Capital Controls and Free-Trade Agreements

International Fragmentation, Supply Chains, and Financial Frictions NBER, Central Bank of Chile

Simon Lloyd¹ Emile Marin²

¹Bank of England

²UC Davis

March 2023

The views expressed here do not necessarily reflect the position of the Bank of England.

- <u>Bretton Woods</u>: Free trade promoted, but capital controls widely used
- <u>Post-Bretton Woods</u>: Increased trade and more financial openness

- <u>Bretton Woods</u>: Free trade promoted, but capital controls widely used
- <u>Post-Bretton Woods</u>: Increased trade and more financial openness
- Recent Years:
 - Growing protectionism (China-US trade war; Brexit; export restrictions post-Covid)

World Trade Policy Uncertainty

Source: Ahir, Bloom and Furceri (2018)

- <u>Bretton Woods</u>: Free trade promoted, but capital controls widely used
- <u>Post-Bretton Woods</u>: Increased trade and more financial openness
- Recent Years:
 - Growing protectionism (China-US trade war; Brexit; export restrictions post-Covid)
 - More sanguine views on capital-flow management in appropriate circumstances (IMF's Integrated Policy Framework)

Macroprudential FX Regs.

Source: Ahnert, Forbes, Friedrich and Reinhardt (2021)

- <u>Bretton Woods</u>: Free trade promoted, but capital controls widely used
- <u>Post-Bretton Woods</u>: Increased trade and more financial openness
- Recent Years:
 - Growing protectionism (China-US trade war; Brexit; export restrictions post-Covid)
 - More sanguine views on capital-flow management in appropriate circumstances (IMF's Integrated Policy Framework)

Macroprudential FX Regs.

Source: Ahnert, Forbes, Friedrich and Reinhardt (2021)

How do optimal capital controls change in a world with less free trade?

Capital Controls and Free-Trade Agreements

• Unifying framework to study joint optimal determination of capital controls *and* trade tariffs

- Unifying framework to study joint optimal determination of capital controls *and* trade tariffs
- Two-country endowment economy with trade in goods and assets
 - · Scope for policy intervention due to pecuniary externalities

- Unifying framework to study joint optimal determination of capital controls *and* trade tariffs
- Two-country endowment economy with trade in goods and assets
 - · Scope for policy intervention due to pecuniary externalities
- Monopoly power in markets results in incentives to manipulate prices: *inter*-(world interest rate) and *intra*-temporally (relative goods prices)

- Unifying framework to study joint optimal determination of capital controls *and* trade tariffs
- Two-country endowment economy with trade in goods and assets
 - · Scope for policy intervention due to pecuniary externalities
- Monopoly power in markets results in incentives to manipulate prices: *inter*-(world interest rate) and *intra*-temporally (relative goods prices)
- · Compare unilateral (without retaliation) and strategic allocations...
 - i. ...with FTA in place

[Costinot, Lorenzoni and Werning, 2014]

ii. ...absent FTA, with optimal import tariff

#1. Country planner has incentive to use tariffs in addition to capital controls

- #1. Country planner has incentive to use tariffs in addition to capital controls
- #2. Incentives: delay C when R high (inter) and delay c_1 when p_1 high (intra)
 - · With FTA, capital controls strike compromise across the two margins
 - Absent FTA, tariffs address relative prices, capital controls target consumption path

- #1. Country planner has incentive to use tariffs in addition to capital controls
- #2. Incentives: delay C when R high (inter) and delay c_1 when p_1 high (intra)
 - $\cdot\,$ With FTA, capital controls strike compromise across the two margins
 - Absent FTA, tariffs address relative prices, capital controls target consumption path
- #3. Interactions: Size and gains of optimal capital control and tariffs interlinked
 - $\star\,$ Tariffs can result in over/under-borrowing, driving capital controls
 - If incentives aligned, capital controls *larger* absent FTA; otherwise, tariffs partly *substitute* for capital controls

