
∆z(gh)′(∆z)d ∆z +

ˆ ∆+

0
∆z(gh)′(∆z)d ∆z

= ∆zgh(∆z)
∣∣∣0
−∆−

+ ∆zgh(∆z)
∣∣∣∆+

0︸ ︷︷ ︸
=0

−
ˆ ∆+

−∆−
gh(∆z)d ∆z︸ ︷︷ ︸
=Ess

= −Ess.

T2 satisfies

T2 =

ˆ ∆+

−∆−
∆z
[
mE ,h(∆z)(gh)′′(∆z)−m′E ,h(∆z)(gh)′′(∆z)

]
d ∆z (F.3)

=(1)
ˆ 0

−∆−
∆z
[
mE ,h(∆z)(gh)′′(∆z)−m′E ,h(∆z)(gh)′(∆z)

]
d ∆z +

ˆ ∆+

0
∆z
[
mE ,h(∆z)(gh)′′(∆z)−m′E ,h(∆z)(gh)′(∆z)

]
d ∆z

=(2) ∆zmE ,h(∆z)(gh)′(∆)
∣∣∣0
−∆−

+ ∆zmE ,h(∆z)(gh)′(∆)
∣∣∣∆+

0

· · · −
[ˆ 0

−∆−

[
mE ,h(∆z)(gh)′(∆z)

]
d ∆z +

ˆ ∆+

0

[
mE ,h(∆z)(gh)′(∆z)

]
d ∆z

]

=(3) mE ,u(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
−
ˆ ∆+

∆−
mE ,h(∆z)g′(∆z)d ∆z

=(4) mE ,u(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
− CIR′E (0).

Here, (1) divides the integral at the discontinuity point; (2) uses the equality mE ,h(∆z)(gh)′′(∆z) + m′E ,h(∆z)(gh)′(∆z) =
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d [mE ,h(∆z)(gh)′(∆z)]
d ∆z and integrates by parts; (3) uses conditions (E.28) and (F.7); and (4) uses the definition of CIR′E (0) .

T3 satisfies

T3 =

ˆ ∆+

−∆−
∆z
[
m′′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′′(∆z)

]
d ∆z (F.4)

=(1)
ˆ 0

−∆−
∆z
[
m′′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′′(∆z)

]
d ∆z +

ˆ ∆+

0
∆z
[
m′′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′′(∆z)

]
d ∆z

=(2) ∆z
(

m′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′(∆z)
)∣∣∣∆+

−∆−

· · · −
[ˆ 0

−∆−

[
m′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′(∆z)

]
d ∆z +

ˆ ∆+

0

[
m′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′(∆z)

]
d ∆z

]

=(3) ∆z
(

m′E ,h(∆z)(gh)′(∆z)−mE ,u(0)(gh)′′(∆z)
)∣∣∣∆+

−∆−

· · · −
[

mE ,h(∆z)(gh)′(∆)
∣∣∣0
−∆−
− 2
ˆ 0

−∆−

[
mE ,h(∆z)(gh)′′(∆z)

]
d ∆z

]

· · · −
[

mE ,h(∆z)(gh)′(∆)
∣∣∣∆+

0
− 2
ˆ ∆+

0

[
mE ,h(∆z)(gh)′′(∆z)

]
d ∆z

]
.

Here, (1) divides the integral at the discontinuity point; (2) uses the equality m′′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′′(∆z) =
d [m′E ,h(∆z)(gh)′(∆z)−mE ,h(∆z)(gh)′′(∆z)]

d ∆z and integrates by parts; and (3) uses conditions (E.28) and integrates by parts

Finally, for T4

T4 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z (F.5)

=(1)
ˆ 0

−∆−
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z +

ˆ ∆+

0
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z

=(2) ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣0
−∆−

+ ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

0

· · · −
ˆ ∆+

−∆−
γ(gh)′(∆z) +

σ2

2
(gh)′′(∆z)d ∆z

=(3) ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

−∆−
− γ

[
gh(∆z)

∣∣∣0
−∆−

+ gh(∆z)
∣∣∣∆+

0

]
︸ ︷︷ ︸

=0

· · · − σ2

2

[
(gh)′(∆z)

∣∣∣0
−∆−

+ (gh)′(∆z)
∣∣∣∆+

0

]

= ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

−∆−
− σ2

2

[
(gh)′(∆z)

∣∣∣0
−∆−

+ (gh)′(∆z)
∣∣∣∆+

0

]
.

