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1 Introduction

There is growing recognition that financial intermediaries play a key role in determining asset

prices. Much of the research on intermediaries treats them as a monolith, assuming that all

financial institutions face the same, typically limited, set of constraints, fund homogeneously

from the household sector, and perfectly share risk with each other. This view of intermediaries

has several implications. It suggests that all risk premia should strongly comove with aggregate

intermediary balance sheet strength, and conversely that all risk premia should be equally

informative about the health of the intermediary sector. In addition, if intermediaries are

strongly integrated, fire sales in any market have economy-wide effects on credit creation

because intermediaries will reduce lending and instead provide that market with liquidity.

In this paper, we argue that the assumption of a representative intermediary, while helpful

for many applications, understates the importance of frictions within the intermediary sector

and their implications for prices. We provide empirical evidence that segmentation within the

intermediary sector has a first-order impact on asset prices. We focus our analysis on arbitrage

spreads—riskless returns in excess of riskless rates—that arise from violations of the law of

one price in equity, fixed income, and foreign exchange markets. We take this approach for

two reasons. First, arbitrage is intermediated by financial institutions such as broker-dealers

and hedge funds and cannot be easily performed by households (Haddad and Muir, 2021).

Second, arbitrage spreads are accurate measures of expected returns, the key objects in

any asset pricing theory. Thus, arbitrages offer a high-power setting for understanding the

frictions faced by intermediaries. In contrast, studies analyzing risky assets must work with

average realized returns, a noisy proxy for expected returns (Merton, 1980).

To fix ideas, we begin with a stylized model in which intermediaries determine arbitrage

spreads. In the model, a continuum of intermediaries participates in a set of fundamentally

riskless arbitrage trades. Intermediaries potentially face two types of frictions that break

the Modigliani and Miller (1958) theorem. First, they may face balance sheet constraints

like regulatory capital requirements, which are costly to satisfy due to external financing
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frictions. Second, intermediaries may face frictions that prevent them from raising financing

to fund riskless assets at the riskless rate. Intermediaries may fund from different sources

with different costs, and certain trades may require them to fund from a specific source. We

model these frictions in reduced form to focus on their implications for arbitrage spreads.

In the model and throughout the paper, we distinguish between three assumptions typically

embedded in theoretical and applied work using a representative intermediary. First, balance

sheet integration means that the marginal balance sheet cost associated with a given riskless

asset is equalized across intermediaries. Second, funding integration means intermediaries

can fund all riskless assets from the same source. Third, the set of constraints intermediaries

face is limited. These assumptions result in one- or two- factor structures for arbitrage

spreads.1 For instance, if the representative intermediary faces a single constraint (e.g., a

leverage constraint) and funding is frictionless, then all arbitrage spreads are determined

by the shadow cost of the constraint. Thus, spreads are perfectly correlated and follow a

single-factor structure. Similarly, if the representative intermediary faces no constraints and

funds itself from a single integrated, but frictional, source, then arbitrage spreads are again

perfectly correlated since all spreads will be driven by conditions in that funding market.

We then use the model to illustrate how segmentation can reduce correlations between

arbitrage spreads. Funding segmentation—violations of funding integration—means that

trades using the same funding source will be more correlated with each other than trades using

different sources. For instance, Treasury repo financing can be used for Treasury spot-futures

arbitrage but cannot be used for equity spot-futures arbitrage. Thus, shocks to the Treasury

repo market will affect one set of arbitrage spreads but not the other. Similarly, balance

sheet segmentation—violations of balance sheet integration—implies that trades performed

by the same arbitrageurs will be more correlated with each other than trades performed by

different arbitrageurs.

We next turn to the data, focusing on the decade following the 2007-2009 financial crisis.
1See, e.g., He et al. (2017); He and Krishnamurthy (2013); Adrian et al. (2014); Ivashina et al. (2015);

Gromb and Vayanos (2018); Andersen et al. (2019).
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We study 29 arbitrage trades that fall into seven broad strategies: (i) equity spot-futures

arbitrage, (ii) equity options arbitrage, which enforces put-call parity, (iii) currency spot-

futures arbitrage, which enforces covered interest parity (CIP), (iv) CDS-bond arbitrage,

(v) Treasury spot-futures arbitrage, (vi) Treasury-interest rate swaps arbitrage, and (vii)

Treasury-inflation swaps arbitrage. For each arbitrage trade, we define the spread as the

difference between the riskless rate implied by no-arbitrage conditions (e.g., spot-futures

parity) and a relevant benchmark rate.

Our first result is that the daily correlation of spreads is low on average. The average

pairwise correlation is 0.21, and the 75th percentile of pairwise correlations is 0.43. While

these low correlations could be driven by measurement error, this measurement error would

have to be large to explain our results since observed correlations are far from one. We easily

reject the null that the average pairwise correlation is above 0.67. In addition, we reject the

null that the individual pairwise correlation is above 0.67 for 88% (358/406) of trade pairs.2

Furthermore, we observe a similar factor structure if we smooth the data. For instance, after

taking monthly moving averages, 9 principal components are required to explain 90% of the

variation in arbitrage spreads. Correlations are also low among the subsample of arbitrage

trades with short tenors (3-6 month horizons), suggesting that convergence or noise trader

risk (Delong et al., 1993) is not the source of the high-dimensional factor structure. Moreover,

measurement error cannot explain the direct evidence of segmentation we describe below.

The data are therefore far from the one- or two-factor structure predicted by models in which

balance sheet and funding integration hold in an intermediary sector facing few constraints.

We then show that funding segmentation is one reason that correlations between arbitrage

spreads are low. Our analysis starts from the observation that equity spot-futures, equity

options, and CIP arbitrage face relatively higher margin requirements than other strategies.

Because these high-margin strategies require more unsecured funding, we refer to them as
2If true arbitrage spreads are perfectly correlated and the variance of the measurement error is less than

half the variance of true spreads, then the observed pairwise correlation should exceed 0.67 (see Section 3.4.3).
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“unsecured” arbitrages, while we call the remaining ones “secured” arbitrages.3 Unsecured

arbitrages are more correlated with each other than they are with secured arbitrages. We

provide evidence that this higher correlation reflects the higher exposure of unsecured

arbitrages to conditions in unsecured funding markets, which we proxy for with the Treasury-

Eurodollar (TED) spread. We find that unsecured arbitrage spreads are nearly seven times

more sensitive to movements in the TED spread than are secured arbitrage spreads.

While the higher loading of unsecured arbitrage spreads on the TED spread is consistent

with funding segmentation, it could also be driven by balance sheet segmentation. For

example, if broker-dealers specialize in unsecured arbitrages, then a deterioration of their

balance sheets could cause both the TED spread and unsecured arbitrage spreads to rise.

To isolate the role of funding segmentation, it is therefore useful to trace out how shocks to

the supply of unsecured funding differentially impact unsecured versus secured arbitrages.

Following Anderson et al. (2019), we conduct an event study around the 2016 money market

fund (MMF) reform, which resulted in a sharp contraction in unsecured lending by MMFs.

During the reform, the TED spread and unsecured arbitrage spreads rise, while secured

arbitrage spreads do not, demonstrating that segmentation in funding markets is an important

driver of arbitrage spreads.

We then provide evidence that funding markets are more segmented than the simple

divide between secured and unsecured trades because funding providers specialize (Chernenko

and Sunderam, 2014; Li, 2021). Thus, shocks to individual funding sources move specific

arbitrage spreads without moving others. We illustrate this idea by studying supply shocks

to Fidelity MMFs, which Hu et al. (2021) show are particularly active in funding holders of

equity securities. These shocks move equity spot-futures arbitrage spreads, but not others.

We next show that balance sheet segmentation also contributes to the low overall correla-

tion of arbitrage spreads. In other words, it is not the case that intermediary balance sheets

are integrated and a representative intermediary facing segmented funding is marginal in all
3Secured arbitrages include Treasury spot-futures, Treasury-swap, TIPS-Treasury, and CDS-bond.
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strategies. We first provide event study evidence that the balance sheet constraints of certain

intermediaries affect some trades more than others. We study the “London Whale” episode,

in which JP Morgan lost over $6 billion through its credit derivatives hedging program in

2012. This event is useful for our purposes because it did not materially affect the firm’s

funding rates but did result in a tightening of the firm’s risk limits (U.S. Senate, 2014). We

show that the episode led equity spot-futures arbitrage spreads to rise relative to others.

We then examine the impact of hedge fund balance sheet constraints on arbitrage spreads

using fund returns as a proxy for these constraints. We find that the aggregate returns of fixed

income arbitrage hedge funds are negatively correlated with spreads on secured trades, but

not unsecured trades, suggesting that hedge fund balance sheets are particularly important

for these trades. Moreover, specific hedge funds appear to matter for specific trades. For

example, the hedge funds with balance sheets important for CDS-Bond arbitrage are not the

ones that are important for TIPS-Treasury arbitrage. Overall, our evidence suggests that

arbitrage activity is segmented due to fragmented funding sources (e.g., unsecured vs secured)

and specialization within and across financial institutions (e.g., dealers vs hedge funds).

Our paper belongs to the rapidly expanding literature on financial intermediaries and their

role in capital markets. One strand of the literature, including Shleifer and Vishny (1997),

Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), Garleanu and Pedersen

(2011), Adrian and Boyarchenko (2012), He and Krishnamurthy (2013), and Brunnermeier

and Sannikov (2014), assumes a representative intermediary and theoretically studies how

different constraints on its activity impact equilibrium asset prices or arbitrage spreads. Our

results suggest that these theories most naturally describe market segments, rather than

providing a uniform account of dynamics across all capital markets.4 A second strand of the

literature, including Pasquariello (2014), Adrian et al. (2014), He et al. (2017), and Du et al.

(2019), aims to empirically link sector-level measures of intermediary constraints to risky
4A recent theoretical literature has emphasized the importance of intermediary heterogeneity for macroe-

conomic outcomes and optimal macroprudential policy (Begenau and Landvoigt, 2021; Jamilov, 2021).
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asset prices.5 Our results suggest that accounting for which intermediaries are active in a

market and how they fund themselves is likely to improve the performance of these kinds of

intermediary-based asset pricing models. A third strand of the literature studies law of one

price violations in specific markets, including equity (van Binsbergen et al., 2019; Hazelkorn

et al., 2021), foreign exchange (Du et al., 2018), Treasury (Fleckenstein et al., 2014; Jermann,

2020; Barth and Kahn, 2021), and corporate bond markets (Siriwardane, 2018).6 Our paper

departs from this research by simultaneously analyzing law of one price violations across

many different markets, which enables us to characterize the frictions and constraints faced

by the intermediary sector.7

2 Motivating Model

To fix ideas, we begin with a stylized model in which intermediaries face multiple frictions and

determine arbitrage spreads. The model highlights how balance sheet constraints, balance

sheet segmentation, and funding segmentation all impact arbitrage spreads. The key point

is that the three assumptions typical of the intermediary asset pricing literature—(i) a

small number of constraints, (ii) balance sheet and (iii) funding integration—result in highly

correlated arbitrage spreads. Violating any of the three assumptions can result in the high-

dimensional factor structure for arbitrage spreads we document below. Balance sheet and

funding segmentation further predict that some spreads move with proxies for balance sheet

and funding costs, but others do not.
5Adrian et al. (2014) and He et al. (2017) fail to reject the null of integration based on a test of whether

the prices of risk for intermediary factors differ across markets. However, their tests use realized average
returns to proxy for ex-ante risk premia, which lowers their power. Accordingly, Bryzgalova (2015) finds that
the quarterly intermediary capital factor is weak in the sense that it has a small covariance with asset returns.

6There is also work documenting segmentation in short-term money markets (Bech and Klee, 2011; Duffie
and Krishnamurthy, 2016). Our paper shows how that segmentation ultimately impacts risky asset prices.

7Boyarchenko et al. (2018) study the impact of the supplementary leverage ratio on relationships between
prime brokers and their clients, and argue that the regulation made a large number of arbitrage trades less
attractive for dealers.
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2.1 Setup

Formally, suppose there are N arbitrage trades that are riskless. Normalize the riskless rate

to zero and let sn,t denote the arbitrage spread on trade n at time t. For simplicity, we

assume arbitrageurs are always net long, so that all spreads in the model are positive. In the

empirics, we will work with the absolute value of spreads since arbitrageurs can be net long

or net short each trade.