- #1. Country planner has incentive to use tariffs in addition to capital controls
- #2. Incentives: delay C when R high (inter) and delay c_1 when p_1 high (intra)
 - $\cdot\,$ With FTA, capital controls strike compromise across the two margins
 - · Absent FTA, tariffs address relative prices, capital controls target consumption path
- #3. Interactions: Size and gains of optimal capital control and tariffs interlinked
 - $\star\,$ Tariffs can result in over/under-borrowing, driving capital controls
 - If incentives aligned, capital controls *larger* absent FTA; otherwise, tariffs partly *substitute* for capital controls
- #4. Welfare: Domestic gains more than offset by losses abroad from spillovers
 - $\star\,$ Dynamic game with retaliation: absent FTA, costly capital-control wars more likely to endogenously arise \Rightarrow Novel argument for free trade

Generality and Extensions

- **Production Economy with Nominal Rigidities**: extra incentive to bring forward consumption with demand constraints, due to aggregate-demand externalities
- Small-Open Economy: market power in goods only
 - · Cole-Obstfeld case: capital controls invariant to country size; tariffs non-zero
- Segmented Markets and FXI: planner can use FXI instead of capital controls, which interact in same way with tariffs
- Sanctions/Trade Disruptions: interact with capital controls, since similar to tariffs
 - · Optimal policy mix prescribes combination of capital controls and tariffs

Related Literature

Non-Exhaustive

- **Capital Controls**: Bianchi (2011); <u>Costinot, Lorenzoni and Werning (2014)</u>; Farhi and Werning (2016); Bianchi and Lorenzoni (2021); *Fanelli and Straub (2021)*; ...
 - $\star~$ Study how capital-control incentives change when departing from free trade
- **Trade Policy**: Lerner (1936); Broda, Limão and Weinstein (2008); Costinot and Werning (2019); Caliendo, Feenstra, Romalis and Taylor (2021); ...
 - * Derive dynamic path for optimal trade tariffs with trade in assets
- Integrated Policy Analysis: Ostry et al. (2010); Jeanne (2012); Basu et al. (2020); Auray, Devereux and Eyquem (2020); Corsetti and Bergin (2021); Jeanne (2021); ...
 - $\star\,$ Assess scope for retaliation alongside interactions between policy instruments

· Countries: Home H and Foreign F (*). Goods: 1 and 2. Time: $t = 0, 1, ..., \infty$.

- · Countries: Home H and Foreign F (*). Goods: 1 and 2. Time: $t = 0, 1, ..., \infty$.
- Exogenous country endowments: $\mathbf{y}_t^{(*)} = [y_{1,t}^{(*)}, y_{2,t}^{(*)}]$ (no uncertainty)

- · Countries: Home H and Foreign F (*). Goods: 1 and 2. Time: $t = 0, 1, ..., \infty$.
- \cdot Exogenous country endowments: $\mathbf{y}_t^{(*)} = [y_{1,t}^{(*)}, y_{2,t}^{(*)}]$ (no uncertainty)
- Households consume both goods 1 and 2, that form aggregate consumption C_t :

$$C_{t} \equiv g(\mathbf{c}_{t}) = \left[\alpha_{1}^{\frac{1}{\phi}}c_{1,t}^{\frac{\phi-1}{\phi}} + (1-\alpha_{1})^{\frac{1}{\phi}}c_{2,t}^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{\phi-1}}$$

where $\mathbf{c}_t = [c_{1,t}, c_{2,t}]$, $\alpha_1 \in (0.5, 1]$, and $\phi > 0$ is 'elasticity of trade'

- · Countries: Home H and Foreign F (*). Goods: 1 and 2. Time: $t = 0, 1, ..., \infty$.
- Exogenous country endowments: $\mathbf{y}_t^{(*)} = [y_{1,t}^{(*)}, y_{2,t}^{(*)}]$ (no uncertainty)
- Households consume both goods 1 and 2, that form aggregate consumption C_t :

$$C_{t} \equiv g(\mathbf{c}_{t}) = \left[\alpha_{1}^{\frac{1}{\phi}}c_{1,t}^{\frac{\phi-1}{\phi}} + (1-\alpha_{1})^{\frac{1}{\phi}}c_{2,t}^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{\phi-1}}$$

where $\mathbf{c}_t = [c_{1,t}, c_{2,t}]$, $\alpha_1 \in (0.5, 1]$, and $\phi > 0$ is 'elasticity of trade'

