Asset Demand of U.S. Households

Xavier Gabaix Ralph S.J. Koijen Federico Mainardi Sangmin S. Oh Motohiro Yogo

Harvard, Chicago³, Princeton

NBER Asset Pricing Meeting - Fall 2022

MOTIVATION

- Demand system asset pricing: Jointly understand asset prices, macro variables, characteristics, portfolio holdings, and flows.
- Modeling the asset demand system is key to obtain credible quantitative answers to questions involving demand shifts.
 - QE & QT, global savings glut, savings glut of the rich, ESG investing, transition from active to passive.

MOTIVATION

- Demand system asset pricing: Jointly understand asset prices, macro variables, characteristics, portfolio holdings, and flows.
- Modeling the asset demand system is key to obtain credible quantitative answers to questions involving demand shifts.
 - QE & QT, global savings glut, savings glut of the rich, ESG investing, transition from active to passive.
- Key finding: Demand is inelastic relative to standard models.
- What is the evidence?
 - The impact of demand shocks on prices.
 - Direct estimates from holdings data.

NEW DATA AND METHODOLOGY

Holdings data are from institutions due to data limitations.

- The household sector is modeled as the complement.
- Yet, households are at the core of macro-finance models.

NEW DATA AND METHODOLOGY

- Holdings data are from institutions due to data limitations.
 - The household sector is modeled as the complement.
 - Yet, households are at the core of macro-finance models.

This paper:

- New data on portfolio holdings and flows of U.S. households to understand asset demand across asset classes.
 - Sample period: 2016 2021.
 - Direct and indirect holdings.
 - Public and private markets.
 - Ultra-rich households, which are typically not well represented in surveys.

NEW DATA AND METHODOLOGY

- Holdings data are from institutions due to data limitations.
 - The household sector is modeled as the complement.
 - Yet, households are at the core of macro-finance models.

This paper:

- New data on portfolio holdings and flows of U.S. households to understand asset demand across asset classes.
 - Sample period: 2016 2021.
 - Direct and indirect holdings.
 - Public and private markets.
 - Ultra-rich households, which are typically not well represented in surveys.
- Decompose flows into a price response and demand shocks.
 - Exploit time-variation in the covariance matrix of returns and portfolio rebalancing.
 - We refer to this as demand system covariance identification.

DATA

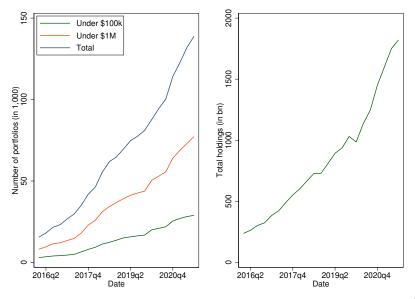
Data source: Addepar.

- Addepar is a wealth management platform that specializes in data aggregation, analytics, and performance reporting.
 - The platform currently covers \$3Tr in assets and 1.5M custodial accounts that are updated daily.

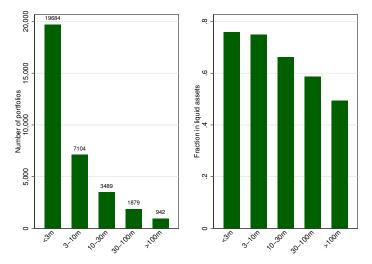
DATA

Data source: Addepar.

- Addepar is a wealth management platform that specializes in data aggregation, analytics, and performance reporting.
 - The platform currently covers \$3Tr in assets and 1.5M custodial accounts that are updated daily.
- Data structure and sample selection:
 - Security-level holdings, flows, and returns for all asset classes.
 - 125 households hold a position exceeding \$1 bn in a single company. Those positions are removed for confidentiality.

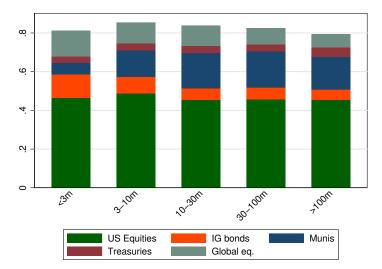

ASSET CLASSES

Broad Asset Class	Narrow Asset Classes
Cash	Cash, Cash Equivalents
Fixed Income	US Municipals/Tax Exempt, US Treasuries and Agencies, US TIPS, US Investment Grade, US High Yield, US Bank Loans, International Developed Markets, Emerging Markets, Opportunistic, Other Fixed Income, Unknown Fixed Income
Equities	US Equities, Concentrated Equity Positions, Global Equities, Developed Markets - Americas, Developed Markets - EMEA, Developed Markets - Asia Pacific, Emerging & Frontier Markets, Other Equities, Unknown Equities
Mixed Allocation	Asset Allocation Vehicle, Held Away Accounts
Alternatives	Hedge Funds, Private Equity & Venture, Real Estate Funds, Concentrated Alts. Positions, Unknown Alts., Other Alts, Direct Private Companies, Direct Real Estate, Direct Loans
Non-fin. Assets	Collectibles and Other
Liability	Liability


Asset classes marked blue are grouped into a category liquid.

