
DRAFT - IN
COMPLETE - Do no

t c
ite

or
qu

oteAssessing Utility of Differential Privacy for RCTs

Soumya Mukherjee1, Aratrika Mustafi1, Aleksandra Slavković1, and Lars
Vilhuber2

1Penn State, Department of Statistics
2Cornell University, Department of Economics

April 27, 2023

Abstract

Randomized control trials, RCT, have become a powerful tool for assessing the impact
of interventions and policies in many contexts. Today, they are considered the gold-standard
for inference in the biomedical fields and in many social sciences. In economics, much of the
growth has been since the 1990s. Studies can involve small-scale interventions, randomized
at the personal, family, or village level, but are sometimes also measured with province- or
national-level outcomes. Researchers have published an increasing number of studies that rely
on RCTs for at least part of the inference.

In the meantime, differential privacy (DP) has been proposed as a principled framework to
privacy protection. However, there is still no sufficient guidance for social science researchers
and practitioners on how to implement DP methods, and how to analyze DP-protected data.
Furthermore, concerns have been expressed that DP methods may reduce utility (here: inference
validity), or require much larger samples in order to achieve similar utility while providing
sufficient (superior) privacy protection.

In this study, we empirically evaluate the impact of DP methods on published analyses from
randomized control trials (RCTs), leveraging the availability of numerous replication packages
(research compendia) in economics and policy analysis. We aim to assess, for each paper,
whether an optimally chosen differentially private protection mechanism would have lead to
similar inferences compared to non DP-sanitized data, or if not, what the necessary sample size
augmentation may need to be; optimality criteria will be defined with respect to desired valid
statistical outcomes (e.g., low type 1 error, high power, unbiasness, etc). From this analysis,
we aim to distill guidance to researchers wishing to implement RCTs as to the choice between
privacy protection and power in a planned study.
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1 Introduction

Randomized control trials, RCT, have become a powerful tool for assessing the impact of interven-

tions and policies in many contexts. Today, they are considered the gold-standard for inference in

the biomedical fields and in many social sciences. In economics, much of the growth has been since

the 1990s. Studies can involve small-scale interventions, randomized at the personal, family, or

village, but are sometimes also measured with province- or national-level outcomes. Researchers

have published an increasing number of studies that rely on RCTs for at least part of the inference.

In a parallel development, the improvement in transparency in the social sciences has lead to

more and more of the supplementary materials for these articles to be made public as “replication

packages”. For instance, the American Economic Association (AEA) journals for applied economics

(AEJ:Applied) and economic policy (AEJ:EP), created in 2009, have since their inception required

that analysis data and code be made available. The increased availability of complete replication

packages has allowed other researchers to leverage the materials, and conduct re-analyses and

meta-analyses, furthering our understanding of the methods as well as of the conclusions drawn from

these studies. Meager (2019) re-analyzed numerous RCTs to assess the robustness of their findings

using Bayesian hierarchical analysis (BHA). Roth (2022) selected event studies for which complete

replication packages were available, to re-analyze them in light of pre-treatment time treands. These

kinds of studies are possible because of the increased availability of complete replication materials.1

The data included in such replication packages usually allows to reproduce the results in the

papers exactly, suggesting that all the analysis is conducted on these data. However, the typical

guidance followed by researchers who conduct RCTs (Department of Health and Human Services,

2012; Kopper, Sautmann and Turitto, 2020; DIME, 2020) suggests primarily de-identification,

the most basic anonymization, as the protection mechanism, and where further anonymization is

suggested, more traditional disclosure avoidance methods (e.g., 𝑙-diversity, Machanavajjhala et al.

(2006); Hundepool et al. (2012), and other aggregation-based methods are suggested). Differential
1It should be noted that Roth (2022) still had to exclude nearly four times as many papers as they included because

data were not readily available.
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privacy (DP) is sometimes referenced (Dwork et al., 2016; Wood et al., 2021), but as far as we

are aware, no straightforward guidance for social science researchers and practitioners is available

on how to implement DP, and how to analyze DP-protected data. This suggests that much of the

current literature is based on data analysis that is public, but possibly inadequately protected. This

is particularly concerning because many of these studies have data from respondents in low and

middle income countries (LMIC).

One of the reasons is that there have so far not been tools available to non-specialists that would

allow for easy but efficient protection using differentially private tools. Efficiency here is defined

as “perturbing inference as little as possible compared to the unprotected inference.” We note

that inference even in the “unprotected” case is already subject to uncertainty that is often not

adequately taken into account, as evidenced by Meager (2019). This is even more important for the

uncertainty and data modifications that are generated through statistical disclosure limitation (SDL).

Abowd and Schmutte (2015); Slavkovic and Seeman (2022) demonstrate the need to account for

the privacy-preserving noise in analyses. Slavkovic and Seeman (2022) propose a way to make an

adjustment for privacy-preservation noise in addition to other source of uncertainty.

1.1 Research questions and academic contribution

This project sets out to provide an assessment of the feasibility of using privacy enhancing technolo-

gies (PETs), in particular differentially private methods, for data publication and adjusted inference

in the context of RCTs. More broadly, the project will contribute to a literature on privacy-aware

analysis, and privacy-aware planning for such analyses.

The project is, as far as we know, the first systematic exploratory analysis of RCTs to understand

the impact of privacy-preservation and with the focus on LMIC data.

The project proposed here is innovative in two separate dimensions. First, it will assess the

feasibility of stronger privacy protections for data collected in LMIC, taking into account the ability

to make robust inferences. Second, it contributes to the statistical and computer sciences literature

(and the fields relying on these) assessing the interaction between causal inference and privacy

protection, in particular when privacy protection is conducted via DP methods.
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We believe that the focus on RCTs is particularly well-suited for this endeavor, for several reasons.