A unit measure of competitive and atomistic arbitrageurs engages in these trades, supplying

qn,t of trade n.8 Arbitrageurs face two main frictions, both of which are modeled in reduced

form. First, there are K balance sheet requirements of the form ∑
n qn,tvn,k = Vk,t. These

requirements capture equity capital and liquidity constraints, which may be set by regulators

or by arbitrageurs themselves for internal risk-management purposes. We assume that the

contribution of trade n to constraint k, vn,k, is fixed over time. Arbitrageurs can adjust

their balance sheets to meet requirement k at total cost 1
2ck,tV

2
k,t, which capture costs of

external finance or other adjustment costs. The existence of balance sheet requirements does

not imply balance sheet segmentation. Even with multiple balance sheet requirements, all

arbitrageurs can face the same marginal balance sheet cost for a given trade, which means

that we can model a single, representative intermediary for all trades. We introduce balance

sheet segmentation below.

Second, there are funding frictions. There are L funding sources with associated cost

f1,t, ..., fL,t (in excess of the riskless rate of zero) per unit borrowed. One dollar of trade

n can be financed with wn,l dollars from funding source l ∈ L. This assumption captures

violations of the Modigliani and Miller (1958) theorem in funding markets. Despite the fact

that all N trades are riskless, arbitrageurs may not be able to fund the basket of securities

and derivatives that underlie each trade at the riskless rate. The assumption that wn,l does

not vary over time corresponds to the empirical notion that rates on funding fluctuate more
8As discussed in Wallen (2019), market power among intermediaries may be important in certain markets.

The results here would be qualitatively unchanged in oligopolistic market structures if the elasticity of demand
from outside investors is constant over time.
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than haircuts (Copeland et al., 2010). If L = 0, then funding is frictionless. If L = 1, then

funding is frictional but integrated, and if L > 1 (and wn,l varies across trades and financing

sources), then funding is segmented.

The arbitrageur’s problem is:

max
N∑

n=1

(
qn,t

(
sn,t −

∑
l

wn,lfl,t

))
− 1

2

K∑
k=1

ck,tV
2

k,t. (1)

Since arbitrageurs are atomistic, they take sn,t as given. To close the model, we assume that

outside demand for trade n is inelastic and given by an,t > 0. Market clearing then requires

that qn,t = an,t.9

2.2 Canonical Intermediary Asset Pricing Models

Though it is stylized, the model allows us to nest common assumptions in the intermediary

asset pricing literature. We discuss two typical structures here, both of which feature balance

sheet and funding integration.

Balance sheet and funding integration with a single balance sheet constraint.

Many models of intermediaries consider a single balance sheet constraint and frictionless

funding (e.g., He and Krishnamurthy (2013)). This case can be captured by setting fl,t = 0

for all l, c1,t ̸= 0, and ck,t = 0 for all k > 1.10 The solution to Eq. (1) is then given by

sn,t = vn,1c1,tV1,t = vn,1c1,t

(∑
n

an,tvn,1

)
. (2)

From this expression, it is clear that spreads will be perfectly correlated. There is a single

factor—the marginal cost of the balance sheet constraint, c1,tV1,t—that moves all trades

proportionally. Trades that face a higher balance sheet requirement vn,1 load more heavily
9We make the assumption that outside demand is completely inelastic for simplicity. Our key results

would not qualitatively change if outside demand were elastic (e.g., given by an,t − bnsn,t).
10This is equivalent to setting wn,l = 0 for all n, l and vn,k = 0 for all k > 1, which can be interpreted as

the ability to fully fund trades at the riskless rate with trades loading on a single balance sheet requirement
(k = 1).

8



on this factor, but all spreads move linearly with the marginal cost of the constraint. This

one-factor structure in spreads holds despite the fact that there are a large number of primitive

shocks in the model. In particular, the balance sheet shocks c1,t and the outside demand

shocks an,t for each trade n fluctuate independently, yet a one-factor structure still obtains.

The intuition is that these independent shocks all move the marginal cost of balance sheet,

but ultimately that marginal cost is all that matters for spreads.

Balance sheet and funding integration with a single funding factor. Another

simple structure featuring both balance sheet and funding integration involves no constraints

and a single frictional funding factor: ck,t = 0, vn,k = 0, fn,1 > 0, and fn,l = 0 for l > 1.

Then we simply have spreads driven by the funding factor: sn,t = wn,1f1,t. In this case, we

again have perfect correlations across spreads. Spreads may load differentially on the funding

factor, but they all move linearly with it.11

2.3 Integration with Many Constraints

While much of the intermediary asset pricing literature features perfectly correlated arbitrage

spreads, balance sheet and funding integration need not imply them. In particular, balance

sheet and funding integration admit a single frictional funding source (L = 1) and arbitrarily

many balance sheet constraints (K > 0). In this case, all riskless arbitrages are funded from

the same source and marginal balance sheet costs are equated across arbitrageurs for each

trade n. Spreads are given by:

sn,t = wn,1f1,t +
K∑

k=1
vn,kck,tVk,t (3)

and feature a K + 1 factor structure. Thus, a high-dimensional factor structure for arbitrage

spreads rules out balance sheet and funding integration with a small number of constraints.
11Andersen et al. (2019) has this reduced form, though formally they obtain the result by microfounding

the costs of external equity with a debt overhang problem. With this microfoundation, the marginal cost of
external equity funding for a riskless asset, wn,equityfequity,t, is equal to the arbitrageur’s credit spread.
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2.4 Segmentation

We next consider the impact of segmentation on spreads. We consider two types of segmenta-

tion: funding segmentation and balance sheet segmentation.

Segmented funding. By funding segmentation, we mean that certain trades can use

certain funding sources while other trades cannot. For instance, Treasury repo financing can be

used for Treasury spot-futures arbitrage but cannot be used for equity spot-futures arbitrage.

To see the implications of this kind of segmentation, suppose that trades n = 1, ..., N1 < N can

be funded only using source l = 1 with corresponding cost f1,t, while trades n = N1 + 1, ..., N

can be funded only using source l = 2 with corresponding cost f2,t. If there are no further

frictions, we have

sn,t =
{

wn,1f1,t if n ≤ N1

wn,2f2,t if N1 < n
. (4)

In this case, spreads have a two-factor structure. All trades that can be funded using source 1

are perfectly correlated, as are all trades that can be funded using source 2, but the correlation

between the two groups is the correlation between f1,t and f2,t. Extending the argument

to more than two funding sources, segmented funding can create a high-dimensional factor

structure for arbitrage spreads.

Segmented balance sheets. Finally, we consider balance sheet segmentation with

frictionless funding. We use balance sheet segmentation to describe environments in which

certain trades are done by one set of intermediaries and are therefore subject to their balance

sheet constraints, while other trades are done by another set of intermediaries and are subject

to their balance sheet constraints. One could microfound this segmentation with a small

amount of specialization in different trades. For instance, suppose there are small marginal

costs εn,i associated with arbitrageur i doing trade n and there are two types of arbitrageurs.

Arbitrageurs i ∈ I have a marginal cost advantage εn,i < ϵn,j for trades n = 1, ..., N1 over

all other arbitrageurs j /∈ I. Conversely, arbitrageurs j /∈ I have a marginal cost advantage

εn,j < ϵn,i for trades n = N1 + 1, ..., N . In other words, one group of arbitrageurs has a
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cost advantage in one set of trades, while the other has a cost advantage in a different set

of trades. Since each group is a continuum, there is a representative arbitrageur for each.

Finally, suppose there is a single balance sheet constraint (fl,t = 0 for all l, c1,t ̸= 0, and

ck,t = 0). If the outside demand for each group of trades is similar,12 then spreads are given

by

sn,t =
{

εn,i + vn,1c1,tV1,t,I if n ≤ N1

εn,j + vn,1c1,tV1,t,∼I if N1 < n
. (5)

In other words, spreads have a two-factor structure. Intuitively, spreads for the first group of

trades (n = 1, ..., N1) reflect the shadow cost of the balance sheet constraint for arbitrageurs

in group I. For the second group of trades (n = N1 + 1, ..., N), spreads will reflect the

shadow cost of the balance sheet constraint for arbitrageurs outside group I. Extending the

argument to more than two groups of arbitrageurs, segmented balance sheets can create a

high-dimensional factor structure for arbitrage spreads.

2.5 Empirical Implications

The model highlights what we can learn from spreads alone and what conclusions require

ancillary data. For instance, a high-dimensional factor structure for spreads rejects simple

models in which both balance sheet and funding integration obtain and the representative

intermediary is subject to a single constraint. As Eq. (3) shows, however, a high-dimensional

factor structure by itself does not distinguish between situations in which (i) both balance

sheet and funding integration obtain, but the representative intermediary is subject to many

constraints and (ii) either balance sheets or funding markets are segmented. As Eq. (4) shows,

the empirical signature of funding segmentation is a covariance between certain spreads and

certain funding rates. Similarly, Eq. (5) shows that the empirical signature of balance sheet

segmentation is a covariance between certain spreads and individual intermediary balance

sheet costs. Our empirics below follow this outline. We begin by describing the factor
12Formally, we need an assumption ensuring that marginal cost advantages (ε’s) are not swamped by

differences in adjustment costs (c’s) or outside demand (through the V ’s).
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structure of arbitrage spreads and then provide direct evidence of both types of segmentation.

For instance, we will directly show that certain spreads comove with the costs of particular

types of funding. And we will show that certain spreads directly respond to shocks to the

balance sheets of specific intermediaries.

3 The Factor Structure of Arbitrage

3.1 Data and Arbitrage Trades

Our main analysis sample covers 29 arbitrage trades over the period from January 1, 2010 to

February 29, 2020. This period spans the post-financial crisis era and predates the Covid-19

pandemic. For each arbitrage trade, we construct an implied riskless rate based on observed

asset prices and then subtract a maturity-matched benchmark riskless rate. For arbitrage

trades that mature in less than two years, the benchmark is based on overnight indexed

swap (OIS) rates; for longer-maturity trades, it is based on Treasury yields. Our choice of

benchmark rates means that our arbitrage spreads do not represent true riskless profits that

are available to unconstrained intermediaries, since they are not constructed using the exact

funding rate that a trader implementing the arbitrage would face. Instead, our arbitrage

spreads capture funding and other frictions faced by arbitragers, which are precisely what

we seek to characterize. A detailed description of each arbitrage spread and its construction

is contained in Internet Appendix A.1. Here, we provide a short description of the trades,

which can be grouped into 7 broad categories or “strategies”.

3.1.1 Arbitrage Strategies

Foreign Exchange Arbitrage We follow Du et al. (2018) and measure arbitrage spreads

in foreign exchange markets with deviations from covered interest parity (CIP). For each

currency we study, we define the CIP arbitrage spread as the difference between the dollar

OIS rate and a synthetic riskless rate that is implied by currency forwards, currency spot
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rates, and foreign OIS rates. We build CIP arbitrage spreads for all G-10 currencies except

the Danish and Norwegian krones because OIS rates are not available for these two currencies.

We use 3-month CIP violations to avoid any confounding effects that the quarter-end spikes

documented in Du et al. (2018) may have on correlations. We obtain data on spot and

forward exchange rates and OIS rates from Bloomberg. See Internet Appendix A.1.1 for

more details.

Equity Options Arbitrage (Box Arbitrage) We infer riskless rates and arbitrage

spreads from S&P 500 (SPX) equity options based on the put-call parity relationship. As

discussed in Ronn and Ronn (1989) and van Binsbergen et al. (2019), implied riskless rates

from put-call parity are often called box rates in practice. We adopt this naming convention

and refer to this arbitrage as the box trade for the remainder of the paper. We take box rates

for six, twelve, and eighteen month tenors directly from van Binsbergen et al. (2019), who

estimate them using minute-by-minute pricing data for SPX options. Arbitrage spreads are

then computed by subtracting off a maturity-matched OIS rate.