Asset classes marked red are grouped into a category cash.

The number of portfolios and total holdings



PORTFOLIO COUNTS AND THE LIQUID ASSET SHARE

 Balloch and Richers (2021) present additional and related results on portfolio holdings.

PORTFOLIOS SHARES IN LIQUID ASSET CLASSES

Takeaway: Within liquid assets, munis increase and IG bonds decline with wealth.

DEFINING FLOWS

• We define flows as $f_{int} = \frac{F_{int}}{A_{i,t-1}^{DH}}$,

where $A_{it}^{DH} = A_{i,t-1} + \frac{1}{2}F_{it}$.

- Flow to liquid risky assets: f^{Liq}_{it} = ∑_{n∈L} f_{int} and L the set of liquid risky asset classes.
- Flow to cash: f_{it}^{Cash} .

- We develop a factor model to understand the key rebalancing patterns in the data.
- We model the flow of investor i into liquid asset class n in quarter t as

$$f_{int} = \alpha_n + \beta_n f_{it}^{\mathsf{Liq}} + \gamma_n f_{it}^{\mathsf{Cash}} + f_{int}^{\perp}.$$

- We develop a factor model to understand the key rebalancing patterns in the data.
- We model the flow of investor i into liquid asset class n in quarter t as

$$f_{int} = \alpha_n + \beta_n f_{it}^{\mathsf{Liq}} + \gamma_n f_{it}^{\mathsf{Cash}} + f_{int}^{\perp}.$$

• The definition
$$f_{it}^{\text{Liq}} = \sum_{n \in \mathcal{L}} f_{int}$$
 implies

$$\sum_{n \in \mathcal{L}} \alpha_n = \sum_{n \in \mathcal{L}} \gamma_n = \sum_{n \in \mathcal{L}} f_{int}^{\perp} = 0,$$

$$\sum_{n \in \mathcal{L}} \beta_n = 1.$$

If investors allocate capital in proportion to current holdings, then β_n ≃ 𝔼[θ_{int}].

• We model the rebalancing flows, f_{int}^{\perp} , using a factor model

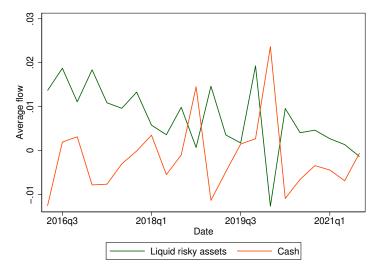
$$f_{int}^{\perp} = \sum_{k} \lambda_{it}^{(k)} \eta_n^{(k)} + u_{int}.$$

Economic interpretation

λ^(k)_{it}: Propensity of investor i to trade factor k.
 η^(k)_n: Rebalancing strategy of factor k, Σ_{n∈L} η^(k)_n = 0.

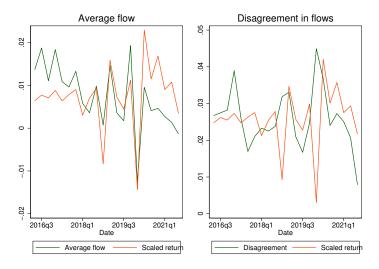
• We model the rebalancing flows, f_{int}^{\perp} , using a factor model

$$f_{int}^{\perp} = \sum_{k} \lambda_{it}^{(k)} \eta_n^{(k)} + u_{int}.$$

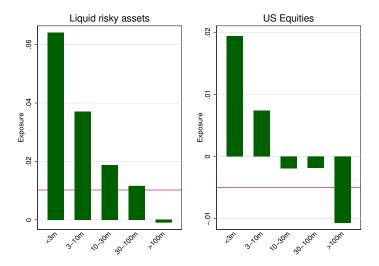

Economic interpretation

 λ^(k)_{it}: Propensity of investor *i* to trade factor *k*.
 η^(k)_n: Rebalancing strategy of factor *k*, Σ_{n∈L} η^(k)_n = 0.