· Lifetime utility: $U_0 = \sum_{t=0}^{\infty} \beta^t u(C_t)$, where $\beta \in (0,1)$, and $u(C) = \frac{C^{1-\sigma}-1}{1-\sigma}$ with $\sigma > 0$

- · Countries: Home H and Foreign F (*). Goods: 1 and 2. Time: $t = 0, 1, ..., \infty$.
- \cdot Exogenous country endowments: $\mathbf{y}_t^{(*)} = [y_{1,t}^{(*)}, y_{2,t}^{(*)}]$ (no uncertainty)
- Households consume both goods 1 and 2, that form aggregate consumption C_t :

$$C_{t} \equiv g(\mathbf{c}_{t}) = \left[\alpha_{1}^{\frac{1}{\phi}}c_{1,t}^{\frac{\phi-1}{\phi}} + (1-\alpha_{1})^{\frac{1}{\phi}}c_{2,t}^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{\phi-1}}$$

where $\mathbf{c}_t = [c_{1,t}, c_{2,t}]$, $\alpha_1 \in (0.5, 1]$, and $\phi > 0$ is 'elasticity of trade'

- · Lifetime utility: $U_0 = \sum_{t=0}^{\infty} \beta^t u(C_t)$, where $\beta \in (0,1)$, and $u(C) = \frac{C^{1-\sigma}-1}{1-\sigma}$ with $\sigma > 0$
- · Real Exchange Rate $Q = \frac{P^*}{P}$ and Terms of Trade $S = \frac{p_2}{p_1}$

· Global Cooperative Optimum: no intervention

· Global Cooperative Optimum: no intervention

• Decentralised Allocation: 'perfect risk sharing' across countries

$$\left(\frac{C_{t+1}/C_{t+1}^{*}}{C_{t}/C_{t}^{*}}\right)^{\sigma} = \frac{Q_{t+1}}{Q_{t}}$$

Global Cooperative Optimum: no intervention

• Decentralised Allocation: 'perfect risk sharing' across countries

$$\left(\frac{C_{t+1}/C_{t+1}^*}{C_t/C_t^*}\right)^{\sigma} = \frac{Q_{t+1}}{Q_t}$$

· But pecuniary externalities that *country* planner can exploit

- Global Cooperative Optimum: no intervention
- Decentralised Allocation: 'perfect risk sharing' across countries

$$\left(\frac{C_{t+1}/C_{t+1}^*}{C_t/C_t^*}\right)^{\sigma} = \frac{Q_{t+1}}{Q_t}$$

- But pecuniary externalities that *country* planner can exploit
- * Ramsey Planner: chooses risk-sharing wedge and (potentially) tariffs

$$\left(\frac{C_{t+1}/C_{t+1}^*}{C_t/C_t^*}\right)^{\sigma} = \frac{Q_{t+1}(\tau_{t+1})}{Q_t(\tau_t)}(1-\theta_t)$$

Country Planner's Problem

· Decentralised Allocation: take world interest rates and goods prices as given

$$\max_{\{C_t\}} \sum_{t=0}^{\infty} \beta^t u(C_t) \quad \text{s.t.} \quad \sum_{t=0}^{\infty} \mathbf{p}_t \cdot (\mathbf{c}_t - \mathbf{y}_t) \le 0$$

Country Planner's Problem

Decentralised Allocation: take world interest rates and goods prices as given

$$\max_{\{C_t\}} \sum_{t=0}^{\infty} \beta^t u(C_t) \quad \text{s.t.} \quad \sum_{t=0}^{\infty} \mathbf{p}_t \cdot (\mathbf{c}_t - \mathbf{y}_t) \le 0$$

Ramsey Planner: manipulate rates and goods prices using capital-flow taxes...

i. ...with FTA in place

[Costinot, Lorenzoni and Werning, 2014]