First, methods are, in general, quite straightforward: OLS, difference-in-difference methods, possibly

even simple difference in means across treated and untreated populations. These are amongst the

first analysis methods for which adaptations to DP protection have been studied (e.g., Awan and

Slavković, 2020; Alabi et al., 2020; Slavkovic and Molinari, 2021; Barrientos et al., 2018; Bowen

et al., 2020). Second, most RCTs are small-scale, using samples of the overall population, allowing

us to leverage privacy-amplifying methods (Balle, Barthe and Gaboardi, 2018). Third, RCTs are

often accompanied by pre-analysis plans, with specific hypotheses in mind and with the intent to

avoid false discovery. These areas have also been explored within the DP framework (e.g., Vu and

Slavkovic, 2009; Pistner, 2020; Dwork, Su and Zhang, 2021)). Finally, it is already understood

in the privacy community that the inherent noisiness of the sampling may affect inference (e.g.,

Slavkovic and Seeman, 2022). The analogy between adding noise for the purpose of BHA, Meager

(2019), and adding noise for privacy protection may be a convenient analogy to improve acceptance

of such methods. Furthermore, a similar Bayesian framework can be used to adjust noisy inference

due to privacy (e.g., Seeman, Slavkovic and Reimherr (2020).)

1.2 Research design and data.

We analyze several previously published studies with complete available data. These may come from

the aforementioned journals with a robust data and code availability policies, or from studies that

have been separately verified by institutions active in the domain of LMIC RCTs, such as Innovations

for Poverty Action (IPA), J-PAL, or 3ie, all of which have or have had active reproducible checks.

We analyze each article, identify the analysis method used, identify the variables of interest, as

well as the data generating process. Based on a review of the DP literature, we choose the most

efficient data protection (for example, based on release of synthetic microdata or summary statistics)

and where necessary adapted analysis method for the proposed inference. We will leverage, where

possible, existing methods (using R code and packages,) and emerging toolkits (e.g., openDP, Tumult

Lab’s system) that are well understood and accessible to other researchers. We will then re-run the

analysis, and compare the protected inference to the original inference.
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We note immediately a particular issue that we expect to encounter. The analysis provided

here is contingent on data that have already been collected. If, as we expect, inference based

on privacy-protected data is more tenuous and noisier, one implication is that the typical power

calculation should be adjusted to take privacy protection into account, presumably leading to higher

required sample sizes (e.g., Vu and Slavkovic, 2009). Expressed differently, to the extent that

power calculations suggested the appropriate minimal sample sizes used by the studies that we will

re-analyze, these studies may be under-powered with respect to optimal privacy-protected inference.

As part of our analysis, we will endeavor to recover the necessary sample size that would have been

needed in order to obtain the same originally intended power.

2 Problem setup

The standard problem setup is described here. The experimenter is interested in determining whether

a particular treatment has any effect on a response variable when the treatment is applied to an

entity, individual, or treatment unit. The typical manner in the experiment is performed to answer

the experimenter’s query is to randomly assign the treatment to the treatment units according to

some chosen experimental design, apply the treatment to the units and measure/record the response

variable after the treatment is applied to the units. The statistical analysis is based on regressing

the response variable on the levels of the treatment applied and then inferring about the effect of

the treatment on the response. In order to better understand how this effect may or may not vary

based on inherent characteristics of the treatment units, the experimenter also typically records or

measures additional variables (covariates, control variables) and accounts for these variables in the

regression model in order to improve the statistical utility of the estimate of the treatment effect and

the power of testing procedures concerning the treatment effect. However, these covariates pose

a privacy concern for the individuals or treatment units participating in the study. An (privacy)

attacker, if provided with the database containing the covariate information, for instance from a

replication package, may link some records in the given database with an external database, and thus

gain knowledge of characteristics of one or more treatment units, along with the level of treatment

5



DRAFT - IN
COMPLETE - Do no

t c
ite

or
qu

ote
received by the concerned treatment units, which the attacker did not possess before the database

was provided to her. This constitutes a privacy violation of the treatment units.

There are two types of competing factors at play. The experimenter is responsible for providing

privacy protection to the participating entities in a randomized controlled trial, ideally by using

methodology that satisfies formal privacy guarantees. But the experimenter also wishes to maximize

the utility of the randomized controlled trial with respect to the scientific knowledge it generates.

There are two ways an experimenter aims to make an RCT scientifically useful. Firstly, the experi-

menter performs a statistical analysis of the data collected, reports the results of the analysis in a

summarized form and most importantly, infers the effect of the treatment on the response variable

(typically by means of a point/interval estimate or a hypothesis test). Secondly, the experimenter

makes the data required for the statistical analysis available to the public for the purpose of repro-

ducibility, transparency and promotion of further research. The publication of the analysis results

along with the analysis data in the public domain has the potential to violate privacy. On the other

hand, perturbing either the summary statistics or the analysis data before publication in order to

provide privacy protection reduces their statistical utility and the reproducibility of the research

performed by the experimenter.

3 Data structure and Goal

We consider the scenario where the experimenter/analyst is interested in determining the main

effect of one or more treatment variables using a regression model with fixed effects and each

treatment variables have a finite number of treatment levels associated with it. In addition, there

may be additional variables which are used for stratification or blocking. If there is no stratification

involved, it is assumed that the experimental design uses a simple randomization scheme where the

treatment units are assigned to the treatment level combinations using simple random sampling with

replacement (we can perform without replacement sampling as well, but for simplicity we focus on

the sampling with replacement scenario). If there are one or more blocking variables involved, it

is assumed that the experimental design uses a randomization scheme where the treatment units
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within a block (corresponding to a unique combination of the blocking variables) are assigned to the

treatment level combinations using simple random sampling with replacement. This experimental

design is referred to as a randomized block design.

The covariates incorporated in the regression model in addition to the treatment and blocking

variables can be either discrete or continuous. If a covariate is discrete, it is assumed that that the

number of distinct values of each discrete covariate is finite and these distinct values are either

exactly known or belong to a known finite set.

The analysis data is assumed to be available in the form of a dataframe with 𝑛 rows and 𝑝+𝑡+𝑏+1

columns, where 𝑛 is the total number of treatment units, 𝑡 is the number of dummy variables required

for representing all possible treatment combination assignments using dummy coding and 𝑏 is

the number of blocking variables. Note that we consider the treatment units in the control group

as treatment units which are assigned to a particular treatment level combination. The 𝑖-th row

corresponds to the 𝑖-th treatment unit, 𝑖 = 1,… , 𝑛. The first column contains the values of the

response variable 𝑦. The next 𝑡 columns represent the dummy variables which indicate the treatment

level combinations assigned to the treatment units. The next 𝑏 columns contain the block assignments

based on the 𝑏 blocking variables (note that we are not assuming these block assignments to be in

dummy coding form). The remaining 𝑝 columns contain the data corresponding to the covariates

to be included in the regression model. We refer to the last 𝑝 columns as the covariate dataframe,

which is the source our potential privacy concern.