Here, (1) divides the integral at the discontinuity point; (2) integrates by parts; (3) operates the integral and uses the border

conditions.

Combining results (F.1), (F.2), (F.3), (F.4), (F.5), we obtain

0 = (1− Ess) T1 − γT2 +
σ2

2
T3 + mE ,u(0)T4

0 = −(1− Ess)Ess − γ

(
mE ,u(0) ∆z(gh)′(∆z)

∣∣∣∆+

∆−
− CIR′E (0)

)
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· · ·+ σ2

2

[
∆z
(

m′E ,h(∆z)(gh)′(∆z)−mE ,u(0)(gh)′′(∆z)
)∣∣∣∆+

−∆−

· · · −
[

mE ,h(∆z)(gh)′(∆)
∣∣∣0
−∆−
− 2
ˆ 0

−∆−

[
mE ,h(∆z)(gh)′′(∆z)

]
d ∆z

]

· · · −
[

mE ,h(∆z)(gh)′(∆)
∣∣∣∆+

0
− 2
ˆ ∆+

0

[
mE ,h(∆z)(gh)′′(∆z)

]
d ∆z

] ]

· · ·+ mE ,u(0)

(
∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

−∆−
− σ2

2

[
(gh)′(∆z)

∣∣∣0
−∆−

+ (gh)′(∆z)
∣∣∣∆+

0

])
,

which implies

(CIRE )′′(0) =
(1− Ess)Ess − γ(CIRE )′(0)

σ2 − 1
2

(
∆zm′E ,h(∆z)(gh)′(∆z)

)∣∣∣∆+

−∆−

+
1
2

(
(gh)′(0−)− (gh)′(0+)

) (
mE ,u(0)−mE ,h(0)

)
.

F.3 Characterizing the CIR for real wages

We define the CIR of the average wage to a monetary shock as

CIRw(ζ) =

ˆ ∞

0

ˆ ŵ+

ŵ−
ŵ
(

gh(ŵ, t)− g(ŵ)
)

dŵ dt

The strategy to find the sufficient statistic is similar to the strategy used for CIRE (ζ), with few differences in the implementa-

tion of the steps. For this reason, we skip the proof of some of the similar steps. The main difference is the associated Bellman

equation that describes the total sum of the differences between average wage in period t and the steady-state average wage.

Step 1. The CIR satisfies

CIRw(ζ) =

ˆ ∞

−∞
mw,h(∆z)gh(∆z + ζ)d∆z +

ˆ ∞

−∞
mw,u(∆z)gu(∆z + ζ)d∆z

with

mw,h(∆z) ≡ E

[ˆ τm

0
[∆zt −Eh[∆z]]dt + mw,u(0)|∆z0 = ∆z

]
mw,u(∆z) ≡ E

[
mw,h(0)|∆z0 = ∆z

]
0 =

ˆ ∆+

−∆−
mw,h(∆z)gh(∆z)d∆z +

ˆ ∆+

−∆−
mw,u(∆z)gu(∆z)d∆z,

Step 2. Up to first order, the CIRw(ζ) is the solution of

CIRw(ζ) =

ˆ ∞

−∞
mw,h(∆z)gh(∆z + ζ)d∆z + mw,h(0)(1− Ess),
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where

0 = ∆z−Eh[∆z]− γ(mw,h)′(∆z) +
σ2

2
(mw,h)′′(∆z) + δ(mw,h(0)− (mw,h)′(∆z)) (F.6)

mw,h(0) = mw,h(−∆−) = mw,h(∆+),

0 =

ˆ ∆+

−∆−
mw,h(∆z)gh(∆z)d∆z + mw,h(0)(1− Ess),

δgh(∆z) = γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z) for all ∆z ∈ (−∆−, ∆+)/{0},

gh(−∆−) = gh(∆+) = 0, (F.7)

Ess =

ˆ ∆+

−∆−
gh(∆z)d∆z,

gh(∆z) ∈ C, C1({0}), C2({0}).