Equity Spot-Futures Arbitrage For equity futures markets, we measure arbitrage spreads

based on violations of spot-futures parity. As we discuss in Internet Appendix A.1.3, the

spot and futures markets for equities close at different times, which prevents us from using

the spot-futures parity relationship to accurately compute implied riskless rates from closing

prices alone.13 Instead, we compute implied forward rates based on the relative pricing of

futures contracts with different tenors. To illustrate, consider a futures contract on an asset

that does not pay a dividend. In this case, spot-futures parity implies that the current futures

price FT1 for a contract with tenor T1 and the spot price S satisfy FT1 = S(1 + rT1), where

rT1 is the riskless rate between today and T1. Next, consider another futures contract with

tenor T2 > T1. Under the parity condition, the ratio of the two futures prices FT2/FT1 equals

the gross forward rate 1 + fT1,T2 between T1 and T2.
13Hazelkorn et al. (2021) avoid this issue by using high-frequency data for both futures and spot markets.
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We estimate implied forward rates using Bloomberg futures data on the S&P 500, Dow

Jones Industrial, and Nasdaq 100 indices. For each index, our analysis is based on the nearby

and first-deferred contracts, which are the most liquid. Internet Appendix A.1.3 provides

more details about our implementation, including how we account for dividends and compute

arbitrage spreads from implied forward rates.

Treasury Spot-Futures Arbitrage For Treasury futures markets, we measure arbitrage

spreads based on violations of spot-futures parity, following Fleckenstein and Longstaff (2020)

and Barth and Kahn (2021). We study five such trades, associated with the first-deferred

futures contract on the 2-year, 5-year, 10-year, 20-year, and 30-year Treasury. We measure

arbitrage spreads using the first-deferred contract to avoid complications with the nearby

contract in the futures delivery month (Fleckenstein and Longstaff, 2020). We obtain futures-

implied riskless rates directly from Bloomberg and define arbitrage spreads by subtracting off

a maturity-matched OIS rate. See Internet Appendix A.1.4 for more details.

Treasury Swap Arbitrage For interest rate swap markets, we measure arbitrage spreads

using OIS swap spreads, defined as the difference between the fixed rate on overnight indexed

swaps and Treasury yields. We study seven such trades, associated with 1-year, 2-year, 3-year,

5-year, 10-year, 20-year, and 30-year Treasuries. OIS swap rates are from Bloomberg. As

discussed in Jermann (2020), Du et al. (2022), and Hanson et al. (2022), only negative OIS

swap spreads indicate a guaranteed arbitrage. We show in Internet Appendix A.1.5 that this

condition is satisfied for the large majority of observations in our analysis sample.

TIPS-Treasury Arbitrage We follow Fleckenstein et al. (2014) and construct the dif-

ference in yield between a synthetic nominal Treasury, constructed using Treasury Inflation

Protected Securities (TIPS) and inflation swaps, and the true nominal Treasury yield. We

obtain TIPS data from the Treasury, inflation swap data from Bloomberg, and nominal

Treasury data from CRSP. In Internet Appendix A.1.6, we provide additional details and
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confirm that we accurately match the series from Fleckenstein et al. (2014).

CDS-Bond Arbitrage For U.S. corporate bond and credit default swap (CDS) markets,

we follow Duffie (1999) and measure arbitrage spreads based on the difference between

cash-bond implied credit spreads and CDS spreads. Cash bond and CDS pricing data both

come from Markit. We form CDS-bond bases for both investment-grade and high-yield

bonds, aggregating over bonds in each ratings category. The average number of bonds used

to compute the daily investment grade and high-yield bases is 1,690 and 307, respectively.

Internet Appendix A.1.7 contains the full construction methodology.

Summary Statistics Table 1 provides summary statistics. The data is daily and spreads

are reported in annualized basis points (bps). Unless otherwise noted, we work with absolute

values of spreads since the sign of the spread depends on whether arbitrageurs are net long

or short a particular leg of the trade. The number of observations varies slightly across

trades, mainly due to availability from raw data providers (e.g., Bloomberg vs Markit) and

differences in trading holidays across swaps and futures markets. The box trades have fewer

observations because we use data from van Binsbergen et al. (2019), who end their analysis

in 2018.

Table 1 shows that there is significant variation in spreads, both across trades on average

and within trades over time. For many individual trades, the daily standard deviation of

spreads is around half the mean spread. Figure 1 shows average spreads by broad strategy.

Average spreads vary significantly from 15 bps for the Treasury spot-futures arbitrage to 44

bps for the CDS-bond basis. While not the focus of our analysis, it is worth noting that we

can easily reject the hypothesis that average spreads are equal across individual trades or

broad strategies.
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3.1.2 Quantity Data

In addition to data on arbitrage spreads, we use data from the Commodity Futures Trading

Commission (CFTC) on quantities.14 The CFTC publishes weekly “Traders in Financial

Futures” reports, which break down open interest for futures markets in which 20 or more

traders hold large positions. The position data is supplied by clearinghouses and other

reporting firms. The reports break down positions into four trader types: dealers, asset

managers, leveraged funds, and other reporting entities. These classifications are based on

the predominant business purpose self-reported by traders on the CFTC Form 40.

3.2 Money Market Fund Holdings

We obtain data on the holdings and total net assets (TNAs) of money market mutual funds

(MMFs) from Crane data. The data is compiled from form N-MFP, which MMFs are required

to file with the Securities and Exchange Commission (SEC) every month.

3.3 Hedge Fund Returns

We also use hedge fund returns from the Preqin Pro Hedge Fund Database. This database

includes performance data on over 24,000 hedge funds. Importantly for our purposes, the

database contains descriptive information on fund strategies, which allows us to focus on

funds that self-report being involved in the arbitrage trades that we study.

3.4 Characterizing Arbitrage Comovement

3.4.1 Baseline Results

We now turn to our first main result: the correlation between arbitrage spreads is low. Figure

2 presents this result graphically, depicting a heat map of pairwise correlations between the

absolute value of different spreads. Darker red indicates higher positive correlations. With
14The data are available at this link.
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the exception of the diagonal, little of the figure is dark red, indicating that correlations are

generally low.

Table 2a provides formal statistical evidence on pairwise correlations. The average pairwise

correlation is 0.21, and the 75th percentile of pairwise correlations is 0.43. These results

are at odds with simple structures for the intermediary sector, in which there is only a

single balance sheet constraint or a single funding factor. As shown in Section 2, in these

cases, arbitrage spreads should be perfectly correlated. In Figure 3, we conduct a principal

components analysis of spreads. Consistent with the low correlations documented above,

it takes 10 principal components to cumulatively explain 90% of the variation in arbitrage

spreads. Furthermore, the last column of Table 2a shows that we can reject the null of equal

correlations across all arbitrage pairs. Thus, the data suggest a complex structure for the

intermediary sector. Either balance sheet and funding integration hold, but the representative

intermediary faces a large number of different constraints, or there is significant segmentation

in arbitrage.

3.4.2 Noise-Trader Risk

We next consider two issues that might confound our interpretation of low arbitrage correla-

tions. The first is convergence or noise trader risk (Delong et al., 1993). As noted by Du

et al. (2022) and Hanson et al. (2022), dynamic considerations like convergence risk typically

add at most one factor to the structure of arbitrage spreads if intermediaries face a single

constraint. Intuitively, the risk that the single constraint tightens in the future moves all

spreads together, just as the contemporaneous tightness of the constraint did in Section

2. Thus, it is theoretically unlikely that the low observed correlation of arbitrage spreads

is driven by convergence risk in a world where a representative intermediary faces a single

constraint.

A simple empirical approach to mitigating the effect of convergence risk on arbitrage

correlations is to exclude trades with long tenors. Table 2b does so, reporting the distribution
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of pairwise correlations for the CIP, Treasury spot-futures, and equity spot-futures arbitrages.

These are all trades with less than six months to maturity and their arbitrage spreads

are relatively simple to measure compared to some of the longer-tenor strategies (e.g.,the

CDS-Bond basis). In the subset of short-tenor trades, the average correlation is still low at

0.19, and the 75th percentile of correlations is 0.35. Thus, it does not appear that convergence

risk is the main driver of the low correlations we observe.

3.4.3 Measurement error

Measurement error is another important issue to consider when interpreting low arbitrage

correlations. To see why, suppose that the observed spread si,t equals the true spread s∗
i,t

plus an error term that is independent across arbitrages:

si,t = s∗
i,t + εi,t,

where the variance of the true spread is V ar[s∗
i,t] = σ2

i and the variance of the measurement

error εi,t is V ar[εi,t] = σ2
i,ε. Let ρ∗

ij denote the correlation between the true spreads and ρij

denote the correlation between the observed spreads. In this setting, the true correlation ρ∗
ij

and measured correlation ρij are related as follows:

ρij = ρ∗
ij/(λiλj)

λi =

√√√√σ2
i + σ2

i,ε

σ2
i

. (6)

Because the adjustment factor λi is above 1 for all i, observed correlations will be biased

toward zero. Thus, if arbitrage is fully integrated and the representative intermediary faces

a limited number of constraints (ρ∗
ij ≈ 1), measurement error may lead us to incorrectly

conclude otherwise based on low measured correlations.

We address potential measurement error in a few complementary ways. To start, consider
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the simple case in which the variance of measurement error is a constant proportion θ of the

variance of true spreads, σ2
i,ε = θσ2

i . In this case, Eq. (6) simplifies to ρij = ρ∗
ij(1 + θ)−1. If

the variance of the measurement error is less than half that of true spreads (θ < 0.5) and true

spreads are perfectly correlated, measured pairwise correlations should be greater than 0.67.

However, in Table 2a we reject the null that the average pairwise correlation of all spreads is

greater than 0.67. Moreover, we reject the null that the individual pairwise correlation is

above 0.67 for 88% (358/406) of pairs. One can also reverse the exercise and ask how large

measurement error would need to be in order to generate the correlations that we observe. If

σ2
i,ε = θσ2

i and true spreads are perfectly correlated, θ ≈ 4 would be required to generate a

measured correlation of 0.21.

If true spreads more persistent than measurement errors, another approach is to smooth the

data. Figure 3 shows that we obtain very similar results if we compute principal components

after taking a five-day or one-month moving average of spreads. Averaging should increase

the ratio of variation driven by true spreads as opposed to noise, but it has little effect on

the principal components analysis. Even after taking one-month moving averages of spreads,

it takes 9 principal components to cumulatively explain over 90% of the variation in our

arbitrage spreads.

Eq. (6) also shows that the attenuation bias induced by measurement error can be directly

addressed with knowledge of the adjustment factors, λi. These factors reflect how much of

the total observed spread variance is driven by the true spread. If arbitrage spreads follow a

one-factor model, the adjustment factors can be estimated using instrumental variables (IV)

regressions (Hausman, 2001). Specifically, for each spread i we first run the following OLS

regression:

sjt = αi + βOLS
i sit + εit, (7)

where we pool all observations for which j ̸= i. We then run an analogous IV regression with

two instruments for sit: (i) the observed arbitrage spread on the last day of the previous

quarter, and (ii) the average observed arbitrage spread in the previous quarter. The idea
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behind these instruments is that any error induced by execution details of individual trades in

the current quarter should be uncorrelated with errors from the previous quarter. Concretely,

consider the Treasury spot-futures trade and suppose the contract we use to compute si,t

expires in September. Our instruments instead reflect an entirely different futures contract

(i.e., the June contract).

Let βIV
i denote the IV estimate from regression (7). Under the null of a one-factor model

for arbitrage spreads and assuming our instruments are valid, the ratio of the IV and OLS

estimates reveals the measurement error variance relative to true variance (Hausman, 2001):

λi =

√√√√ βIV
i

βOLS
i

.

We estimate the λis individually and use them to adjust the measured correlations up

according to Eq. (6). To be maximally conservative, we focus on trades with short tenors for

which convergence risk should be relatively unimportant (see Section 3.4.2). The average

adjusted correlation equals 0.19, similar to the overall average measured correlation and the

average for short-tenor trades. The distributions of adjusted and unadjusted correlations are

also comparable: the 25th and 75th percentile of adjusted correlations are -0.07 and 0.42,

respectively. These results cut against the idea that true spreads follow a one-factor structure

but their measured correlation is biased toward zero by noise.