 Putting the model together

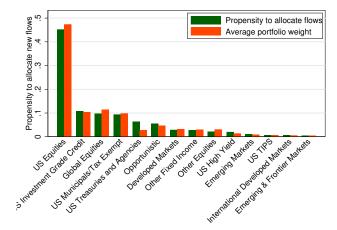

$$f_{int} = \alpha_n + \beta_n f_{it}^{\text{Liq}} + \gamma_n f_{it}^{\text{Cash}} + \sum_k \lambda_{it}^{(k)} \eta_n^{(k)} + u_{int}.$$

Flows to liquid assets and cash, f_{it}^{Liq} and f_{it}^{Cash}

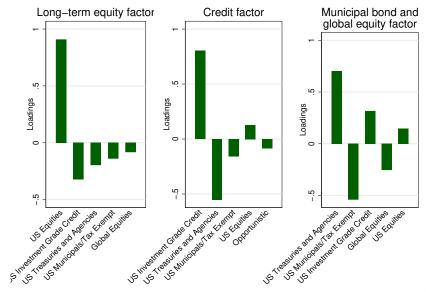

Takeaway: During market turmoil, households on average sell risky assets and tilt to cash.

FLOWS, DISAGREEMENT, AND EQUITY RETURNS

 Takeaway: Average flows are pro-cyclical, while disagreement is counter-cyclical.


FLOWS, RETURNS, AND THE WEALTH DISTRIBUTION

Takeaway: Less rich households act pro-cyclically, while the ultra-rich stabilize equity markets.


PROPENSITY TO ALLOCATE NEW FLOWS

• Estimate
$$f_{int} = \alpha_n + \beta_n f_{it}^{\text{Liq}} + \gamma_n f_{it}^{\text{Cash}} + f_{int}^{\perp}$$
.

 Takeaway: Households, on average, rebalance proportional to prior holdings (β_n ≃ E[θ_{int}]).

KEY REBALANCING DIMENSIONS

FROM FLOWS TO DEMAND CURVES

- The previous descriptive analysis summarizes how investors rebalance across asset classes.
- Investor flows can be due to
 - Movements along the demand curve (i.e., (in)elasticity).
 - Shifts in the demand curve.
- We propose a new methodology to separate those forces.

LOGIT MODEL OF ASSET DEMAND

Assets are split into inside assets, indexed by a = 1, ..., A, and an outside asset, indexed by a = 0.

For inside assets, the fraction invested in stock *a* is given by

$$heta_{a} = rac{\exp(\delta_{a})}{1 + \sum_{b} \exp(\delta_{b})},$$

where

$$\delta_{a} = c + \beta m_{a} + \beta_{1}' x_{a} + \nu_{a}.$$

with m_a denoting log market cap, x_a firm characteristics, and v_a the demand shifter.

LOGIT MODEL OF ASSET DEMAND

- Assets are split into inside assets, indexed by a = 1, ..., A, and an outside asset, indexed by a = 0.
- ▶ For inside assets, the fraction invested in stock *a* is given by

$$\theta_{a} = rac{\exp(\delta_{a})}{1 + \sum_{b} \exp(\delta_{b})},$$

where

$$\delta_{a} = c + \beta m_{a} + \beta_{1}' x_{a} + \nu_{a}.$$

with m_a denoting log market cap, x_a firm characteristics, and v_a the demand shifter.

The goal is to estimate β, which cannot be done via OLS as E[m_aν_a] may not be zero.

• We directly observe
$$\delta_a$$
 as $\delta_a = \ln \frac{\theta_a}{\theta_0}$.

DEMAND SYSTEM COVARIANCE IDENTIFICATION (DCIS)

We model

$$m_{a}=\sigma_{ma} ilde{m}_{a},
onumber
o$$

where $\sigma_{\tilde{m}} = \sigma_{\tilde{\nu}} = 1$.

• The heteroskedasticity is captured by σ_{ma} and σ_{va} .

DEMAND SYSTEM COVARIANCE IDENTIFICATION (DCIS)

We model

$$m_{a}=\sigma_{ma} ilde{m}_{a},
onumber
o$$

where $\sigma_{\tilde{m}} = \sigma_{\tilde{\nu}} = 1$.

- The heteroskedasticity is captured by σ_{ma} and σ_{νa}.
- Standardized demand shifters and log valuations are correlated

$$ilde{
u}_{\mathsf{a}}=
ho ilde{m}_{\mathsf{a}}+ ilde{
u}_{\mathsf{a}}^{\perp}$$
 ,

where $\mathbb{E}[\tilde{m}_{a}\tilde{\nu}_{a}^{\perp}] = 0$ and $\sigma_{\tilde{\nu}^{\perp}} = \sqrt{1-\rho^{2}}$.

DCIS: SIMPLE EXAMPLE

Assume that there are two groups of stocks that differ in their volatility of valuations, j = L, H.

DCIS: SIMPLE EXAMPLE

- Assume that there are two groups of stocks that differ in their volatility of valuations, j = L, H.
- The model then implies

$$\delta_{\mathsf{a}} = \mathsf{c} + \psi^j m_{\mathsf{a}} + eta_1' x_{\mathsf{a}} +
u_{\mathsf{a}}^\perp$$
 ,

for j = L, H and where

$$\psi^{j} = \psi(\sigma^{j}_{\nu^{\perp}/m}) = \beta + g(\rho)\sigma^{j}_{\nu^{\perp}/m},$$

where
$$\sigma^{j}_{\nu^{\perp}/m} = rac{\sigma^{j}_{\nu^{\perp}}}{\sigma^{j}_{m}}$$
.