Step 3. We show that mw,h(0) = Covh [a,∆z]
1−Ess

.

Proof of Step 3. Define f (∆zt) = ∆zt −Eh[∆z]. Observe that mw,h(∆z) satisfies the following recursive representation

mw,h(∆z) = E

[ˆ τm

0
f (∆zt)dt + mw,h(0)

∣∣∣∣∣∆z0 = ∆z

]
.

Define the following auxiliary function

Ψ(∆z|ϕ) = E

[ˆ τm

0
eϕt f (∆zt)dt + eϕτm

mw,h(0)

∣∣∣∣∣∆z0 = ∆z

]
. (F.8)

Then, following similar steps, we obtain

∂Ψ(0|0)
∂ϕ

= E

[ˆ τm

0
mw,h(∆zt)dt

∣∣∣∆z0 = 0

]

= E[τm]

´ ∆+

−∆− mw,h(∆z)gh(∆z)d∆z
Ess

= −E[τm]mw,h(0)
(1− Ess)

Ess
(F.9)

From (F.8), we have that

∂Ψ(0|0)
∂ϕ

= E

[ˆ τm

0
s f (∆zs)ds + τmmw,h(0)

∣∣∣∣∣∆z0 = 0

]

= E [τm]

[
Eh[a f (∆zs)]

Ess
+ mw,h(0)

]
, (F.10)

Combining (F.9) and (F.10), and solving for mw,h(0) we obtain:

mw,h(0) =
Covh[a, ∆z]

1− Ess
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Step 4. Up to a first-order approximation, the CIR is given by:

CIRw(ζ) = −
Covh[∆z + γa, ∆z]

σ2 + o(ζ2).

Proof of Step 4. To help the reader, we summarize below the conditions we use in this proof.

CIRw(ζ) =

ˆ ∞

−∞
mw,h(∆z)gh(∆z + ζ)d∆z + mw,h(0)(1− Ess), (F.11)

where

0 = f (∆z)− γ(mw,h)′(∆z) +
σ2

2
(mw,h)′′(∆z) + δ(mw,h(0)−mw,h(∆z))

mw,h(0) = mw,h(−∆−) = mw,h(∆+), (F.12)

0 =

ˆ ∆+

−∆−
mw,h(∆z)gh(∆z)d∆z + mw,h(0)(1− Ess). (F.13)

1. Zero-order: If ζ = 0, condition (F.13) implies

CIRw(0) =
ˆ ∞

−∞
mw,h(∆z)gh(∆z)d∆z + mw,h(0)(1− Ess) = 0.

2. First-order: Taking the derivative of (F.11) we obtain

CIR′w(ζ) =
ˆ ∞

−∞
mw,h(∆z)(gh)′(∆z + ζ)d∆z,

which evaluated at ζ = 0 becomes

CIR′w(0) =
ˆ ∆+

−∆−
mw,h(∆z)(gh)′(∆z)d∆z.

Using condition (D.1) to replace δ =
γ(gh)′(∆z)+ σ2

2 (gh)′′(∆z)
gh(∆z) into the HJB equation (F.6), we obtain

γ(gh)′(∆z) + σ2

2 (gh)′′(∆z)
gh(∆z)

mw,h(∆z) = f (∆z)− γ(mw,h)′(∆z) +
σ2

2
(mw,h)′′(∆z) +

γ(gh)′(∆z) + σ2

2 (gh)′′(∆z)
gh(∆z)

mw,h(0).

Multiplying by gh(∆z)∆z and taking the integral between −∆− and ∆+

0 = Varh[∆z]− γT1 +
σ2

2
T2 + mw,h(0)T3

T1 =

ˆ ∆+

−∆−
∆z
[
(mw,h)′(∆z)gh(∆z) + mw,h(∆z)(gh)′(∆z)

]
d ∆z

T2 =

ˆ ∆+

−∆−
∆z
[
(mw,h)′′(∆z)gh(∆z)−mw,h(∆z)(gh)′′(∆z)

]
d ∆z

T3 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

)
d ∆z.