The final reason we think measurement error is unlikely to be driving our results is that

the correlations are not uniformly low. While spreads are far from perfectly correlated, they

still have an interesting structure. Figure 3 shows that there is important common variation

in spreads as emphasized by the previous literature, including Pasquariello (2014), Du et al.

(2018), Du et al. (2019), and van Binsbergen et al. (2019). When considering all trades, the

first three principal components of daily spreads cumulatively explain 64% of their variation.

If spreads were completely uncorrelated, we would expect them to only explain 33%.15 Thus,
15If spreads were uncorrelated, then the first three principal components would simply be the three spreads

with the largest variance, and the total variance of spreads would be the sum of individual spread variances.
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our principal components analysis reveals a meaningful underlying economic structure to

arbitrage spreads.

Figure 2 and Table 2c suggest two places to look for this structure. First, cross-strategy

correlations are relatively high for the box, CIP, and equity-spot futures spreads. Second,

correlations are higher within strategy than across strategy. For instance, Table 2c shows

the average pairwise correlation of the three box trades is 0.87 and the average pairwise

correlation of CIP spreads is 0.35. We explore these sources of correlation further in Sections

4 and 5 of the paper, arguing that they reflect funding and balance sheet segmentation.

4 Segmented Funding

In this section, we argue that funding frictions are a key reason that the correlation of

arbitrage spreads is low. As discussed in Section 2, the underlying violation of the Modigliani

and Miller (1958) theorem is that certain riskless portfolios cannot be funded at the riskless

rate. For instance, the equity spot-futures arbitrage involves holding the underlying equities

and selling equity futures. Taken together, this position is riskless, but it cannot be funded

with (for instance) Treasury repo. As the cost of funding for certain arbitrage trades moves,

spreads move as well.

We proceed in three steps. We start with suggestive evidence that there are differences

in funding structures across the different arbitrage strategies we study. We then provide

more formal empirical evidence that movements in funding costs affect arbitrage spreads.

In particular, we show that they help explain the relatively high degree of comovement

between the box, CIP, and equity-spot futures spreads in Table 2c, and the relatively low

degree of comovement between those spreads and the others we study. Finally, we show that

specialization in funding creates segmentation that goes beyond the divide between unsecured

and secured funding markets.

In our data, the ratio of the sum of the largest three variances to the sum of all variances is about 33%.
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4.1 Suggestive Evidence on Margins

Table 3 shows that there are meaningful differences in the availability of secured financing

across arbitrage strategies. The data primarily come from the Federal Reserve Bank of

New York’s Tri-party Repo Infrastructure Reform Task Force.16 The Treasury spot-futures,

Treasury-swap, and TIPS-Treasury arbitrages can be largely financed with Treasury repo,

requiring only a 2% margin. In other words, intermediaries need little unsecured debt or equity

funding to enter into these arbitrages. Conversely, the box, CIP, and equity spot-futures

arbitrages require higher margins between 8% and 12%. For these arbitrages, unsecured

funding conditions are much more important. We will therefore frequently group these

trades together, labeling them “unsecured”, while we label the remaining trades (Treasury

spot-futures, Treasury-swap, TIPS-Treasury, and CDS-bond) “secured.”

4.2 Shocks to Unsecured Funding and Arbitrage Activity

In this section, we show that variation in unsecured funding conditions induces comovement

in unsecured arbitrage spreads but not secured spreads. We start with OLS evidence in Table

4. We work with implied riskless rates from different arbitrages, as opposed to spreads that

subtract out a benchmark riskless rate, to separate changes in secured and unsecured funding

conditions. In the first two columns, we run the following monthly panel regression:

∆ri,j,t = αi,j + β1∆yi,t + β2∆TEDt + εi,j,t, (8)

where ri,j,t is the implied riskless rate for individual trade i in broad strategy j in month t

and yi,t is the yield on a Treasury with the same maturity as the horizon of the trade—a

proxy for the true riskless rate. TEDt is the maturity-matched Treasury-Eurodollar spread
16For currencies, we report data from central bank lending operations by the Bank of England and the

European Central Bank because the quantity of tri-party repo backed by international collateral is typically
small (less than 0.5% of the total). Margin data from the NY Fed can be found here, Bank of England data
can be found here, and ECB data can be found here.
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(i.e., LIBOR minus Treasury) and proxies for unsecured funding costs.17 Standard errors are

clustered by strategy-month.

In the first column of Table 4, the sample consists of unsecured trades (equity spot-futures,

CIP, and box). These trades load on the Treasury yield with a coefficient close to 1, but also

have a high loading on the TED spread, consistent with the idea that these trades require a

significant amount of unsecured funding. Indeed, the coefficient on the TED spread of 0.48 is

higher than the margin requirements listed in Table 3, possibly because these trades require

more unsecured funding on the margin than on average.18

The second column of Table 4 shows a stark contrast for secured trades. These trades

also load on the Treasury yield with a coefficient close to 1, but their loading on the TED

spread is much lower (0.07 vs 0.48) and is not statistically distinguishable from zero.19 The

remaining columns of Table 4 run the regression strategy-by-strategy. The coefficient on the

TED spread is higher for all unsecured strategies than it is for any of the secured strategies.

Moreover, we cannot reject the null that the TED spread loading is zero for each of the

secured strategies, but we can for each of the unsecured ones.

Previous research has noted that arbitrage spreads are sensitive to the TED spread (e.g.,

Garleanu and Pedersen, 2011), particularly during stressed periods like the 2007-09 financial

crisis. Our focus here is to highlight differences in the sensitivity of arbitrage strategies to

the TED spread. We interpret these differences as showing that frictions in funding markets

drive cross-sectional differences in arbitrage spreads.

While the results in Table 4 are consistent with funding segmentation, they could also

reflect balance sheet segmentation. For instance, suppose broker dealers specialize in unsecured

trades. Then a deterioration in their balance sheet health could lead to a simultaneous rise
17ICE Benchmark Association does not publish LIBOR rates beyond one year. Thus, when the tenor of

the trade exceeds one year, we construct the TED spread using the one-year LIBOR and Treasury yields.
18In Internet Appendix A.2.1, we provide suggestive evidence in favor of this interpretation for equity

spot-futures arbitrage. We show that the value of equity securities held by dealers is nearly double the size of
equity triparty repo, cutting against the idea that dealers fully finance their equity positions with equity repo.

19Note that correlations with the Treasury yield are very high for some secured trades because these trades
involve Treasuries.
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in the TED spread and unsecured arbitrage spreads.

To isolate the role of funding segmentation, we follow Anderson et al. (2019) and study the

2016 MMF reform. The reform modified SEC Rule 2a-7, which governs MMFs. It required

institutional prime MMFs to switch from reporting stable to floating net asset values (NAVs),

while allowing government MMFs to continue reporting stable NAVs. Thus, following the

reform, many prime MMFs converted to government MMFs to accommodate client preferences

for stable NAVs. Prior to the reform, prime MMFs were a significant source of unsecured

funding for banks, so the reform plausibly represents a funding shock that is distinct from

bank balance sheet shocks. Indeed, as shown in Figure 4a, unsecured MMF lending to banks

fell approximately $550 billion as a result of the reform. Anderson et al. (2019) study how

global banks respond to this shock, arguing that they withdraw from CIP and central bank

reserve arbitrage. In contrast, we use the shock to trace out funding segmentation in the

cross section of arbitrage.

Figure 4b shows that the MMF reform shock generated a significant rise in the TED

spread. As the reform was anticipated, spreads start rising before the reform is implemented.

For example, five months before the reform, MMFs were more willing to lend to banks

unsecured for four months than six months. Figure 4c shows that around the time of the

reform, spreads on unsecured arbitrages rise relative to secured arbitrages. Thus, unsecured

funding shocks induce comovement in arbitrage spreads for unsecured trades but result in

low correlations between secured and unsecured trades.

Table 5 provides formal regression evidence corresponding to these figures.20 We first
20While Figure 4c and Table 5 look similar to a differences-in-differences analysis, they are formally closer

to a placebo test. In particular, the parallel trends assumption should hold under the null of integrated
funding. However, under our preferred interpretation—that the unsecured arbitrages are segmented from
the secured arbitrages—there is no reason for the parallel trends assumption to hold. That is, we do not
think that the gap in spreads between unsecured and secured arbitrages would have remained fixed in the
absence of the 2016 MMF reform. Instead, we simply interpret this evidence as showing that only unsecured
arbitrages are affected by a shock to unsecured funding.
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estimate the following OLS regression:

si,t = αi + αt + β1[i ∈ Unsecured] × 1[t ≥ October2016] + εi,t, (9)

where si,t is the absolute value of the arbitrage spread for trade i on date t, αi is a trade fixed

effect, and αt is a time fixed effect. We estimate the regression using data through October

2017 to focus on the one-year impact of the reform on arbitrage spreads. Column (1) shows

that unsecured spreads rose by an average of 12 bps in the year following the reform. In

column (2), we estimate a dynamic version of Eq. (9) to more carefully study the response

of spreads to the reform over time. Unsecured spreads initially rise 17 bps relative to other

arbitrage spreads in the October 2016 and remain elevated near that level for the subsequent

three months, after which they only partially revert between February and October 2017.

These findings indicate that the effect of the funding shock on arbitrage activity persisted for

many months.

Furthermore, the passthrough of 0.58 implied by the 2016 MMF reform event study is

similar to the OLS estimate of 0.48 in Table 4, and we cannot reject the null hypothesis that

they are equal.21 This suggests that most of the comovement between the TED spread and

unsecured trades in our sample is driven by funding shocks, as opposed to bank balance sheet

shocks. Taken together, the analysis in Tables 4 and 5 shows that funding segmentation is

one broad driver of low correlations among arbitrage spreads. Some trades—equity spot-

futures, box spreads, and CIP—require more unsecured funding than others. These trades

are therefore more exposed to broad conditions in unsecured funding markets, as measured

by the TED spread. As a result, unsecured trades tend to comove more with each other than

they do with secured trades. In other words, funding segmentation impacts asset prices.
21Around the reform, the TED spread and unsecured spreads increased by 30 and 17 bps, respectively.

This implies that the passthrough of changes in the TED spread to unsecured spreads equals 0.58.
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4.3 Further Funding Segmentation

We next provide evidence that funding markets are more segmented than the simple divide

between secured and unsecured trades. In particular, we argue that additional funding

segmentation helps to explain why the equity spot-futures, box, and CIP trades, while more

correlated than other trades, are still not highly correlated with each other. Building on the

MMF literature (e.g., Chernenko and Sunderam, 2014; Rime et al., 2017; Li, 2021; Hu et al.,

2021), we document that specialization in certain types of funding by MMFs is reflected in

arbitrage spreads.

In particular, Hu et al. (2021) find that Fidelity MMFs were the largest provider of

equity-repo financing in their sample, which runs from 2010 to 2013. In Table 6, we show

that funding shocks to Fidelity move equity spot-futures arbitrage spreads over and above

the effect of the TED spread. We augment Eq. (8) with flows into Fidelity MMFs. Columns

1-3 report OLS results. Column 1 shows that equity spot-futures arbitrages spreads fall when

funds flow into Fidelity MMFs, consistent with the idea that a positive Fidelity funding supply

shock reduces the cost of funding equity holdings and hence equity spot-futures spreads.

Columns 2 and 3 show that flows to Fidelity have no impact on either other unsecured trades

(box and CIP) or secured trades, suggesting that Fidelity funding supply shocks do not affect

these trades. These results also suggest that flows into Fidelity are not proxying for aggregate

unsecured funding conditions or aggregate intermediary balance sheet health.