The experimenter’s goal is to accurately infer the main effect(s)of the treatment variable(s) using

a regression model with fixed effects. In addition release the dataframe containing the analysis data

in the public domain.

Our goal is to reduce the privacy violation risk using a differentially private data release mecha-

nism that allow the sanitized dataframe to be released without compromising the quality of inference

about the parameter(s) of interest. More specifically, the data release mechanism must ensure differ-

ential privacy at the level of individual treatment units. Further, it must ensure that the statistical

inference (for example point estimation, interval estimation or hypothesis testing) regarding the
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main effect(s) of the treatment variable(s) performed using the sanitized dataset is very “similar”, in

a way that we will define shortly, to the inference performed using the original dataframe which

contains the private information is not sanitized before release.

4 Synthetic data generation approach based on perturbed histogram

Assuming that a linear regression model is suitable, the regression model of interest in the absence

of blocking variables is given by

𝑦𝑖 = 𝛼 +
𝑏
∑

𝑘=1
𝜏𝑘𝑇𝑘,𝑖 +

𝑝
∑

𝑙=1
𝛾𝑙𝑋𝑙,𝑖 + 𝜖𝑖, 𝑖 = 1,… , 𝑛 (1)

where 𝑇𝑘 represent the dummy variables for the treatment level combinations and 𝑋𝑙 represent the

covariates/control variables associated with the 𝑛 treatment units and 𝜖𝑖
𝑖.𝑖.𝑑∼ 𝑁(0, 𝜎2).

When stratification is used with a total of 𝑚 block combinations and 𝑛𝑗 treatment units are

assigned to 𝑗-th block combination, the corresponding regression model is given by

𝑦𝑖𝑗 = 𝛼 +
𝑏
∑

𝑘=1
𝜏𝑘𝑇𝑘,𝑖 +

𝑝
∑

𝑙=1
𝛾𝑙𝑋𝑙,𝑖𝑗 + 𝜖𝑖𝑗

𝑖 = 1,… , 𝑛𝑗 , 𝑗 =, 1,… , 𝑚,
𝑚
∑

𝑗
𝑛𝑗 = 𝑛

(2)

In both the above models, the parameter(s) of interest to the experimenter are the fixed effects

𝜏𝑘, 𝑘 = 1,… , 𝑏. From the point of view of the experimenter, statistical utility will be preserved

if the inference concerning the fixed effects 𝜏𝑘 is affected as little as possible by the data release

mechanism used to sanitize the analysis data in order to protect privacy.

We will adopt a synthetic data generation approach that will attempt to preserve the inference

concerning the fixed effects 𝜏𝑘 while ensuring that the data release mechanism releases a synthetic

dataframe with 𝑁 observations and satisfies 𝜖-differential privacy (DP).2

The basic idea is to extract the covariate information from the analysis data contained in the
2We note that it is not strictly necessary to output the exact same 𝑁 observations as in the private data frame, but

this seems to be the convention.
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last 𝑝 columns of the private dataframe and construct a generative model for the covariate data

using a 𝑝-multidimensional/multivariate histogram. The histogram counts are then sanitized using

the multidimensional Laplace mechanism which adds Laplace nose with mean 0 and variance 2∕𝜖

to each count. Then, we perform treatment level (and blocking, if present) assignments using the

experimental design on 𝑁 synthetic treatment units. Next, the point estimates of the regression

coefficients 𝜏𝑘 and 𝛾𝑙 along with the point estimate of the residual variance 𝜎2, which are denoted by

𝜏𝑘,𝛾𝑙 and 𝜎̂2 are computed using the private dataframe. Once the covariate data and the treatment

(and block ) assignments are synthetically generated, we use the regression model (1) (accordingly

(2), if blocking is present) as a generative model for the response variable 𝑦.

Note that there is essentially no restriction in extending this approach to other regression models

(such as logistic regression) which might be more suitable than linear regression in some scenarios.

4.1 Algorithm

We describe the algorithm for the case where there are no blocking variables. The only change for

the case where there are blocking variables is in the experimental design used to assign treatment

levels and block combinations to the 𝑁 synthetic treatment units, which is straightforward. The

basic algorithm is based on the following steps:

1. Construct a multivariate histogram for the 𝑝-dimensional covariate data. Number of bins

along each of the dimensions corresponding to the continuous variables is taken to be of the

order 𝑛2∕3 and number of bins along the dimensions corresponding to the discrete variables is

equal to the known number of distinct values of the variable. Let 𝑚 be the number of bins

required to construct the histogram. Let 𝐶𝑖 be the count/frequency of the observations in the

covariate dataframe corresponding to the 𝑖-th bin, 𝑖 = 1,… , 𝑚. Let 𝐶 be the vector of counts

given by 𝐶 = (𝐶1,… , 𝐶𝑚).

2. Draw 𝑚 i.i.d observations 𝑍1,… , 𝑍𝑚 from a Laplace distribution with location parame-

ter/mean 0 and variance 8∕𝜖2 (equivalently scale parameter 2∕𝜖). Compute the sanitized

vector of counts 𝐷 = (𝐷1,… , 𝐷𝑚) where 𝐷𝑖 = 𝐶𝑖 +𝑍𝑖, 𝑖 = 1,… , 𝑚. Since some of the sani-
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tized counts could be negative valued, we transform the negative counts to 0 and renormalize

the counts to obtain a vector of sanitized relative frequencies as 𝐷̃ = (𝐷̃1,… , 𝐷̃𝑚) where

𝐷̃𝑖 =
𝐷𝑖𝐈𝐷𝑖>0

∑𝑚
𝑖=1 𝐷𝑖𝐈𝐷𝑖>0

, 𝑖 = 1,… , 𝑚.

3. Draw 𝑁 i.i.d 𝑝-dimensional vectors 𝑋1,… , 𝑋𝑁 using simple random sampling with replace-

ment from the 𝑚 bins of the constructed histogram in Step 1 using the sanitized relative

frequency vector 𝐷̃ as the corresponding probabilities of each of the 𝑚 bins. The sanitized

covariate dataframe is denoted by 𝑋𝑁×𝑝 =
[

𝑋𝑇
1 …𝑋𝑇

𝑁

]𝑇
.