T1 is equal to

T1 =

ˆ ∆+

−∆−
∆z
[
(mw,h)′(∆z)gh(∆z) + mw,h(∆z)(gh)′(∆z)

]
d ∆z
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=(1)
ˆ 0

−∆−
∆z
[
(mw,h)′(∆z)gh(∆z) + mw,h(∆z)(gh)′(∆z)

]
d ∆z +

ˆ ∆+

0
∆z
[
(mw,h)′(∆z)gh(∆z) + mw,h(∆z)(gh)′(∆z)

]
d ∆z

=(2)
ˆ 0

−∆−
∆z

d
(

mw,h(∆z)gh(∆z)
)

d ∆z
d ∆z +

ˆ ∆+

0
∆z

d
(

mw,h(∆z)gh(∆z)
)

d ∆z
d ∆z

=(3) ∆zmw,h(∆z)gh(∆z)
∣∣∣0
−∆−

+ ∆zmw,h(∆z)gh(∆z)
∣∣∣∆+

0︸ ︷︷ ︸
=0

· · · −
[ˆ 0

−∆−
mw,h(∆z)gh(∆z)d ∆z +

ˆ ∆+

0
mw,h(∆z)gh(∆z)d ∆z

]

=(4) −
ˆ ∆+

−∆−
mw,h(∆z)gh(∆z)d ∆z

=(5) mw,h(0)(1− Ess)

Here, (1) divides the integral at the discontinuity point of gh(∆z); (2) uses the property of the derivative of a product of

functions; (3) integrates and uses the border conditions (F.7); (4) uses continuity of mw,h(∆z)gh(∆z); and (6) uses (F.13).

T2 satisfies

T2 =

ˆ ∆+

−∆−
∆z
[
(mw,h)′′(∆z)gh(∆z)−mw,h(∆z)(gh)′′(∆z)

]
d ∆z

=(1)
ˆ 0

−∆−
∆z
[
(mw,h)′′(∆z)gh(∆z)−mw,h(∆z)(gh)′′(∆z)

]
d ∆z +

ˆ ∆+

0
∆z
[
(mw,h)′′(∆z)gh(∆z)−mw,h(∆z)(gh)′′(∆z)

]
d ∆z

=(2) ∆z
[
(mw,h)′(∆z)gh(∆)−mw,h(∆z)(gh)′(∆z)

]∣∣∣0
−∆−

+ ∆z
[
(mw,h)′(∆z)gh(∆)−mw,h(∆z)(gh)′(∆z)

]∣∣∣∆+

0

· · · −
[ˆ 0

−∆−

[
(mw,h)′(∆z)gh(∆z)−mw,h(∆z)(gh)′(∆z)

]
d ∆z +

ˆ ∆+

0

[
(mw,h)′(∆z)gh(∆z)−mw,h(∆z)(gh)′(∆z)

]
d ∆z

]

=(3) ∆z
[
(mw,h)′(∆z)gh(∆)−mw,h(∆z)(gh)′(∆z)

]∣∣∣∆+

∆−︸ ︷︷ ︸
=−mw,h(0) ∆z(gh)′(∆z)|∆

+

∆−

· · · −
[ˆ 0

−∆−

[
(mw,h)′(∆z)gh(∆z)−mw,h(∆z)(gh)′(∆z)

]
d ∆z +

ˆ ∆+

0

[
(mw,h)′(∆z)gh(∆z)−mw,h(∆z)(gh)′(∆z)

]
d ∆z

]

=(4) −mw,h(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
−
ˆ ∆+

∆−
(mw,h)′(∆z)gh(∆z)d ∆z +

ˆ ∆+

∆−
mw,h(∆z)(gh)′(∆z)d ∆z

=(5) −mw,h(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
−

mw,h(∆z)gh(∆z)
∣∣∣∆+

∆−︸ ︷︷ ︸
=0

−
ˆ ∆+

∆−
mw,h(∆z)(gh)′(∆z)d ∆z

+

ˆ ∆+

∆−
mw,h(∆z)(gh)′(∆z)d ∆z

= −mw,h(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
+ 2
ˆ ∆+

∆−
mw,h(∆z)(gh)′(∆z)d ∆z.