 $\max_{\{C_t\}} \sum_{t=0}^{\infty} \beta^t u(C_t) \quad \text{s.t.} \quad \sum_{t=0}^{\infty} \rho(C_t) \cdot (\mathbf{c}_t - \mathbf{y}_t) \le 0 \quad \text{and} \quad \mathbf{c}_t = \mathbf{c}(C_t), \ \mathbf{c}_t^* = \mathbf{c}^*(C_t)$ where $\rho(C_t) \equiv u^{*'}(C^*(C_t)) \nabla g^*(\mathbf{c}_t^*(C_t))$

Country Planner's Problem

· Decentralised Allocation: take world interest rates and goods prices as given

$$\max_{\{C_t\}} \sum_{t=0}^{\infty} \beta^t u(C_t) \quad \text{s.t.} \quad \sum_{t=0}^{\infty} \mathbf{p}_t \cdot (\mathbf{c}_t - \mathbf{y}_t) \le 0$$

Ramsey Planner: manipulate rates and goods prices using capital-flow taxes...

i. ...with FTA in place

[Costinot, Lorenzoni and Werning, 2014]

$$\max_{\{C_t\}} \sum_{t=0}^{\infty} \beta^t u(C_t) \quad \text{s.t.} \quad \sum_{t=0}^{\infty} \rho(C_t) \cdot (\mathbf{c}_t - \mathbf{y}_t) \le 0 \quad \text{and} \quad \mathbf{c}_t = \mathbf{c}(C_t), \ \mathbf{c}_t^* = \mathbf{c}^*(C_t)$$

where $\rho(C_t) \equiv u^{*'}(C^*(C_t)) \nabla g^*(\mathbf{c}_t^*(C_t))$

ii. ...absent FTA, also with optimal import tariff

$$\max_{\{C_t\}} \ \sum_{t=0}^\infty \beta^t u(C_t) \quad \text{s.t.} \quad \sum_{t=0}^\infty \rho(C_t) \cdot (\mathbf{c}_t - \mathbf{y}_t) \leq 0 \quad \text{and} \quad C_t = g(\mathbf{c}_t)$$

Outline for Remainder of Presentation

Unilateral Planner: No Retaliation

- **#1 Optimal Allocations**
- #2 Planning Incentives
- #3 Implementation: Size and Interaction of Policy Instruments

Strategic Setting with Retaliation: Trade and Capital-Control Wars

#4 Welfare Implications and Endogenous Capital-Control Wars

#1: Optimal Allocations

Proposition

With symmetric preferences ($\alpha_1 = \alpha_2^*$ and $\alpha_2 = \alpha_1^*$), then: $C^{nFTA} \ge C^{FTA}$.

#1: Optimal Allocations

Proposition

With symmetric preferences ($\alpha_1 = \alpha_2^*$ and $\alpha_2 = \alpha_1^*$), then: $C^{nFTA} \ge C^{FTA}$.

With FTA [Costinot, Lorenzoni, Werning, 2014]

- \cdot Choose C, given FTA
- \cdot 1 FOC + 1 Instrument

$$\Rightarrow$$
 Trade off $\frac{\partial \mathcal{L}}{\partial c_1}$ and $\frac{\partial \mathcal{L}}{\partial c_2}$

Full Proposition > Pareto Frontier Intuition

Proposition

With symmetric preferences ($\alpha_1 = \alpha_2^*$ and $\alpha_2 = \alpha_1^*$), then: $C^{nFTA} \ge C^{FTA}$.

With FTA [Costinot, Lorenzoni, Werning, 2014]

- \cdot Choose C, given FTA
- \cdot 1 FOC + 1 Instrument

 $\frac{\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}C}}{FOC=0} = \frac{\partial\mathcal{L}}{\partial c_1} \underbrace{c_1'(C)}_{FTA} + \frac{\partial\mathcal{L}}{\partial c_2} \underbrace{c_2'(C)}_{FTA}$ $\Rightarrow \text{ Trade off } \frac{\partial\mathcal{L}}{\partial c_1} \text{ and } \frac{\partial\mathcal{L}}{\partial c_2}$

Without FTA

- $\star\,$ Choose c_1 and c_2 , given $C=g(\mathbf{c})$
- \star 2 FOCs + 2 Instruments

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}C} = \underbrace{\frac{\partial\mathcal{L}}{\partial c_1}}_{FOC=0} c_1'(C) + \underbrace{\frac{\partial\mathcal{L}}{\partial c_2}}_{FOC=0} c_2'(C)$$