• With just two volatility regimes, we can identify β .

DCIS: ECONOMIC INTUITION

- Traditionally, demand estimation uses instruments that covary with valuations (relevance) but not with investor i's demand shifters (exclusion).
- Those instruments, via market clearing, capture demand shifters of other investors that are uncorrelated with investor i.
- ▶ When regressing δ_a on m_a , the slope, $\psi(\sigma^j_{\nu^\perp/m})$, is a biased estimate of β

$$\psi(\sigma_{\nu/m}^{j}) = \beta + g(\rho)\sigma_{\nu^{\perp}/m}^{j}$$

The bias, g(ρ)σ^j_{v[⊥]/m}, shrinks to zero when σ^j_{v[⊥]/m} → 0.
 σ^j_{v[⊥]/m} = 0 implies that demand shocks of investor i are zero, as is the case for IV estimators.

DCIS: GENERAL CASE

• There are J volatility regimes, j = 1, ..., J.

• We then model the slope as a more flexible function of $\sigma^j_{\nu^\perp/m}$,

$$\psi^j = \beta + f(\sigma^j_{\nu^\perp/m}).$$

DCIS: GENERAL CASE

• There are J volatility regimes, j = 1, ..., J.

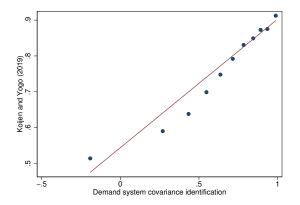
• We then model the slope as a more flexible function of $\sigma_{\nu^{\perp}/m}^{J}$,

$$\psi^j = \beta + f(\sigma^j_{\nu^\perp/m}).$$

Main identifying assumption

$$\lim_{\sigma_{\nu^{\perp}/m}^{j} \to 0} f(\sigma_{\nu^{\perp}/m}^{j}) = 0,$$

implying that $\lim_{\sigma^j_{\nu^\perp/m} \to 0} \psi^j = \beta.$


The paper contains formal conditions and results for convergence, and an extension to inertia.

COMPARISON WITH KY19 METHODOLOGY

Data from 1980.Q1 to 2017.Q4.

Average (standard deviation) estimate using KY19 instrument is 0.83 (0.26). DSCI gives 0.79 (0.32).

The correlation between estimates is 44.4%.

DEMAND ELASTICITIES ACROSS ASSET CLASSES

The demand for a given asset class as the product of two portfolio shares

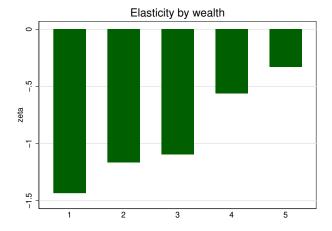
$$heta_{\textit{int}} = (1 - heta_{\textit{ict}}) ilde{ heta}_{\textit{int}}$$
 ,

where

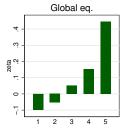
$$ilde{ heta}_{int} = rac{\exp\left(\delta_{int}
ight)}{\sum_{m}\exp\left(\delta_{imt}
ight)},$$

where $\delta_{int} = \beta_{in} m_{int} + v_{int}$.

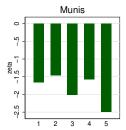
• The model implies, with $\zeta_{in} = 1 - \beta_{in}$ the elasticity of demand,


$$f_{inmt} = -\zeta_{in}r_{int} + \zeta_{im}r_{imt} + \Delta\nu_{inmt},$$

where $f_{inmt} \equiv \frac{F_{int}}{A_{in,t-1}} - \frac{F_{imt}}{A_{im,t-1}}$.


We follow a similar model for the allocation between cash and risky assets.

ELASTICITY ESTIMATES RISKY ASSET VERSUS CASH

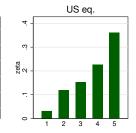

We estimate the model across two volatility regimes for five groups of households, grouped by wealth.

ELASTICITY ESTIMATES ACROSS RISKY ASSET CLASSES

2

3 4

1


5

ო

0

T

zeta 2

CONCLUSIONS

- We study the asset allocation decision of U.S. households using:
 - A descriptive factor model.
 - A model of asset demand.
- We develop a new methodology to estimate demand elasticities that can be used in the absence of instruments.

In progress:

- Dynamic extension, including inertia.
- Theory explaining:
 - Why elasticities are low.
 - Why elasticities differ across asset classes.