Here, (1) divides the integral at the discontinuity point; (2) uses the equality (mw,h)′′(∆z)gh(∆z)−mw,h(∆z)(gh)′′(∆z) =
d [(mw,h)′(∆z)gh(∆z)−mw,h(∆z)(gh)′(∆z)]

d ∆z and integrates by parts; (3) uses conditions (F.12) and (F.7); and (4)-(5) integrate by

parts and operate.

Finally, for T3

T3 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

)
d ∆z
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= γ

[ˆ 0

−∆−
∆z(gh)′(∆z)d ∆z +

ˆ ∆+

0
∆z(gh)′(∆z)d ∆z

]
+

σ2

2

[ˆ 0

∆−
∆z(gh)′′(∆z)d ∆z +

ˆ ∆+

0
∆z(gh)′′(∆z)d ∆z

]

= γ

∆zgh(∆z)
∣∣∣0
−∆−

+ ∆zgh(∆z)
∣∣∣∆+

0︸ ︷︷ ︸
=0

−
ˆ ∆+

−∆−
gh(∆z)d ∆z︸ ︷︷ ︸
=Ess


· · ·+ σ2

2

[
∆z(gh)′(∆z)

∣∣∣0
−∆−

+ ∆z(gh)′(∆z)
∣∣∣∆+

0
−
ˆ ∆+

−∆−
(gh)′(∆z)d ∆z

]

= −γEss +
σ2

2

∆z(gh)′(∆z)
∣∣∣∆+

∆−
− gh(∆z)

∣∣∣∆+

∆−︸ ︷︷ ︸
=0


= −γEss +

σ2

2

[
∆z(gh)′(∆z)

∣∣∣∆+

∆−

]
.

Combining all these results

0 = Varh[∆z]− γT1 +
σ2

2
T2 + mw,h(0)T3

0 = Varh[∆z]− γmw,h(0)(1− Ess)

+
σ2

2

(
−mw,h(0) ∆z(gh)′(∆z)

∣∣∣∆+

∆−
+ 2
ˆ ∆+

∆−
mw,h(∆z)(gh)′(∆z)d ∆z

)

+ mw,h(0)
(
−γEss +

σ2

2

[
∆z(gh)′(∆z)

∣∣∣∆+

∆−

])
0 = Varh[∆z]− γmw,h(0) + σ2

ˆ ∆+

∆−
mw,h(∆z)(gh)′(∆z)d ∆z,

which implies

ˆ ∆+

−∆−
mw,h(∆z)(gh)′(∆z) =

γmw,h(0)−Varh[∆z]
σ2

= −Covh[∆z + γa, ∆z]
σ2 .

3. Second-order: Taking the second derivative of (E.26) we obtain

CIR′′w(ζ) = − lim
∆z→−ζ

mw,h(∆z)(gh)′(∆z + ζ) + lim
∆z→−∆−−ζ

mw,h(∆z)(gh)′(∆z + ζ) +

ˆ −ζ

−∆−−ζ
mw,h(∆z)(gh)′′(∆z + ζ)d∆z

− lim
∆z→∆+−ζ

mw,h(∆z)(gh)′(∆z + ζ) + lim
∆z→−ζ

mw,h(∆z)(gh)′(∆z + ζ) +

ˆ ∆+−ζ

−ζ
mw,h(∆z)(gh)′′(∆z + ζ)d∆z,

which evaluated at ζ = 0 becomes

CIR′′w(0) = − mw,h(∆z)(gh)′(∆z) |0−∆− +

ˆ 0

−∆−
mw,h(∆z)(gh)′′(∆z)d∆z.