One concern with these OLS results is that flows to Fidelity may be driven by the

demand for funding rather than the supply of funding. In other words, the relationship

between Fidelity flows and the cost of funding equity holdings is ambiguous, which biases the

estimated OLS coefficients towards zero.22 In columns 4-6, we try to address this concern by

instrumenting for flows to Fidelity with “passive flows”—flows to the aggregate MMF sector
22Another concern is that the OLS results reflect balance sheet segmentation. It could be that specific

intermediaries are important for equity spot-futures arbitrage and flows to Fidelity reflect the health of those
intermediaries’ balance sheets. In this case, however, the most natural interpretation is that both balance
sheet and funding segmentation are at work. Flows to Fidelity reflect the health of particular intermediaries
over and above the TED spread because Fidelity has funding relationships with those intermediaries.
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in month t interacted with Fidelity’s share of MMF assets measured at t − 6. The idea is

that Fidelity is small relative to the overall MMF sector (it accounts for an average of 16% of

total assets) and therefore aggregate flows are not driven by demand for Fidelity funding.23

Consistent with the idea that the OLS coefficients are biased towards zero, column 4 shows

that the relationship between Fidelity flows and equity spot-futures arbitrages spreads is

stronger when we instrument. However, the relationship with spreads on other unsecured

trades and secured trades remains close to zero and statistically insignificant. Overall, the

evidence shows within the unsecured market, funding is segmented. The cost of funding

equity holdings moves independently of other funding costs.

Taken together, our results suggest that funding segmentation is an important driver of

segmentation in asset prices. Unsecured trades are broadly segmented from secured trades

because unsecured funding is segmented from secured funding, with the TED spread capturing

these differences. Beyond the simple divide between secured and unsecured funding, there is

additional segmentation, which appears to be driven by specialization among funding sources.

5 Segmented Balance Sheets

We next provide evidence of a second driver of segmentation in asset prices: balance sheet

segmentation across intermediaries. As discussed in Section 2, if different intermediaries

specialize in different trades, then the tightness of their individual balance sheet constraints

will affect some arbitrage spreads but not others.

We provide three complementary types of analysis. First, we provide suggestive evidence

from CFTC quantity data that different intermediaries are more central for different trades.

We then examine two event studies: JP Morgan’s London Whale episode in 2012 and Deutsche

Bank’s exit from the CDS market in 2014. Finally, we show that the tightness of fixed income

hedge fund balance sheet constraints are important for certain secured trades.
23In Internet Appendix Section A.2.2, we report the first stage.
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5.1 Suggestive Evidence from Quantities

Table 7 uses the CFTC data to provide suggestive evidence that different intermediaries

play bigger roles in certain arbitrage trades. The CFTC summarizes positions in different

futures of different types of intermediaries: dealers, hedge funds (labeled by the CFTC as

“leveraged funds”), and asset managers. For each intermediary type and contract, the CFTC

reports total gross positions long and short of the intermediary type in the contract, as well

as total positions in the contract netted by intermediary type. The data is silent on the

specific intermediaries that are active in a particular trade, and therefore does not perfectly

reveal the marginal price setter for each contract. It does, however, give us a sense of which

intermediaries are most active in which contract.

We compute three different measures of activity. First, we look at an intermediary type’s

gross share of activity in a contract—the sum of the intermediary type’s long, short, and

spread positions in that contract, divided by the total long, short, and spread positions in the

contract. Second, we net within each intermediary type, taking the difference between gross

long and gross short positions for the intermediary type. We then report the intermediary

type’s net position as a fraction of the total net positions across intermediaries. Finally, we

report the fraction of days the intermediary type’s net position is in the direction that would

earn the arbitrage spread. A high fraction of days earning the spread is suggestive evidence

that the intermediary type is an important arbitrageur for the contract, accommodating

demand from other sectors.

All three measures tell the same story. Dealers are the biggest players in equity futures,

while hedge funds and asset managers play a more important role in Treasury futures. For

instance, dealers are in a net position that earns the arbitrage spread in equity futures on

87% of days, while hedge funds are in a net position to earn the spread on 45% of days, and

asset managers are in a net position to earn the spread on only 8% of days. Moreover, dealers

have the largest share of equity futures in terms of gross and net positions. In contrast,

hedge funds appear to be the most active in Treasury futures, as their net position earns the
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arbitrage spread on 60% of days. Dealers are in a net position to earn the arbitrage spread on

52% of days, though their shares of gross and net outstanding are relatively small compared

to hedge funds and asset managers.

While certainly not definitive, these numbers suggest that dealer balance sheet constraints

are likely to be particularly important for equity futures, while hedge fund balance sheets are

more important for Treasury trades. The notion that hedge funds are particularly active in

Treasury spot-futures arbitrage is also consistent with Barth and Kahn (2021). We next turn

to event studies for more definitive evidence.

5.2 Event Study: the London Whale

In this section, we first provide suggestive evidence that JP Morgan is a particularly important

intermediary for equity spot-futures arbitrage. We then examine the impact of balance sheet

shocks to JP Morgan on equity spot-futures arbitrage spreads. According to Coalition

Greenwich, a subsidiary of S&P that provides benchmarks for the financial services industry,

JP Morgan has had the largest share of the market for equity derivatives since 2015.24 This

accords with data from bank regulatory filings, which provide further suggestive evidence. In

particular, we use the Y-9C regulatory filings to examine the trading book securities holdings

of all U.S. bank holding companies. JP Morgan had by far the largest holdings of equity

securities in its trading book over our sample, accounting for 37% of the total. JP Morgan’s

dominance was greater earlier in the sample; for instance, it held 56% of all equities in trading

books in 2010. This evidence suggests that JP Morgan could play an outsized role in equity

spot-futures arbitrage.

We now turn to the impact of an exogenous balance sheet shock to JP Morgan—the

so-called “London Whale” episode”—on equity spot-futures arbitrages spreads. The London

Whale episode was a result of activities by JP Morgan’s Chief Investment Office (CIO) designed

to hedge credit risk in the bank’s loan portfolio. The Senate Permanent Subcommittee on
24The full report can be found here.
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Investigations issued a detailed report on the episode, from which we draw the following

background information.25 At the beginning of 2012, JP Morgan wished to reduce the

size of its hedges in the credit derivatives market. Rather than simply exiting its existing

positions, the CIO instead sought to offset the credit protection it had bought by selling credit

protection. In doing so, it became one of the biggest players in credit derivatives markets,

with other traders nicknaming it the London Whale. In addition, it incurred significant basis

risk, in terms of both the credit quality and maturity of the credit protection it had bought

versus sold.

As shown in Figure 5a, this risk taking resulted in significant losses, which reached over $6

billion by the end of 2012. For context, the firm’s market capitalization at the time was about

$125 billion. Figure 5a shows that losses began to accelerate in March 2012, with monthly

losses totaling $550 million and representing 75% of the firm’s year-to-date losses. The Senate

report also indicates that several internal risk limits were breached for the first time during

the month. Another important event occurred on June 13, 2012, when JP Morgan CEO

Jamie Dimon testified before Congress and announced that significant additional losses were

to be expected at the firm’s next conference call with shareholders. We therefore use March

1, 2012 and June 13, 2012 as the focal points of our event study.

Figure 5b shows that around these critical dates equity spot-futures arbitrage spreads

increased relative to other spreads. These results are consistent with the idea that JP Morgan

is a particularly important intermediary for equity spot-futures arbitrage. Losses incurred in

the London Whale episode tightened JP Morgan’s balance sheet constraints relative to other

intermediaries, moving equity spot-futures spreads but not other arbitrage spreads.

Figure 5c provides formal regression evidence of the comparison between equity spot-

futures arbitrage spreads and other unsecured-funding intensive trades. In a weekly panel of
25The report is available at the following link.
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the absolute value of spreads on unsecured trades, we estimate the regression:

si,t = αi + αt +
24∑

j=−4
+βj1[i ∈ Equity Spot-Futures Arbitrage] × 1[t = j] + εi,t. (10)

Figure 5c plots the coefficients βj as well as 95% confidence intervals and shows that the

patterns observed in Figure 5b are statistically significant. Equity spot-futures arbitrage

spreads significantly increased compared to other unsecured arbitrage spreads following the

event dates (March 1, 2012 and June 13, 2012) and remained elevated for several months.

Finally, to bolster the argument that these results are due to balance sheet constraints

and not funding costs, Figure 5d shows the evolution of rates on JP Morgan’s commercial

paper over the same period. There is little indication that short-term funding costs move

substantially, which we take as evidence that the London Whale was primarily a balance sheet

shock. Taken together, this evidence suggests that JP Morgan is an important intermediary

for equity spot-futures arbitrage and shocks to its balance sheet constraints disproportionately

impact those trades. In other words, balance sheet segmentation helps to explain the low

correlation of arbitrage spreads.

5.3 Event Study: Deutsche Bank’s exit from CDS

In our second event study, we examine Deutsche Bank’s exit from the CDS market. As

discussed in Wang et al. (2021), in late 2014 Deutsche Bank announced that it was exiting

the single-name CDS market and sold a significant fraction of its CDS portfolio to Citigroup.

Consistent with a substantial adjustment in Deutsche Bank’s participation in the CDS market,

the notional value of CDS contracts outstanding fell from 2 trillion euros in its 2013 annual

report to 1.4 trillion in its 2014 annual report. The exact timing of Deutsche Bank’s exit is

unknown, but Bloomberg reported the sale to Citigroup in September 2014, and Deutsche

Bank publicly announced the exit on November 17, 2014. Wang et al. (2021) study the effects

of Deutsche Bank’s exit on CDS market liquidity. In contrast, we are interested in its effect
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on CDS-bond arbitrage spreads, as compared to other arbitrage spreads.

Figure 6a depicts spreads around the exit event, which we center around the first week of

October. Throughout late 2014, CDS-bond arbitrage spreads rise, but other arbitrage spreads

do not. Figure 6b provides formal statistical evidence by running a regression analogous

to (10) for the CDS-Bond basis relative to other secured trades. The plot shows that the

differential impact of Deutsche Bank’s exit on CDS-bond arbitrage spreads relative to other

secured spreads is significant at the 5% level. Furthermore, the relative widening of the

CDS-bond arbitrage spread persisted for over 5 months. These results are consistent with the

idea that Deutsche Bank was a particularly important intermediary for CDS-bond arbitrages.

Its decision to exit the market is akin to a tightening of its balance sheet constraints, which

moved CDS-bond arbitrage spreads but not other spreads.

5.4 Hedge Fund Balance Sheet Constraints

We next turn to the impact of hedge fund balance sheet constraints. We measure hedge fund

balance sheet constraints indirectly, using monthly hedge fund returns as a proxy. The idea is

that following negative returns, hedge funds face tighter balance sheet constraints. At these

times, arbitrage spreads should be higher for the trades in which hedge funds are important

intermediaries. Using lagged returns also helps rule out simple reverse causality stories in

which widening arbitrage spreads cause low returns.

In Table 8, we first use Barclay’s fixed income arbitrage hedge fund index to measure

returns. Barclays collects monthly return information from funds aiming to profit from price

anomalies between related fixed income securities, including interest rate swap arbitrage,

US and non-US government bond arbitrage, and forward yield curve arbitrage.26 We run

monthly regressions of the form:

∆si,t = α + βft−1 + εi,t, (11)
26See this link for more information.
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where si,t is the absolute value of the spread on trade i at time t and ft−1 is the return on the

fixed income arbitrage hedge fund index at t − 1. The monthly return series is standardized

to have mean zero and unit variance.

The first column of Table 8 shows that lagged fixed income hedge fund returns do not

predict future increases in unsecured arbitrage spreads. In contrast, the second column

shows a negative forecasting relationship for future changes in secured arbitrage spreads. A

one-standard deviation return loss for fixed income hedge funds forecasts a 0.7 basis point

increase in future secured arbitrage spreads. The remaining columns of Table 8 reveal that

the relationship is driven primarily by the link between fixed income hedge fund returns and

the Treasury-swap and CDS-Bond arbitrages. Overall, these results support the idea that

hedge fund balance sheet constraints are more relevant for secured trades than unsecured

trades.

We explore more granular balance sheet segmentation using individual hedge fund returns.