4. Construct the 𝑡 dummy variables corresponding to the treatment assignments using the experi-

mental design and denote it by 𝑇𝑁×𝑡 =
[

𝑇1 … 𝑇𝑡

]

. The synthetic dataframe corresponding to

the treatment level assignment dummy variables and the covariates is denoted as 𝑀 = [𝑇 ,𝑋].

5. Compute 𝜏𝑘,𝛾𝑙 and 𝜎̂2 based on linear regression analysis using the original dataframe (without

any privatization). (We can generalize this to any regression model).

6. Construct 𝑌 = (𝑌1,… , 𝑌𝑁 ) using the privately computed 𝜏𝑘,𝛾𝑙 and 𝜎̂2 using

𝑌𝑖 = 𝑀𝛽 +𝑍𝑖

where 𝑍𝑖
𝑖.𝑖.𝑑∼ 𝑁(0, 𝜎̂2), 𝑖 = 1,… , 𝑁 . (We can generalize this to any prediction model based

on estimated regression model).

7. Release 𝐷̃ = [𝑌 ,𝑀] = [𝑌 , 𝑇 ,𝑋].

The proof of differential privacy guarantee is based on Proposition 1 in Dwork et al. (2006)

along with the post-processing property of pure differential privacy, while the statistical optimality

is based on Theorem 4.4 of Wasserman and Zhou (2008).

5 Numerical Experiments

In this section, we evaluate the performance of our proposed algorithm using two simulation studies.

We then apply the algorithm to real-world applications in the next section. The aim of applying
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the proposed privatized algorithm to a given dataset is twofold. The first aim is to ensure that any

statistical inference regarding the treatment effects under study deviate as little as possible from the

inference regarding the treatment effects one would obtain based on the unsanitized original dataset,

while the second aim is to ensure that any statistical inference regarding the sensitive information

(the covariate data) in the dataset based on the sanitized dataset is sufficiently different from the

inference regarding the covariate data one would obtain based on the unsanitized dataset. The former

and the latter aims will be referred to as Aim 1 and Aim 2, respectively.

Given an unsanitized dataset 𝐷 = [𝑌 ,𝑀]. and a sanitized version of the same dataset (synthetic

dataset) 𝐷̃ = [𝑌 ,𝑀] obtained using our proposed algorithm for a given privacy budget 𝜖, we

compute the following four metrics of comparison to verify whether Aim 1 is achieved :

1. Metric 1 - C.I. overlap indicator: This binary (0 or 1) metric computes whether there is any

overlap between the 95% confidence intervals (C.I.) for the regression coefficients (individual

C.I.’s for each regression coefficient) computed based on the unsanitized dataset and the

sanitized dataset.

2. Metric 2 - Estimate coverage by sanitized C.I. indicator: This binary (0 or 1) metric

computes whether the point estimates for the regression coefficients computed based on

the unsanitized dataset fall within the confidence intervals for the regression coefficients

computed based on the sanitized dataset. A value of 1 indicates that the deviation of the

inference regarding the regression coefficients based on the unsanitized dataset from the same

inference based on the sanitized dataset is likely to be small.

3. Metric 3 - C.I. overlap measure: This metric computes a measure of the overlap between

the 95% confidence intervals (C.I.) for the regression coefficients (individual C.I.’s for each

regression coefficient) computed based on the unsanitized dataset and the sanitized dataset

(Karr et al., 2006). Specifically, having chosen a particular regression coefficient 𝛽, if (𝐿,𝑈 ) is

the C.I. for 𝛽 computed based on the unsanitized dataset and (𝐿̃, 𝑈 ) is the C.I. for 𝛽 computed

based on the sanitized dataset. Let 𝐿𝑜𝑣𝑒𝑟 = max(𝐿, 𝐿̃) and 𝑈 𝑜𝑣𝑒𝑟 = min(𝑈,𝑈 ). Then the
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average overlap in confidence intervals 𝑂 is

𝑂 = 1
2

[

𝑈 𝑜𝑣𝑒𝑟 − 𝐿𝑜𝑣𝑒𝑟

𝑈 − 𝐿
+ 𝑈 𝑜𝑣𝑒𝑟 − 𝐿𝑜𝑣𝑒𝑟

𝑈 − 𝐿̃

]

.

This metric is a continuous measurement version of Metric 1. The average overlap 𝑂 can

vary between 0 and 1, with higher values near 1 indicating that there is a large degree of

overlap. Thus, higher values (near 1) indicate that the deviation of the inference regarding the

regression coefficients based on the unsanitized dataset from the same inference based on the

sanitized dataset is small.

4. Metric 4 - Empirical Squared Error in Estimate: This metric computes (𝛽−𝛽)2, the square

of the difference between the unsanitized and sanitized point estimates of the regression

coefficients. Smaller values (near 0) indicate that the deviation of the inference regarding the

regression coefficients based on the unsanitized dataset from the same inference based on the

sanitized dataset is small.

In order to verify whether Aim 2 is satisfied, we choose a statistic that depends only on the

sensitive data (the covariate data). We then compute the value of the statistic based on the unsanitized

dataset and the sanitized dataset. The metric of comparison, which we refer to as Metric 5 (Empirical

Squared Error in Sensitive Statistic), if the squared difference between the two values of the

statistic computed.

In order to obtain a measure of the performance of the proposed algorithm that takes into account

the randomness in the algorithm, we compute these 5 metrics for multiple independently generated

synthetic datasets and report their arithmetic mean (average). Thus, metrics 1 and 2 will be reported

as proportions, and metrics 3,4 and 5 will be reported as average, when averaged over multiple

synthetic datasets. Even though we simulate multiple synthetic datasets corresponding to each

unsanitized dataset, we report the average metrics to obtain an indication of the performance of a

single application of our proposed algorithm to obtain a single synthetic dataset, which is what we

expect to be done in practice.
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There are two separate sources of noise addition to the original private dataset. The first source

is the statistical noise introduced due to the uncertainty involved in estimating the distribution of

the covariate data and the sampling of the synthetic dataset using the estimated model. The second

source is due to differential privacy (addition of Laplace noise). To assess the individual effect of

noise from the second source separated from the first source, we perform the same synthetic data

generation process, but without the addition of DP noise to the histogram counts (Step 2), creating

a synthetic unsanitized dataset 𝐷∗ = [𝑌 ∗,𝑀∗]. We then again calculate the above four metrics,

using 𝐷∗ instead of 𝐷̃ as the comparison. We finally compare the metric values with the ones we

obtain from the proposed differentially private synthetic data generation process. Thus, we obtain

an idea of the individual effect of the differential privacy constraint on our data generation process.