Full Proposition 🚺 🕨 Pareto Frontier Intuition

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

▶ #1 Detail

▶ #2

► SOE

Endowment Processes 1 0.8 0.6 0.4 0.2 0 0 5 10 15 2025

Trade Disruptions/Sanctions

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

Private incentive to borrow today

► SOE

▶ #2

#1 Detail

Trade Disruptions/Sanctions

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

- Private incentive to borrow today
- $\Rightarrow~$ Planner seeks to delay consumption to $\downarrow R$

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

- Private incentive to borrow today
- $\Rightarrow~$ Planner seeks to delay consumption to $\downarrow R$

Intra-temporal incentives

Private incentive to consume good 1 today

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

- Private incentive to borrow today
- $\Rightarrow~$ Planner seeks to delay consumption to $\downarrow R$

Intra-temporal incentives

- Private incentive to consume good 1 today
- $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$

$$\downarrow p_1$$

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

- Private incentive to borrow today
- $\Rightarrow~$ Planner seeks to delay consumption to $\downarrow R$

Intra-temporal incentives

- · Private incentive to consume good 1 today
- $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$

$$\downarrow p_1$$

Planner balances these potentially competing/reinforcing incentives

Lloyd and Marin (BoE and UC Davis)

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

- Private incentive to borrow today
- $\Rightarrow~$ Planner seeks to delay consumption to $\downarrow R$

Intra-temporal incentives

- Private incentive to consume good 1 today
- $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$

Planner balances these potentially competing/reinforcing incentives

Lloyd and Marin (BoE and UC Davis)

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

- · Private incentive to borrow today
- $\Rightarrow~$ Planner seeks to delay consumption to $\downarrow R$

Intra-temporal incentives

- Private incentive to consume good 1 today
- $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$

Planner balances these potentially competing/reinforcing incentives

EXAMPLE: Suppose H learns today that endowment of 'home-bias' good 1 will grow

Inter-temporal incentives

- · Private incentive to borrow today
- $\Rightarrow~$ Planner seeks to delay consumption to $\downarrow R$

Intra-temporal incentives

- · Private incentive to consume good 1 today
- $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$

Planner balances these reinforcing incentives in this instance

Implement allocation with capital-inflow tax $\theta < 0$ and import tariff $\tau > 0$

Implement allocation with **capital-inflow tax** $\theta < 0$ and **import tariff** $\tau > 0$ EXAMPLE: Suppose *H* learns today that endowment of 'home-bias' good 1 will grow

- Inter-temporal incentives
 - · Private incentive to borrow today
 - $\Rightarrow~$ Planner seeks to to delay consumption to $\downarrow R$

Intra-temporal incentives

- \cdot Private incentive to consume good 1 today
- $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$

$$\left(\frac{C_{t+1}/C_{t+1}^{*}}{C_{t}/C_{t}^{*}}\right)^{\sigma}\frac{Q_{t}}{Q_{t+1}} = (1-\theta_{t})$$

Implement allocation with **capital-inflow tax** $\theta < 0$ and **import tariff** $\tau > 0$ EXAMPLE: Suppose *H* learns today that endowment of 'home-bias' good 1 will grow

- Inter-temporal incentives
 - · Private incentive to borrow today
 - $\Rightarrow~$ Planner seeks to to delay consumption to $\downarrow R$
 - $\star~$ Tax capital inflows $\theta < 0$
- Intra-temporal incentives
 - · Private incentive to consume good 1 today
 - $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$

 $\uparrow Q_t \begin{pmatrix} & \downarrow R \\ & \downarrow \\ & \downarrow \\ & \downarrow p_1 \end{pmatrix} \downarrow \mathsf{Agg. D.}$

$$\left(\frac{C_{t+1}/C_{t+1}^*}{C_t/C_t^*}\right)^{\sigma} \frac{Q_t}{Q_{t+1}} = (1 - \theta_t)$$

Implement allocation with **capital-inflow tax** $\theta < 0$ and **import tariff** $\tau > 0$ EXAMPLE: Suppose *H* learns today that endowment of 'home-bias' good 1 will grow