− mw,h(∆z)(gh)′(∆z) |∆+

0 +

ˆ ∆+

0
mw,h(∆z)(gh)′′(∆z)d∆z.
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Differentiating condition (D.1) to replace δ =
γ(gh)′′(∆z)+ σ2

2 (gh)′′′(∆z)
(gh)′(∆z) into equation (F.6), we obtain

γ(gh)′′(∆z) + σ2

2 (gh)′′′(∆z)
(gh)′(∆z)

mw,h(∆z) = f (∆z)− γ(mw,h)′(∆z) +
σ2

2
(mw,h)′′(∆z) +

γ(gh)′′(∆z) + σ2

2 (gh)′′′(∆z)
(gh)′(∆z)

mw,h(0).

Multiplying by (gh)′(∆z)∆z and taking the integral between −∆− and ∆+

0 = T1 − γT2 +
σ2

2
T3 + mw,h(0)T4 (F.14)

T1 =

ˆ ∆+

−∆−
f (∆z)∆z(gh)′(∆z)d ∆z

T2 =

ˆ ∆+

−∆−
∆z
[
mw,h(∆z)(gh)′′(∆z) + (mw,h)′(∆z)(gh)′(∆z)

]
d ∆z

T3 =

ˆ ∆+

−∆−
∆z
[
(mw,h)′′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′′(∆z)

]
d ∆z

T4 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z.

T1 is equal to

T1 =

ˆ ∆+

−∆−
f (∆z)∆z(gh)′(∆z)d ∆z (F.15)

=

ˆ 0

−∆−
f (∆z)∆z(gh)′(∆z)d ∆z +

ˆ ∆+

0
f (∆z)∆z(gh)′(∆z)d ∆z

= ∆z
(

∆z2

2
−Eh[∆z]∆z

)
gh(∆z)

∣∣∣∣0
−∆−

+ ∆z
(

∆z2

2
−Eh[∆z]∆z

)
gh(∆z)

∣∣∣∣∆
+

0︸ ︷︷ ︸
=0

−
ˆ ∆+

−∆−

(
∆z2

2
−Eh[∆z]∆z

)
gh(∆z)d ∆z︸ ︷︷ ︸

=
Eh [∆z2 ]

2 −Eh [∆z]2

= −
(

Eh[∆z2]

2
−Eh[∆z]2

)
.

T2 satisfies

T2 =

ˆ ∆+

−∆−
∆z
[
mw,h(∆z)(gh)′′(∆z)− (mw,h)′(∆z)(gh)′′(∆z)

]
d ∆z (F.16)

=(1)
ˆ 0

−∆−
∆z
[
mw,h(∆z)(gh)′′(∆z)− (mw,h)′(∆z)(gh)′(∆z)

]
d ∆z +

ˆ ∆+

0
∆z
[
mw,h(∆z)(gh)′′(∆z)− (mw,h)′(∆z)(gh)′(∆z)

]
d ∆z

=(2) ∆zmw,h(∆z)(gh)′(∆)
∣∣∣0
−∆−

+ ∆zmw,h(∆z)(gh)′(∆)
∣∣∣∆+

0

· · · −
[ˆ 0

−∆−

[
mw,h(∆z)(gh)′(∆z)

]
d ∆z +

ˆ ∆+

0

[
mw,h(∆z)(gh)′(∆z)

]
d ∆z

]

=(3) mw,h(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
−
ˆ ∆+

∆−
mw,h(∆z)(gh)′(∆z)d ∆z

=(4) mw,h(0) ∆z(gh)′(∆z)
∣∣∣∆+

∆−
− CIR′w(0).

Here, (1) divides the integral at the discontinuity point; (2) uses the equality mw,h(∆z)(gh)′′(∆z)+ (mw,h)′(∆z)(gh)′(∆z) =
d [mw,h(∆z)(gh)′(∆z)]

d ∆z and integrates by parts; (3) uses the border conditions; and (4) uses the definition of CIR′w(0) .
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T3 satisfies

T3 =

ˆ ∆+

−∆−
∆z
[
(mw,h)′′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′′(∆z)

]
d ∆z (F.17)

=(1)
ˆ 0

−∆−
∆z
[
(mw,h)′′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′′(∆z)

]
d ∆z +

ˆ ∆+

0
∆z
[
(mw,h)′′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′′(∆z)