Additionally, if the comparison metric values for the DP and non-DP procedures do not differ very

much, we would prefer to implement the DP procedure in practice. This is because the non-DP

method is vulnerable to reconstruction attacks and other forms of loss in privacy, due to its use of

unsanitized histogram counts, and the loss in utility due to the additional noise injected due to the

sanitization is not significant (at least on an empirical basis).

5.1 Simulation Study 1

For our first simulation study we consider a dataframe with 𝑛 = 100 observations, 1 treatment

variable with two treatment levels, "0" and "1" denoting whether or not the treatment was applied to

the corresponding treatment unit and 𝑝 = 1 continuous covariate, where we considered two different

distributions for the continuous covariate: Uniform(-5,5) and Beta(1,2). The treatment variable is

generated from a binomial distribution with equal probabilities for the two treatment levels. All

variables are generated independent of each other. We choose the true regression coefficient as

𝛼 = 0.05 (Intercept term),𝜏1 = 1, 𝛾1 = 0.2 and the true residual variance to be 0.5. We denote the

response variable as 𝑦, the treatment variable as 𝑥1 and the single covariate as 𝑥2.

We consider 3 different choices of the privacy budget 𝜖 as 0.1, 0.5 and 1. For a given privacy

budget, we simulate 100 different datasets (response variable, treatment variable and covariate

combined). For each of these 100 datasets, we independently generate 20 synthetic datasets using
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our proposed algorithm and we use the chosen privacy budget for each of these applications of the

algorithm. For each simulated unsanitized dataset, we estimate the model parameters using observe

the deviation in inference between the unsanitizied dataset and the synthetically generated datasets

in terms of the five metrics.

We run 100 simulations for 3 different choices of the privacy budget 𝜖 and observe the change

in inference between the original simulated dataframe (which needs to be protected) and the syn-

thetically generated dataframe. We consider the OLS point estimates and confidence intervals

for the regression coefficients when computing the Metrics 1,2,3 and 4 to measure the degree of

preservation of utility of the inference, not only for the treatment effects but also for the other

regression coefficients. Further, to compute Metric 5, we choose the variance of the covariate 𝑥2 as

the sensitive statistic that depends on the sensitive covariate data.

5.1.1 Results of Simulation Study 1:

We report the results for Simulation study 1 using both the uniform covariate and the beta covariates.

We first discuss the results when the uniform covariate is used.

In Tables 1, 2, 3, we compute the metric values for three different choices of the privacy budget

𝜖 = 0.1, 0.5 and 1. We observe that Metric 1 always have value 1 indicating that in all these cases

there is always an overlap between the original and synthetic data. The values under Metric 2

indicate that in all the cases, for all the regression coefficients, around 94 − 95% of the time the

value of the point estimate of the original/unsanitized dataset lies within the confidence intervals for

the regression coefficients computed based on the synthetic dataset. From the values under Metric 3

we can conclude that the measure of overlap between the confidence intervals of the original and

synthetic dataset is around 78 − 79%. From the values under Metric 4, we observe that the square

of the differences between the point estimates of the regression coefficients based on the unsanitized

dataset and the sanitized dataset are quite small. We observe that, irrespective of the privacy budget

𝜖, the effect of the privatization on the utility of the estimates of the regression parameters is quite

small. Thus, we can conclude on the basis of these results that the utility of the inference regarding

the treatment effects as well as the remaining regression coefficients are is preserved to a large extent
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even under privatization using our proposed algorithm.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95000 0.79427 0.01127
𝑥1 1.00000 0.94650 0.79718 0.02099
𝑥2 1.00000 0.95350 0.78564 0.00076

Table 1: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with uniform covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 0.1) for each
sensitive dataframe.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95450 0.79703 0.01054
𝑥1 1.00000 0.94600 0.79684 0.02094
𝑥2 1.00000 0.94750 0.79166 0.00069

Table 2: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with uniform covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 0.5) for each
sensitive dataframe.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95000 0.79809 0.01046
𝑥1 1.00000 0.94900 0.79737 0.02094
𝑥2 1.00000 0.95700 0.79582 0.00065

Table 3: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with uniform covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 1) for each sensitive
dataframe.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95400 0.80176 0.00987
𝑥1 1.00000 0.94900 0.79460 0.02119
𝑥2 1.00000 0.95500 0.79557 0.00064

Table 4: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with uniform covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated Non-DP synthetic dataframes for each sensitive dataframe.

On the other hand, we expect that as the privacy budget 𝜖 decreases, we expect larger degrees of

distortion of the covariate data in the synthetic data generation process. Thus, we should expect
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larger differences (as 𝜖 decreases) between the values of sensitive statistics (which depend on the

sensitive covariate data and which we aim to provide privacy protection) when computed using the

unsanitized dataset and the sanitized dataset. From Table 5, we observe that the squared differences

between the sensitive statistic (which we chose to be the variance of 𝑥2) based on the unsanitized

dataset and the sanitized dataset are increases as the privacy budget 𝜖 decreases. Other choices of

the sensitive statistic also yield similar results. Thus, we conclude that both Aim 1 and Aim 2 are

satisfied to a large extent, based on this simulation study using uniform covariates.

Table 4 provides us with the four metric values based on the synthetic data generated from the

non-DP method which does not sanitize the histogram counts. Comparing it with tables 1, 2, 3

which are computed using the differentially private data generation algorithm, we see that the values

almost similar. Thus, we can conclude empirically that our proposed method helps us provide DP

guarantees without much extra cost. In Table 4, we compute the metrics 1-4 based on the data

generated from the non-DP method. We see that the values are similar to the values computed based

on the differentially private data generation procedure, thus empirically proving our conclusion

that adding differential privacy guarantees is not coming at much extra cost. Further, in Table 5

we compute Metric 5 (MSE) for the sensitive statistic (Variance of Age) based on both DP and

non-DP synthetic data generation procedures. The larger value of Metric 5 using DP synthetic data

generation in comparison to the smaller value using non-DP synthetic data generation is indicative

of the additional distortion introduced by the privatization.