- Inter-temporal incentives
 - · Private incentive to borrow today
 - $\Rightarrow~$ Planner seeks to to delay consumption to $\downarrow R$
 - $\star~$ Tax capital inflows $\theta < 0$
- Intra-temporal incentives
 - Private incentive to consume good 1 today
 - $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so, $\uparrow Q_t$
 - $\star~$ Subsidise good 2 imports in near term $\tau<\overline{\tau}$

$$\left(\frac{C_{t+1}/C_{t+1}^{*}}{C_{t}/C_{t}^{*}}\right)^{\sigma}\frac{Q_{t}}{Q_{t+1}} = (1-\theta_{t})$$

#3: Capital Controls Larger Absent FTA with Aligned Incentives

#4 Strategic Interactions and Spillovers

- * Global Cooperative Optimum: No intervention
- \star <u>Unilateral</u>: Welfare gain in H small relative to loss in F, esp. without FTA
- * Nash: Larger aggregate losses with capital control and tariff wars

#4 Strategic Interactions and Spillovers

- * Global Cooperative Optimum: No intervention
- \star <u>Unilateral</u>: Welfare gain in H small relative to loss in F, esp. without FTA
- * Nash: Larger aggregate losses with capital control and tariff wars

Table: Welfare Losses and Spillovers: expressed in terms of % cons. eq.

	H	F	Global $\sum_{H,F}$
with FTA (Unilateral)	-0.02	+0.03	+0.01
without FTA (Unilateral)	-1.99	+3.44	+0.82
with FTA (Nash)	+0.01	+0.02	+0.01
without FTA (Nash)	+1.76	+1.53	+1.67

#4 Strategic Interactions and Spillovers

- * Global Cooperative Optimum: No intervention
- \star <u>Unilateral</u>: Welfare gain in H small relative to loss in F, esp. without FTA
- * Nash: Larger aggregate losses with capital control and tariff wars

Table: Welfare Losses and Spillovers: expressed in terms of % cons. eq.

	H	F	Global $\sum_{H,F}$
with FTA (Unilateral)	-0.02	+0.03	+0.01
without FTA (Unilateral)	-1.99	+3.44	+0.82
with FTA (Nash)	+0.01	+0.02	+0.01
without FTA (Nash)	+1.76	+1.53	+1.67

Spillovers dwarf domestic gains, especially with tariffs

Lloyd and Marin (BoE and UC Davis)

Capital Controls and Free-Trade Agreements

Incentives to levy capital controls larger without free trade

Conclusion

Cannot separate discussions around capital controls and trade protectionism

- Policy prescriptions for trade and financial openness interlinked
 - Interaction between capital controls and tariffs stems from over/under-borrowing induced by the influence of tariffs on real exchange rate over time
 - 1. When inter-/intra-temporal incentives aligned, capital-inflow taxes and tariffs complementary
 - 2. When inter-/intra incentives **mis-**aligned capital inflow taxes and tariffs substitutes
- Domestic gains from capital controls and tariffs are small, but spillovers large

Trade protection can lead to cross-border financial fragmentation

Lloyd and Marin (BoE and UC Davis)

Appendix

Optimal Unilateral Policy: Setup

- Home country sets capital-flow taxes to maximise welfare of domestic representative agent
- **Primal Approach**: Home planner chooses $\{c_t\}$ in order to maximise welfare of representative agent U_0 , taking as given:
 - 1. Foreign consumer maximising U_0^* subject to intertemporal budget constraint

$$\sum_{t=0}^{\infty} \mathbf{p}_t \cdot (\mathbf{c}_t^* - \mathbf{y}_t^*) \le 0$$

where $\mathbf{p}_t = [p_{1,t}, p_{2,t}]$ is vector of world prices

2. Goods market clearing

$$y_{1,t} + y_{1,t}^* = c_{1,t} + c_{1,t}^*$$
 $y_{2,t} + y_{2,t}^* = c_{2,t} + c_{2,t}^*$