We start by estimating the forecasting regression in Eq. (11) for each strategy and each

of the top ten largest fixed income arbitrage hedge funds according to Preqin. This means

we run ten different regressions for each strategy. We adjust our approach to hypothesis

testing by computing critical values using the Bonferroni adjustment. Figure 7 displays the

resulting t-statistic from these forecasting regressions. In the plot, hedge funds are indexed

from one to ten along the x-axis and plot markers correspond to different strategies. The

figure shows that different hedge funds are important for different arbitrage strategies. For

instance, returns for hedge fund 1 negatively forecast future changes for both the CDS-bond

and Treasury-futures arbitrages, with the t-statistics just at the Bonferroni threshold. Hedge

fund 6 appears to be relevant for Treasury-futures arbitrage, while hedge fund 8 appears

relevant for the TIPS-Treasury arbitrage, and hedge fund 10’s balance sheet is important for

the Treasury-swap arbitrages. It is worth noting that these results do not imply that the

hedge funds we study are the only intermediaries that are marginal in a particular trade.

Rather, they are likely to be representative of a broader set of intermediaries all following
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similar strategies and hence subject to similar balance sheet constraints.

To summarize, the results from this section suggest that balance sheet segmentation is

important for explaining the low correlations of arbitrage spreads. Intermediaries appear

to specialize in certain arbitrage strategies. Furthermore, when an intermediary that is

important for one arbitrage suffers a balance sheet shock, the spread for that arbitrage can

move without significantly affecting other arbitrage spreads. The price effects of shocks to

specialized arbitrageurs imply that intermediary balance sheets are segmented.

6 Discussion and Conclusion

6.1 Persistence of Segmentation

While our empirical results have documented that both funding and balance sheet segmenta-

tion impact asset prices, it remains unclear how long this segmentation persists. Following

market dislocations, capital will ultimately flow to profitable arbitrage opportunities; the

question is how quickly (Duffie, 2010; Duffie and Strulovici, 2012). While our analysis does

not provide precise answers to this question, it does suggest that dislocations are not corrected

in a matter of days or even weeks. First, consider our results on smoothing in Figure 3.

Even after taking one-month moving averages of spreads, it takes 9 principal components to

cumulatively explain 90% of the variation in our arbitrage spreads. In other words, spreads

on average diverge for more than one month. Second, Figure 4c shows that the impact of

the 2016 MMF reform persisted for several months, indicating that funding segmentation is

quite persistent. Third, Figures 5d and 6a show instances where balance sheet shocks to JP

Morgan and Deutsche Bank have long-lived impacts on asset prices.

6.2 Arbitrage in Crises

A key result of this paper is that correlations between arbitrage spreads are low, which

we argue reflects both balance sheet and funding segmentation in the intermediary sector.
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An alternative interpretation is that balance sheet and funding integration obtain but the

intermediary sector faces fixed costs and thus will only enter trades when spreads are

sufficiently high. If the overall level of spreads is too low due to small imbalances between

end-user supply and demand for derivatives, then intermediaries will not enter and in-sample

correlations will be low.

To assess this alternative interpretation, we study the behavior of arbitrage spreads during

the onset of the Covid-19 pandemic. From March through May 2020, the average level of

spreads rose to 49 basis points, nearly double the average level in our main sample. Over

the same period, Table 9a shows that the average pairwise correlation of spreads rose to

0.32, a modest increase from the average of 0.21 observed in our analysis sample. These

low correlations are also readily apparent in Figure 8a, which plots strategy-level spreads

starting in March 2020. The figure shows how different trades diverge at the onset of the

pandemic, with the CDS-Bond and equity spot-futures arbitrages peaking several days after

other arbitrages. This divergence is particularly stark within Treasury spot-futures arbitrage,

as Figure 8b shows that arbitrage spreads based on futures for 20-year Treasuries remained

elevated much longer than those based on shorter-maturity Treasuries. Overall, the fact that

correlations do not rise sharply at the onset of the Covid-19 pandemic, despite the broad

increase in the level of spreads, reinforces our argument that arbitrage activity is segmented.

It is also interesting to compare the comovement of arbitrage spreads during the Covid-

19 pandemic to the Global Financial Crisis (GFC). Table 9b shows the average pairwise

correlations of spreads for the period of June 2007 through June 2009. For this analysis, we

cannot include the Treasury spot-futures and swap arbitrages due to data limitations. The

average correlation during the GFC was 0.73, materially higher than during Covid-19.

One interpretation of this finding is that post-GFC regulation has raised the cost of

conducting arbitrage activity (Du et al., 2018), thereby making it more difficult for integrated

arbitrageurs to enter markets. However, a few additional patterns in the data suggest some

caution in drawing this conclusion. For instance, Table 9c indicates that correlations were
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also low prior to the GFC. In addition, Figure 9 provides evidence of both balance sheet and

funding segmentation prior to the passage of the Dodd-Frank Act in 2010. Consistent with

the presence of balance sheet segmentation, Figure 9a shows that equity spot-futures spreads

rose sharply relative to other unsecured trades after two Bear Stearns hedge funds took heavy

losses due to margin calls (Khandani and Lo, 2011). Consistent with the presence of funding

segmentation, Figure 9b shows that both the TED spread and unsecured arbitrage spreads

rose sharply after Lehman Brothers declared bankruptcy. In contrast, secured arbitrage

spreads did not rise for several weeks.

6.3 Conclusion

In this paper, we show that riskless arbitrage is segmented. The average correlation between

arbitrage spreads is low. We show that this low correlation is due to both funding and balance

sheet factors.

Overall, our results demonstrate the importance of both balance sheet and funding

segmentation in financial intermediation. In this respect, we build on research that documents

how shocks to specialized risk-bearing capacity can disconnect risk premia across markets.

Our focus on fundamentally riskless arbitrage trades highlights the pervasiveness of these

issues. The arbitrages we study are relatively straightforward to execute and have expected

returns that are essentially observable. These characteristics should mitigate the typical

agency problems thought to underlie segmentation, slow moving capital, and the limits of

arbitrage, yet in practice arbitrage still appears fairly segmented. It seems natural to expect

more segmentation in the intermediation of risky assets where agency problems are likely to

be more severe. More broadly, our results suggest that exploring the boundaries of the firm

for financial intermediaries – why certain trades are grouped together in a market segment –

is a promising direction for future research.

36



References
Adrian, T. and N. Boyarchenko (2012). Intermediary leverage cycles and financial stability.

FRB of New York Staff Report (567). 5

Adrian, T., E. Etula, and T. Muir (2014). Financial intermediaries and the cross-section of
asset returns. The Journal of Finance 69 (6), 2557–2596. 2, 5, 6

Andersen, L., D. Duffie, and Y. Song (2019). Funding value adjustments. The Journal of
Finance 74 (1), 145–192. 2, 9

Anderson, A., W. Du, and B. Schlusche (2019). Money market fund reform and arbitrage
capital. 4, 24

Barth, D. and R. J. Kahn (2021). Hedge funds and the treasury cash-futures disconnect. 6,
14, 29

Bech, M. L. and E. Klee (2011). The mechanics of a graceful exit: Interest on reserves and
segmentation in the federal funds market. Journal of Monetary Economics 58 (5), 415–431.
6

Begenau, J. and T. Landvoigt (2021). Financial regulation in a quantitative model of the
modern banking system. NBER WOrking Paper . 5

Boyarchenko, N., T. M. Eisenbach, P. Gupta, O. Shachar, and P. Van Tassel (2018). Bank-
intermediated arbitrage. 6

Brunnermeier, M. K. and L. H. Pedersen (2009). Market liquidity and funding liquidity. The
review of financial studies 22 (6), 2201–2238. 5

Brunnermeier, M. K. and Y. Sannikov (2014). A macroeconomic model with a financial
sector. American Economic Review 104 (2), 379–421. 5

Bryzgalova, S. (2015). Spurious factors in linear asset pricing models. LSE manuscript 1 (3).
6

Chernenko, S. and A. Sunderam (2014). Frictions in shadow banking: Evidence from the
lending behavior of money market funds. The Review of Financial Studies 27 (6), 1717–1750.
4, 26

Copeland, A. M., A. Martin, and M. Walker (2010). The tri-party repo market before the
2010 reforms. FRB of New York Staff Report (477). 8

Delong, J. B., A. Shleifer, L. H. Summers, and R. J. Waldmann (1993). Noise trader risk in
financial markets. Journal of Political Economy 98 (4). 3, 17

Du, W., B. M. Hébert, and A. W. Huber (2019). Are intermediary constraints priced?
Technical report, National Bureau of Economic Research. 5, 20

37



Du, W., B. M. Hébert, and W. Li (2022). Intermediary balance sheets and the treasury yield
curve. Technical report, National Bureau of Economic Research. 14, 17

Du, W., A. Tepper, and A. Verdelhan (2018). Deviations from covered interest rate parity.
The Journal of Finance 73 (3), 915–957. 6, 12, 13, 20, 35

Duffie, D. (1999). Credit swap valuation. Financial Analysts Journal 55 (1), 73–87. 15

Duffie, D. (2010). Presidential address: Asset price dynamics with slow-moving capital. The
Journal of finance 65 (4), 1237–1267. 34

Duffie, D. and A. Krishnamurthy (2016). Passthrough efficiency in the fed’s new monetary
policy setting. In Designing Resilient Monetary Policy Frameworks for the Future. Federal
Reserve Bank of Kansas City, Jackson Hole Symposium, pp. 1815–1847. 6

Duffie, D. and B. Strulovici (2012). Capital mobility and asset pricing. Econometrica 80 (6),
2469–2509. 34

Fleckenstein, M. and F. A. Longstaff (2020). Renting balance sheet space: Intermediary
balance sheet rental costs and the valuation of derivatives. The Review of Financial
Studies 33 (11), 5051–5091. 14

Fleckenstein, M., F. A. Longstaff, and H. Lustig (2014). The tips-treasury bond puzzle. the
Journal of Finance 69 (5), 2151–2197. 6, 14, 15

Garleanu, N. and L. H. Pedersen (2011). Margin-based asset pricing and deviations from the
law of one price. The review of financial studies 24 (6), 1980–2022. 5, 23

Gromb, D. and D. Vayanos (2002). Equilibrium and welfare in markets with financially
constrained arbitrageurs. Journal of financial Economics 66 (2-3), 361–407. 5

Gromb, D. and D. Vayanos (2018). The dynamics of financially constrained arbitrage. The
Journal of Finance 73 (4), 1713–1750. 2

Haddad, V. and T. Muir (2021). Do intermediaries matter for aggregate asset prices. The
Journal of Finance 76 (6), 2557–2596. 1

Hanson, S. G., A. Malkhozov, and G. Venter (2022). Demand-supply imbalance risk and
long-term swap spreads. SRC Discussion Paper No 118 . 14, 17

Hausman, J. (2001, December). Mismeasured variables in econometric analysis: Problems
from the right and problems from the left. Journal of Economic Perspectives 15 (4), 57–67.
19, 20

Hazelkorn, T., T. Moskowitz, and K. Vasudevan (2021). Beyond basis basics: Liquidity
demand and deviations from the law of one price. The Journal of Finance forthcoming. 6,
13

He, Z., B. Kelly, and A. Manela (2017). Intermediary asset pricing: New evidence from many
asset classes. Journal of Financial Economics 126 (1), 1–35. 2, 5, 6

38



He, Z. and A. Krishnamurthy (2013). Intermediary asset pricing. American Economic
Review 103 (2), 732–70. 2, 5, 8

Hu, X., J. Pan, and J. Wang (2021). Triparty repo pricing. Journal of Financial and
Quantitative Analysis 56 (1), 337–371. 4, 26

Ivashina, V., D. S. Scharfstein, and J. C. Stein (2015). Dollar funding and the lending
behavior of global banks. The Quarterly Journal of Economics 130 (3), 1241–1281. 2

Jamilov, R. (2021). A macroeconomic model with heterogeneous banks. Available at SSRN
3732168 . 5

Jermann, U. (2020). Negative swap spreads and limited arbitrage. The Review of Financial
Studies 33 (1), 212–238. 6, 14

Khandani, A. E. and A. W. Lo (2011). What happened to the quants in august 2007?
evidence from factors and transactions data. Journal of Financial Markets 14 (1), 1–46.
36, 49

Li, Y. (2021). Reciprocal lending relationships in shadow banking. Journal of Financial
Economics 141 (2), 600–619. 4, 26

Merton, R. C. (1980). On estimating the expected return on the market: An exploratory
investigation. Journal of Financial Economics 8 (4), 323–361. 1