Privacy Budget 𝜖 =0.1 𝜖 =0.5 𝜖 =1 Non-DP Synthesis
MSE of Variance of 𝑥2 6.888821 2.388792 1.273375 0.594822

Table 5: Effect on value of sensitive statistic (based on covariate data) measured using Metric 5
(MSE) for Simulation Study 1 using uniform covariate. Results are reported for DP synthesis with
varying privacy budget 𝜖 and non-DP synthesis, each type of synthesis being averaged over 100
simulations of the sensitive dataframe, using 20 independently generated synthetic dataframes for
each sensitive dataframe.

The results for the simulation study using the beta covariate are qualitatively very similar to the

results we obtain using the uniform covariate. We report the results for the simulation study using

the beta covariate in the Appendix (A).
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5.2 Simulation Study 2

In our second simulation study, we consider a more generalized setup. We consider a dataframe

with 𝑛 = 100 observations, 1 treatment variable with two treatment levels, "0" and "1" denoting

whether or not the treatment was applied to the corresponding treatment unit and 𝑝 = 3 covariates.

The treatment variable is generated from a binomial distribution with equal probabilities for the

two treatment levels. Among the three covariates, one is a discrete variable with three distinct

levels while the remaining two are continuous variables. The categorical variable (Covariate 2) is

generated from a trinomial distribution with probability parameter 0.2, 0.3 and 0.5. The continuous

covariates are generated from Uniform(-5,5) and Beta(1,2), denoted as Covariates 1 and 3 respectively.

We choose the true regression coefficient as 𝛼 = 0.05, 𝜏1 = 1 (corresponds to treatment effect),

𝛾1 = 0.2, 𝛾2 = 0.4, 𝛾3 = 0.3 (𝛾𝑖 corresponds to Covariate i, 𝑖 = 1, 2, 3) and the true residual variance

to be 0.5. We denote the response variable as 𝑦, the treatment variable as 𝑥1 and 3 covariates as 𝑥2,

𝑥3 and 𝑥4.

As in Simulation Study 1, we consider the same three choices of the privacy budget 𝜖 as 0.1,

0.5 and 1, and proceed as before. We consider the OLS point estimates and confidence intervals

for the regression coefficients when computing the Metrics 1, 2, 3, and 4 to measure the degree

of preservation of utility of the inference, not only for the treatment effects but also for the other

regression coefficients. Further, to compute Metric 5, we choose the variance of the covariate 𝑥2 as

the sensitive statistic that depends on the sensitive covariate data.

5.2.1 Results of Simulation Study 2:

We compute and report the same quantities as in Simulation Study 1 using the Tables 6, 7, 8 and 10.

As expected, for all the different epsilon values, the differences between the estimates of the original

data and the synthetic data is quite small, implying that privatization hasn’t significantly affected the

inference about the regression parameters. Table 9 provides us with the four metric values based on

the synthetic data generated from the non-DP method. Comparing it with tables 6, 7, 8 which are

computed using the differentially private data generation algorithm, we again see that the values
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almost similar. Thus, in this study as well, we can conclude empirically that our proposed method

helps us provide DP guarantees without much extra cost.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.94850 0.79996 0.15722
𝑥1 1.00000 0.94150 0.78922 0.02228
𝑥2 1.00000 0.95200 0.79785 0.00064
x3 1.00000 0.94900 0.80107 0.00788
x4 1.00000 0.95400 0.80560 0.07509

Table 6: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 2 with 3 covariates, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 0.1) for each
sensitive dataframe.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.94850 0.80184 0.15304
𝑥1 1.00000 0.94150 0.78773 0.02228
𝑥2 1.00000 0.95200 0.79711 0.00063
x3 1.00000 0.94750 0.80363 0.00769
x4 1.00000 0.95250 0.80463 0.07551

Table 7: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 2 with 3 covariates, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 0.5) for each
sensitive dataframe.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.94950 0.80237 0.15409
𝑥1 1.00000 0.94250 0.78814 0.02238
𝑥2 1.00000 0.94850 0.79161 0.00066
x3 1.00000 0.93950 0.80188 0.00790
x4 1.00000 0.96100 0.80529 0.07412

Table 8: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 2 with 3 covariates, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 1) for each sensitive
dataframe.

18



DRAFT - IN
COMPLETE - Do no

t c
ite

or
qu

ote
Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95100 0.79495 0.18993
𝑥1 1.00000 0.95400 0.79621 0.02058
𝑥2 1.00000 0.95500 0.80086 0.00062
x3 1.00000 0.95500 0.79791 0.00881
x4 1.00000 0.95250 0.78676 0.09785

Table 9: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 2 with 3 covariates, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated Non-DP synthetic dataframes for each sensitive dataframe.

Privacy Budget 𝜖 =0.1 𝜖 =0.5 𝜖 =1 Non-DP Synthesis
MSE of Variance of 𝑥2 1.189871 1.226455 1.173358 0.597624

Table 10: Effect on value of sensitive statistic (based on covariate data) measured using Metric 5
(MSE) for Simulation Study 2 using 3 covariates. Results are reported for DP synthesis with varying
privacy budget 𝜖 and non-DP synthesis, each type of synthesis being averaged over 100 simulations
of the sensitive dataframe, using 20 independently generated synthetic dataframes for each sensitive
dataframe.

6 Application to "Reducing Crime and Violence: Experimental Evidence

from Cognitive Behavioral Therapy in Liberia" (Blattman, Jamison and

Sheridan, 2017)

6.1 Setup

In order to practically apply our proposed method to a real-world randomized control trial, we chose

the analyses as published in Blattman, Jamison and Sheridan (2017). The associated replication

files, including the de-identified data, are available in Blattman, Jamison and Sheridan (n.d.). For

this application, picked a simplified version of the results reported in Table 2 Panel B of Blattman,