Foreign Consumer Maximisation

· Representative Foreign consumer problem:

$$\max_{\{\mathbf{c}_t^*\}} \quad U_0^* = \sum_{t=0}^\infty \beta^t U^*(C_t^*) \quad \text{ s.t. } \quad \sum_{t=0}^\infty \mathbf{p}_t \cdot (\mathbf{c}_t^* - \mathbf{y}_t^*) \le 0$$

 \Rightarrow Optimality conditions:

$$\beta^t U^{*'}(C_t^*) \nabla g_c^*(\mathbf{c}_t^*) = \lambda^* \mathbf{p}_t$$
$$\sum_{t=0}^{\infty} \mathbf{p}_t \cdot (\mathbf{c}_t^* - \mathbf{y}_t^*) = 0$$

where
$$abla g_c^*(\mathbf{c}_t) = \left[rac{\partial g^*(\mathbf{c}_t^*)}{\partial c_{1,t}^*}, rac{\partial g^*(\mathbf{c}_t^*)}{\partial c_{2,t}^*}
ight]$$

Unilateral Home Planning Problem

With FTA [Costinot, Lorenzoni & Werning, 2014]

$$\max_{\{C_t\}} \sum_{t=0}^{\infty} \beta^t u(C_t)$$
(P-FTA)
s.t.
$$\sum_{t=0}^{\infty} \rho(C_t) \cdot [\mathbf{c}_t - \mathbf{y}_t] = 0$$
(IC)
$$\mathbf{c}_t = \mathbf{c}_t(C_t), \quad \mathbf{c}_t^* = \mathbf{c}_t^*(C_t)$$
(FTA)

where $\boldsymbol{\rho}(C_t) \equiv \beta^t u^{*\prime}(C_t^*) \nabla g_c^*(\mathbf{c}_t^*(C_t))$

Unilateral Home Planning Problem

$$\max_{\{\mathbf{c}_t\}} \sum_{t=0}^{\infty} \beta^t u(C_t)$$
 (P-nFTA)
s.t.
$$\sum_{t=0}^{\infty} \boldsymbol{\rho}(C_t) \cdot [\mathbf{c}_t - \mathbf{y}_t] = 0$$
 (IC)
$$C_t = g(\mathbf{c}_t)$$
 (nFTA)

where $\rho(C_t) \equiv \beta^t u^{*\prime}(C_t^*) \nabla g_c^*(\mathbf{c}_t^*(C_t))$

▶ Back

Relaxing FTA Can Increase Home Welfare

Proposition

Suppose preferences are symmetric, $\alpha_1 = \alpha_2^*$ and $\alpha_2 = \alpha_1^*$, then in general: $C^{nFTA} > C^{FTA}$

- (i) When $C^{nFTA} > C^{FTA}$: optimal nFTA allocation violates Pareto frontier
- (ii) $C^{nFTA} = C^{FTA}$ when endowments are proportional to preferences: $y_1 \propto \alpha_1$, $y_2 \propto \alpha_2$, $y_1^* \propto \alpha_1^*$ and $y_2^* \propto \alpha_2^*$

Intuition

- Departing from FTA, planner can manipulate relative goods prices favourably (as long as endowments are not already proportional to preferences)
- With two instruments, no need to strike compromise across inter- and intra-temporal margins

Visual Intuition: Allocations with and without FTA

Feasible combinations of $\{c_1, c_2\}$ given F

FTA \Rightarrow H cannot impose good-specific taxes \Rightarrow ($\mathbf{c}_t, \mathbf{c}_t^*$) is Pareto efficient **No FTA** \Rightarrow H sets optimal import tariffs \Rightarrow unconstrained by Pareto frontier

<u>Note</u>: $\phi = 1.5$, $\alpha_1 = \alpha_2^* = 0.75$, $y_1 = \alpha_1 \pm 0.25$, $y_2 = \alpha_2$, $y_i^* = 1 - y_i$ for i = 1, 2.