Modigliani, F. and M. H. Miller (1958). The cost of capital, corporation finance and the
theory of investment. American Economic Review 1, 3. 1, 7, 21

Pasquariello, P. (2014). Financial market dislocations. Review of Financial Studies 27 (10),
1868–1914. 5, 20

Rime, D., A. Schrimpf, and O. Syrstad (2017). Segmented money markets and covered
interest parity arbitrage. 26

Ronn, A. G. and E. I. Ronn (1989). The box spread arbitrage conditions: theory, tests, and
investment strategies. Review of Financial Studies 2 (1), 91–108. 13

Shleifer, A. and R. W. Vishny (1997). The limits of arbitrage. The Journal of finance 52 (1),
35–55. 5

Siriwardane, E. N. (2018). Limited investment capital and credit spreads. The Journal of
Finance. 6

U.S. Senate (2014). Jpmorgan chase whale trades: A case history of derivative risks and
abuses. 5

van Binsbergen, J. H., W. F. Diamond, and M. Grotteria (2019). Risk-free interest rates.
Technical report, National Bureau of Economic Research. 6, 13, 15, 20

Wallen, J. (2019). Markups to financial intermediation in foreign exchange markets. 7

39



Wang, X., Y. Wu, H. Yan, and Z. Zhong (2021). Funding liquidity shocks in a quasi-
experiment: Evidence from the cds big bang. Journal of Financial Economics 139 (2),
545–560. 31

40



Figure 1: Arbitrage Spreads by Strategy
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Notes: This figure shows average absolute values of arbitrage spreads by strategy. Data is daily and spans
January 1, 2010 to February 29, 2020.
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Figure 2: Correlation of Arbitrage Spreads

Treasury 2Y SFTreasury 5Y SFTreasury 10Y SFTreasury 20Y SFTreasury 30Y SFTreasury-Swap 1YTreasury-Swap 2YTreasury-Swap 3YTreasury-Swap 5YTreasury-Swap 10YTreasury-Swap 20YTreasury-Swap 30YTIPS-Treasury BasisCDS-Bond HYCDS-Bond IGAUD CIPCAD CIPCHF CIPEUR CIPGPB CIPJPY CIPNZD CIPSEK CIPBox 6mBox 12mBox 18mDJX SFNDAQ SFSPX SF

Treasury 2Y
 SF

Treasury 5Y
 SF

Treasury 10
Y SF

Treasury 20
Y SF

Treasury 30
Y SF

Treasury-Sw
ap 1Y

Treasury-Sw
ap 2Y

Treasury-Sw
ap 3Y

Treasury-Sw
ap 5Y

Treasury-Sw
ap 10Y

Treasury-Sw
ap 20Y

Treasury-Sw
ap 30Y

TIPS-Treasury Basis
CDS-Bond HY
CDS-Bond IGAUD CIPCAD CIPCHF CIPEUR CIPGPB CIPJPY CIPNZD CIPSEK CIPBox 6mBox 12mBox 18mDJX SFNDAQ SFSPX SF

0.900.700.500.300.10-0.10-0.30-0.50-0.70-0.90

Notes: The figure shows the correlation matrix of the absolute value of arbitrage spreads across all trades in our sample. See Section 3.1 for details on
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Figure 3: The Factor Structure of Arbitrage Spreads
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Notes: This figure summarizes principal component analysis for the absolute values of arbitrage spreads
in our sample. Each line shows the results of principal component analysis after we smooth our arbitrage
spreads over a different moving average window. The x-axis shows the number of components and the y-axis
shows the cumulative proportion of variance captured by those components. The red horizontal line on the
plot is at the 90% level. See Section 3.1 for details on each trade. Data is daily and spans January 1, 2010 to
February 29, 2020.
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Figure 4: Event Study of the 2016 Money Market Reform
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Notes: This figure summarizes money market fund (MMF) behavior, funding costs, and the absolute values of
arbitrage spreads around the 2016 MMF reform. Compliance with the reform was required by October 2016
and so we define the reform event as occurring in October 2016. Panel A of the figure shows the time series of
bank commercial paper held by MMFs. Panel B shows the average maturity-matched TED spread (LIBOR -
Treasury) for the arbitrages in our sample. Denote l as the maturity of the nearest-maturity LIBOR for a
given trade. The maturity-matched TED spread for the trade is then defined as LIBOR(l) − Treasury(l).
For trades with tenors longer than 1 year, we set l = 1 year based on the availability of LIBOR rates. Panel
C shows the average arbitrage spread of trades that rely heavily on unsecured funding (CIP, Box, and
Equity-Spot futures) and those that rely more on secured funding.
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Figure 5: Event Study of the 2012 JPM London Whale
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Notes: This figure summarizes JP Morgan’s (JPM) losses, the absolute value of equity spot-futures arbitrage
spreads, and JPM commercial paper (CP) borrowing rates around the 2012 JPM London Whale incident.
Panel (a) of the figure shows the 2012 year-to-date losses on JPM’s credit derivative portfolio, as reported
by the U.S. Senate investigation into the incident. Panel (b) shows the daily average arbitrage spreads of
equity spot-futures, other unsecured arbitrages (CIP and Box), and secured arbitrages in 2012. The first
vertical line in the plot is March 1, 2012, which is when losses began to accelerate. The second dotted line is
June 13, 2012, the first day that the CEO of JPM appeared before the U.S. Senate Committee on Banking,
Housing, and Urban Affairs to testify about the Whale trades. Panel (c) shows the estimated impact on equity
spot-futures arbitrage spreads, relative to other unsecured arbitrages (CIP and Box). The solid lines show the
point estimates from a dynamic difference-in-difference model and the dotted lines show the associated 95%
confidence intervals. Panel (d) shows the estimated impact on JPM’s commercial paper (CP) rate, relative to
the CP rates of other large global banks. See Section 5.2 for more details.
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Figure 6: Event Study of the Deutsche Bank’s 2014 Exit from CDS Trading
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Notes: This figure summarizes the behavior of the absolute values of arbitrage spreads around the 2014
exit of Deutsche Bank (DB) from the CDS market. Panel (a) shows the daily average arbitrage spreads of
CDS-Bond arbitrage, other secured arbitrages (Treasury Futures, Treasury Swap, and TIPS-Treasury), and
unsecured arbitrages in the last half of 2014. The first vertical line in the plot is October 1, 2014. The exact
timing of DB’s exit is unknown, but there are reports that they sold a large portion of their CDS portfolio to
Citibank in September 2014 and they publicly announced the exit on November 17, 2014. Panel (b) plots the
point estimates from a dynamic difference-in-difference model and the associated 95% confidence intervals
around the event. See Section 5.3 for more details.
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Figure 7: Fixed Income Arbitrage Hedge Funds and Secured Arbitrages
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Notes: This figure plots the t-statistics from regressing monthly changes in the absolute values of arbitrage
spreads on the lagged return of ten different fixed income hedge funds. Each hedge fund is indexed along
the x-axis, and the y-axis shows the t-statistic from the regression. The different plot markers correspond
to different strategies. We obtain returns of the ten largest Fixed Income Arbitrage Hedge Funds from
Preqin. The horizontal red line corresponds to the Bonferroni-adjusted t-statistic that corresponds to a 5%
significance threshold, which accounts for the fact that we run ten separate regressions for each strategy.
Within each regression, we cluster standard errors by month.
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Figure 8: Arbitrage Spreads at the Onset of Covid
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Notes: Panel (a) of this figure shows the average level of the absolute values of arbitrage spreads by strategy
at the onset of the Covid-19 pandemic. Panel (b) plots individual Treasury spot-futures arbitrage spreads
over the same period.
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Figure 9: Segmentation Prior to the Dodd-Frank Era
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Notes: Panel (a) plots the average absolute values of arbitrage spreads for unsecured trades (CIP, Equity
spot-futures, and Box) around the period when two of Bear Stearns’s hedge funds were unwound. The red
dotted line corresponds to June 14, 2007, the day that Merrill Lynch reportedly issued a margin call to
the distressed hedge funds (Khandani and Lo, 2011). Panel (b) plots the average spread of secured and
unsecured trades (left axis) and the 3-month TED spread (right axis) around the time of the Lehman Brother’s
bankruptcy and the run on the Reserve Primary Money Market Fund. The red dotted line corresponds to
September 15, 2008, the day that Lehman Brothers declared bankruptcy.
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Table 1: Summary Statistics for Arbitrage Spreads

Mean p50 Std. Dev Min Max First Last N

Box 6m 34 34 11 0 82 Jan-10 Mar-18 2,048
Box 12m 33 32 10 0 87 Jan-10 Mar-18 2,048
Box 18m 31 31 9 2 64 Jan-10 Mar-18 2,048
Dow SF 45 45 24 0 139 Jan-10 Feb-20 2,487
NDAQ SF 38 40 22 0 123 Jan-10 Feb-20 2,474
SPX SF 42 41 20 0 116 Jan-10 Feb-20 2,481
AUD CIP 13 11 10 0 59 Jan-10 Feb-20 2,541
CAD CIP 12 9 10 0 62 Jan-10 Feb-20 2,541
CHF CIP 51 47 27 11 198 Jan-10 Feb-20 2,541
EUR CIP 35 33 21 0 118 Jan-10 Feb-20 2,541
GPB CIP 17 12 14 0 93 Jan-10 Feb-20 2,541
JPY CIP 45 41 24 10 125 Jan-10 Feb-20 2,541
NZD CIP 11 11 7 0 71 Jan-10 Feb-20 2,541
SEK CIP 27 21 22 0 99 Jan-10 Feb-20 2,541
Treasury 2Y SF 13 12 9 0 62 Jan-10 Feb-20 2,342
Treasury 5Y SF 13 9 11 0 58 Jan-10 Feb-20 2,380
Treasury 10Y SF 18 15 15 0 113 Jan-10 Feb-20 2,463
Treasury 20Y SF 17 13 14 0 79 Jan-10 Feb-20 2,469
Treasury 30Y SF 11 9 10 0 180 Jan-10 Feb-20 1,716
Treasury-Swap 1Y 6 5 5 0 32 Jan-10 Feb-20 2,541
Treasury-Swap 2Y 10 9 6 0 34 Jan-10 Feb-20 2,541
Treasury-Swap 3Y 12 10 8 0 36 Jan-10 Feb-20 2,541
Treasury-Swap 5Y 17 15 10 0 44 Jan-10 Feb-20 2,541
Treasury-Swap 10Y 26 25 12 0 59 Jan-10 Feb-20 2,541
Treasury-Swap 20Y 35 35 15 8 70 Sep-11 Feb-20 2,105
Treasury-Swap 30Y 54 51 19 23 100 Sep-11 Feb-20 2,105
TIPS-Treasury Basis 28 27 7 9 55 Jan-10 Feb-20 2,541
CDS-Bond IG 22 20 13 0 79 Jan-10 Feb-20 2,540
CDS-Bond HY 65 59 36 1 188 Jan-10 Feb-20 2,540

Notes: This table presents summary statistics on the absolute values of different arbitrage spreads. Trades
are grouped by strategy (e.g., CIP). All CIP trades are for 3 month tenors. SPX, DJX, and NDAQ SF are
spot-futures arbitrages for the S&P 500, Dow Jones, and Nasdaq indices, respectively. Treasury iY SF is the
Treasury spot-futures arbitrage for i-year maturity Treasuries. CDS-Bond denotes the average CDS-Bond
basis for investment grade (IG) and high-yield (HY) firms. See Section 3.1 and Internet Appendix A.1 for
details on the construction of arbitrage trades. The columns First and Last are the month and year of the
first and last observation for each series.
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Table 2: Correlations Within and Across Arbitrage Strategies

(a) Distribution of All Pairwise Correlations

ρij p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρij = ρ

0.21 0.32 -0.54 -0.02 0.19 0.43 0.96 406 0.00 0.00
88% of pairs reject H0: ρij > 0.67

(b) Distribution of Pairwise Correlations for Short-Tenor Trades

ρij p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρij = ρ

0.19 0.32 -0.40 -0.02 0.15 0.35 0.89 120 0.00 0.00
87% of pairs reject H0: ρij > 0.67