Jamison and Sheridan (2017). The analysis data is obtained from the file named STYL_Final.dta as

provided in the replication package (Blattman, Jamison and Sheridan, n.d.). Specifically, we look at

the long term effect of therapy and cash grant (12-13 months after the program) on a summary index

of antisocial behaviours (referred to as fam_asb_lt) exhibited by a sample of 999 high-risk youths

in Monrovia, Liberia. A 2×2 factorial design is used with two blocking/stratification variables based

on the groups the youths were together in when they were randomly assigned the treatments, once
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at the time of being assigned to therapy (there were 55 such groups), and once at the time of being

assigned to receive cash grant of 200 USD (there were 20 such groups). The treatment assignments

are encoded using 3 binary treatment variables cashassonly (indicating whether only cash grant

is received), tpassonly (indicating whether only therapy is received) and tpcashass (indicating

whether both therapy and cash grant is received). The therapy assignment based blocking variable

is tp_strata_alt while the cash grant assignment based blocking variable is cg_strata. In

addition to the treatment variables and the blocking variables, we chose to include 7 covariates in our

regression: age_b, asbhostil_b, drugssellever_b, drinkboozeself_b, druggrassself_b,

harddrugsever_b, steals_b. The first 2 covariates are the age and antisocial behaviour index

(Barret ASB and Hostility z-score) for the individuals participating in the study. These are continuous

variables. The remaining covariates record the antisocial behaviour of the youths in terms of ever

having sold drugs, whether they drink alcohol, whether they smoke grass/opium, whether they have

ever consumed hard drugs and whether they have exhibited stealing behaviour in the 2 weeks prior

to their interview, respectively. The values of these covariates are recorded to be 1 if the answer is

affirmative, otherwise 0.

For convenience, we will rename the variables as shown in Table 11.

Original variable names Renamed variables
fam_asb_lt ASB family index
cashassonly Cash Only
tpassonly Therapy Only
tpcashass Both
tp_strata_alt Therapy Block
cg_strata Cash Block
age_b Age
asbhostil_b Barret ASB index
drugssellever_b Drugs Sell indicator
drinkboozeself_b Alcohol self indicator
druggrassself_b Grass/Opium self indicator
harddrugsever_b Hard Drugs indicator
steals_b Steal self indicator

Table 11: Renaming variables in Liberia study
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6.2 Results of real world application

In Figure 1 and Table 12, we show the effect of using the differentially private synthetic data

generation procedure (with privacy budget 𝜖 = 1) and the non-DP synthetic data generation procedure

(without sanitizing the histogram counts) on the statistical inference regarding the treatment effects

in the study of interest, which are the treatment effects corresponding to the Cash Grant Only

treatment, Therapy Only treatment and Both Cash and Therapy treatment. Specifically, we compute

the treatment effect estimates (represented by dots in Figure 1 and reported in Table 12), the standard

error of the treatment effect estimates (reported in able 12), the 95% confidence interval for the

treatment effects (represented by intervals/errorbars in Figure 1) and the p-value for the individual

tests of significance of the treatment coefficients (value reported in the Figure 1). We first compute

these regression statistics on the true/original dataset. Then we privatize the dataset by generating

a synthetic dataset with privacy budget 𝜖 = 1 once, and then compute the regression statistics

based on the synthetic/privatized dataset. Note that, since the privatization occurs via a randomized

algorithm, we will obtain slightly different results when we apply the privatization repeatedly. Here,

we report the result of a single instance of privatization using our proposed procedure. In addition,

we also generate a non-DP synthetic dataset which differs from the DP algorithm only in the fact

that there is no sanitization of the histogram counts. We observe that the inference based on the

original dataset and the synthetic dataset is almost the same with respect to the treatment effects.

Next, to see the average performance of the DP as well as non-DP algorithm, across multiple

data generations, for three different choices of the privacy budget 𝜖 = 0.1, 0.5 and 1, we study

the following four tables. In Tables 13, 14, 15 and 17, we report the same metrics as before. The

variance of Age is taken as the sensitive statistic (which depends on the sensitive covariate data) for

evaluating Metric 5.

As in the simulation studies, the differences between the estimates of the original data and the

synthetic data is quite small, implying that privatization has not significantly affected the inference

about the regression parameters. In Table 16, we compute the metrics 1-4 based on the data generated

from the non-DP method. We see that the values are similar to the values computed based on the
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Figure 1: Comparison of inference regarding treatment effect in the Liberia study using the original
dataset 1 synthetic dataset generated using privacy budget 𝜖 = 1 and 1 Non-DP synthetic dataset.
Colors red, blue and green correspond to results obtained using original dataset, DP synthetic dataset
(with 𝜖 = 1) and Non-DP synthetic dataset, respectively. The dots correspond to the OLS point
estimates of the treatment effects. The intervals correspond to OLS 95% confidence interval for the
treatment effects. The p-values for the tests of significance of the individual treatment effects are
reported beside the corresponding OLS point estimates.
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Original Dataset DP Synthetic Dataset Non-DP Synthetic Dataset

Cash Only 0.10 0.16 0.17
(0.09) (0.09) (0.09)

Therapy Only −0.03 0.02 0.03
(0.08) (0.08) (0.09)

Both −0.22∗ −0.20∗ −0.17
(0.09) (0.09) (0.09)

∗𝑝 < 0.05

Table 12: Comparison of inference regarding treatment effect in the Liberia study using the original
dataset, 1 DP synthetic dataset generated using privacy budget 𝜖 = 1 and 1 Non-DP synthetic dataset.
The OLS point estimates of the treatment effects are reported with the corresponding standard errors
reported in parentheses under the point estimates. The stars on the OLS estimates indicate whether
the p-values for the tests of significance of the treatment effects is less than 0.05 or not.

differentially private data generation procedure, thus empirically proving our expectation that adding

differential privacy guarantees is not coming at much extra cost. Further, in Table 17 we compute

Metric 5 (MSE) for the sensitive statistic (Variance of Age) based on both DP and non-DP synthetic

data generation procedures. Note that, we expect statistics that depend on the covariate data to

be potentially distorted due to the privatization procedure implemented and this justifies the large

values of MSE for the DP Synthetic generation methods in Table 17.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.97000 0.80359 0.02076
Cash Only 1.00000 0.93000 0.79435 0.00816
Therapy Only 1.00000 0.92000 0.77931 0.00781
Both 1.00000 0.94000 0.80048 0.00720
Therapy Block 1.00000 0.98000 0.80903 0.00000
Cash Block 1.00000 0.95000 0.79263 0.00003
Age 1.00000 0.98000 0.73500 0.00001
Barret ASB index 1.00000 0.94000 0.74428 0.00027
Drugs Sell indicator 1.00000 0.95000 0.80788 0.00297
Alcohol self indicator 1.00000 0.96000 0.82439 0.00269
Grass/Opium self indicator 1.00000 0.97000 0.83612 0.00244
Hard Drugs indicator 1.00000 0.98000 0.81889 0.00271
Steal self indicator 1.00000 0.98000 0.82958 0.00254