What Drives Optimal Policy? Two Deterministic Simulations

- · Implement allocation with capital-inflow tax $\theta < 0$ and import tariff $\tau > 0$
- \cdot Equalise steady states (via exo. tax) to focus on welfare gains along transition

$$\sigma=2$$
, $eta=0.96$, $\phi=1.5$, $ho=0.8$, $lpha_1=lpha_2^*=0.6$ and $\overline{y}_1=\overline{y}_2^*=0.8$

#1: Growing Endowment of Home-Bias Good 1

Inter-temporal incentives:

H endowment low today \Rightarrow Incentive to borrow

- \Rightarrow Planner seeks to tax inflows $\theta < 0$ to $\downarrow R$
- \Rightarrow Reduced borrowing will also $\downarrow p_1$

Intra-temporal incentives:

Good 1 endowment low today \Rightarrow Sell less to Foreign

- \Rightarrow Incentive to subsidise imports of good 2 to $\downarrow p_1$
- \Rightarrow Will also dis-incentivise borrowing $\downarrow R$

Back

Growing Endowment of Home-Bias Good

Lloyd and Marin (BoE and UC Davis)

Capital Controls and Free-Trade Agreements

March 2023

What Drives Optimal Policy? Two Deterministic Simulations

#2: Growing Endowment of 'Foreign' Good 2

Inter-temporal incentives:

- H endowment low today \Rightarrow Incentive to borrow
- \Rightarrow Planner seeks to tax inflows $\theta < 0$ to $\downarrow R$
- \Rightarrow Reduced borrowing will $\downarrow p_1$

Intra-temporal incentives:

Good 1 endowment relatively high today

- \Rightarrow Sell more to Foreign
- \Rightarrow Incentive to tax imports of good 1 to $\uparrow p_1$
- \Rightarrow But this will incentivise borrowing $\uparrow R$

Growing Endowment of 'Foreign' Good

Lloyd and Marin (BoE and UC Davis)

Capital Controls and Free-Trade Agreements

28

Small-Open Economy: Setup

Following Costinot et al. (2014), define:

$$C_t = c_{1,t}^{\frac{1}{2}} c_{2,t}^{\frac{1}{2}}$$
 and $C_t^* = \frac{1}{N-1} c_{1,t}^* c_{2,t}^{*-1-\frac{1}{N}}$

with market clearing

$$c_{1,t} + c_{1,t}^* = y_{1,t}$$
 and $c_{2,t} + c_{2,t}^* = y_{2,t} + (N-1)y_{2,t}^*$

such that SOE limit when $N \to \infty$ and (implicitly) $\sigma = \phi = 1$ à la Cole and Obstfeld (1991)

Small-Open Economy: Mechanisms

As $N \to \infty$:

- Inter-temporal motive goes away, as no longer large in world capital markets
- Intra-temporal motive remains, as still large in this goods market

For specific case in which H learns today that endowment of 'home-bias' good 1 will grow, at the Cole-Obstfeld knife-edge, we find:

- \cdot With FTA: size of capital controls unchanged as N increases (\downarrow Inter, but \uparrow Intra)
- Without FTA: capital controls continue to be same size with respect to N, and <u>tariffs non-zero</u> due to size in goods market
- Interaction survives: capital controls larger in no-FTA case (vs. FTA), owing to effects of tariff on Q and over-/under-borrowing

Small-Open Economy: Discussion

Away from C-O, 'inverse-elasticity rule' likely to play role ('tax more when el. low'): $\sigma > \phi$: low intra-elasticity \rightarrow more tariff, so more capital controls (via interaction) $\sigma < \phi$: high intra-elasticity \rightarrow less tariff, so less capital controls (via interaction)

Trade Disruptions and Sanctions

Suppose exogenous and temporary increase in import costs $\boldsymbol{\tau}$

Inter-temporal incentives

- Consumption relatively expensive today, so private incentive to *over*-borrow today
- \Rightarrow Planner seeks to $\downarrow R$ to delay consumption
- $\star~$ Tax capital inflows $\theta < 0$

Intra-temporal incentives

- \cdot Imports relatively expensive today, so private incentive to *over*-consume good 1 today
- $\Rightarrow~$ Planner seeks to $\downarrow p_1$ and, so $\uparrow Q$
- $\star~$ Subsidise good $2~{\rm imports}$ in near term $\tau<\overline{\tau},$ 'undoing' the trade costs/sanctions
- Interaction: Because subsidy affects Q, incentivising over-borrowing...
 ...optimal unilateral policy response without FTA involves more capital controls

Back