(c) Average Within and Across-Strategy Correlations

CIP Box Equity S-F Treasury S-F Treasury-Swap TIPS-Treasury CDS-Bond

CIP 0.35 0.36 0.27 0.06 0.36 -0.06 -0.00
Box 0.36 0.87 0.38 -0.05 0.34 0.05 -0.14
Equity S-F 0.27 0.38 0.86 -0.05 0.03 -0.10 -0.41
Treasury S-F 0.06 -0.05 -0.05 0.19 0.21 -0.04 0.28
Treasury-Swap 0.36 0.34 0.03 0.21 0.62 -0.16 0.30
TIPS-Treasury -0.06 0.05 -0.10 -0.04 -0.16 - -0.00
CDS-Bond -0.00 -0.14 -0.41 0.28 0.30 -0.00 0.70

Notes: Panel A summarizes the distribution of pairwise correlations for all arbitrage strategies. The columns
under p-value report tests of the null that the average pairwise correlation is above 0.67 and the null that
all pairwise correlations are equal, respectively. Panel B mirrors Panel A and summarizes the distribution
of pairwise correlations for all arbitrage strategies with tenors of less than six months. Panel C shows the
average pairwise correlation within and across trades in each strategy.
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Table 3: Margin Requirements for Arbitrage Strategies

Margin Requirement (%)

Arbitrage Collateral p10 Median p90

Treasury Spot-Futures Treasuries 2 2 2
Treasury-Swap Treasuries 2 2 2
TIPS-Treasury Treasuries 2 2 2
IG CDS-Bond IG Corporate Bond 3 5 8
HY CDS-Bond HY Corporate Bond 3 8 15
Equity Box Equities 5 8 15
Equity Spot-Futures Equities 5 8 15
CIP Foreign Currency 6 6-12 12

Notes: This table shows margin requirements for each strategy. Margin data primarily come from the Federal
Reserve Bank of New York’s Tri-party Repo Infrastructure Reform Task Force. For currencies, we report
data from central bank lending operations by the Bank of England and the European Central Bank.
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Table 4: Arbitrage-Implied Riskless Rates and Funding Conditions

Dep Variable: ∆ Implied RF

Unsecured Secured CIP Box Equity S-F TSwap TFut Tips-T CDS-Bond

∆ Treasury 0.86∗∗ 0.93∗∗ 0.85∗∗ 0.96∗∗ 0.78∗∗ 0.99∗∗ 0.80∗∗ 1.03∗∗ 0.71∗∗

(7.47) (42.12) (5.66) (9.19) (2.88) (60.79) (8.80) (33.75) (9.81)

∆ TED 0.48∗∗ 0.07 0.35∗∗ 0.56∗∗ 0.77∗∗ 0.04 0.16 0.14 -0.24
(4.23) (1.26) (2.24) (4.45) (3.81) (0.94) (1.38) (1.62) (-1.12)

R2 0.18 0.60 0.22 0.37 0.11 0.95 0.11 0.91 0.53
N 1,625 1,773 968 294 363 807 603 121 242

Notes: This table shows monthly OLS regressions of arbitrage-implied riskless rates on maturity-matched Treasury yields and TED spreads. All
variables are expressed in basis points. Define l and m, respectively, as the maturities of the nearest-maturity LIBOR and Treasury for a given trade.
The maturity-matched TED spread for the trade is then defined as LIBOR(l) − Treasury(l) and the maturity-matched Treasury yield is defined as
Treasury(m). l does not equal m for longer-tenor trades (e.g., 30-year Treasury swap) because the maximum maturity LIBOR rate we observe is one
year. t-statistics are reported under point estimates and are based on standard errors clustered by strategy-month.



Table 5: Analysis of 2016 MMF Reform

Dep Variable: Arb. Spread (bps)

(1) (2)

β 11.82∗∗

(2.26)

βj=−4 -5.25
(-0.72)

βj=−3 -0.33
(-0.04)

βj=−2 6.61
(0.70)

βj=−1 11.04
(1.42)

βj=0 17.40∗∗

(2.09)

βj=1 18.28∗∗

(2.07)

βj=2 21.43∗∗

(2.49)

βj=3 16.35∗∗

(2.16)

βj≥4 9.27∗

(1.90)

p: βj = 0, ∀j < 0 0.00
p: β0 = β1 = β2... 0.13
Adjusted R2 0.60 0.60
N 54,710 54,710

Notes: This table shows estimates of the effect of the 2016 money market reform on the absolute values of
arbitrage spreads. Column (1) presents estimates of the following daily regression: sit = αi + αt + β1[i ∈
Unsecured] × 1[t ≥ October2016] + εit, where sit is the absolute value of the arbitrage spread for trade i on
date t, 1[i ∈ Unsecured] is a dummy variable that equals 1 if trade i relies heavily on unsecured funding (CIP,
Box, and Equity spot-futures), and 1[t ≥ October2016] is a dummy variable that equals 1 on or after October
2016. Column (2) shows estimates of the regression: sit = αi + αt +

∑3
j=−4 βj1[i ∈ Unsecured] × 1[t =

October2016 + j] + βj≥41[i ∈ Unsecured] × 1[t ≥ February2017] + εit. Arbitrage spreads are expressed in
basis points. In column 2, we also report p-values for the null hypothesis that the coefficients prior to October
2016 (βj for j < 0) are equal to zero, as well as the null hypothesis that the coefficients on or after October
2016 are equal to each other (βj are equal for j ≥ 0). All regressions include fixed effects for trade (αi) and
date (αt). t-statistics are reported under point estimates and are based on standard errors clustered by trade
and date. The estimation sample ends one year after the reform in October 2017.
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Table 6: Arbitrage-Implied Riskless Rates and Funding Shocks to Fidelity

Dep Variable: ∆ Implied RF

(1) (2) (3) (4) (5) (6)
Equity S-F CIP/Box Secured Equity S-F CIP/Box Secured

∆ Treasury 0.70∗∗ 0.79∗∗ 0.92∗∗ 0.73∗∗ 0.78∗∗ 0.92∗∗

(2.07) (6.31) (39.25) (2.19) (6.13) (36.56)

∆ TED 0.85∗∗ 0.28∗∗ 0.04 0.88∗∗ 0.27∗ 0.05
(3.61) (1.99) (0.50) (3.85) (1.90) (0.73)

Fidelity Flows -2.57∗∗ -0.38 0.43∗ -3.46∗∗ -0.24 -0.51
(-2.83) (-1.01) (1.70) (-2.18) (-0.43) (-1.23)

Estimation OLS OLS OLS IV IV IV
First-Stage F 102 154 266
R2 0.11 0.19 0.56 0.10 0.19 0.54
N 309 1,088 1,523 294 1,033 1,447

Notes: This table presents regression estimates of monthly changes in arbitrage-implied riskless rates on flows
out of Fidelity money market funds. The first three columns show OLS estimates, and the last three columns
show IV estimates, where the instrument is net flows for the entire money market fund sector interacted
with Fidelity’s share of money market fund assets, lagged by six months. We also include the change in the
maturity-matched Treasury yield and the change in the maturity-matched TED spread. Define l and m,
respectively, as the maturities of the nearest-maturity LIBOR and Treasury for a given trade. The maturity-
matched TED spread for the trade is then defined as LIBOR(l) − Treasury(l) and the maturity-matched
Treasury yield is defined as Treasury(m). l does not equal m for longer-tenor trades (e.g., 30-year Treasury
swap) because the maximum maturity LIBOR rate we observe is one year. See Section 4.3 for details on
instrument construction. Columns (1) and (4) show estimates using only Equity spot-futures, columns (2)
and (5) show estimates for other unsecured trades (CIP and Box), and columns (3) and (6) show estimates for
all secured trades. All implied riskless rates are in basis points and flows are in percentage points. t-statistics
are reported under point estimates and are based on standard errors clustered by strategy-month. The
F -statistic from the first-stage of the IV is reported at the bottom of the table.
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Table 7: Trading Behavior in U.S. Futures Markets

Gross Share (%) Position Size (% of Net) Earns Arbitrage (% of days)

Dealers HFs Asset Mgrs Dealers HFs Asset Mgrs Dealers HFs Asset Mgrs

2-Year Treasury Notes 11 37 38 13 33 30 46 62 33
5-Year Treasury Notes 12 30 48 14 32 38 61 65 26
10-Year Treasury Notes 12 30 48 12 30 31 58 74 31
Treasury Bonds 12 25 56 25 14 43 44 37 22
S&P 500 Index 21 30 41 27 18 45 87 98 1
Nasdaq Index 35 31 29 41 19 29 79 29 14
Dow Jones Industrial Average 52 32 11 45 29 15 93 8 8
Average Treasury 12 31 48 16 27 36 52 60 28
Average Equity 36 31 27 38 22 30 87 45 8

Notes: This table summarizes the weekly positions of dealers, hedge funds, and asset managers using weekly reports on the Commitments of Traders
provided by the Commodity Futures Trading Commission (CFTC). We use hedge funds (HFs) to designate traders who classified by the CFTC as
“leveraged funds”. Gross positions by type are computed as the sum of long, short, and spread positions. Gross share is the percent of total gross
positions outstanding across all reporting agents. The columns listed under Position Size (% of Net) are computed as follows: (i) compute the net
position of each type i in week t as Netit = Longit − Shortit; (ii) compute the total net outstanding of the market Netit by summing |Netit| across all
reporting agents; and (iii) Position Size (% of Net) is then |Netit|/Nett. We include the CFTC’s “Other Reporting” agents in our calculation of gross
and net outstanding, but do not report their share in the table. This means that shares in the table will not sum to 100. The Gross Share and Position
Size are weekly averages for each contract. The columns under Earns Arbitrage shows the percent of days on which the net position of the type would
earn the observed arbitrage spread.



Table 8: Fixed Income Arbitrage Hedge Fund Returns and Arbitrage Spreads

Dep Variable: ∆ Arbitrage Spread

Unsecured Secured CIP Box Equity S-F TSwap TFut Tips-T CDS-Bond

FI Arb HF Returnt−1 -0.03 -0.69∗∗ -0.10 -0.67 0.67 -0.40∗∗ -0.41 -0.55 -2.33∗∗

(-0.06) (-2.95) (-0.16) (-1.04) (0.68) (-2.45) (-0.82) (-1.19) (-2.72)

R2 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.01 0.06
N 1,625 1,773 968 294 363 807 603 121 242

Notes: This table shows regressions of monthly changes in the absolute values of arbitrage spreads on the lagged aggregate return of hedge funds that
specialize on fixed income arbitrage, as measured by Barclay’s Aggregate Fixed Arbitrage Index. The aggregate return series is standardized to have
mean zero and unit variance. The columns Unsecured and Secured pool strategies based on whether they rely on unsecured funding (CIP, Equity
Spot-Futures, and Box). The remaining columns run the regression by strategy. Standard errors are clustered by strategy-month.



Table 9: Correlations in Crises

(a) During the Onset of Covid

ρij p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρij = ρ

0.32 0.37 -0.68 0.04 0.35 0.61 0.99 300 0.00 0.00
55% of pairs reject H0: ρij > 0.67

(b) During Global Financial Crisis

ρij p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρij = ρ

0.73 0.19 0.16 0.66 0.78 0.86 0.99 136 1.00 0.00
18% of pairs reject H0: ρij > 0.67

(c) Prior to Global Financial Crisis

ρij p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρij = ρ

0.10 0.21 -0.28 -0.05 0.06 0.21 0.90 136 0.00 0.00
98% of pairs reject H0: ρij > 0.67

Notes: This table summarizes the distribution of pairwise correlations for arbitrage strategies in different
subsamples. In all cases, the columns under p-value are, respectively, based on tests of the null that average
correlations are above 0.67 and the null that all pairwise correlations are zero. Panel A is based on all
arbitrage strategies between March 1, 2020 through May 31, 2020. Panel B is based on the period between
June 1, 2007 through June 30, 2009. Panel C is based on the period between January 2, 2004 and June 1,
2007. Treasury spot-futures and Treasury swap arbitrage are not included in Panels B and C due to data
limitations.
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