Table 13: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Liberia study, averaged over 100 independently generated synthetic dataframes (with privacy budget
𝜖 = 0.1)
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(Intercept) 1.00000 0.94000 0.80186 0.02202
Cash Only 1.00000 0.93000 0.79505 0.00817
Therapy Only 1.00000 0.92000 0.77917 0.00785
Both 1.00000 0.95000 0.79819 0.00732
Therapy Block 1.00000 0.98000 0.81052 0.00000
Cash Block 1.00000 0.96000 0.79342 0.00003
Age 1.00000 0.95000 0.73386 0.00001
Barret ASB index 1.00000 0.92000 0.74378 0.00028
Drugs Sell indicator 1.00000 0.94000 0.80342 0.00325
Alcohol self indicator 1.00000 0.95000 0.82324 0.00276
Grass/Opium self indicator 1.00000 0.97000 0.83083 0.00257
Hard Drugs indicator 1.00000 0.99000 0.82668 0.00235
Steal self indicator 1.00000 0.96000 0.81604 0.00293

Table 14: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Liberia study, averaged over 100 independently generated synthetic dataframes (with privacy budget
𝜖 = 0.5)

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.96000 0.80359 0.02092
Cash Only 1.00000 0.93000 0.79685 0.00801
Therapy Only 1.00000 0.93000 0.77940 0.00775
Both 1.00000 0.94000 0.79878 0.00722
Therapy Block 1.00000 0.98000 0.80874 0.00000
Cash Block 1.00000 0.96000 0.79245 0.00003
Age 1.00000 0.96000 0.73490 0.00001
Barret ASB index 1.00000 0.94000 0.74657 0.00027
Drugs Sell indicator 1.00000 0.95000 0.80468 0.00309
Alcohol self indicator 1.00000 0.96000 0.82834 0.00261
Grass/Opium self indicator 1.00000 0.98000 0.82588 0.00270
Hard Drugs indicator 1.00000 0.96000 0.81769 0.00264
Steal self indicator 1.00000 0.96000 0.81300 0.00306

Table 15: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Liberia study, averaged over 100 independently generated synthetic dataframes (with privacy budget
𝜖 = 1)
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Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95000 0.80074 0.03692
Cash Only 1.00000 0.98000 0.81815 0.00567
Therapy Only 1.00000 0.96000 0.83278 0.00478
Both 1.00000 0.94000 0.80123 0.00676
Therapy Block 1.00000 0.99000 0.82447 0.00000
Cash Block 1.00000 0.96000 0.77586 0.00003
Age 1.00000 0.94000 0.79168 0.00004
Barret ASB index 1.00000 0.93000 0.79746 0.00103
Drugs Sell indicator 1.00000 0.97000 0.80715 0.00618
Alcohol self indicator 1.00000 0.97000 0.79696 0.00447
Grass/Opium self indicator 1.00000 0.92000 0.79709 0.00470
Hard Drugs indicator 1.00000 0.97000 0.78692 0.00639
Steal self indicator 1.00000 0.95000 0.78054 0.00531

Table 16: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Liberia study, averaged over 100 independently generated non-DP synthetic dataframes.

Privacy Budget Epsilon 0.1 Epsilon 0.5 Epsilon 1 Non-DP Synthesis
MSE of Variance of Age 4481.74 4508.79 4503.16 0.9

Table 17: Effect on value of sensitive statistic (based on covariate data) measured using Metric 5
(MSE) for Liberia study, with varying privacy budget 𝜖 and non-DP synthesis, averaged over 100
simulations of the sensitive dataframe, using 20 independently generated synthetic dataframes for
each sensitive dataframe.
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7 Discussion

Coming.

The results from this project will ensure that privacy of data contributors to RCTs will be more

strongly protected, while maintaining the ability to draw meaningful inferences. While policy-

oriented stakeholders are primarly interested in the latter, citizens that contribute their data to RCTs

and companies, such as fin-tech providers, that provide key data to researchers are also heavily

invested in protecting privacy. Consumer and citizen protection agencies, ethic review boards,

and other regulators, should be interested in knowing of the existence of such methods, possibly

facilitating approval of studies in the presence of strong privacy guarantees.
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Appendix A Results for Simulation Study 1 using beta covariate

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95550 0.78890 0.02966
x1 1.00000 0.94650 0.79535 0.02050
x2 1.00000 0.94900 0.78379 0.07742

Table 18: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with beta covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 0.1) for each
sensitive dataframe.
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oteVariable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.94450 0.78663 0.02816
x1 1.00000 0.94400 0.79533 0.02049
x2 1.00000 0.94950 0.78748 0.06664

Table 19: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with beta covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 0.5) for each
sensitive dataframe.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.95150 0.79378 0.02568
x1 1.00000 0.94900 0.79591 0.02031
x2 1.00000 0.95100 0.79527 0.06172

Table 20: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with beta covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated synthetic dataframes (with privacy budget 𝜖 = 1) for each sensitive
dataframe.

Variable names Metric 1 Metric 2 Metric 3 Metric 4
(Intercept) 1.00000 0.94700 0.79500 0.02602
x1 1.00000 0.93850 0.79140 0.02180
x2 1.00000 0.94650 0.79965 0.06112

Table 21: Effect on inference regarding regression coefficients measured using Metrics 1-4 for
Simulation Study 1 with beta covariate, averaged over 100 simulations of the sensitive dataframe,
using 20 independently generated Non-DP synthetic dataframes for each sensitive dataframe.

Privacy Budget Epsilon 0.1 Epsilon 0.5 Epsilon 1 Non-DP Synthesis
MSE of Variance of x2 0.00069 0.000233 0.000127 0.000059

Table 22: Effect on value of sensitive statistic (based on covariate data) measured using Metric
5 (MSE) for Simulation Study 1 using beta covariate. Results are reported for DP synthesis with
varying privacy budget 𝜖 and non-DP synthesis, each type of synthesis being averaged over 100
simulations of the sensitive dataframe, using 20 independently generated synthetic dataframes for
each sensitive dataframe.
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