]
d ∆z

=(2) ∆z
(
(mw,h)′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′(∆z)

)∣∣∣∆+

−∆−

· · · −
[ˆ 0

−∆−

[
(mw,h)′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′(∆z)

]
d ∆z +

ˆ ∆+

0

[
(mw,h)′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′(∆z)

]
d ∆z

]

=(3) ∆z
(
(mw,h)′(∆z)(gh)′(∆z)−mw,h(0)(gh)′′(∆z)

)∣∣∣∆+

−∆−

· · · −
[

mw,h(∆z)(gh)′(∆)
∣∣∣0
−∆−
− 2
ˆ 0

−∆−

[
mw,h(∆z)(gh)′′(∆z)

]
d ∆z

]

· · · −
[

mw,h(∆z)(gh)′(∆)
∣∣∣∆+

0
− 2
ˆ ∆+

0

[
mw,h(∆z)(gh)′′(∆z)

]
d ∆z

]
.

Here, (1) divides the integral at the discontinuity point; (2) uses the equality (mw,h)′′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′′(∆z) =
d [(mw,h)′(∆z)(gh)′(∆z)−mw,h(∆z)(gh)′′(∆z)]

d ∆z and integrates by parts; and (3) uses the border conditions and integrates by parts

Finally, for T4

T4 =

ˆ ∆+

−∆−
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z (F.18)

=(1)
ˆ 0

−∆−
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z +

ˆ ∆+

0
∆z
(

γ(gh)′′(∆z) +
σ2

2
(gh)′′′(∆z)

)
d ∆z

=(2) ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣0
−∆−

+ ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

0

· · · −
ˆ ∆+

−∆−
γ(gh)′(∆z) +

σ2

2
(gh)′′(∆z)d ∆z

=(3) ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

−∆−
− γ

[
gh(∆z)

∣∣∣0
−∆−

+ gh(∆z)
∣∣∣∆+

0

]
︸ ︷︷ ︸

=0

· · · − σ2

2

[
(gh)′(∆z)

∣∣∣0
−∆−

+ (gh)′(∆z)
∣∣∣∆+

0

]

= ∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

−∆−
− σ2

2

[
(gh)′(∆z)

∣∣∣0
−∆−

+ (gh)′(∆z)
∣∣∣∆+

0

]
.

Here, (1) divides the integral at the discontinuity point; (2) integrates by parts; (3) operates the integral and uses the

border conditions.

Combining results (F.14), (F.15), (F.16), (F.17), (F.18), we obtain

0 = T1 − γT2 +
σ2

2
T3 + mw,h(0)T4

0 = −
(

Eh[∆z2]

2
−Eh[∆z]2

)
− γ

(
mw,h(0) ∆z(gh)′(∆z)

∣∣∣∆+

∆−
− CIR′w(0)

)
· · ·+ σ2

2

[
∆z
(
(mw,h)′(∆z)(gh)′(∆z)−mw,h(0)(gh)′′(∆z)

)∣∣∣∆+

−∆−
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· · · −
[

mw,h(∆z)(gh)′(∆)
∣∣∣0
−∆−
− 2
ˆ 0

−∆−

[
mw,h(∆z)(gh)′′(∆z)

]
d ∆z

]

· · · −
[

mw,h(∆z)(gh)′(∆)
∣∣∣∆+

0
− 2
ˆ ∆+

0

[
mw,h(∆z)(gh)′′(∆z)

]
d ∆z

] ]

· · ·+ mw,h(0)

(
∆z
[

γ(gh)′(∆z) +
σ2

2
(gh)′′(∆z)

]∣∣∣∣∆
+

−∆−
− σ2

2

[
(gh)′(∆z)

∣∣∣0
−∆−

+ (gh)′(∆z)
∣∣∣∆+

0

])
,

which implies

(CIRw)′′(0) =

(
Eh [∆z2]

2 −Eh[∆z]2
)
− γ(CIRw)′(0)

σ2 − 1
2

(
∆z(mw,h)′(∆z)(gh)′(∆z)

)∣∣∣∆+

−∆−
.
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